
Application of Random Walks for the Analysis

of Power Grids in Modern VLSI Chips

A THESIS

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA

BY

Baktash Boghrati

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

Doctor of Philosophy

Sachin S. Sapatnekar, Advisor

July, 2013

c© Baktash Boghrati 2013

ALL RIGHTS RESERVED

Acknowledgements

i

Abstract

Power grid design and analysis is a critical part of modern VLSI chip design

and demands tools for accurate modeling and efficient analysis. In this thesis, we

develop new solutions for solving power grids, both incrementally and in total,

based on an approach that uses random walks.

The process of power grid design is inherently iterative, during which numerous

small changes are made to an initial design, either to enhance the design or to fix

design constraint violations. Due to the large sizes of power grids in modern chips,

updating the solution for these perturbations can be a computationally intensive

task. The first issue addressed in the thesis relates to the problem of incremental

analysis of power grids. We introduce two incremental solvers that utilize forward

and backward random walks to identify the region of influence of the perturbation.

The solution of the network is then updated for this significantly smaller region

only. Our forward incremental random walk solver is capable of identifying the

region of influence efficiently leveraging the record of the forward random walks

that is obtained in a preprocessing step performed once for a series of consecutive

perturbations. Experimental results show that our forward incremental random

walk solver achieves speedups of up to 3× for 20 and up to 2× for 10 consecutive

perturbations compared to a full system solution.

An alternative approach, backward incremental random walk solver, identifies

the region of influence directly from perturbed system. It can handle consecutive

perturbations without any degradation in the quality of the solution. Moreover,

this approach is particularly well-suited to a new and more accurate modeling

methodology for power grids, introduced in this work, that can result in asym-

metrical systems of linear equations. Experimental results show that our backward

incremental random walk solver achieves speedups of up to 13× as compared to

a full re-solve of the power grid.

ii

Another contribution of this thesis is to introduce a scaled random walk solver

that is capable of finding the solution of individual nodes in the power grid much

faster than the conventional random walks. This solver uses the notion of im-

portance sampling to reduce the variance of the walks and therefore improve the

runtime of the game. Experimental results show that our scaled solver is up to

2× faster than the näıve random walks.

iii

Contents

Acknowledgements i

Abstract ii

List of Tables vii

List of Figures ix

1 Introduction 1

2 Power Grid Modeling 8

2.1 Power Grid Abstraction . 8

2.2 Modeling the Power Grid using VCCS Elements 11

3 Forward and Backward Random Walks 15

3.1 Forward Random Walks . 15

3.2 Motivation for Computing G−1 by the Column 18

3.3 The Backward Random Walk Game 20

3.4 Constructing the Backward Walk Game 21

3.5 An Example Illustrating the Forward and Backward Games . . . 24

3.6 Computing the Individual Columns of G−1 26

3.7 Stopping Criteria for the Random Walks 27

3.7.1 Stopping Criteria for Forward Game 28

3.7.2 Stopping Criteria for Backward Game 29

iv

3.8 Backward Walks and LU Decomposition 31

4 Forward Incremental Random Walk Solver 35

4.1 Book-keeping for the Forward Random Walk Method 35

4.2 The Incremental Solver Method 36

4.2.1 The Perturbed System . 36

4.2.2 The Concept of Ẑ . 38

4.2.3 The Incremental Solution 40

4.2.4 Efficient Computation Techniques 42

4.2.5 Incremental Solver Algorithm 43

4.3 Experimental Results . 45

5 Backward Incremental Random Walk Solver 53

5.1 Incremental Solver Method . 53

5.2 Experimental Results . 56

5.2.1 Performance of the Backward Random Walk Solver on Sym-

metric LHS Matrices . 56

5.2.2 Backward Solver on Asymmetric LHS Matrices 64

5.2.3 Comparing Forward/Backward Solver Based Incremental

Analysis . 64

6 Scaled Solver 69

6.1 Background . 69

6.1.1 The Notion of Importance Sampling 69

6.1.2 The Theory of Importance Sampling 70

6.2 Fast Random Walk Solver . 72

6.2.1 Scaled Random Walks . 72

6.2.2 Computing the Scaling Factors 74

6.2.3 Choosing the Value of α 77

6.2.4 Fast Random Walks Example 78

6.3 Experimental Results . 80

v

6.4 Extension . 84

6.4.1 Extension of the Scaled Solver 84

6.4.2 Dynamic Calculation of Optimal β 85

7 Conclusion 87

References 90

Appendix A. Modifying Existing Benchmarks to Add More Detail 97

Appendix B. Proof of Lemma 1 100

Appendix C. Proof of Theorem 1 102

vi

List of Tables

2.1 Quantifying the inaccuracy in voltage estimation using lumped cur-

rent source models. 14

3.1 Average relative error, in percent, for estimated G−1
2 for different

walk numbers, M . 27

4.1 Benchmark Details: Statistics of the LHS Matrix 46

4.2 Runtime comparisons (tolerance = 1% VDD, perturbation region

size = 20, 30% perturbation) . 51

5.1 Runtimes (tolerance = 1% of Vdd, perturbation region size = 30,

perturbation amount = 20%). 63

5.2 Comparison of the error of the nodes within RoI after refinement

phase and total runtime of backward solver on symmetrical and

asymmetrical equations (Averaged over 10 random perturbations.

perturbation region size = 30, perturbation amount = 20%, error

is normalized to Vdd, tolerance = 1% of Vdd). 66

5.3 Comparison of the accuracy of the Forward solver and Backward

solver (Averaged over 10 random perturbations. perturbation amount

= 5%, tolerance = 1% of Vdd). 67

5.4 Comparison of the runtime of the Forward solver and Backward

solver (Averaged over 10 random perturbations. perturbation amount

= 5%, tolerance = 1% of Vdd). 68

6.1 Benchmark Details: Statistics of the LHS Matrix 80

vii

6.2 Runtime (sec) and speedup of the fast random walk solver for ten

randomly chosen nodes from each benchmark for β = 20 83

7.1 Comparison of forward and backward random walks 88

viii

List of Figures

1.1 A schematic of a design perturbation and its RoI. 3

1.2 Reduction in system size using RoIs. 3

2.1 An example of the layout of a portion of a power grid. 9

2.2 Schematic of the detailed extracted power grid of Figure 2.1. . . . 9

2.3 Schematic of the simplified extracted power grid of Figure 2.1. . . 10

2.4 Converting a T-model to a Π-model. 11

2.5 Steps for eliminating an intermediate nodes in the detailed ex-

tracted grid where gabc = gabgc/(gab + gc). 13

3.1 Contribution of individual current loads on the power network so-

lution. 19

3.2 An example of a backward random walk game modeling Equa-

tion (3.14). 24

3.3 An example of a forward random walk game modeling Equation (3.14). 25

4.1 Number of undetected nodes, normalized to the exact RoI size,

and the maximum change in their voltage, for various perturbation

region sizes (tolerance = 1%VDD, perturbation value uniformly dis-

tributed in (0, 0.1), averaged over 20 perturbations). 48

4.2 Absolute error of the solution, normalized to VDD and averaged

over 20 perturbations, for nodes within the RoI before and after the

refinement phase. The perturbation applied to the RHS (tolerance

= 1% VDD) is uniformly distributed in (0, 0.1)). 49

ix

4.3 Average absolute error of the solution, normalized to VDD, for nodes

within the RoI before and after the refinement phase, perturbation

applied to the LHS (tolerance = 1% VDD, uniformly distributed

perturbation in (0, 0.1), averaged over 20 perturbations) 50

5.1 Number of undetected nodes, normalized to the exact RoI size (tol-

erance = 1%Vdd, averaged over 10 perturbations). 58

5.2 Average change in the voltage of undetected nodes (tolerance =

1%Vdd, averaged over 10 perturbations). 59

5.3 Absolute error of nodes within the RoI before the refinement phase,

normalized to Vdd and averaged over 10 perturbations. (tolerance

= 1% of Vdd). 61

5.4 Absolute error of nodes within the RoI after the refinement phase,

normalized to Vdd and averaged over 10 perturbations. (tolerance

= 1% of Vdd). 62

5.5 Number of undetected nodes, normalized to the exact RoI size (tol-

erance = 1%Vdd, averaged over 10 perturbations). 65

6.1 Example of the (a) näıve and (b) optimally scaled random walk

games. 70

6.2 An example of a scaled random walk game, with a highlighted path

showing a walk of length N = 6. 73

6.3 Simple example of the näıve 6.3(a) and scaled 6.3(b) games to

demonstrate how the fast random walk solver works. 78

6.4 Runtime and relative error vs. β for a random node from circuit c2. 81

6.5 Runtime and relative error for 10 randomly chosen nodes (from c2)

with β = 20. 82

6.6 Distribution of the walk gain vs. walk length (β = 20, v = 1.06). . 84

A.1 Splitting a wire piece of extracted circuit to model it as a detailed

extracted circuit, r = r1 + r2 + r3 + r4. 97

C.1 Power grid model for two adjacent intersection nodes and the in-

termediate nodes in between . 102

x

C.2 Power grid model of C.1 with I0
k = 0 ∀k and vb = 0 103

xi

Chapter 1

Introduction

The problem of verifying the integrity of a power grid is a critical step in the

design of integrated circuits [1–11]. In the steady state (similar equations can be

used for transient analysis with time-stepping), this verification corresponds to the

solution of a set of equations to determine the voltages in the grid, and ensuring

that they are within a certain permissible range. This system of equations can be

written as:

GV = E, (1.1)

where G ∈ ℜN×N is the left hand-side (LHS) matrix, modeling the conductances,

V ∈ ℜN is the vector of unknown node voltages, and E ∈ ℜN is the right hand

side (RHS) vector, modeling the current loads. Matrix G is sparse and diagonally

dominant (
∑

i6=j |gij| ≤ gii, ∀i), and all off-diagonals of G are less than or equal

to zero. In fact, several problems in VLSI design and in other fields involve the

solution of a system of similar linear equations where the left hand side has the

form of a diagonally dominant matrix with positive diagonal and nonpositive off-

diagonal entries, such as thermal analysis under the resistive-electrical duality

[12–16], and quadratic placement [17–21]. Mainstream methods for solving such

systems include direct methods such as LU/Cholesky factorization [22, 23] and

iterative methods [24–26]. Lately, there has been an upsurge of interest in the use

of random walk based solvers [27–31] for solving systems with diagonally dominant

1

2

LHS matrices, and these solvers are competitive with conventional solvers [32–

35]. Random walk based solvers have been proven useful in various applications,

instances are: potential theory [31,36–40], solution of Laplace equations [36,37,39],

and solution of Poisson equations [13, 38].

This work first addresses a specific problem in the area of steady-state power

grid analysis where an incremental change is made in an already-solved network

and the new solution is to be determined. Power grid design is a highly iterative

process in which the designer makes small perturbations to a complete initial

design to fine-tune the design or fix violations in the noise specifications. Examples

of perturbations to a power network include changes to the wire conductances

(e.g., when the length or thickness of the wires change), power pad placement, or

current loads. For a small perturbation the solution of the perturbed system is

close to the initial solution, meaning that the change in the solution of most of

the nodes of the network is insignificant, and the small subset of nodes that are

physically or electrically close to the perturbation are most likely to be affected

[41, 42]. Examples of small perturbations are: change in power grid structure

locally, change in current sources, and change in pad positions.

The notion of closeness of the solution of the perturbed system to the initial

solution suggests that for finding the perturbed solution, solving for the entire

system from scratch is quite wasteful. To efficiently perform this task, one should

leverage the property of “closeness” and utilize the unperturbed solution. How-

ever, this is not a trivial task since it is unclear a priori which nodes change

significantly and which do not. One possible method would be to partition the

network, create macromodels for each partition, and solve the problem hierarchi-

cally, as in [43]. However, this may require a large number of partitions, involving

large amounts of computation. Moreover, the size of the optimal partition may

depend on the magnitude of the perturbation. Other approaches employ iterative

solvers [44] using the unperturbed solution as an initial guess, sensitivity meth-

ods [45], and the fictitious domain method [46]. These suffer from the fact that

they require the full system to be solved again, for the entire chip, and do not

3

fully utilize the “closeness” properties above. An iterative solver is also described

in [47], but operates on smaller, denser systems.

An alternative approach is to identify the set of nodes that are significantly

affected by the perturbation, called the region of influence (RoI). The RoI is the

set of all of the nodes in the network for which the voltage changes by more than

a given threshold under the applied perturbation changes. Figure 1.1 illustrates

a perturbation to power grid and the RoI associated with it. If the RoI could be

found, one could, in principle, solve for a drastically smaller system of equations

by keeping the solution of the nodes out of RoI at their initial values, and recom-

puting only the solutions within the RoI. Figure 1.2 schematically illustrates the

dimension of LHS matrix corresponding to the full network and the much smaller

subsystem corresponding to the RoI of a perturbation.

RoI

Perturbed Region

Unaffected region

Figure 1.1: A schematic of a design perturbation and its RoI.

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

N×N

|RoI| × |RoI|

Figure 1.2: Reduction in system size using RoIs.

Identifying the RoI is nontrivial. In this work we introduce two different ap-

proaches to identify the RoI. First approach which leverages the forward random

4

walks, uses the bookkeeping information of the random walk solver of [32], ob-

tained as part of a preprocessing phase, to identify the RoI for any perturbation.

This approach is specially interesting for the case that the bookkeeping informa-

tion of the system is previously known. The experimental results show that this

approach can compute the RoI efficiently given the bookkeeping information. On

the other hand this approach has two drawbacks: (1) it uses approximations that

neglect second-order terms, leading to some errors, and (2) it neglects the fact

that the bookkeeping information changes due to these perturbations, making

this method increasingly inaccurate as more consecutive perturbations are made.

To overcome the shortcomings of the forward incremental random walk solver a

second approach is developed that finds the RoI accurately and efficiently using the

notion of backward random walks. This approach does not require preprocessing

and finds the RoI directly.

The basic concept of backward random walks was outlined almost 50 years ago

in [31], but with no regard to computational efficiency. The backward random walk

method is also known as shooting method in computer graphics, and has been used

in the context of radiosity and illumination problems to determine the reflections

of a light source on the environment [48]. The shooting method in graphics shares

the idea of our approach, finding the affected region due to a source by running

random walks from a source, but the problem structure is sufficiently different

that the resemblance stops at a very superficial level, and solutions from that

domain cannot be adapted easily.

In this work, we develop the theory of backward random walks and show how

a solution for the incremental analysis problem can be obtained by applying this

method. We employ the backward random walk method to (1) make the approach

computationally practical, (2) show a theoretical relation to LU factorization,

and (3) apply it to incremental analysis. Our incremental solver can capture any

number of consecutive perturbations on the LHS and the RHS of the network

of fixed size, without degradation in the accuracy. Experimental results show

speedups of up to 13× compared to the Hybrid Solver of [49] on IBM power grid

5

benchmarks of [50]. The key feature of the backward random walk approach is the

ability to find some columns of G−1 efficiently, individually, and without incurring

the large computational overhead of determining the entire G−1 matrix.

Further, we show the relationship between forward and backward random

walks. In particular, forward random walks effectively construct G−1 by the row,

while we show that backward walks construct G−1 by the column. Since G−1

for a symmetric G is symmetric, this implies that for a symmetric system, the

forward and backward walks are equivalent, and our backward random walks can

be substituted by the already-known theory of forward random walks. However,

we also demonstrate that when a power grid modeled appropriately, the resulting

system of equations results in voltage-controlled current sources that can result

in an asymmetric G matrix. This is where the theory of backward walks devel-

oped in this work has particular applicability, since we will show that incremental

analysis requires specific columns of G−1 to be reconstructed.

Finally in the last part of this work we consider solving for a single node of the

network without solving for the whole system where there is no prior information

about the solution of the network. The novelty of this work is in pointing out that

even in applying random walks to solve a single node (depending on the analysis

scenario, this analysis may be the problem to be solved, or may be a unit problem

in the solution of the entire grid), further efficiencies are possible. The solution

draws upon some key characteristics of power grids: first, that in any reasonably

designed grid that is to be analyzed, the solutions at all nodes are very similar

in value, and second, that for the most part, and for DC analysis in particular,

the directionality of current loads from the functional blocks is similar, drawing

current from the power network (or delivering current into the ground network).

In other words, the entries of the right hand side vector, E, are greater than or

equal to zero: this is true in practice for DC analysis, and also for AC analysis,

even in the presence of package inductances, which are handled as in [49].

In general, any random walk method in its näıve form can be slow, but its

performance can be improved by guiding the randomness in a productive direction

6

[51, 52]. In this work, we develop a heuristic method inspired by Importance

Sampling (IS) [53] to speedup the random walk solver, while maintaining the

level of accuracy. Importance Sampling is a variance reduction technique that

can potentially reduce the variance of the random walk solver to zero1 , and

represents a procedure that can reduce the runtime of the solver.

The idea behind the IS method, as discussed in more detail in Section 6.1.2, is

to modify the distribution of the näıve random walks so that the metric provided

by each walk, referred to as its gain, is approximately the same. The change in

the distribution causes a bias in the solution which is compensated for, using a

weighted average scheme, and is referred to as scaling.

The content of this thesis is organized as follows:

Chapter 2 discusses the procedure of extracting the power grid model and in-

troduces a procedure for more accurately modeling power grids.

Chapter 3 first describes the forward game, how it is constructed and its relation

to the rows of the inverse of the LHS matrix of Equation (1.1), G−1. Next

the motivation for computing the columns of G−1 is presented which is

followed by a discussion on backward random walk game that provides an

efficient way for computation of the columns of G−1 one at a time and

without computing the entire G−1. Finally in this chapter the relation of

the backward random walks and the LU decomposition is presented.

Chapter 4 describes the incremental solver based on the forward random walks.

The experimental results are presented that demonstrate the quality of the

found RoI and compares its performance with the hybrid solver of [54].

Chapter 5 presents the incremental solver based on the backward random walks.

The performance of the backward solver is demonstrated by comparison to

the hybrid solver of [54] and the forward incremental solver of Chapter 4.

1 For many practical problems, reducing the variance to zero may be unrealistic: it may
require the solution of the system to be known, in which case there would be no point in solving
the system!

7

Chapter 6 presents an scaled solver that leverages the notion of importance sam-

pling in forward random walk game to speedup the computation of solution

of individual nodes of power grids. Experimental results show significant

speedups, as compared to naive random walks used by the state-of-the-art

random walk solvers.

Chapter 2

Power Grid Modeling

2.1 Power Grid Abstraction

Figure 2.1 shows the layout of a portion of a 2D power grid layout where several

cells are connected to a Vdd line. A detailed extracted circuit for the power grid

of this figure is depicted in Figure 2.2. In this figure, the resistors model the wire

resistances and the triangles symbolize various cells connected to the power grid.

The capacitance and the inductance of the network are not shown since we are

focusing on the steady-state analysis of the grid. Similar to [50], it is assumed

that all cell connections are at the lowest metal level and that the tapping points

only lie in these layers. At any intermediate metal level, the connections are only

made at vias.

For a full chip power grid analysis, detailed extraction results in large systems

of equations that are memory-intensive and computationally prohibitive, since

every node with a current source must be retained. A simplifying assumption

that is conventionally used in power grid extraction for steady-state analysis is

to lump all the cells at the power line intersections, i.e., to assume the cells are

connected to the power grid only at the power line intersections, which results

in over all much smaller power grid to analyze, as illustrated in Figure 2.3. As

pointed out in [50], this approximation has been though to be essential because it

8

9

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���������������������������
���������������������������
���������������������������
���������������������������

���������������������������
���������������������������
���������������������������

���������������������������
���������������������������
���������������������������

Vdd

Vdd
VddVdd

GND

Figure 2.1: An example of the layout of a portion of a power grid.

1

2

x

Ix

Figure 2.2: Schematic of the detailed extracted power grid of Figure 2.1.

is impractical to model individual connections between the gates and power grid.

The lumped approach of Figure 2.3 has several drawbacks:

• It overlooks the dependence of the current drawn by each cell on the voltage

of their power supply [50].

• It introduces a discretization error by placing the lumped current source

potentially far away from the original locations of the cells.

To account for the first-order dependence of cell current to the voltage of the

power supply, each cell can be modeled as a Voltage Controlled Current Source

(VCCS) with Ix = gxVx + I0
x for a cell at intermediate node x. Note that the

VCCS here is fairly trivial, and is easily modeled by placing a conductance gx

in parallel with each current source. However, the second issue conventionally

requires either an exact analysis of a much larger system (containing numerous

nodes, corresponding to all cell tapping points on the power grid as shown in

10

Figure 2.2), or an approximate analysis of a lumped system with discretization

error.

1

I1

Figure 2.3: Schematic of the simplified extracted power grid of Figure 2.1.

In Section 2.2, we propose an approach for avoiding the discretization error

in moving to a coarse extracted grid that eliminates all nodes but those at the

intersections of grid wires, as in the simplified extracted grid. Using the VCCS

model makes the task of going from detailed extracted power grid to a coarse ex-

tracted grid more difficult due to dependence of the current loads on intermediate

nodes (i.e., nodes not on the power grid intersections) that are available only in

the detailed extracted circuit. We employ circuit transformations to move the

VCCS elements for each cell to VCCS elements at the intersections of the power

grid. In effect, the circuit in Figure 2.2 is transformed to that in Figure 2.3, with

the difference that the current sources are replaced by VCCS elements.

As we will see, these new VCCS elements are more complex than the simple

current source/resistor elements that model individual cells. These elements result

in a set of power grid equations that are diagonally dominant with negative off-

diagonals, but asymmetric. Intuitively, this asymmetry arises because the voltage

of each intermediate node is closer in value to voltage of the intersection node it is

physically closer to. Therefore, when the intermediate nodes are eliminated, the

VCCS may be a stronger function of one adjacent grid intersection node rather

than another one, which, in terms of the nodal analysis stamp of a VCCS [45],

introduces asymmetry in the LHS of Equation (1.1).

11

2.2 Modeling the Power Grid using VCCS Ele-

ments

In this section, we first discuss the details of obtaining the coarser extracted power

grid circuit from the detailed extracted power grid circuit, modeling each cell as

a VCCS. Next, we discuss a method for obtaining such a model from a standard

set of power grid benchmarks [50].

x

Ix

a

Ia

b

Ib

ga gb

(a) T-model

a

Ia

b

Ib

Iy Iz

gab

(b) Π-model

Figure 2.4: Converting a T-model to a Π-model.

Lemma 1 Consider a circuit with two external ports at nodes a and b, represented

either as a T-model shown in the circuit of Figure 2.4(a), or as a Π-model circuit

of Figure 2.4(b), where the equations for the VCCS elements, Ix, Iy, and Iz, are

Ix = I0
x + gxava + gxbvb + gxvx

Iy = I0
y + gyava + gybvb

Iz = I0
z + gzava + gzbvb

gab =
gagb

ga + gb

12

The two models are electrically equivalent if the following relationships hold:

gya = ga

(

1− ga − gxa

ĝx

)

− gab

gyb = gab − ga

(

gb − gxb

ĝx

)

I0
y =

ga

ĝx
I0
x

gza = gab − gb

(

ga − gxa

ĝx

)

gzb = gb

(

1− gb − gxb

ĝx

)

− gab

I0
z =

gb

ĝx
I0
x (2.1)

where ĝx = ga + gb + gx.

Proof: See Appendix B �

To obtain the coarsened power grid from the detailed extracted grid, Lemma 1

is progressively applied on the intermediate nodes of the detailed extracted grid

to replace the T-models with Π-models. In each wire segment In the original

circuit, shown in Figure 2.2, each gate at node x is represented by a conductance

gx in parallel with a constant current source; therefore, gxa = gxb = 0. The

transformation in the lemma is then applied to a T-model in Figure 2.5(a), marked

with a dashed square around it, to create the corresponding Π-model shown in

Figure 2.5(b). Next, the adjacent VCCS elements are summed up to create new

T-models, shown in Figure 2.5(c) that are successively reduced. Finally, each wire

segment between intersections is reduced to the Π-model shown in Figure 2.5(d),

and the final circuit has the look of the lumped circuits used in [50] with all

sources at the power grid intersections, except that the sources at each node are

not independent current sources, but VCCS elements that introduce asymmetry

into the G matrix. please check the paragraph above and the corresponding

figures.

13

Iu IvI1
x I2

x

ga gb gc

(a)

Iu
IvI1

y I1
z

I2
x

gab gc

(b)

gab gc

Îu = Iu + I1
y IvÎx = I1

z + I2
x

(c)

Îu + Îy Iv + Îz

gabc

(d)

Figure 2.5: Steps for eliminating an intermediate nodes in the detailed extracted
grid where gabc = gabgc/(gab + gc).

Note that the above process is exact and makes no approximations, implying

that the impact of the voltage of the power line at each cell is accounted for

accurately. Therefore, the dependence of the load of each cell on its supply voltage

is correctly captured, and the discretization error mentioned in Section 2.1 is

avoided.

Table 2.1 quantifies the inaccuracy that is inherent in the conventional lumped

model of Figure 2.3. For the detailed extracted circuits corresponding to power

grid benchmarks of [50], which are created using the procedure explained in Ap-

pendix A, we quantify the error introduced by the lumped approximation. The

average and maximum modeling errors shown in the table are normalized to the

value of Vdd and also normalized to value of maximum voltage drop in the power

grid. The error as normalized to Vdd is large for the first two benchmarks and

smaller for the others. This can be attributed to the fact that the worst-case

drops on these circuits are larger. An alternative, and possibly better, metric for

14

Table 2.1: Quantifying the inaccuracy in voltage estimation using lumped current
source models.

Current source model error
benchmark Norm. to Vdd Norm. to max voltage drop

Mean Max Mean Max

ibmpg1 6.14% 28.38% 14.96% 69.11%
ibmpg2 5.75% 14.51% 32.26% 81.48%
ibmpg4 0.05% 0.14% 8.98% 25.43%
ibmpg5 0.12% 0.52% 3.49% 14.63%
ibmpg6 1.07% 3.72% 12.91% 44.85%

Average 2.63% 9.45% 14.52% 47.10%

measuring the error is to compare the error as a fraction of the maximum voltage

drop over all nodes in the circuit1 . Under this metric, it can be seen that the

error is quite significant for all circuits, motivating the need for using our VCCS

model over the existing lumped model.

The higher accuracy of the VCCS model comes at the expense of an asymmet-

rical LHS. The hybrid solver of [54] and forward solver of [55] are not capable of

solving a system with asymmetrical LHS and it is harder for direct and iterative

methods to solve. In this thesis, we propose a backward random walk solver that

can solve asymmetrical equations as efficiently as symmetric equations.

1 We choose not to show normalization of the error at a node with respect to the voltage drop
at the node since it exaggerates small errors at nodes with small voltage drops, thus providing
largely meaningless data.

Chapter 3

Forward and Backward Random

Walks

In this chapter we first briefly explain the forward random walk game introduced

by [32]. Next, we discuss in detail the motivation for backward random walks and

how it is constructed to solve power grid equations. Finally we show the relation

of backward random walk game with LU matrix decomposition. The relation of

the forward random walk game and LU decomposition of matrix is shown in [54].

3.1 Forward Random Walks

The forward random walk game [32] is a construction for solving Equation (1.1)

as V = G−1E, that is based on the rows of LHS matrix, G. The method proceeds

by solving the voltage at any specific node i as:

vi =
[

(G−1)i1 (G−1)i2 . . . (G−1)iN

]

E (3.1)

where (G−1)ij is the (i, j)th element of G−1, and N is the dimension of G.

The forward random walk game is based on a network of roads with motels

or homes at its intersections. To compute the voltage at node i, the walker starts

with zero money in his pocket from the motel at i, pays for the cost of the motel

15

16

(on credit), and takes one of the roads at the intersection randomly, according

to some known probability distribution pij , to get to an adjacent intersection,

j, where j ∈ {1, . . . , degree(i)}, and degree(i) denotes the number of roads at

intersection i. This process of paying for the motel at the current node and

randomly picking the next node is repeated until the walker reaches one of the

specially designated home nodes in the circuit, where a reward is collected.

Consider a node i in a conventional coarse extracted power grid model of

Figure 2.3, connected by resistors to each neighboring node j = 1, · · · , degree(i)

with conductance gij, and with a grounded current source at i, Ii (possibly of

value 0). Let vk be the voltage at any node k in the network. The application of

Kirchhoff’s current law, Kirchhoff’s voltage law, and the device equations implies:

degree(i)
∑

j=1

gij(vj − vi) + Ii = 0 (3.2)

The terms in this equation can be rearranged as:

vi =

degree(i)
∑

j=1

gij

Γi
vj +

Ii

Γi
(3.3)

where Γi =
∑degree(i)

j=1 gij. Equation (3.4) implies that the voltage of node i is a

weighted sum of the voltages of its neighbors. Due to diagonal dominance, all

weights lie between 0 and 1, and the sum of the weights is less than 1. Moreover,

if we add in conductances to ground at i the sum of the weights becomes equal

to 1. And Equation (3.3) can be written as:

vi =

degree(i)
∑

j=1

gij

gii
vj +

gi,GND

gii
× 0 +

Ii

gii
(3.4)

where gi,GND is the conductance of node i to ground and gii = Γi + gi,GND is the

ith diagonal element of LHS matrix G. For a power grid that has N non-VDD

nodes, we may write N equations of this form, one for each node. The solution of

this system of N equations provides the exact solution to Equation (1.1).

17

The nodes in the random walk game have a one-to-one correspondence with

those in the power grid. Nodes that are connected by resistors in the power grid

are connected by roads in this network. At a given node, the probability of taking

a specific road maps on to the corresponding weight, pij = gij/gii, for the edge

(Equation (3.4)). Each node has a motel that charges a cost of mi = Ii/gii when

visited. The nodes that correspond to fixed voltages vi (e.g., VDD or ground nodes)

provide a reward of vi, and are called home nodes.

A system of equations defined by Equation (3.4), for all i, can be modeled as

a random walk game on this network of roads, where the walker goes from node

i to its adjacent node j with probability pij and pays a motel cost, mi, at each

visited node. The walk terminates when the walker arrives at a home node.

For a node of interest, i, a random walker starts with zero money and a credit

card that allows motel costs to be charged until a reward is obtained for reaching

a home node. We define this amount for each random walk as the gain of that

walk. Then the expected value of the gain, vi, over all walks that begin at node i

is given by

vi =

degree(i)
∑

j=1

pijvj + mi (3.5)

It is easy to see that this equation and Equation (3.4) correspond exactly. The

notation, vi, is overloaded to denote both the average gain of the random walk and

the voltage of the node, precisely because the two are identical, i.e., the expected

value of the walk gain, given that the walk started from node i, maps directly to

the voltage at node i.

The expected value of vi from the random walk can be estimated by running

a sufficiently large number of random walks from i and calculating the average

result to get the estimated voltage of node i without solving for any other node

within the network. If the number of walks from i is Mi, then:

vi =
1

Mi

Mi
∑

k=1

V k
i (3.6)

18

where V k
i is the walk gain in the kth random walk. We refer to this approach as the

näıve simulation approach. This approach is always unbiased [51] since vi = EP [Vi]

where Vi is the random variable with probability mass function (PMF) P k
i equal

to the probability of kth random walk in Equation (3.6), which is equal to the

product of the transition probabilities of the kth random walk starting from node

i.

In the random walk game above, the motel costs do not play a role in road

probabilities and hence the likelihood that each road being taken by the walker.

In other words, in this game for all the walks starting from node i, if we keep

the record of the number visits, including the revisits, to each motel, j, the walk

gain and therefore the node voltage, vi, can be computed for any motel cost by

simply applying the same walk record to the motel costs. In other words, the

record of home visits is directly related to the elements of ith row of the inverse

of LHS matrix of Equation (1.1). The work of [32] shows that this relation for

i = 1, · · · , N can be written as:

(G−1)ij =
Number of visits to motel j in M walks from i

M × gii
j ∈ [1, N] (3.7)

3.2 Motivation for Computing G−1 by the Col-

umn

In effect, as shown in [33,54], the forward random walk method computes G−1 by

the row for the row(s) of interest, corresponding to the nodes where the voltages

are to be evaluated. Reconsidering Equation (1.1), its solution V = G−1E, can

also be written in another form as:

v1

v2

...

vN

=

(G−1)11

(G−1)21
...

(G−1)N1

e1 + · · ·+

(G−1)1N

(G−1)2N

...

(G−1)NN

eN (3.8)

where vi and ei are the ith elements of V and E, respectively.

19

Each element, [(G−1)1i, (G
−1)2i, . . . , (G

−1)Ni]
T

ei, of the summation is the con-

tribution of the ith element of the RHS, E, on the solution vector V. The full

solution simply is the superposition of the contributions of all ei. In the context of

ground network analysis, this is the contribution of each current load on the node

voltages of the network. In other words, each product within the sum represents

the influence of ei, and the nodes with near-zero values fall outside the RoI of ei.

(a) (b) (c)

Figure 3.1: Contribution of individual current loads on the power network solu-
tion.

On-chip power grids with C4 pins distributed over the area of the chip are

well known to satisfy the property of locality, whereby the voltage drop impact of

an individual current source is predominantly felt at nodes that lie in the region

near the source, and not in faraway areas. This is illustrated in the schematic

contour plot in Figure 3.1(a), where a current load is applied at a certain node

and its influence on the voltage drop (effectively, computing V = G−1E by the

column corresponding to this single excitation) is seen to show the property of

locality. If another excitation is applied due to another current load, as shown in

Figure 3.1(b), another contour plot is obtained, and if both are applied together

(Figure 3.1(c)), then the result is a superposition of the contours, consistent with

Equation (3.8).

While this observation is of limited utility in the complete solution of GV = E

for a realistic power grid, where the number of current loads is extremely large, it

has particular application to the problem of incremental analysis. As we will see in

Section 5.1, the impact of small perturbations to the power grid can be modeled by

20

a small number of current loads. Therefore it is reasonable to attempt to compute

the matrix inverse by the column, for the columns corresponding to these current

loads, in order to generate a meaningful solution in a modest amount of time. For

such a case, the nodes affected that constitute the RoI can be computed using a

method similar to that illustrated in Figure 3.1. Therefore, there is a close relation

between finding the RoI and Equation (3.8). As we will show soon, the use of

backward random walks permits this computation in an easy manner.

3.3 The Backward Random Walk Game

In this section, we qualitatively explain the backward random walk method in

contrast with the forward random walk approach. The key difference is that the

forward game is constructed based on the rows of the LHS matrix, G, inverting

one row at a time, and captures the effect of all of the RHS elements on the

solution of a single node; while the backward game is constructed based on the

columns of G, inverting one column at a time, and captures the effect of a single

source on the solution of the entire system. Therefore, the forward game finds the

matrix inverse, G−1, by the row, and the backward game finds this matrix inverse

by the column.

By Equation (3.8), for the case where there are few nonzero elements on the

RHS (e.g., during incremental analysis), only a few corresponding columns of G−1

must be computed, and backward random walks are extremely appealing. The

forward game, on the other hand, is suitable for the case where the voltages of a

small subset of nodes in the network are desired, as seen from Equation (3.1).

As described later in Section 3.4, the construction of the forward and backward

games is the same except in the fact that the forward walk road probabilities are

constructed based on the rows of G, while the road probabilities of the backward

game are based on the columns of this matrix. In both games multiple walks are

started from a motel of interest, ended when a home is reached, and the motel

visits are recorded. The difference then is how this information is interpreted.

21

In a forward game, as mentioned in Section 3.1, the analogy is that the walker

has to pay for each motel he visits and gets an award as he reaches a home. In

this process the average number of visits to motel nodes are translated into the

rows of G−1 and the sum of money into node voltages, in other words, sum of the

contribution of each motel (RHS element) on the walker’s total money.

In contrast, the analogy for the backward game is that the walker has a sum

of money that he has to distribute among the motels he visits based on how

frequently he visits them. Then the average number of motel visits is translated

to the columns of G−1 and the sum of money (the contribution of one RHS element

on entire system) distributed on all the nodes in the game, into the contribution

of one RHS entry on the voltage of all nodes.

For a symmetrical G, the forward and backward games turn out to be identical

and the columns of G−1 can be obtained by transposing the corresponding rows of

G−1 computed by forward random walks and vise versa. However, as mentioned

in Section 2, the LHS of the power grid equations can be asymmetrical where the

forward and backward games turn out to be different. Like the forward solver,

the backward solver is also directly related to the LU decomposition of the LHS

matrix, as discussed in Section 3.8). As in [33, 54], this can be used as a precon-

ditioner in combination with an iterative solver, but this is not explored in detail

within this thesis.

3.4 Constructing the Backward Walk Game

We now describe how the backward random walk game is constructed from Equa-

tion (1.1), and how the columns of G−1 are computed using this approach. As in

the forward walk game, this game is based on a network of roads with motels or

homes at its intersections. To compute the jth column of G−1, the walker starts

from the motel at j, pays for the motel, and takes one of the roads at the inter-

section randomly, according to some known probability distribution pji, to get to

the adjacent intersection, i, where i ∈ 1, . . . , degree(j), and degree(j) denotes the

22

number of roads at intersection j. The walker continues until a home is reached.

This completes one full walk. The number of motels visited, including the revisits,

on the path is called walk length. The goal of this game is to enumerate the visits

to each motel during a walk.

Theorem 1 The LHS matrix G of the power grid with asymmetric VCCS models

satisfies the following properties:

N
∑

i=1,i6=j

|gij| ≤ gjj, ∀j (3.9)

{

gij ≤ 0 j 6= i

gij > 0 j = i
(3.10)

Proof : See Appendix C. �

For power grid LHS matrix G with these properties, Equation (3.9) can be

modified as:

N+1
∑

i=1,i6=j

|gij| = gjj, ∀j

gj(N+1) = −
(

gjj −
N
∑

i=1,i6=j

|gij|
)

∀j (3.11)

The added conductances are accounted for in Equation (1.1) by adding dummy

node N +1 with known solution of 0. The insertion of the dummy node is essential

to obtain valid road probability distributions discussed in Theorem 6. In the rest

of this chapter, we assume that G notation is overloaded to include this added

dummy node.

Theorem 2 For each column of a system of linear equations defined by Equa-

tion (1.1), a valid probability mass distribution can be defined as: Does not include

the column corresponding to the dummy node N + 1.

pij =

{

−gji/gjj j ∈ [1, N], j 6= i

0 j = i
(3.12)

23

Proof: For a probability mass function to be valid, all probabilities should lie

between 0 and 1, and the sum of all probabilities should be 1. For the conductance

matrix of a power grid, G, using Equations (3.10) and (3.11), for ∀i, j, we have:

0 ≤ pij ≤ 1
N
∑

i=1

pij = 1

�

Note that in Equation (6.8), pij = 0 for many of the j’s due to the sparsity of

G. Writing the pij ’s in matrix form, P , where subscript i and j denote the row

and column index of this matrix, we get:

G = (I − P)T D (3.13)

where D is the matrix of the diagonals of G, and I is the identity matrix. Notice

that as mentioned in Section 3.3, the road probabilities on the rows of matrix P

are computed using the columns of the LHS matrix, G, which distinguishes the

backward game from the forward game.

A random walk game can be constructed from Equation (1.1) by modeling

each element of the vector V as an intersection, nonzero elements of the LHS as

roads, and road probabilities as in Equation (6.8). Note that the vector V consists

of both unknowns as well as known variables. The unknown and known variables

of vector V, are mapped to motels and homes, respectively.

Note that in construction of the game, connectivities and transition probabil-

ities, and therefore number of node visits, are determined by the LHS only.

24

3.5 An Example Illustrating the Forward and

Backward Games

Consider the following diagonally dominant matrix:

G =

1.5 0 −1 0

0 2 −1 −0.5

−0.75 −1.25 2.25 −0.25

0 0 −0.25 1.25

(3.14)

Since we are interested in illustrating the setup for the backward [forward] random

walks required to create G−1 by the column [row] (rather than the solution vector

V), we do not show the RHS vector E in this example.

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

0

0

0

v1

v2 v3 v4

0.5

0.5

0.44

0.44

0.11

0.2

0.375 0.625
0.4

0.4

Figure 3.2: An example of a backward random walk game modeling Equa-
tion (3.14).

To construct the backward game corresponding to this matrix, a dummy node

is added to this equation such that the columns of G sum up to zero as described

in Section 3.4. Next the columns of G is normalized to its diagonals, such that it

can be written in the form of Equation (3.13), a row-wise probability matrix (cor-

responding to the transpose of the normalized G). Figure 3.2 shows the random

25

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

0

0

0

v1

v2 v3 v4

0.5

0.670.33

0.33

0.11
0.25

0.25

0.55 0.6

0.4

Figure 3.3: An example of a forward random walk game modeling Equation (3.14).

walk game, with the probability matrix:

Pbackward =

0 0 0.5 0 0.5

0 0 0.625 0 0.375

0.44 0.44 0 0.11 0

0 0.4 0.2 0 0.2

(3.15)

Note that in this equation the last column corresponds to the ground node, to

generate all probabilities as in Equation (3.11).

Similarly the forward random walk game is constructed based on probability

matrix of Equation (3.16) which is computed by adding a dummy node to G

such that its rows sum up to zero, and normalizing the rows of matrix G to its

diagonals. Figure 3.3 shows the corresponding game.

Pforward =

0 0 0.67 0 0.33

0 0 0.5 0.25 0.5

0.33 0.55 0 0.11 0

0 0 0.6 0 0.4

(3.16)

Having the random walk game constructed, the following section shows how

it is used to compute the columns of the G−1 individually without computation

of the entire G−1.

26

3.6 Computing the Individual Columns of G−1

In this section we show how the individual columns of G−1 can be computed using

backward random walks.

Carrying out M walks from intersection j, one can find the conditional ex-

pected number of visits to each motel by:

zij =
Number of visits to motel i in M walks from j

M
Z = [zij]N×N (3.17)

where zij is the expected number of visits to motel i when total of M walks

initiated from motel j. This expected value becomes more exact as M →∞.

It is shown in [31] that the backward random walk game constructed based on

the of probability matrix P , as described in Section 3.2, gives the solution to:

(I − P)TX = U

X = ZU (3.18)

where

Z = (I − P)−T (3.19)

Translating the notation of [31] to the notation in our problem,

X = DV

U = E (3.20)

Substituting Equations (3.19) and (3.20) into Equation (3.18) we can see that the

backward random walk approach, as formulated in [31], provides the solution to

Equation (1.1). Specifically,

DV = (I − P)−TE

i.e., V = D−1(I − P)−TE = G−1E

27

where the last equality follows from Equation (3.13).

Finally, from Equation (3.13) and (3.19), we can see that G−1 = D−1Z. There-

fore, the elements of G−1 can be written as:

(G−1)ij =
zij

gjj
, i = 1, . . . , N (3.21)

For the example of Figure 3.2, let us consider the use of backward random

walks to compute the second column of the exact G−1. Table 3.1 shows the

calculated value of this column, denoted by (G−1)∗2, and the average relative

error, in percent, of the estimation. In order to avoid bias from a specific run of

the random walk method, we show the average is over 100 runs of the random

walk method.

This table suggests that as M increases, the random walk results become more

accurate. As we will see later in Section 3.7 this table also suggests that the error

of the random walk results halves for 4 times more walks. In other words the

error of the random walk method is proportional to 1/
√

M . Note that for even a

small number of walks, the results are fairly accurate. Hence, if a rough but fast

estimation of G−1 is desired, backward random walks is a suitable candidate.

Table 3.1: Average relative error, in percent, for estimated G−1
2 for different walk

numbers, M .
(G−1)∗2 M = 25 M = 100 M = 400 M = 1600

0.4115 26.7% 12.0% 5.8% 2.9%
0.8395 10.1% 4.9% 2.5% 1.2%
0.6173 21.3% 8.9% 4.6% 2.4%
0.1235 34.3% 18.9% 10.8% 5.1%

3.7 Stopping Criteria for the Random Walks

In this section we show how the number of walks is determined dynamically as the

random walks are proceeding to get a desired accuracy for the forward random

walk game and backward random walk game.

28

3.7.1 Stopping Criteria for Forward Game

For the forward random walk game similar to work of [32], the number of walks

is determined dynamically based on the estimated variance of the walk gains (i.e.

the money in the walker’s pocket at the end of each walk) at each point in the

random walk game. Let us say random variable Vi represents the walk gain from

node i. Given K random walks are carried out from node i, one can get an

estimate of the variance of Vi as:

σ2
Vi

=
1

K − 1

K
∑

k=1

(V k
i − v∗

i)
2 (3.22)

where v∗
i is the estimate of the solution vi. This estimate then is used to make

sure that the absolute error of the estimated vi is smaller than a given threshold

∆ with confidence of θ such that:

P [−∆ < vi − v∗
i < ∆] > θ (3.23)

where P [.] denotes the probability. A typical value for θ is 99%.

Equation (3.6) is the average value of Mi independent identically distributed

(IID) random variables since each walk is carried out without any knowledge from

the others. Hence the running average of the walks can be modeled as a normal

random variable with mean vi and variance σ2
Vi

/Mi (by the Central Limit Theorem

[56], this is an exact model as Mi → ∞). Hence to satisfy Equation (3.23) we

should have:

Q

(

∆
√

Mi

σVi

)

<
1− θ

2

Mi >
σ2

Vi

∆2

(

Q−1

(

1− θ

2

))2

(3.24)

where Q is the tail probability of normal distribution. Note that in practice, sev-

eral walks, e.g., 10 walks, should be performed to get a reasonably good estimate

of the v∗
i and σVi

before Equation (3.24) can be used.

29

3.7.2 Stopping Criteria for Backward Game

For the backward random walks the accuracy is defined as the relative error of

the absolute sum of the solution, V, from Equation (1.1) as defined by:

err =

∑N
i=1 (|vi| − |v∗

i |)
∑N

i=1 |v∗
i |

(3.25)

where vi and v∗
i are the ith element of the random walk solution and the exact

solution respectively, and |.| denotes the absolute value.

For M full walks starting from motel j, we take advantage of the fact that

the total walk length is equal to the total number of visits to all of the motels.

Mathematically, this is stated as:

N
∑

i=1

zij =
1

M

M
∑

s=1

wsj (3.26)

where zij is defined by Equation (3.17) and wsj represents the length of the sth

walk starting from j.

Moreover, if Wj represents the random variable of the length of the walks

starting from node j, we have:

1

M

M
∑

s=1

wsj ≈ E[Wj] (3.27)

where E[Wj] is the expected value of Wj . This estimation becomes exact as the

number of walks tends to infinity.

Theorem 3 shows relation of the relative error to the average walk length,

which is calculated as the random walk game proceeds, and is used to estimate

the relative error of the solution on the fly.

Theorem 3 The relative error of Equation (3.25), corresponding to jth motel, is

given by:

err =
1
M

∑M
s=1 wsj − E[Wj]

E[Wj]
(3.28)

30

Proof: Consider a backward walk starting from node j, designed to determine the

contribution vj
i of the jth element of E, denoted by ej , on the voltage of some

node i. We obtain:

vj
i = (G−1)ijej =

(

zij

gjj

)

ej (3.29)

where the second equality follows from Equation (3.21). The sum of the absolute

values of this error, over all nodes i, is then given by:

N
∑

i=1

|vj
i | =

|ej |
|gjj|

N
∑

i=1

zij (3.30)

Substituting
∑N

i=1 zij from Equation (3.26) we have:

N
∑

i=1

|vj
i | =

|ej|
M |gjj|

M
∑

s=1

wsj (3.31)

As M →∞, the solution of random walk method converges to the exact solution

vj∗
i , and we have:

N
∑

i=1

|vj∗
i | =

|ej |
|gjj|

E[Wj] (3.32)

where vj∗
i is the ith element of the exact solution corresponding to jth column.

Substituting Equation (3.31) and (3.32) into Equation (3.25) completes the proof.

�

Incremental solution of a system for a given perturbation, involves compu-

tation of several columns of G−1 corresponding to nonzeros of RHS. Theorem 3

is useful to compute each of these columns individually with a desired relative

error corresponding to one nonzero element of RHS. It is easy to verify that the

result of Theorem 3 holds for general case that there are multiple nonzeros in the

RHS. Therefore the relative error of the updated solution corresponding to all the

nonzero elements of the RHS is the same as the relative error of the individual

columns. Note that the sum of several variables with the same relative error will

have the same relative error.

31

An immediate result of Theorem 3 is the number of walks required to achieve

a desired relative error of δ with a confidence of α. In other words to have:

prob

[
∣

∣

∣

∣

∣

1

M

M
∑

s=1

wsj − µ

∣

∣

∣

∣

∣

< µδ

]

> α (3.33)

where prob[.] is the probability function and µ is the expected value of the ran-

dom variable of the average walk length, 1
M

∑M
s=1 wsj. The walk length average is

the sample average of a series of identical and independent (I.I.D.) random vari-

ables, Wj, the random variable of the length of walks starting form j. Therefore

according to the central limit theorem we have:

1

M

M
∑

s=1

wsj ∼ N (µ, σ) (3.34)

where N (µ, σ) denotes the normal distribution with mean of µ = µWj
/M and

standard deviation of σ = σWj
/
√

M , where µWj
and σWj

are the mean and stan-

dard deviation of Wj .

Taking advantage of the normal distribution of Equation (3.34), Equation (3.33)

will be satisfied if the following holds:

(σ/µ)2

M
<

(

δ

Q−1
(

1−α
2

)

)2

(3.35)

where Q−1 is the inverse of the Q-function, defined as Q(x) = 1/
√

2π
∫∞

x
e−u2/2du.

In Equation (3.35), note that M ∝ 1/δ2. Therefore, in order to get two times

more accurate solution, four times more walks is required. As a result, random

walks are efficient for moderate accuracies but for higher accuracies this method

could be expensive.

3.8 Backward Walks and LU Decomposition

Having developed the idea of backward random walks as an alternative to for-

ward random walks, and having applied backward walks to efficiently solve the

32

incremental analysis problem, we now explore another novel theoretical result.

We study an interesting correspondence between the backward random walks of

Section 3.3 with LU decomposition of the LHS matrix of Equation (1.1), G. This

relation can be used to find a quick and moderately accurate LU factorization of

G which can be used for a variety of applications, e.g., as a preconditioner for an

iterative method similar to the work of [54]. The work of [54] showed the relation

between the UL factors of the LHS and the forward random walks, and this is its

counterpart for backward walks. This relationship is not specifically used by the

incremental solver but is pointed out in this section for completeness.

The basic idea behind this relation is the notion of reusing the walks. Taking a

second look at the backward random walk game described in Section 3.3, it is easy

to see that during a walk, when the walker arrives at an intersection that has been

frequently visited in the past, further walks are not necessary: the walker already

has all the necessary information. Therefore, for the purposes of the game, he can

simply stop the walk and use the previous information, i.e., reuse the previous

walks.

In practice, this notion is implemented simply by marking a processed motel

as a home and keeping two separate visit records, one for motel visits, and one for

the stops at the home nodes which are the previously processed motels. Formally,

we define

qij =
Number of visits to motel i in M walks from j

M

hij =
Number of stops at home i in M walks from j

M

Writing these in matrix format, we have:

Q = [qij]N×N , H = [hij]N×N (3.36)

where Q and H contain the motel and home visit records, respectively. Note that

the matrices Q and Z have similar definitions, but the difference is that the Q

matrix incorporates the effect of stopping at home nodes that are defined during

the process of solving the system. As discussed shortly, Q is a lower triangular

33

matrix while Z is a full matrix. The G matrix can be constructed from either Z

and D or from Q, H , and D.

Without loss of generality, assume that the motels are processed in natural

order. Hence, when processing motel l, all of the motels j < l are previously

processed and marked as home. As a result, the indices of all motels that the

walker visits on his way are greater than or equal to the starting motel index.

Similarly, the indices of all of the home nodes that the walker stops at are strictly

less than the starting motel index. Therefore, Q and H will be lower-triangular

and strictly upper-triangular matrices, respectively.

As discussed in Section 3.6 there is a direct relation between the backward

random walks and G−1, through Equation (3.17). Similarly, there is a direct

relation between H , Q and G−1, stated in Theorem 4 below. The idea behind this

relation is that the full visit records of Equation (3.17) can be reconstructed from

columns of H and Q.

Theorem 4 Given the visit records, {H, Q}, G−1 can be found by:

{

Z1 = Q1

Zj = Qj +
∑j−1

i=1 hijZi, j = 2, . . . , N
(3.37)

G−1 = D−1Z (3.38)

where Zj and Qj denote the jth column of Z and Q, respectively, and D is the

matrix of the diagonals of G.

Proof: The case of j = 1 is trivial since no processed motel exists for the walker

to stop at.

For the case of j > 1, by definition, out of M walks started from node j,

M × hij walks stop at node i < j. Playing by the rules of the original game, i.e.,

not stopping at node i, is equivalent to starting M × hij new walks from node

i after stopping in the modified game. Doing so, walker visits node k ∈ [1, N],

M×hij×zki times. Accounting for all the nodes that the walker stopped at during

34

the M walks from node j, number of visits to node k missed due to stopping,

M × ẑki, is:

M × ẑki = M

j−1
∑

i=1

hijzki (3.39)

Adding the number of visits to node k ≥ j, the total number of visits to node k

in M walks from node j, M × zkj , we have:

Mqkj + M

j−1
∑

i=1

hijzki = Mzkj (3.40)

substituting in Equation (3.21) and writing in vector format completes the proof.

�

Equation (3.37) can be rewritten in matrix format as:

G−1 = D−1(I −H)−1Q

G = Q−1(I −H)D = LGUG (3.41)

where LG = Q−1 and UG = (I−H)D are the lower-triangular and upper-triangular

factors of G. For a symmetrical G, LDL and Cholesky factorization can be com-

puted from D, H , and diagonals of Q, without actually computing Q−1, similar

to [54].

Chapter 4

Forward Incremental Random

Walk Solver

4.1 Book-keeping for the Forward Random Walk

Method

As discussed in Section 3.1, the expected value of vi from the random walk can

be estimated by running a sufficiently large number of random walks from i and

calculating the average result as in Equation (3.6). If the number of walks from

i is Mi, and if the number of visits to each motel node is Jij , and to each home

node is Hik, then:

vi =
1

Mi

(

∑

k∈homes

Hikvk −
∑

j∈motels

Jij
Ij

gjj

)

(4.1)

To reuse computations, the walks can be made shorter by converting a motel node

to a home node once it is solved.

Without loss of generality, assume that the nodes are solved in natural order,

i = 1, 2, · · · , N , so that when solving node i, nodes 1, 2, · · · , i − 1 are previously

35

36

solved and marked as home nodes. By rewriting Equation (4.1), we have:

vi =
i−1
∑

j=1

Hij

Mi

vj −
N
∑

j=i

Jij

Mi

Ij

gjj

(4.2)

Rewriting Equation (4.2) in matrix form, we have:

V = Y V + Zb (4.3)

i.e., V = (I − Y)−1Zb (4.4)

Here, Y, Z ∈ ℜn×n and b ∈ ℜn. The elements of Y and Z are defined as follows:

zij = Jij/Mi is the average number of visits to motel node j, and yij = Hij/Mi is

the average number of visits to home node j over all the walks started from node

i. The elements of b ∈ ℜn are given by bi = −Ii/gjj, and represent the cumulative

motel costs at node i over the walks. Some observations about these matrices are:

• Matrix Z is an upper-triangular, and matrix Y is a lower-triangular matrix

with zeroes on its diagonal.

• All entries of the Y and Z matrices only depend on the LHS matrix and are

independent of RHS.

These two matrices were introduced in [33] and constitute the bookkeeping information

for the forward random walks. In particular, [33] showed that the matrices Y and

Z are directly related to the LU factors of matrix G. The Y and Z matrices play

a key role in our incremental solver.

It can be shown that solving Equation (4.4) has a complexity of O(n2). We

present a more computationally efficient method.

4.2 The Incremental Solver Method

4.2.1 The Perturbed System

Our incremental solver proceeds under the reasonable assumption that the origi-

nal system has already been solved, so that the initial solution to the system of

37

equations, GV = E, is known. When the design is perturbed, it may result in a

change in either G or E, resulting in the new relationship:

(G + ∆G)(V + ∆V) = E + ∆E (4.5)

where ∆G models the change in the left hand side (LHS), ∆E models the change

in the right hand side (RHS), and ∆V is the change in the solution caused by

the perturbation. Assuming that the perturbation is small, the product of the

incremental terms can be ignored, giving us:

G∆V + ∆GV ≈ ∆E

i.e., G∆V = ∆Ê, (4.6)

where ∆Ê
∆
= ∆E−∆GV.

The significance of Equation (4.6) is that any perturbation in the design can

be modeled as an equation with the same LHS and a new RHS, corresponding to

new excitations. The circuit interpretation of this equation is that the network of

conductances remains unchanged, but the excitations now correspond to the new

right hand side. Specifically, the ith element of the vector ∆Ê, ∆Êi, is the value

of the current injected into node i by the grounded current source at i; similar

interpretations can be found for voltage sources.

Regardless of which perturbation is being examined, if the bookkeeping infor-

mation for the random walks is available from an initial analysis, it can be used

to perform incremental analysis. We define a new right hand side, ∆b̂:

(∆b̂)i = ∆b̂i = ∆Êi/gii, (4.7)

The result of incremental analysis can be obtained by substituting the new right

hand side into Equation (4.3).

In case the original system was solved using random walks, the bookkeeping

information is readily available; if not, by running a small set of random walks, a

fast and less accurate approximation of the bookkeeping information, appropriate

for the purposes of identifying the RoI, may be found. As mentioned earlier, the

38

perturbation can result in a change in the solution of some nodes, and if this change

exceeds a user-specified threshold, the nodes are said to lie in the RoI. The change

may be estimated using the bookkeeping information: the level of accuracy of

this information determines the accuracy of the RoI. If approximate bookkeeping

information is used, a safety margin may be used to obtain a pessimistic RoI.

Note that the RoI is fed to a solver that works with a smaller system of

equations, assuming that all nodes outside the RoI are at their unperturbed values.

Therefore, there is a trade-off between the computation time required to find the

exact RoI, and that required to evaluate the reduced system. Since the runtime

of random walks varies quadratically with the accuracy requirement [32], it is

preferable to find a more approximate RoI, at the expense of spending slightly

more CPU time to evaluate the disturbance in the RoI.

4.2.2 The Concept of Ẑ

Since the perturbed system has the same left hand side matrix as the original sys-

tem, it may use the same bookkeeping matrices, Y and Z. From Equations (4.3),

(4.6), and (4.7):

∆V = Y ∆V + Z∆b̂ (4.8)

Let us consider the case where we use the random walk method to solve for the

first node in the power grid. Since the bookkeeping record maintains Y , Z and b̂,

in case of an incremental change to the network, it is easy to infer that

∆v1 =

N
∑

j=1

z1j∆b̂j (4.9)

Therefore, if there is a single perturbation in the circuit, its effect at any node can

be computed in O(1) time.

In the solution for node i, i ≥ 2, the previously solved nodes j < i are treated

as home nodes. The advantage of this is that it allows information from previous

walks to be reused, so that a walk that encounters node j automatically leverages

39

all the walks that were run from j in earlier steps. Performing a similar analysis,

we find that:

∆vi =

i−1
∑

j=1

yij∆vj +

N
∑

j=i

zij∆b̂j , (4.10)

The above procedure implies the need to find ∆vj ∀ j < i. This could be a

very wasteful computation, especially for high values of i, since many of these

nodes may lie outside the RoI, and may not need any computation. Note that the

ordering of nodes during bookkeeping is fixed, and since potentially any part of

the power grid may need incremental analysis, any fixed ordering may incur such

wasteful computations.

We can trace the origins of this problem to the fact that Y is a lower triangular

matrix where walks terminate on previously calculated vertices; if the walks could

be made to continue until they reach the original home nodes of the circuit, i.e.,

the VDD nodes in a VDD network, the scenario would be similar to Equation (4.9).

In such a case, Equation (4.3) would become:

∆V = Ẑ∆b̂, (4.11)

where Ẑ is no longer a triangular matrix, and ∆vi = Ẑi∆b̂ ∀ i may be written for

each node independently, where Ẑi is the ith row of Ẑ.

This is essentially the classical random walk solution, without bookkeeping

[27]. A random walk solver that works with this Ẑ matrix can be very inefficient,

and it has been shown in [32] that the reuse of prior computations, by terminating

walks at previously computed nodes, provides a substantial speedup. Therefore,

from a practical standpoint, for full analysis, it is important to stay with the

Y and Z matrices, but for incremental analysis, it is useful to “expand” this

representation to reconstruct the rows of the Ẑ matrix from the Y and Z matrices

on demand.

40

4.2.3 The Incremental Solution

Before going into details of reconstructing Ẑ, let us interprete the information in

the Y , Z, and Ẑ matrices:

• Entry yij in the ith row of Y represents the number of walks started from

node i that ended at node j < i, divided by the total number of walks

started from node i. Entry yij ≤ 1 and can be interpreted as the probability

that a walk starting at i ends at j.

• Entry zij in the ith row of Z represents the fraction of walks started from i

that pass through j ≥ i.

• Entry ẑij in the ith row of Ẑ represents the fraction of walks started from i

that pass through any node j.

From the above description, it is clear that the upper triangle and diagonal of Ẑ

and Z are identical. The lower triangle of Ẑ is, in effect, an “expanded” version

of the lower triangle of Y , where the walks that terminate at solved nodes are

allowed to continue to the home nodes (this can also be proved formally using

Equation (4.8)). Therefore, significant effort is required only to reconstruct the

lower triangle of Ẑ.

Given that Y is a probability matrix, it has a spectral radius of less than 1.

Therefore, Equation (4.8) yields:

∆V = (I − Y)−1Z∆b̂ = (I + Y + Y 2 + Y 3 + · · ·)Z∆b̂, (4.12)

and a classical result shows that this infinite sum converges. This can also be

inferred from the above interpretations of the entries of Y as probabilities that lie

between 0 and 1, so that for large k, Y k → 0.

Taking Equation (4.11) and comparing it with Equations (4.4) and (4.12), it

is easily seen that:

Ẑ = (I − Y)−1Z = Z + Y Z + Y 2Z + · · · (4.13)

41

Truncating this series at various points, each row, Zi, of Z is defined by the

following recurrence relation:

Ẑ
(0)
i = Zi (4.14)

Ẑ
(1)
i = (Z + Y Z)i

= Zi +

i−1
∑

j=1

yijZj (4.15)

Ẑ
(2)
i = (Z + Y Z + Y 2Z)i

= Zi +
i−1
∑

j=1

yijZj +
i−1
∑

j=1

j−1
∑

k=1

yijyjkZk (4.16)

...

As the number of levels of substitution increases, the truncation error becomes

smaller. This is consistent with the idea that increasing the levels of substitution

involves nodes that are farther away from the perturbation: intuitively, as we go

away from the perturbed region, its effect grows smaller. Hence, if the number of

levels of substitution is sufficiently large, the last term can be truncated.

At each level of substitution q, we define the incremental change in ∆vk at

that level to be δv
(q)
k , i.e.,

δv
(q)
k = (∆v

(q)
k −∆v

(q−1)
k), (4.17)

where ∆v
(q)
k

∆
= 0 ∀ q < 0.

A key result that enables the recursive computation of the circuit response is

shown next.

Theorem 5 If v
(l)
i is the voltage response at node i computed using Ẑ

(l)
i , the

lth-level-truncation of Ẑi, then

δv
(l+1)
i =

i−1
∑

j=1

yijδv
(l)
j , (4.18)

42

Proof: Truncating Equation (4.12) at the kth power of Y , we have:

∆V(k) = (I − Y)−1Z∆b̂ = (Z + Y Z + · · ·+ Y (k)Z)∆b̂ (4.19)

This implies that

δV(l) = (∆V(l) −∆V(l−1)) = Y (l)Z∆b̂ (4.20)

Therefore, δV(l+1) = Y δV(l), and the result follows from this. �

This implies a simple approach for finding the incremental solution. Rewriting

Equation (4.18) as:

∆v
(l+1)
i = ∆v

(l)
i +

i−1
∑

j=1

yijδv
(l)
j , (4.21)

we can see that the right hand side depends entirely on ∆v
(q)
i , q ≤ l, implying that

δv
(l+1)
i can be computed recursively. It can easily be shown that the complexity

of each level of substitution is O(n· | RoI |), where | RoI | is the size of the RoI.

4.2.4 Efficient Computation Techniques

In the above recursive computation, the voltage value for some nodes may con-

verge easily, using a small number of substitution levels, while for other nodes, it

may be necessary to employ a much higher number of substitution levels. The

above approach is thus constrained by the weakest link, i.e., the substitution will

continue until all nodes are computed sufficiently accurately. Instead, we adap-

tively terminate this propagation when an error tolerance, ǫ, is met,

e
v
(l)
i

=
∣

∣

∣
δv

(l)
i

∣

∣

∣
< ǫ (4.22)

then we stop further substitutions into vi. In other words, we set ∆v
(m+1)
i =

∆v
(m)
i ∀ m ≥ l. As a result, in Equation (4.18), δv

(l)
j = 0 for l > lj , and the amount

of computation is reduced since our data structure ignores any multiplications

where one operand is zero.

43

We can rewrite Equation (4.22) as
∣

∣

∣

∑i−1
j=1 yijδv

(l−1)
j

∣

∣

∣
< ǫ, i.e.,

∣

∣

∣

∣

∣

∣

∑

j∈S

yijδv
(l−1)
j +

∑

j∈S̄

yijδv
(l−1)
j

∣

∣

∣

∣

∣

∣

< ǫ (4.23)

where S is the set of all the neighbors of node i that have previously converged,

and S̄ is the set of all other neighbors of node i. The first term evaluates to zero,

and convergence criterion effectively becomes
∣

∣

∣

∑

j∈S̄ yijδv
(l−1)
j

∣

∣

∣
< ǫ. The error of

each step of this approximation is upper-bounded by the accumulated errors in

S, and can be written as

∣

∣

∣

∣

∣

∑

j∈S

yijδv
(l−1)
j

∣

∣

∣

∣

∣

< ǫ

The above inequality follows from the facts that (a) by construction, δv
(l−1)
j < ǫ

for j ∈ S, (b)
∑

j∈S yij ≤ 1, and (c) yij ≥ 0 ∀ i, j.

4.2.5 Incremental Solver Algorithm

Algorithm 1 shows the pseudo-code for recursively finding the solution of a single

node, going up to a given number levels of substitution. In this algorithm, which

implements the recursions of Equation (4.18), once the solution to a node of some

level of substitution is found, it is stored for consequent calculations.

In practice, the random walk solver provides a reasonable trade-off between

accuracy and speed [32], but may not be accurate enough to capture small changes

due to an incremental analysis exactly. We assume here that the initial solution

that is provided does not come from a random walk solver. Therefore, we initially

use the random walk solver with moderate accuracy to build the bookkeeping

information; the typical accuracy used is empirically chosen to be one-third of

VDD. Note that while this accuracy limit seems high, this is only an upper bound

on the accuracy; the average error is much smaller. This is found to be sufficient

for the purposes of identifying the RoI. This operation needs to be performed

44

Algorithm 1 Single Node Solution Using Bookkeeping Info

Input: Bookkeeping Info (Y and Z matrices), RHS (b), and tolerance
Output: Node solution of the given level of indirection
function find-x(node, level)
if node.isDone OR node.level ≥ level then

return
end if
if level = 1 then

node.∆v[level]← Z[node.index]T b
else

home-neighbors ← {non-zero items in Y on the same column as node}
for all home-neighbors do

neighbors-∆v ← find− x(neighbor, level-1)
∆v[level]← Y [node.index][home-neighbors]T neighbors−∆v
node.level← level
if abs(node.∆v[level] < tolerance) then

node.isDone← TRUE
end if

end for
end if

45

only once for a system, and any number of incremental changes can be made to

the system using this bookkeeping information. The high accuracy bound implies

that the RoI is effective even under large approximations, e.g., after successive

incremental changes.

The algorithm uses a node queue, Q, to keep track of all the potentially affected

nodes. It first adds all the nodes in the perturbed region to Q and starts processing

them using the first level of substitution in Equation (4.18). Next, it successively

increases the levels of substitution, i.e., goes to successive levels of recursion, until

the stopping criterion described above is met. As stated earlier, we account for

approximate bookkeeping by allowing a pessimistic RoI, found by multiplying the

tolerance in the stopping criterion by a safety factor s < 1.

The last step of refinement involves refining the solution using an exact solver.

All nodes outside the RoI are kept at their previous values, and a smaller |RoI|
× |RoI| system of equations, as illustrated in Figure 1.2, is solved to obtain an

accurate solution. Since this is a small system, any direct or iterative solver can

be used; in this work we use LAPACK [57] for this purpose. A pessimistic RoI

contains all the nodes with substantial change and the computational expense is

passed on to the exact solver that operates on the small RoI region, whose size is

≪ n.

4.3 Experimental Results

Our algorithm is tested and compared on a UNIX machine with 2GHz processor

and 2GB RAM, and applied to 12 benchmarks summarized in Table 6.1. This

table represents the statistics of the LHS matrix of the DC analysis; the role of

the RHS is much less significant for perturbation analysis. For each matrix, we

list the size, i.e., the number of unknowns, the number of non-zeros in G, and the

average number of non-zeros per row, as a sparsity metric. The value of VDD is

1.2V.

To demonstrate the accuracy of the RoI found by the proposed algorithm, we

46

Table 4.1: Benchmark Details: Statistics of the LHS Matrix
Name Size Number of Average

Nonzeros Nonzeros/Row

c1 16194 98030 6.1
c2 26300 165810 6.3
c3 29551 178345 6.0
c4 34784 203322 5.8
c5 37403 251535 6.7
c6 42409 255747 6.0
c7 58866 352310 6.0
c8 65938 412448 6.3
c9 69351 438985 6.3
c10 93194 593908 6.4
c11 92327 553245 6.0
c12 95303 635727 6.7

insert various perturbations to the benchmarks and find the corresponding RoI

using the proposed algorithm as well as an exact direct solver. The exact RoI is

the set of nodes for which the exact solution is perturbed by more than a specified

tolerance. The first measure of the quality of the RoI found by our approach is

the number of undetected nodes: these are nodes that belong to the exact RoI,

but are not listed in the RoI found by our method. The second measure is the

exact amount of the change in the solution of the undetected nodes, as computed

by the exact solver.

The circuits are perturbed in two ways: for a randomly selected node and

a group of its neighbors, (i) the RHS vector, b, is multiplied by the given per-

turbation value to obtain ∆b̂ in Equation (4.7), and (ii) the conductances to its

neighbors are multiplied by a perturbation: as shown earlier, this is used to ob-

tain a perturbation to the RHS as ∆b̂ in Equation (4.7). In either of these, the

amount of perturbation is chosen randomly, with a uniform distribution between

0 and 0.1.

For the range of perturbation in our experiments, the size of the RoI is no

47

more than about 2% of the total circuit size, and depending on the change, and

is often less. The empirically-chosen safety factor parameter s in the algorithm is

set to 0.1, to compensate for approximation error and to generate a pessimistic

RoI. Approximation errors could arise from the approximate nature of the initial

random walk solver used to obtain the bookkeeping information, or from the

stopping criterion used to terminate the substitutions.

Figure 4.1(a) shows the number of undetected nodes, normalized to the exact

RoI size, versus the size of the perturbed region. The numbers shown in all plots

are averaged over 20 different sets of perturbations. This figure indicates that

the number of undetected nodes is equal to zero for benchmarks c1 to c9, and

c12, and it goes up as the size of the perturbation region is increased, which is

consistent with the idea that this method is intended for small changes. The next

natural issue to study is the error for these undetected nodes, and this is plotted

in Figure 4.1(b). It is found that this error is below 1% of VDD, indicating that

even the nodes that lie within the RoI, but are not detected, see an insignificant

degradation in accuracy.

Next, we examine the accuracy of the solution within the RoI. We see this

in two steps: Figure 4.2(a) shows the normalized error of the nodes within the

RoI for different perturbation region sizes, when the perturbation is applied to

the RHS. These figures suggest that although the accuracy of the bookkeeping

information used to find the estimated solution of the nodes, is not high (i.e.

VDD/3), the amount of error in the estimated change in the solution is less than

3% of VDD. If we feed this solution to the refinement stage, where we solve a

much smaller system of size | RoI | × | RoI |, the solution becomes more accurate;

this can be seen by comparing the results in Figures 4.2(a) and 4.2(b). Similarly,

Figures 4.3(a) and 4.3(b) demonstrate the effectiveness of the algorithm for the

case that the LHS is perturbed, representing perturbation to the conductances of

the power network.

To demonstrate the computational efficiency of the proposed algorithm, we

compare it in Table 6.2 against a very efficient public-domain iterative solver that

48

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10c11c12
0

0.01

0.02

0.03

0.04

0.05

Benchmark

N
or

m
al

iz
ed

 A
ve

ra
ge

N
um

be
r

of
 U

nd
et

ec
te

d
N

od
es

Perturbation Size = 10

Perturbation Size = 20

Perturbation Size = 30

(a) Normalized number of undetected nodes

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10c11c12
0

0.5

1

1.5

2
x 10

−3

Benchmark

A
ve

ra
ge

 o
f M

ax
 C

ha
ng

e
in

 U
nd

et
ec

te
d

N
od

es
 N

or
m

al
iz

ed
 to

 V
D

D

Perturbation Size = 10

Perturbation Size = 20

Perturbation Size = 30

(b) Maximum change in the voltage of undetected nodes

Figure 4.1: Number of undetected nodes, normalized to the exact RoI size, and the
maximum change in their voltage, for various perturbation region sizes (tolerance
= 1%VDD, perturbation value uniformly distributed in (0, 0.1), averaged over 20
perturbations).

49

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10c11c12
0

0.005

0.01

0.015

0.02

Benchmark

A
ve

ra
ge

 A
bs

ol
ut

e
E

rr
or

N
or

m
al

iz
ed

 to
 V

D
D

Perturbation Size = 10
Perturbation Size = 20
Perturbation Size = 30

(a) Before refinement

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10c11c12
0

0.005

0.01

0.015

0.02

Benchmark

A
ve

ra
ge

 A
bs

ol
ut

e
E

rr
or

N
or

m
al

iz
ed

 to
 V

D
D

Perturbation Size = 10
Perturbation Size = 20
Perturbation Size = 30

(b) After refinement

Figure 4.2: Absolute error of the solution, normalized to VDD and averaged over 20
perturbations, for nodes within the RoI before and after the refinement phase. The
perturbation applied to the RHS (tolerance = 1% VDD) is uniformly distributed
in (0, 0.1)).

50

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10c11c12
0

0.005

0.01

0.015

0.02

Benchmark

A
ve

ra
ge

 A
bs

ol
ut

e
E

rr
or

N
or

m
al

iz
ed

 to
 V

D
D

Perturbation Size = 10

Perturbation Size = 20

Perturbation Size = 30

(a) Before refinement

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10c11c12
0

0.005

0.01

0.015

0.02

Benchmark

A
ve

ra
ge

 A
bs

ol
ut

e
E

rr
or

N
or

m
al

iz
ed

 to
 V

D
D

Perturbation Size = 10
Perturbation Size = 20
Perturbation Size = 30

(b) After refinement

Figure 4.3: Average absolute error of the solution, normalized to VDD, for nodes
within the RoI before and after the refinement phase, perturbation applied to
the LHS (tolerance = 1% VDD, uniformly distributed perturbation in (0, 0.1),
averaged over 20 perturbations)

51

Table 4.2: Runtime comparisons (tolerance = 1% VDD, perturbation region size
= 20, 30% perturbation)

[33] Book- RoI Refine- 10 runs 20 runs
keeping ment

(sec) (sec) (sec) (sec) (sec) (sec)

c1 0.29 0.99 0.08 0.01 1.87 (1.6×) 2.75 (2.1×)
c2 0.57 2.04 0.17 0.01 3.85 (1.5×) 5.67 (2.0×)
c3 0.59 2.23 0.19 0.01 4.28 (1.4×) 6.32 (1.9×)
c4 0.70 2.98 0.21 0.01 5.19 (1.4×) 7.41 (1.9×)
c5 0.84 2.86 0.23 0.02 5.27 (1.6×) 7.69 (2.2×)
c6 1.23 4.68 0.31 0.02 7.98 (1.5×) 11.28 (2.2×)
c7 1.88 7.02 0.40 0.02 11.25 (1.7×) 15.48 (2.4×)
c8 2.72 8.29 0.48 0.03 13.31 (2.0×) 18.33 (3.0×)
c9 2.92 9.16 0.44 0.03 13.77 (2.1×) 18.39 (3.2×)
c10 3.83 11.90 0.59 0.04 18.14 (2.1×) 24.38 (3.1×)
c11 3.79 12.97 0.72 0.04 20.53 (1.8×) 28.09 (2.7×)
c12 4.16 13.16 0.68 0.04 20.35 (2.0×) 27.53 (3.0×)

Average: 1.7× 2.5×

uses an approximate conditioner based on random walks [33] that has been shown

to be up to nearly an order of magnitude faster than other comparable solvers,

using identical solver tolerances. The first column shows the runtime of the solver

in [33], and the remaining columns are related to our incremental solver. The

bookkeeping time is the time required for the initial approximate random walks

used to find the bookkeeping information, and is a fixed expense that must be

computed once for the unperturbed circuit, and can be used by all perturbations

henceforth. The runtime of the substitution procedure used to find the RoI is

listed next (RoI), followed by the runtime of the refinement phase, when the RoI

is solved using an accurate solver. We expect this solver to be used to solve what-if

scenarios; therefore, it is reasonable to report the runtime for multiple incremental

analyses; note that all incremental analyses, anywhere in the circuit, use the same

bookkeeping information. The last two columns report the run times for 10 and

20 incremental analyses, with the speedups in parentheses. For example, for 20

52

runs, the speedup over [33] for c1 is 20 × 0.29/2.75 = 2.1× (Note that [33] is

reported to be 5 − 10× faster than a state of the art solver.). The runtime for

k incremental analyses includes the bookkeeping time, plus k times the sum of

times required to find the RoI and the time for the refinement phase. As the

number of incremental analyses increases, the cost of bookkeeping is amortized.

Alternatively, if the bookkeeping information is already available since the original

solution used random walks (e.g., for the preconditioner in [33]), this expense

disappears; the speedups are correspondingly greater: e.g., they approach 20× for

c12.

Table 6.2 also shows that as the size of the benchmark increases, the amount

of speedup increases, which is due to the fact that size of RoI is independent of

the size of the circuit and only depends on its topology. Hence, as the size of

benchmark increases the time for the solver in [33] increases accordingly while the

time for the incremental solver remains the same.

Chapter 5

Backward Incremental Random

Walk Solver

5.1 Incremental Solver Method

We now propose an efficient incremental solver based on backward random walks

in the framework of power network analysis. Our incremental solver proceeds

under the reasonable assumption that the solution to the unperturbed system of

equations, GV = E, is known. When the design is perturbed, it may result in a

change in either G or E, resulting in the new relationship:

(G + ∆G)(V + ∆V) = E + ∆E (5.1)

where ∆G models the change in the LHS, ∆E models the change in the RHS, and

∆V is the change in the solution caused by the perturbation. This equation can

be rewritten as:

(G + ∆G)∆V = ∆E−∆GV

Geff∆V = ∆Eeff (5.2)

where ∆Eeff = ∆E−∆GV is the effective change in the RHS and Geff = G+∆G

is the total perturbed LHS.

53

54

Note that in contrast with [55], where the second order term, ∆G∆V, is

ignored, Equation (5.2) captures any perturbation to the system without any

approximation. Moreover, this method does not make any assumptions regarding

the nature of the perturbation as long as the number of nodes of the network

is fixed. Further, since the perturbed system models a power grid, the LHS

is diagonally dominant, and all of the off-diagonals are less than or equal zero,

therefore it can be solved using random walks.

The steps followed by the proposed incremental solver are:

Step 1: Solve Equation (5.2) using backward random walks.

Step 2: Find the RoI using the computed solution.

Step 3: Refine the solution for the nodes within RoI.

Step 1: The first step of the incremental solution involves finding the columns

of G−1
eff corresponding to nonzeros of ∆Eeff. For a small perturbation, most of the

LHS matrix, G, and the RHS vector, E, will be unchanged and therefore most of

the entries of ∆Eeff are zero. And if there are η nonzeros in ∆Eeff, we have:

η ≪ |RoI| ≪ N (5.3)

where |RoI| and N are the size of RoI and Equation (5.2), respectively. As a result,

only a few columns of G−1
eff must be computed, corresponding to the η nonzeros of

∆Eeff. Then, ∆V is given by:

∆V =
[

G−1
eff

]

N×η
[∆Eeff]η×1 (5.4)

where [∆Eeff]η×1 denotes η nonzeros of ∆Eeff, and
[

G−1
eff

]

N×η
denotes the columns

of G−1
eff corresponding to these nonzeros.

This step of the algorithm relies on the fact that random walk solver is capable

of finding an estimate of the solution efficiently with moderate accuracy, just

55

enough to identify the RoI that corresponds to the nodes that are significantly

affected.

As discussed in Section 3.7, the accuracy of the random walk solution is pro-

portional to the square root of the number of walks, and it is not efficient for very

high accuracies. Therefore, this step merely feeds Step 2, which finds the RoI

based on this solution, and a precise solution is found in Step 3.

In this work a relative tolerance of 30% is used for the random walk solver.

This means that the relative error of G−1
eff × (∆Eeff)j is less than or equal to 30%

with a confidence of α = 99%, where (∆Eeff)j denotes the vector of ∆Eeff where

all of its elements are set to zero except for the jth one.

Step 2: The second step of the incremental solver compares the computed esti-

mate of ∆V given by Equation (5.4), to a user-defined tolerance, tol, to determine

the RoI. Specifically, node j is said to lie within the RoI if ∆Vj > tol.

In order to account for the potential errors in the estimated solution, a safety

margin (i.e., s < 1) is used to get a pessimistic RoI where the criterion for putting

node j in this pessimistic RoI is ∆Vj > s× tol. A pessimistic RoI contains all of

the nodes with potentially substantial change and the computational expense is

passed on to the exact solver that operates on the small RoI region, whose size is

≪ N . In this work, the safety margin is chosen empirically to be s = 1/3.

Step 3: The last step of refinement involves the application of an exact solver. In

this step, we leverage the initial solution of the network, V, the estimated changes

computed using random walks, ∆V, and the RoI. Reordering Equation (5.2) ac-

cording to RoI we have:
[

G
(in,in)
eff G

(in,out)
eff

G
(out,in)
eff G

(out,out)
eff

][

∆V(in)

∆V(out)

]

=

[

∆E
(in)
eff

∆E
(out)
eff

]

(5.5)

where the superscripts in and out denote the nodes inside and outside of the RoI,

respectively.

Although ∆V(out) should be set to 0 from the definition of the RoI, in practice,

we find that it is more appropriate to use the constant (but small) value of ∆V(out)

from Step 1, which enables us to be less conservative with the RoI. Therefore, we

56

solve the above equation for ∆V(in), keeping the ∆V(out) unchanged from Step 1,

by solving:

G
(in,in)
eff ∆V(in)

r = ∆E
(in)
eff −G

(in,out)
eff ∆V(out) (5.6)

where ∆V
(in)
r is the refined solution of the nodes within RoI. The size of this

equation, |RoI|, is significantly smaller than N as illustrated in Figure 1.2. For this

small system, any direct or iterative solver can be used; here, we use LAPACK [57].

The total solution is then computed by adding ∆V
(in)
r for the nodes inside the

RoI, and ∆V(out) for nodes out of RoI, to the initial solution V.

5.2 Experimental Results

To demonstrate the performance of the proposed backward random walk incre-

mental solver, this solver is implemented in C++ and is compared against the

Hybrid solver of [33] and the forward random walk solver of [55] on the original

IBM Power Grid (IBMPG) benchmarks [50] Next, the effectiveness of our solver

on asymmetrical equations is examined using VCCS model of IBMPG bench-

marks described in Appendix A. The reason for showing results on the original

benchmarks is because this enables a comparison with the Hybrid solver and the

forward random walk solver, which cannot handle asymmetry. Moreover, as we

will see, the runtime of the backward walk solver on the original and modified

PG benchmarks is very similar. The experiments are conducted on a UNIX ma-

chine with 8GB RAM and 2.5GHz processor, where Vdd is set to 1.8V, as in the

benchmarks.

5.2.1 Performance of the Backward Random Walk Solver

on Symmetric LHS Matrices

The performance of the proposed incremental solver is demonstrated based on

several metrics indicating the quality of the found RoI compared to exact RoI

and precision of the solution of the nodes within the RoI. The exact RoI, found

57

using a direct solver, is the set of nodes for which the exact solution is perturbed

by more than a specified tolerance, 1% of the Vdd here. The metrics used for

evaluating the quality of the computed RoI are:

• The number of undetected nodes, i.e., the nodes that belong to the exact

RoI, but are not listed in the RoI found by our method.

• Error magnitude in the solution of the undetected nodes.

A comparison is performed over several random perturbations of various perturba-

tion amounts, i.e., the magnitudes of change relative to the solution of the node,

and various perturbation sizes, i.e., the number of nodes perturbed. To generate a

perturbed benchmark, one node is chosen randomly from the original benchmark

and the conductances, gij’s, and the current loads, ei’s, of that node and a number

of its neighboring nodes are modified. This approach models the locality property

of a real perturbation.

For the range of perturbations in our experiments, the maximum and the

average size of the RoI is 17.1% and 2.9% of the total circuit size, respectively,

which is significantly larger perturbations than the ones used in prior work [55].

The empirically-chosen safety factor parameter in the algorithm is set to 1/3 to

compensate for approximation error and to generate a pessimistic RoI.

Figure 5.1(a) shows the number of undetected nodes, normalized to the exact

RoI size, versus the size of the perturbed region, for perturbation amount of 20%,

for various perturbation sizes. Similarly, the normalized number of undetected

nodes versus the amount of perturbation, for perturbation size of 20, for various

perturbation amounts, is shown in Figure 5.1(b). The numbers shown in all plots

are averaged over 10 different sets of perturbations. These figures indicate that

the number of undetected nodes is less than 0.5% the size of the corresponding

exact RoI. Note that the backward solver has been able to identify all of the nodes

within RoI for some of the perturbations.

The next issue is the significance of the undetected nodes. The errors caused by

the undetected nodes are the errors of the estimated solution from random walks.

58

ibmpg1 ibmpg2 ibmpg4 ibmpg5 ibmpg6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−3

A
ve

ra
ge

 N
um

be
r

of
 U

nd
et

ec
te

d
N

od
es

 N
or

m
al

iz
ed

 to
 E

xa
ct

 R
oI

 S
iz

e

Perturbation Size 10
Perturbation Size 20
Perturbation Size 30

(a) Perturbation amount = 20%

ibmpg1 ibmpg2 ibmpg4 ibmpg5 ibmpg6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−3

A
ve

ra
ge

 N
um

be
r

of
 U

nd
et

ec
te

d
N

od
es

 N
or

m
al

iz
ed

 to
 E

xa
ct

 R
oI

 S
iz

e

Perturbation Amount 10%
Perturbation Amount 20%
Perturbation Amount 30%

(b) Perturbation size = 20

Figure 5.1: Number of undetected nodes, normalized to the exact RoI size (toler-
ance = 1%Vdd, averaged over 10 perturbations).

59

ibmpg1 ibmpg2 ibmpg4 ibmpg5 ibmpg6
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01
A

ve
ra

ge
 ∆

V
 in

 U
nd

et
ec

te
d

N
od

es

 N
or

m
al

iz
ed

 to
 V

D
D

Perturbation Size 10
Perturbation Size 20
Perturbation Size 30

(a) Perturbation amount = 20%

ibmpg1 ibmpg2 ibmpg4 ibmpg5 ibmpg6
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

A
ve

ra
ge

 ∆
V

 in
 U

nd
et

ec
te

d
N

od
es

N

or
m

al
iz

ed
 to

 V
D

D

Perturbation Amount 10%
Perturbation Amount 20%
Perturbation Amount 30%

(b) Perturbation size = 20

Figure 5.2: Average change in the voltage of undetected nodes (tolerance = 1%Vdd,
averaged over 10 perturbations).

60

The average of this error versus the perturbation size for a perturbation amount

of 20% is plotted in Figure 5.2(a) and this error versus perturbation amount for

a perturbation size of 20 is shown in Figure 5.2(b).

It is found that the average of this error is less than 1% of Vdd, indicating that

even the nodes that lie within the RoI, but remain undetected, see an insignificant

degradation in accuracy, and this is due to the fact that the estimated solution

given by random walks is sufficiently accurate for the purposes of detecting the

RoI.

Due to the stochastic nature of random walks, different runs result in slightly

different estimated solutions and hence different computed RoIs. As discussed

in Section 3.7, the differences remain less than the given tolerance (i.e., 1%Vdd),

with a confidence of α. Due to this effect, in Figure 5.2(a) for instance, the error

for perturbation size of 20 was more than that for a perturbation size of 30 for

benchmark ibmpg2. For the similar reason, in Figure 5.2(b) perturbation amount

of 20% resulted in less error than perturbation amount of 10% for ibmpg4. In

Figure 5.1 for the same reason some counterintuitive behavior is observed.

In this chapter we exclude the results of ibmpg3 because of the specific struc-

ture of the LHS of this benchmark (similar observations have been made by other

authors). This benchmark models the power network of a circuit with very few

external Vdd and ground connections, less than 0.1% of the nodes. As a result, the

corresponding random walk game has very few home nodes, resulting in very long

walks and hence large runtimes. For such circuits, conventional solvers should be

used instead of random walk solvers.

Next, we examine the accuracy of the solution within the RoI. Figure 5.3 shows

the average error of the nodes within the RoI normalized to Vdd, for different

perturbation sizes and perturbation amounts. This figure suggests that although

the relative tolerance of the random walk solver is set to 30%, the average error

of the estimated solution is less than 0.7% of Vdd. Feeding the solution to the

refinement stage, where we solve a much smaller system of size |RoI| × |RoI|,
the solution becomes more accurate; this can be seen by comparing the results in

61

ibmpg1 ibmpg2 ibmpg4 ibmpg5 ibmpg6
0

1

2

3

4

5

6

7

8
x 10

−3

A
ve

ra
ge

 E
rr

or
 N

or
m

al
iz

ed
 to

 V
D

D

Perturbation Size 10
Perturbation Size 20
Perturbation Size 30

(a) Perturbation amount = 20%

ibmpg1 ibmpg2 ibmpg4 ibmpg5 ibmpg6
0

1

2

3

4

5

6

7

8
x 10

−3

A
ve

ra
ge

 E
rr

or
 N

or
m

al
iz

ed
 to

 V
D

D

Perturbation Amount 10%
Perturbation Amount 20%
Perturbation Amount 30%

(b) Perturbation size = 20

Figure 5.3: Absolute error of nodes within the RoI before the refinement phase,
normalized to Vdd and averaged over 10 perturbations. (tolerance = 1% of Vdd).

62

ibmpg1 ibmpg2 ibmpg4 ibmpg5 ibmpg6
0

1

2

3

4

5

6

7

8
x 10

−3

A
ve

ra
ge

 E
rr

or
 A

fte
r

R
ef

in
em

en
t N

or
m

al
iz

ed
 to

 V
D

D

Perturbation Size 10
Perturbation Size 20
Perturbation Size 30

(a) Perturbation amount = 20%

ibmpg1 ibmpg2 ibmpg4 ibmpg5 ibmpg6
0

1

2

3

4

5

6

7

8
x 10

−3

A
ve

ra
ge

 E
rr

or
 A

fte
r

R
ef

in
em

en
t N

or
m

al
iz

ed
 to

 V
D

D

Perturbation Amount 10%
Perturbation Amount 20%
Perturbation Amount 30%

(b) Perturbation size = 20

Figure 5.4: Absolute error of nodes within the RoI after the refinement phase,
normalized to Vdd and averaged over 10 perturbations. (tolerance = 1% of Vdd).

63

Figures 5.3 and 5.4.

Table 5.1: Runtimes (tolerance = 1% of Vdd, perturbation region size = 30, per-
turbation amount = 20%).

Equation Hybrid Random Refinement Incremental
Size (N) (sec) Walk (sec) Total (sec)

(sec) [Speedup]

ibmpg1 30,638 0.17 0.111 0.001 0.112 [1.5×]
ibmpg2 127,238 2.14 0.743 0.058 0.801 [2.7×]
ibmpg4 953,583 26.37 1.673 0.274 1.947 [13.5 ×]
ibmpg5 1,079,310 18.74 2.108 0.122 2.230 [8.4×]
ibmpg6 1,670,494 37.23 2.898 0.200 3.098 [12.0 ×]

Average Speedup: 7.6×

Table 6.2 compares the runtime of our proposed incremental solver with the

Hybrid Solver of [33], which is an efficient public-domain iterative solver that

uses a preconditioner based on random walks that has been shown to be faster

than other comparable solvers, using identical solver tolerances. The first column

shows N , the matrix dimension for each benchmark. The second column shows

the runtime of the Hybrid Solver and the remaining columns are related to our

incremental solver. It can be seen that the refinement phase is extremely fast and

takes only a small fraction of the total runtime, and that the total speed up of the

proposed incremental solver for perturbation size of 30 and perturbation amount

of 20% is significant: an average of 7.6× and a maximum of 13.5×.

Moreover, broadly speaking, as the system size increases the benefit of using

the incremental solver becomes more significant. The intuitive reason for this

is that for benchmarks of similar topology, a perturbation of the same size and

amount results in a RoI of almost the same size, which requires almost the same

amount of effort for the random walk solver to find the RoI and the exact solver to

refine the solution. In fact, the speedup depends on the structure of the equation

as well, i.e., its density, condition number, and the number of home nodes in its

corresponding random walk game.

64

5.2.2 Backward Solver on Asymmetric LHS Matrices

As discussed in Section 2, the use of VCCS in modeling power grids makes it

possible to account for the effect of supply voltage drop on the current load which

results in a more accurate power grid model but equations with asymmetrical LHS.

In this section we demonstrate that the backward solver is capable of handling

these asymmetrical equations as efficient as the symmetrical equations while the

forward solver of [55] is capable of solving the symmetrical equations only.

We have created variations of the ibmpg benchmarks [50] using the procedure

of Section 2.2 where the detailed extracted circuit of the benchmarks are obtained

as described in Appendix A. These benchmarks are referred to as the ibmpg’ and

the circuit with each number represent the corresponding circuit with the same

number in the original benchmark suite.

Figure 5.5 is analogous to Figure 5.1 and shows the average number of unde-

tected nodes, normalized to the exact RoI size, versus the size of the perturbed

region, and amount of perturbation. Comparing these figures, it can be seen that

the number of undetected nodes is less than 0.5% the size of the corresponding

exact RoI for both symmetrical and asymmetrical power grid models.

The performance of the backward solver in terms of error and runtime is shown

in Table 5.2 for symmetrical and asymmetrical power grid models. This table

shows the absolute error of the solver after the refinement phase normalized to

Vdd averaged over 10 random perturbations of region size of 30 and amount of 20%

and their corresponding runtime. It is clear from this table that the backward

solver performs equally well for both models.

5.2.3 Comparing Forward/Backward Solver Based Incre-

mental Analysis

Finally in this section we compare the forward incremental solver of [55] with the

proposed backward solver of this work over the ibmpg benchmarks. The work

of [58] compares these solvers using the benchmarks of [55].

65

ibmpg1’ ibmpg2’ ibmpg4’ ibmpg5’ ibmpg6’
0

1

2

3

4

5
x 10

−3
A

ve
ra

ge
 N

um
be

r
of

 U
nd

et
ec

te
d

N
od

es
 N

or
m

al
iz

ed
 to

 E
xa

ct
 R

oI
 S

iz
e

Perturbation Size 10
Perturbation Size 20
Perturbation Size 30

(a) Perturbation amount = 20%

ibmpg1’ ibmpg2’ ibmpg4’ ibmpg5’ ibmpg6’
0

1

2

3

4

5
x 10

−3

A
ve

ra
ge

 N
um

be
r

of
 U

nd
et

ec
te

d
N

od
es

 N
or

m
al

iz
ed

 to
 E

xa
ct

 R
oI

 S
iz

e

Perturbation Amount 10%
Perturbation Amount 20%
Perturbation Amount 30%

(b) Perturbation size = 20

Figure 5.5: Number of undetected nodes, normalized to the exact RoI size (toler-
ance = 1%Vdd, averaged over 10 perturbations).

66

Table 5.2: Comparison of the error of the nodes within RoI after refinement
phase and total runtime of backward solver on symmetrical and asymmetrical
equations (Averaged over 10 random perturbations. perturbation region size =
30, perturbation amount = 20%, error is normalized to Vdd, tolerance = 1% of Vdd

).

Symmetrical model Asymmetrical model
Error Runtime Error Runtime

(Norm to Vdd) (sec) (Norm to Vdd) (sec)

ibmpg1 3.18E-04 0.112 ibmpg1’ 1.11E-04 0.111
ibmpg2 7.77E-04 0.801 ibmpg2’ 8.62E-05 0.740
ibmpg4 1.63E-03 1.947 ibmpg4’ 1.56E-03 1.673
ibmpg5 2.11E-04 2.230 ibmpg5’ 1.50E-04 2.111
ibmpg6 1.27E-03 3.098 ibmpg6’ 5.22E-04 2.897
Average 8.41E-04 1.638 Average 4.86E-04 1.506

Table 5.3 compares the forward and backward solver accuracy in terms of the

quality of the computed RoI and error in the solution of the nodes within the RoI

before and after refinement phase. The number of undetected nodes is normalized

to the RoI size, and ∆V is normalized to Vdd. As this table suggests, on average,

the number of undetected nodes of the backward solver is about 50× less than

that of the forward solver and also the error in the undetected nodes is about 70×
less. Moreover this tables shows that the error in the solution of the nodes within

RoI, computed by backward solver, before the refinement phase is up to 12× and

on average 9×, and after refinement phase up to 21× and on average 14× less

than the forward solver.

In this section, comparisons are shown only for the ibmpg1 and ibmpg2 bench-

marks since the forward solver implementation is unable to handle large bench-

marks. Moreover, smaller perturbations are used here: due to recursive nature

of the forward solver method, the forward solver cannot handle the large per-

turbations used in Section 5.2.1. The key difference between the backward and

forward solver that makes the backward solver significantly more efficient is that

67

Table 5.3: Comparison of the accuracy of the Forward solver and Backward solver
(Averaged over 10 random perturbations. perturbation amount = 5%, tolerance
= 1% of Vdd).

Forward Incremental Solver Backward Incremental Solver
Bench- Norm. Norm. ∆V Error Norm. to Vdd Norm. Norm. ∆V Error Norm. to Vdd

mark/ Undet. in Undet. Before After Undet. in Undet. Before After
Pert. size Nodes Refined Refined Nodes Refined [×Less] Refined [×Less]

ibmpg1/3 0.04 5.4E-03 1.1E-03 2.8E-04 0 0 2.1E-04[5.03×] 1.5E-05[19.40×]
ibmpg2/3 0.02 2.4E-03 1.5E-03 5.6E-04 0 0 2.2E-04[6.53×] 1.4E-04[3.92×]
ibmpg1/5 0.02 2.9E-03 1.3E-03 7.7E-05 0 0 1.0E-04[12.76×] 9.1E-06[8.49×]
ibmpg2/5 0.04 6.0E-03 5.4E-03 6.08E-03 0.001 2.25E-04 5.3E-04[10.17×] 3.3E-04[18.33×]
ibmpg1/7 0.06 1.2E-02 7.2E-03 2.5E-03 0 0 9.6E-04[7.52×] 1.7E-04[14.19×]
ibmpg2/7 0.10 1.5E-02 1.3E-02 6.7E-03 0.004 3.78E-04 1.0E-03[12.42×] 3.1E-04[21.41×]

Average 0.05 7.4E-03 4.9E-03 2.7E-03 0.001 1.01E-04 5.1E-04[9.07×] 1.6E-04[14.29×]

for obtaining the RoI, the amount of effort of backward solver is proportional to

the perturbation size, while this amount for forward solver is proportional to RoI

size, which is significantly larger than perturbation size (see Equation (5.3)).

Table 5.4 shows the runtime breakdown for forward solver and the backward

solver. The forward solver uses three steps in creating an incremental solution,

Bookkeeping, RoI computation, and Refinement. The bookkeeping step is the ini-

tialization step and is performed only once for a series of consecutive perturbations

to a circuit. Therefore, the overhead of this initialization step is amortized for

many consecutive perturbations. Hence, in this table the runtime of the forward

and backward solver is shown for different number of consecutive perturbations.

Table 5.4 shows that the backward solver is up to 24×, and on average, 16×
faster for a single run. For 10 runs (i.e., 10 consecutive perturbations) the back-

ward solver is up to 3×, and on average, 2× faster. For 30 runs the runtime of

the backward solver and forward solver are about the same. In general as the

number of runs increase, the runtime benefit of backward solver compared to [55]

decreases. However, the solution from [55] solver loses its accuracy as errors from

consecutive perturbations accumulate (the bookkeeping information collected be-

comes less accurate); on the other hand, the backward incremental solver retains

its accuracy regardless of the number of perturbations. In addition, as pointed

68

Table 5.4: Comparison of the runtime of the Forward solver and Backward solver
(Averaged over 10 random perturbations. perturbation amount = 5%, tolerance
= 1% of Vdd).

Bench- Forward Incremental Solver Runtime (sec) Backward Incremental Solver Runtime (sec)
mark/ Book- RoI Refine 1 10 30 RoI Refine 1 10 30
Pert. keeping run runs runs run runs runs
size [Speedup] [Speedup] [Speedup]

ibmpg1/3 0.39 0.01 1.7E-04 0.40 0.47 0.62 0.02 2.6E-04 0.02[18.7×] 0.21[2.2×] 0.64[1.0×]
ibmpg2/3 2.48 0.06 1.2E-03 2.54 3.09 4.31 0.10 1.3E-03 0.10[24.6×] 1.03[3.0×] 3.10[1.4×]
ibmpg1/5 0.39 0.01 1.6E-04 0.40 0.49 0.70 0.03 1.9E-04 0.03[12.1×] 0.33[1.5×] 1.00[0.7×]
ibmpg2/5 2.48 0.07 1.1E-03 2.55 3.14 4.46 0.15 3.6E-03 0.15[16.9×] 1.51[2.1×] 4.52[1.0×]
ibmpg1/7 0.39 0.01 1.5E-04 0.40 0.49 0.70 0.03 3.4E-04 0.03[13.2×] 0.30[1.6×] 0.91[0.8×]
ibmpg2/7 2.48 0.07 1.1E-03 2.55 3.14 4.46 0.21 4.7E-03 0.21[12.1×] 2.11[1.5×] 6.32[0.7×]

Average Speedup 16.28× 1.98× 0.92×

out earlier, the backward solver is scalable to larger problems.

Chapter 6

Scaled Solver

6.1 Background

6.1.1 The Notion of Importance Sampling

The idea behind the IS method, as discussed in more detail in Section 6.1.2, is

to modify the distribution of the näıve random walks so that the gain of each

walk is approximately the same. The change in the distribution causes a bias in

the solution which is compensated for, using a weighted average scheme, and is

referred to as scaling.

Figure 6.1 shows a portion of a graph on which random walks are run. For

both the näıve and the optimally scaled game, each vertex in the graph represents

a node in the power network. The edges are annotated with a set of transition

probabilities (only two of which are actually shown in the figure), and the dashed

edges represent connections to the rest of the network.

In the random walk game, the walker must to thoroughly inspect vertices on

either side of v, i.e., the walks that start with transitions to v1 and those that first

go to v2. For the näıve game, the walks through v1 will have an average gain of

v1 = 2 (equal to its solution), while those through v2 will have an average gain of

v2 = 10. This indicates that the variance of the data samples that are averaged

69

70

p1 p2

v = 6v1 = 2 v2 = 10

(a)

p̂1 p̂2

v̂ = 6v̂1 = 6 v̂2 = 6

(b)

Figure 6.1: Example of the (a) näıve and (b) optimally scaled random walk games.

to compute v may be large.

In the ideal optimally-scaled game shown in Figure 6.1(b), the left hand side

matrix is modified such that the solution of all the nodes are equal to (or practi-

cally, close to) 6. Regardless of the direction chosen, the average walk gain will

be the same and equal to 6. If this is true at each node, the walk gain will have

zero variance. Hence, the stopping criterion will kick in much more quickly since

the samples have lower variance. In order to permit this change, as we will soon

see, the probabilities of the corresponding edges must be changed from the näıve

game and scaling factors must be employed.

6.1.2 The Theory of Importance Sampling

Importance sampling is based on the observation that:

vi = EQi
[Vi] =

∑

k

V k
i Qk

i

=
∑

k

(

V k
i

Qk
i

Q̂i
k

)

Q̂i
k

= EQ̂i
[ViLi] (6.1)

where Q̂i

k
Qk

i > 0, ∀k. The terms Qi and Q̂i are PMFs of the random variable Vi

in the näıve and scaled problem, respectively, and V k
i denotes the kth sample of

71

Vi with probability Qk
i and Q̂k

i , in the näıve and scaled problem, respectively.

The term Lk
i = Qk

i /Q̂
k
i is called the likelihood ratio [51]. For the random walk

solver for linear equations, the condition Q̂i
k
Qk

i > 0, ∀k ensures that the structure

(roads connecting the motels) of the random walk game is preserved.

For a suitable Q̂i
k
, we can modify Equation (3.6) using Equation (6.1) to form

a new unbiased estimator for vi as [51]:

v̂i =
1

Mi

Mi
∑

k=1

V k
i Lk

i (6.2)

where the probability of the random walks is guided by Q̂k
i , and hence the notation

v̂i. The variance of this estimator is [51]:

σ2
v̂i

=
EQ̂[(ViLi)

2]− v2
i

Mi
=

µ2
Q̂
− v2

i

Mi
(6.3)

where µ2
Q̂

is the second moment of the estimator ViLi and Li is a function of k

as defined above. If Q̂i is chosen appropriately, v̂i will have significantly lower

variance than vi. In the optimal case, IS can achieve exactly zero variance, where

the optimal choice of the PMF Q̂i is given by:

Q̂k
i = V k

i Qk
i /vi (6.4)

If V k
i Lk

i = vi, ∀k, i.e., all walk gain samples are the same, from Equation (6.3),

we have zero variance, which leads to Equation (6.4). The name “importance sam-

pling” refers to the notion that Q̂k
i is proportional to the amount of contribution

of the kth walk on the average walk gain, i.e., its importance.

It is clear that since this optimal choice requires some knowledge of vi, and

since vi is the unknown that we are trying to compute, zero variance is impractical.

However, this intuition is the founding idea of our proposed heuristic.

72

6.2 Fast Random Walk Solver

6.2.1 Scaled Random Walks

Our fast random walk solver is a heuristic technique, inspired by IS, to speedup

the random walk solver for power network analysis. The essential idea of the

approach is to modify the transition probabilities, pij, in Equation (3.5) such that

the solution of all the nodes in the network is equal to α and use scaling factors,

sij, to find the solution, vi, to node i. The scaled form of Equation (3.5) can be

written as:

vi =

degree(i)
∑

j=1

p̂ijsijvj + mi (6.5)

where p̂ij (analogous to Q̂i in Section 6.1.2) denotes the new modified transition

probabilities, sij (analogous to Li) denotes the scaling factors corresponding to

roads from node i to its neighbor j, and mi is the motel cost at node i as in

Equation (3.5). In the language of IS, the random walks that are constructed

using Equation (3.5) provide an estimate of vi while those corresponding to Equa-

tion (6.5) (we will shortly define them) are denoted by v̂i; both represent the

voltage of node i.

Note that that for Equation (6.5) to model the same equations as (3.4) and

(3.5), we must have:

sij =

{

1, i = j

pij/p̂ij, i 6= j

Clearly, p̂ij and pij both must be valid probabilities that lie between 0 and 1, and

therefore sij ≥ 0. Moreover, for the structure of the random walks to be intact,

required for the IS to be valid as discussed in Section 6.1.2, we must have sij > 0

and pij × p̂ij > 0.

Figure 6.2 shows an example of a graph on which the random walk game may

be executed. The home nodes are indicated by the shaded circles and the rest of

73

�����
�����
�����
�����

�����
�����
�����
�����

����
����
����
����

����
����
����
����

p̂1, s1

p̂
2 , s

2

p̂3, s3

p̂4, s4

p̂ 5
,s

5

m1 m2

m3 m4 m5

0

0vi

Figure 6.2: An example of a scaled random walk game, with a highlighted path
showing a walk of length N = 6.

the vertices are the motel nodes. The highlighted path shows a walk of length

N = 6 starting from vertex vi, as the walker takes to reach a home node. The

cost of the rth motel node is reflected by mr and the home rewards are all zero.

The modified probabilities and the scales in the graph are shown by p̂r and sr,

respectively.

The scaled random walk from node vi, similar to the näıve game, starts with

zero money and a credit card on which debt may be racked up. In the scaled walk,

the walker accumulates a multiplier on the way, which models the scaling scheme.

On the first transition the walker pays the price of the motel, m1, and a road is

picked with probability p̂1; the value of the multiplier is set to s1. Next, the second

transition is chosen and the motel costs are paid – but due to the accumulated

multiplier, the amount to be paid is not m2 but s1 ×m2. The multiplier changes

to s1 × s2, so that the motel cost at the third transition is s1 × s2 × m3, the

multiplier is s1 × s2 × s3, and so on. The walker keeps paying and accumulating

74

new terms in the multiplier until a home node is reached, where a reward (also

scaled by the multiplier) is received. Therefore, the total gain of a walk of length

N can be written as:

V̂ k
i = m1 + s1m2 + s1s2m3 + · · ·+

N−1
∏

r=1

srmN (6.6)

where r denotes the motels visited along the way from node i, and k denotes that

this is the kth walk among the Mi walks performed to estimate vi. The result of

this walk is included in an average that is used to estimate vi:

v̂i =
1

Mi

Mi
∑

k=1

V̂ k
i (6.7)

As in [32], the number of walks, Mi, required for getting the solution with the

desired tolerance is determined dynamically based on the estimated solution and

its variance at each point in the random walk game such that the error is smaller

than a user defined threshold with a confidence of 99%.

6.2.2 Computing the Scaling Factors

The scaling factors in Section 6.2.1 give us the freedom to modify the road proba-

bilities, p̂ij , and yet find the solution to the original equation using Equation (6.6).

A key unanswered issue is the choice of scaling factors. The IS approach suggests

that we choose the p̂ij such that every walk has a gain of α, where α is to be

selected to get a feasible random walk and the best possible speedup. Based on

this, we will now present a set of results that show how these factors may be

computed.

Theorem 6 For a system of linear equations defined by Equation (6.5), if sijvj

is at a constant value of α for all neighbors j of node i, and the value of vi is also

α then:

1−
degree(i)
∑

j=1

pij/sij = mi/α (6.8)

75

Proof: Based on the conditions shown above, we have:

α =

degree(i)
∑

j=1

p̂ijα + mi (6.9)

Substituting pij/sij for p̂ij , we have the result. �

The conditions of Theorem 6 state that:

sij =
α

vj

(6.10)

For a Vdd grid, the values of all node voltages are roughly similar in magnitude

for a reasonable candidate power grid: the variations of a well-designed grid are

within 10% of Vdd. In a use case where such an analyzer is being applied to the

inner loop of an optimizer (e.g., one that sets the optimal wire widths in the grid),

it is likely that for any candidate configuration, the voltage values may differ by

more than 10%, but not by orders of magnitude. Therefore, since the vj values are

similar in magnitude, it is a reasonable approximation to assume that sij = si, ∀j.
Note that we will use this approximation only to reorient the probabilities in the

original random walk game for importance sampling. Therefore, by the definition

of importance sampling, this approximation does not affect the correctness of the

random walks, but only the variance of the samples, and hence the convergence

speed.

The quality of this approximation is directly related to the amount by which

the variance may be reduced. If a power grid has a catastrophic fault that causes

its voltage to be very far from Vdd, this may not be a good solution, but it is

an excellent choice within an optimizer where realistically, most of the candidate

solutions have voltages close to Vdd.

Corollary 1 Under the assumptions that sij = si ∀j, the scaling factor si can be

computed as:

si =
1

1−mi/α

degree(i)
∑

j=1

pij (6.11)

76

The proof is trivial and follows directly from Theorem 6.

Corollary 1 provides a recipe for determining the scaling factors in Equa-

tion (6.5). However, the parameter α has not been precisely defined. We will now

consider constraints on the feasible values of α that are required to maintain the

physical constraints associated with a random walk game.

Theorem 7 For the case where mi ≥ 0 ∀i, α satisfies the feasibility and physi-

cality of the random walk game if:

α > max
i

(mi) (6.12)

Proof: For all i and j, we must have:

0 < sij (6.13)

0 < p̂ij ≤ 1 (6.14)
degree(i)
∑

j=1

p̂ij ≤ 1 (6.15)

The first condition is required to keep the structure of the random walk game

intact, as required by the IS method in Section 6.1.2: in other words, the graph

for the original game is isomorphic to that of the modified game. In the next

two constraints, p̂ij > 0 implies that sij is finite (i.e., it avoids a divide-by-zero

operation in Equation (6.6)), and the remaining constraints are basic requirements

on a PMF.

Equations (6.11) and (6.13) together imply that α > mi ∀i, which immediately

leads to Equation (6.12).

Equations (6.11) and (6.15) together imply that mi/α > 0. This is self-

consistent with the result of this theorem. �

Note that for the case where mi ≤ 0 ∀i (for the ground net), a result similar

to Theorem 7 may be derived: that α < mini(mi).

77

6.2.3 Choosing the Value of α

Based on Theorem 7, the value of α may be chosen as

α = max
i

(mi)β, β > 1 (6.16)

where β is chosen empirically for the best speedup.

We now present an intuitive feel for the considerations for choosing β. Quali-

tatively, β determines the probability of transition to a home node at each node

of the network. The choice of α alters probabilities pij to p̂ij , but it can be ver-

ified from Equation (6.8) that in general, at any node i,
∑

i pij 6=
∑

i p̂ij. In the

original circuit, typically
∑

i pij = 1 at many nodes, but this is not the case in the

modified circuit. This introduces a new home transition probability at node i for

the fast solver:

ĥi = 1−
degree(i)
∑

j=1

p̂ij =
mi

maxi(mi)β
(6.17)

As β increases, the home probabilities decrease and therefore it will be less

likely for the random walker to reach a home node. As a result, individual walk

lengths increase as β increases, and the walker spends more time exploring “far

away” parts of the network which have small contributions to the solution due to

the locality property of power grids.

On the other hand as β decreases, the home probabilities become larger, mak-

ing it more likely for random walks to often terminate at nearby home nodes, even

within the radius of locality. To achieve accuracy, this implies the need for a larger

number of walks, implying a larger total number of steps in the random walk, and

hence, larger runtime for the solver. Another factor is that in order to keep mi

unchanged, required by Equation (6.5), the edges connected to these new home

nodes must have a reward of zero, rather than Vdd. Therefore, the conditions that

led to sij = si∀i are somewhat violated since one neighbor contributes a value of

zero.

Experimental results empirically indicate that values of 5 ≤ β ≤ 50 give the

best results. This value could change if the topology of the benchmarks (e.g.,

78

average degree of each node) changes, but companies tend to use a similar style

from design to design, and it is likely that this value will not change remarkably,

once calibrated.

6.2.4 Fast Random Walks Example

In this section, we present an example to provide some intuition as to how the

solver works and why it reduces the variance. Figure 6.3 shows a simple random

walk game, in both the näıve and the scaled form. In this figure, each node is

represented by a vertex where the shaded vertices are the home nodes with known

values of zero. The numbers within each vertex correspond to the motel cost at

the node, and the transition probabilities are shown on the edges. The scaled

game has scale labels on the edges as well.

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

0.6 0.30 0
p = 0.2 p = 0.8

p12 = 0.8

p21 = 0.2v1 v2

(a)

����
����
����
����
����

����
����
����
����
����

�����
�����
�����
�����

�����
�����
�����
�����

0.6 0.30 0
p̂ = 0.2 p̂ = 0.1

p̂12 = 0.8, s1 = 1

p̂21 = 0.9, s2 = 2
9v1 v2

(b)

Figure 6.3: Simple example of the näıve 6.3(a) and scaled 6.3(b) games to demon-
strate how the fast random walk solver works.

These games model the following set of equations:

[

1 −0.8

−0.8 4

][

v1

v2

]

=

[

0.6

1.2

]

(6.18)

where the solution is v1 = 1 and v2 = 0.5. We use β = 5 and seek the the solution

of node v1.

79

In the näıve random walk game in Figure 6.3(a) the gain of the walks started

from v1 takes one of the forms:

V k
i =

{

0.6 + 0.9t

0.9(1 + t)
, t = 0, 1, 2, . . . (6.19)

The first equation corresponds to a termination at the left home node, and the

second to a termination at the right home node. Here, t is the number of times

that the walker traverses the cycle v1–v2–v1, and the walk length is 2t + 1 [2t] for

a termination on the left [right] node. It is easy to see from this equation that the

walk gain increases linearly with its length, and depending on the walk length, it

falls in the interval.

For the scaled random walk in Figure 6.3(b), some vigorous algebraic manip-

ulations show that the gain of the walks started from v1 takes one of the forms:

V k
i =

{

0.9
∑t

l=0 (2/9)l

0.9
∑t

l=0 (2/9)l − 0.3(2/9)t
, t = 0, 1, 2, . . . (6.20)

In this game, as t increases (i.e., the walk length increases), the walk gain increases

at most to 1.16. Therefore, for this scaled game, the walk gains fall into the interval

[0.6, 1.16) which has a much smaller variance compared to the näıve game.

In practice for a properly chosen β, the loop gain in this example and total

accumulated walk scale in general case will be less than or equal to one. To see

this, consider an ideal power network with the solution of all one and the scaled

game for solving it. Comparing Equations (3.5) (with vi = 1) and Equation (6.8)

we can see that in the scaled game, the RHS mi/α = mi/ (maxi (mi)β) ≤ mi, the

RHS of the näıve game. Therefore, we must have si ≤ 1. For the general case,

the solution of the networks of interest for this work deviates no more than, say,

20% and setting β large enough ensures the scaling factors are less than or equal

to one.

For efficiency purposes, we stop the walk as soon as the accumulated scale falls

below a threshold close to machine precision since the motel costs are bounded

and continuing the walk will have no effect on the solution due to round off error.

80

6.3 Experimental Results

The proposed fast random walk solver and the näıve random walk solver are

implemented in C++ and compared on a UNIX machine with a 2GHz CPU and

8GB of memory. To ensure a fair comparison, the fast random walk solver is

implemented by adding the scaling scheme into the näıve solver so that the core

random walk engine is the same for both. These solvers are applied to three

benchmarks summarized in Table 6.1. This table represents the statistics of the

LHS matrix for a DC analysis. For each matrix, we list the size, i.e., the number

of unknowns, the number of non-zeros in G, and the average number of non-zeros

per row, as a sparsity metric.

Table 6.1: Benchmark Details: Statistics of the LHS Matrix
Name Size Number of Average

Nonzeros Nonzeros/Row

c1 16194 98030 6.1
c2 26300 165810 6.3
c3 29551 178345 6.0

We first examine the efficiency and accuracy of the fast solver by finding the

speedup of the fast solver over the näıve solver, for the same relative error. Next

we compare the statistics of the walk gains for the näıve and fast solver, as defined

by Equations (3.6) and (6.6), respectively, to study the variance reduction in the

fast solver. In our experiments, we focus on the case that the solution of a single

node in the network is of interest. We pick ten nodes randomly and apply the

solvers for each of these nodes 1000 times and show that the average results are

consistent for all the nodes in all the benchmarks. The nominal voltage of the

network, VDD, is 1.2V .

Figure 6.4 shows the runtime and relative error of the näıve and fast solver

versus β, for the given tolerance of 5%, for a single randomly selected node from

benchmark c2.

Figure 6.4(a) suggests that for 5 ≤ β ≤ 50, the fast solver achieves a significant

81

0 20 50 100 150 200
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

β

R
un

tim
e

(s
)

Naive Solver

Fast Solver

(a) Runtime

0 20 50 100 150 200
0

0.01

0.02

0.03

0.04

0.05

0.06

β

R
el

at
iv

e
E

rr
or

Tolerance

Naive Solver

Fast Solver

(b) Relative Error

Figure 6.4: Runtime and relative error vs. β for a random node from circuit c2.

82

2 4 6 8 10
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Node Number

R
un

tim
e

(s
)

Naive Solver
Fast Solver

(a) Runtime

2 4 6 8 10
0

0.01

0.02

0.03

0.04

0.05

0.06

Node Number

R
el

at
iv

e
E

rr
or

Tolerance

Naive Solver

Fast Solver

(b) Relative Error

Figure 6.5: Runtime and relative error for 10 randomly chosen nodes (from c2)
with β = 20.

83

speedup while the relative error, shown in Figure 6.4(b), remains less than or equal

to the näıve solver. In Figure 6.4(a), the bars on the figure denote the standard

deviation of the runtime over the 1000 runs.

Table 6.2: Runtime (sec) and speedup of the fast random walk solver for ten
randomly chosen nodes from each benchmark for β = 20

Node Runtime (s) [Speedup]
c1 c2 c3

1 0.067 [1.6×] 0.176 [1.8×] 0.169 [1.3×]
2 0.070 [1.5×] 0.177 [1.7×] 0.170 [1.3×]
3 0.070 [1.5×] 0.160 [1.9×] 0.152 [1.5×]
4 0.068 [1.5×] 0.156 [2.0×] 0.152 [1.5×]
5 0.065 [1.6×] 0.152 [2.0×] 0.153 [1.5×]
6 0.064 [1.6×] 0.153 [2.0×] 0.137 [1.6×]
7 0.054 [1.9×] 0.159 [1.9×] 0.154 [1.5×]
8 0.068 [1.5×] 0.159 [2.0×] 0.153 [1.5×]
9 0.064 [1.6×] 0.159 [1.9×] 0.155 [1.4×]

10 0.055 [1.9×] 0.156 [2.0×] 0.151 [1.5×]

Average 0.065 [1.6×] 0.161 [1.9×] 0.155 [1.5×]

As discussed in Section 6.2.3, the value of the parameter β is empirically

chosen. Here, we set β = 20 for our experiments. Figure 6.5 shows the runtime

and relative error of the solvers for ten randomly chosen nodes from benchmark

c2 with tolerance of 5% and β = 20. In Figure 6.5(a) the bars on the figure show

the standard deviation of the runtime over the 1000 different runs. It can be seen

that the fast solver consistently runs faster than the näıve solver for all the nodes

while the relative error is the same. Note that it is well-known that the actual

error can be significantly below the tolerance, as seen in the figure: this is an

artifact of the choice of stopping criterion in [32].

Details of the runtime and speedup of the fast random walk solver are listed in

Table 6.2 for all the benchmarks where ten nodes are selected randomly from each

benchmark and β = 20. Each row represents a node number and each column

84

represents the circuit that it comes from. This table indicates consistent runtime

reduction for all the benchmarks and for each of the nodes of each benchmark.

Finally the scatter plot of Figure 6.6 shows the distribution of walk gain

versus walk length of the näıve solver and the fast solver, as defined by Equa-

tions (3.6) and (6.6), for a randomly chosen node from benchmark c2 with solution

of 1.06V . As this figure indicates, the walk gain of the fast solver is much denser

around the solution than that of the näıve solver. This indicates the effectiveness

of the variance reduction technique described in Section 6.2.4.

0 1 2 3 4

x 10
4

0

2

4

6

8

Walk Length

W
al

k
G

ai
n

Naive Solver
Fast Solver

Figure 6.6: Distribution of the walk gain vs. walk length (β = 20, v = 1.06).

6.4 Extension

6.4.1 Extension of the Scaled Solver

In this work we focused on power networks of Equation (1.1) where the left hand

side matrix is symmetric and diagonally dominant. Moreover we are assuming

that the right hand side vector is all non-negative and the solution does not vary

85

drastically from node to node. This work can be extended to the cases that the

solution can vary a lot for different nodes and the right hand side might have

mixed signs.

This can be achieved by adding a preprocessing stage which is a coarse random

walk solution of the entire system. Random walk solver provides a nice runtime-

accuracy trade off and hence a solution of the network with moderate accuracy can

be found efficiently. This approximate solution can be used to introduce a change

of variable in Equation (1.1) (i.e. by dividing each unknown by its approximate

solution) such that the new set of equations would have a small variation in their

solution. Then the scaled solver of Section 6 can be used to find the solution of

the new system efficiently.

6.4.2 Dynamic Calculation of Optimal β

As discussed in Section 6.2 the parameter β has a critical roll in effectiveness and

stability of the scaled random walk solver. This parameter has been determined

empirically which is shown to be working for all the benchmarks under test in this

work. But the optimal value of β can be slightly different for different benchmarks.

Specially in this work we focused on the power networks which normally have a

fairly regular structure. In a more general case, we will be dealing with a variety of

game structures which will demand for a dynamic procedure to obtain the optimal

β.

The key to finding the optimal β dynamically is the variance of the walk gains

in the scaled game of Section 6.2.1. This variance can be found using:

n
∑

k=1

âiks
2
ikσ̂

2
k = 2mivi −m2

i −
n
∑

k=1

âiks
2
ikv

2
k, i = 1, 2, 3, · · · , n (6.21)

where in this equation n is the equation size, mi is the motel cost of the ith node

as defined in Equation (3.5), and for aik we have:

âik =

{

1 i = k

p̂ik(j) k 6= i
(6.22)

86

where k(j) represents the actual index of the jth neighbor of the node i. In

Equation (6.21) the scaling factors sik’s, and consequently, p̂ik’s are function of β

and hence finding the optimal β will be reduced to minimize the variances in this

equation.

Chapter 7

Conclusion

In this thesis, we have developed two methods for efficient incremental power

grid analysis based on forward and backward random walk methods. The back-

ward walk approach is particularly useful in computing the impact of incremental

changes since it can efficiently compute the inverse of any individual column of

the LHS matrix. The forward walk approach is useful for the case that the book-

keeping information is already known and few quick incremental updates to the

solution is desired. These approaches are approximate and are used to determine

a RoI around the area of the perturbation where the voltages are significantly

impacted. Next, an exact direct solver may be employed to determine the precise

solution by solving for voltages within the RoI while assuming that voltages out-

side the RoI are unchanged or at their approximate levels, as given by the random

walk solver.

The theory of the backward random walks was developed in this work based on

a basic concept introduced more than 50 years ago. We employed the backward

random walk method to make the approach computationally practical, show a

theoretical relation to LU factorization, and apply it to incremental analysis.

Table 7 summarizes the similarities and differences of the forward and backward

random walk game.

In addition, we introduced an accurate method for modeling the power grids

87

88

Table 7.1: Comparison of forward and backward random walks

Forward Backward

Construction based on Rows of G Columns of G

Computes

Rows of G−1 Columns of G−1

vi = (G−1)i,:E Vj = (G−1):,jej

Effect of all RHS on Effect of one RHS on
solution of one node solution of all nodes

Game objective
Record the number

Same
of visits to motels

Analogy

Distribute a given
Sum of money sum of money among

paid during walks motels visited based
on the visit frequency

Physical meaning
Voltage of node i, vi

Total voltage drop
of sum of money in the network due to

one current load

(G−1)i,j

Average number of visits
Sameto motel i over many

walks started from j

89

that contrary to the conventional power grid models could result in asymmetrical

equations. We showed the effectiveness of the backward incremental random walk

solver on the symmetrical as well as the more accurate asymmetrical power grid

model.

Finally a fast scaled random walk solver has been developed for solving for

the nodes in power grids one at a time. The scaled solver leverages the notion of

importance sampling to reduce the variance in the walks to significantly improve

the runtime of the random walk solver.

References

[1] S. Bodapati and F. N. Najm. High-level current macro-model for power grid

analysis. In Proceedings of the ACM/IEEE Design Automation Conference,

pages 385–390, 2002.

[2] H. H. Chen and D. D. Ling. Power supply noise analysis methodology for

deep-submicron vlsi chip design. In Proceedings of the ACM/IEEE Design

Automation Conference, pages 638–643, 1997.

[3] T. Chen and C. C. Chen. Efficient large-scale power grid analysis based

on preconditioned krylov-subspace iterative methods. In Proceedings of the

ACM/IEEE Design Automation Conference, pages 559–562, 2001.

[4] A. Dharchoudhury, R. Panda, D. Blaauw, R. Vaidyanathan, B. Tutuianu, and

D. Bearden. Design and analysis of power distribution networks in power-

pctm microprocessors. In Proceedings of the ACM/IEEE Design Automation

Conference, pages 738–743, 1998.

[5] A. Dharchoudhury, R. Panda, D. Blaauw, R. Vaidyanathan, B. Tutuianu, and

D. Bearden. Podea: power delivery efficient analysis with realizable model

reduction. In Proceedings of the IEEE International Symposium on Circuits

and Systems, volume 4, pages 608–611, 2003.

[6] J. Kozhaya, S. R. Nassif, and F. N. Najm. A multigrid-like technique for

power grid analysis. IEEE Transactions on Computer-Aided Design of Inte-

grated Circuits and Systems, 21(10):1148–1160, 2002.

90

91

[7] R. Panda, D. Blaauw, R. Chaudhury, V. Zolotovand B. Young, and R. Ra-

maraju. Model and analysis for combined package and on-chip power grid

simulation. In Proceedings of the ACM International Symposium on Low

Power Electronics and Design, pages 179–184, 2000.

[8] S. S. Sapatnekar and H. Su. Analysis and optimization of power grids. IEEE

Design & Test, 20(3):7–15, May–June 2003.

[9] J. C. Shah, A. A. Younis, S. S. Sapatnekar, and M. M. Hassoun. An algorithm

for simulating power/ground networks using pade approximations and its

symbolic implementation. IEEE Transaction on Circuits and Systems II:

Analog and Digital Signal Processing, 45:1372–1382, 1998.

[10] H. Su, K. H. Gala, and S. S. Sapatnekar. Fast analysis and optimiza-

tion of power/ground networks. In ACM/IEEE International Conference

on Computer-Aided Design Digest of Technical Papers, pages 477–480, 2000.

[11] M. Zhao, R. V. Panda, S. S. Sapatnekar, and D. Blaauw. Hierarchical anal-

ysis of power distribution networks. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 21(2):159–168, 2002.

[12] M. N. Özişik. Heat Transfer: A Basic Approach. McGraw-Hill, New York,

NY, 1985.

[13] H. Qian, S. S. Sapatnekar, and E. Kursun. Fast poisson solvers for thermal

analysis. ACM Transactionson Design Automation of Electronic Systems,

17(23), 2012.

[14] Y. Zhan and S. S. Sapatnekar. A high efficiency full-chip thermal simulation

algorithm. In Proceedings of the IEEE/ACM International Conference on

Computer-Aided Design, pages 634–637, 2005.

[15] M. Pedram and S. Nazarian. Thermal modeling, analysis, and management

in vlsi circuits: Principles and methods. Proceedings of the IEEE, 94(8):1487–

1501, 2006.

92

[16] Wei Huang, S. Ghosh, S. Velusamy, K. Sankaranarayanan, K. Skadron, and

M.R. Stan. Hotspot: a compact thermal modeling methodology for early-

stage vlsi design. IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, 14(5):501–513, 2006.

[17] H. Eisenmann and F. M. Johannes. Generic global placement and floor-

planning. In Proceedings of the ACM/IEEE Design Automation Conference,

pages 269–274, 1998.

[18] A. P. Hurst, P. Chong, and A. Kuehlmann. Physical placement driven

by sequential timing analysis. In ACM/IEEE International Conference on

Computer-Aided Design Digest of Technical Papers, pages 379–386, 2004.

[19] N. Viswanathan and C. C. Chu. Fastplace: efficient analytical placement

using cell shifting, iterative local refinement and a hybrid net model. In

Proceedings of International Symposium on Physical Design, pages 26–33,

2004.

[20] K. P. Vorwerk, A. Kennings, and A. Vannelli. Engineering details of a stable

force-directed placer. In ACM/IEEE International Conference on Computer-

Aided Design Digest of Technical Papers, pages 573–580, 2004.

[21] K. P. Vorwerk and A. Kennings. An improved multi-level framework for

forcedirected placement. In Proceedings of ACM/IEEE Design Automation

and Test in Europe, pages 902–907, 2005.

[22] I. S. Duff, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse Matrices.

Oxford University Press, New York, NY, 1986.

[23] A. George and J. W. H. Liu. Computer Solution of Large Sparse Positive

Definite Systems. Prentice-Hall, Englewood Cliffs, NJ, 1981.

[24] R. Barrett, M. Berry, T. F. Chan, J. W. Demmel, J. Donato, J. Dongarra,

V. Eijkhout, R. Pozo, C. Romine, and H. A. van der Vorst. Templates for the

93

Solution of Linear Systems: Building Blocks for Iterative Methods. SIAM,

Philadelphia, PA, 1994.

[25] Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia,

PA, 2003.

[26] R. S. Varga. Matrix Iterative Analysis. Prentice-Hall, Englewood Cliffs, NJ,

1962.

[27] W. Wasow. A note on the inversion of matrices by random walks. Mathe-

matical Tables and Other Aids to Computation, 6(38):78–81, 1952.

[28] G. E. Forsythe and R. A. Leibler. Matrix inversion by a monte carlo method.

Mathematical Tables and Other Aids to Computation, 4(31):127–129, 1950.

[29] A. Srinivasan and V. Aggarwal. Stochastic linear solvers. In Proceedings of

the SIAM Conference on Applied Linear Algebra, 2003.

[30] C. J. K. Tan and M. F. Dixon. Antithetic monte carlo linear solver. In Pro-

ceedings of International Conference on Computational Science, pages 386–

392, 2002.

[31] J. M Hammersley and D. C Handscomb. Monte Carlo Methods. Methuen &

Co., London, U.K., and John Wiley & Sons, New York, NY, 1964.

[32] H. Qian, S. R. Nassif, and S. S. Sapatnekar. Random walks in a supply

network. In Proceedings of the ACM/IEEE Design Automation Conference,

pages 93–98, 2003.

[33] H. Qian and S. S. Sapatnekar. A hybrid linear equation solver and its applica-

tion in quadratic placement. In Proceedings of the IEEE/ACM International

Conference on Computer-Aided Design, pages 905–909, 2005.

[34] W. Guo, S.X.D. Tan, Z. Luo, and X. Hong. Partial random walk for large

linear network analysis. In Proceedings of the IEEE International Symposium

on Circuits and Systems, volume 5, 2004.

94

[35] T. Miyakawa, K. Yamanaga, H. Tsutsui, H. Ochi, and T. Sato. Acceleration

of random-walk-based linear circuit analysis using importance sampling. In

Proceedings of the ACM/IEEE Great Lakes Symposium on VLSI, pages 211–

216, 2011.

[36] J. H. Curtiss. Sampling methods applied to differential and difference equa-

tions. In Proceedings of IBM Seminar on Scientific Computation, pages 87–

109, 1949.

[37] R. Hersh and R. J. Griego. Brownian motion and potential theory. Scientific

American, 220:67–74, 1969.

[38] C. N. Klahr. A Monte Carlo method for the solution of elliptic partial differ-

ential equations. John Wiley and Sons, New York, NY, 1962.

[39] A. W. Knapp. Connection between brownian motion and potential theory.

Journal of Mathematical Analysis and Application, 12:328–349, 1965.

[40] M. E. Muller. Some continuous monte carlo methods for the dirichlet problem.

Annals of Mathematical Statistics, 27:569–589, 1956.

[41] J. Singh and S. S. Sapatnekar. Topology optimization of structured

power/ground networks. In Proceedings of the Asia-South Pacific Design

Automation Conference, pages 116–123, 2004.

[42] E. Chiprout. Fast flip-chip power grid analysis via locality and grid shells. In

Proceedings of the IEEE/ACM International Conference on Computer-Aided

Design, pages 485–488, 2004.

[43] M. Zhao, R. V. Panda, S. S. Sapatnekar, T. Edwards, R. Chaudhry, and

D. Blaauw. Hierarchical analysis of power distribution networks. In Pro-

ceedings of the ACM/IEEE Design Automation Conference, pages 150–155,

2000.

95

[44] G. H. Golub and C. F. van Loan. Matrix Computations. Johns Hopkins

University Press, Baltimore, MD, 3rd edition, 1996.

[45] L. T. Pillage, R. A. Rohrer, and C. Visweswariah. Electronic Circuit and

System Simulation Methods. McGraw-Hill, New York, NY, 1994.

[46] Y. Fu, R. Panda, B. Reschke, S. Sundareswaran, and M. Zhao. A novel

technique for incremental analysis of on-chip power distribution networks. In

Proceedings of the IEEE/ACM International Conference on Computer-Aided

Design, pages 817–823, 2007.

[47] Y. Ye, Z. Zhu, and J. R. Philips. Generalized Krylov recycling methods

for solution of multiple related linear equation systems in electromagnetic

analysis. In Proceedings of the ACM/IEEE Design Automation Conference,

pages 682–687, 2008.

[48] F. Castro, M. Sbert, and J. H Halton. Efficient reuse of paths for random

walk radiosity. Computers & Graphics, 32(1):65–81, 2008.

[49] H. Qian, S. R. Nassif, and S. S. Sapatnekar. Power grid analysis using random

walks. IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, 24(8):1204–1224, August 2005.

[50] S. R Nassif. Power grid analysis benchmarks. In Proceedings of the Asia-South

Pacific Design Automation Conference, pages 376–381, 2008.

[51] I. Kuruganti and S. G. Strickland. Importance sampling for markov chains:

computing variance and determining optimal measures. In Proc. Winter

Simulation Conference, pages 273–280, 1996.

[52] S. Andradottir, D. P. Heyman, and T. J. Ott. Potentially unlimited variance

reduction in importance sampling of Markov chains. Advances in Applied

Probability, 28(1):166–188, 1996.

96

[53] P. W. Glynn and D. L. Iglehart. Importance sampling for stochastic simula-

tions. Management Science, 35(11):1367–1392, November 1989.

[54] H. Qian and S. S. Sapatnekar. Stochastic preconditioning for diagonally

dominant matrices. SIAM Journal on Scientific Computing, 30(3):1178–1204,

March 2008.

[55] B. Boghrati and S. S. Sapatnekar. Incremental solution of power grids using

random walks. In Proceedings of the Asia-South Pacific Design Automation

Conference, pages 757–762, 2010.

[56] R. D. Yates and D. J. Goodman. Probability and Stochastic Processes: A

Friendly Introduction for Electrical and Computer Engineers. John Wiley

and Sons, New York, NY, 1999.

[57] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,

J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen.

LAPACK Users’ Guide. Society for Industrial and Applied Mathematics,

Philadelphia, PA, third edition, 1999.

[58] B. Boghrati and S. S. Sapatnekar. Incremental power network analysis using

backward random walks. In Proceedings of the Asia-South Pacific Design

Automation Conference, pages 41–46, 2012.

[59] MCNC Floorplan Benchmark Suite. Available at: http://www.cse.ucsc.

edu/research/surf/GSRC/MCNC.

[60] NANGate. Available at: http://www.si2.org/openeda.si2.org/

projects/nangatelib.

Appendix A

Modifying Existing Benchmarks

to Add More Detail

In this section, we describe how our test circuits showing a detailed extracted

power grid were generated from an existing standard benchmark suite that is

based on a lumped current source approximation [50].

r

(a) Extracted power grid
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

���
���
���

���
���
���

���
���
���

���
���
���

r1 r2 r3 r4

(b) Detail extracted power grid

Figure A.1: Splitting a wire piece of extracted circuit to model it as a detailed
extracted circuit, r = r1 + r2 + r3 + r4.

The format of the original benchmark circuits is similar to Figure 2.3, with

lumped current sources at the intersections of long wire segments. Our modifica-

tion that generates the detailed extracted circuit distributes the current sources

at the power line intersections to specific locations on the power lines. To this

end, the power line between any two nodes is first split into multiple pieces. As

97

98

an example, Figure A.1 shows a wire being split as if there were two cells laid out

between these power grid nodes.

While it is possible to perform this split at very fine levels of granularity, there

will be diminishing returns in accuracy beyond a point. In this work, our goal is to

motivate the notion that the lumped approximation induces errors and to generate

realistic power grids with asymmetric LHS matrices that could be exercised with

the backward random walk solver. Therefore, for simplicity, we have assumed that

there are two equally spaced cells connected to the grid between two adjacent

nodes. Then, a portion of the current source at the power grid intersection is

associated with each of the cells adjacent to it such that the total current is kept

the same. Here the current load of the intersection current sources is distributed

uniformly among the adjacent cells, effectively attempting to reverse-engineer the

original process in which the cells were lumped together.

Once the cell currents are determined, each cell is modeled as a simple VCCS

controlled by the voltage of the node connecting that cell to the power network,

i.e., an independent current source with a parallel resistor. The parameters of

this VCCS are then found with the aid of a unit cell for which these parameters

are calibrated. A unit cell, as explained shortly, represents an average cell used in

VLSI circuits. This unit cell is scaled such that its current draw at Vdd (or zero

for GND network) is equal to the current draw of the cell it is replacing. The

circuit model obtained with this procedure is the detailed extracted circuit of the

power grid.

Next we look at the process of characterizing the unit cell. To this end, we

determine:

• the statistics of cell usage in a typical set of circuits (here, we use the MCNC

benchmark suite [59] to obtain these statistics and a NANGate library [60]).

• the current load model of each cell (an independent current source in parallel

with a resistor), computed for the cell by measuring the variation in the

current draw when Vdd is swept from 90% to 100% using small-signal SPICE

99

simulations, and fitting a line on the I-V characteristic.

Given the cell usage statistics, the unit cell is obtained by computing the expected

value of the current source and conductance of the load model of the cells, averaged

over the distribution of cells.

Appendix B

Proof of Lemma 1

For the circuits in Figure 2.4(a) and 2.4(b) to be equivalent, as seen from nodes

a and b, Ia and Ib in both circuits must be equal for any Va and Vb.

Ix = I0
x + gxava + gxbvb + gxvx

Iy = I0
y + gyava + gybvb

Iz = I0
z + gzava + gzbvb

gab =
gagb

ga + gb

For the T-model of Figure 2.4(a), by KCL, the sum of all currents entering

nodes x, a, and b are zero according to KCL. Incorporating the device equations

and KVL, this leads to the relations:

vx =
va(ga − gxa) + vb(gb − gxb)− I0

x

ga + gb + gx

Ia = ga(va − vx)

Ib = gb(vb − vx)

where va and vb are the voltage of nodes a and b respectively.

100

101

Eliminating vx and defining ĝx = ga + gb + gx we get :

Ia = ga

[(

1− ga − gxa

ĝx

)

va −
(

gb − gxb

ĝx

)

vb +
I0
x

ĝx

]

Ib = gb

[

−
(

ga − gxa

ĝx

)

va +

(

1− gb − gxb

ĝx

)

vb +
I0
x

ĝx

]

(B.1)

For the Π-model in Figure 2.4(b), similarly applying KCL, KVL, and the

device equations at nodes a and b, we have:

Ia = (gya + gab)va + (gyb − gab)vb + I0
y

Ib = (gza − gab)va + (gzb + gab)vb + I0
z (B.2)

For the T-model and Π-model to be equivalent, Equation (B.1) and Equa-

tion (B.2) must be equivalent for any Ia, Ib, va, and vb. Therefore, the correspond-

ing coefficients of these equations must be equal. Equating these coefficients

completes the proof.

Appendix C

Proof of Theorem 1

Figure C.1 shows two intersection nodes a and b of a detailed model of a power

grid with K intermediate nodes (see nodes 1 and 2 of Figure 2.2 where K = 5).

In this figure connected cells are modeled as an independent current source in

parallel with a resistor. Note that the simplified extracted power grid model is

a special case of this general model in which all the cell conductances are zero

and the current sources are lumped together. The MNA stamp of the coarse

asymmetric VCCS model of this circuit block is:

[

Ia

Ib

]

=

[

gaa gab

gba gbb

][

va

vb

]

+

[

I0
a

I0
b

]

(C.1)

Note that this stamp formulates the electrical characteristics of this circuit block

as seen from nodes a and b. Lemma 1 utilized the same electrical characteristics

to show two circuit blocks are equivalent.

va vb

Ia Ib

gx1 gx2 gxK gx(K+1)

g1 g2 gK
I0
1

I0
2 I0

K

Figure C.1: Power grid model for two adjacent intersection nodes and the inter-
mediate nodes in between

102

103

The LHS of the Equation (1.1) is made of the superposition of the conduc-

tance matrix of this stamp for all the intersection nodes. Therefore, to show the

proposed properties of this theorem, it is enough to show that this stamp has

these properties, mathematically:

gba ≤ 0 (C.2)

gaa > 0 (C.3)

|gaa| ≥ |gba| (C.4)

gab ≤ 0 (C.5)

gbb > 0 (C.6)

|gbb| ≥ |gab| (C.7)

By linearity of this circuit, gaa and gba can be written as:

gaa = Ia/va

gba = Ib/vb

I0
k = 0, ∀k ∈ [a, b]

vb = 0 (C.8)

Figure C.2 shows the equivalent circuit of Figure C.1 in which I0
k = 0, ∀k and

vb = 0. In this figure for va > 0, it is obvious that Ia > 0 and Ib < 0 therefore

gaa > 0 and gba < 0. Moreover, if there was no resistive path between a and b,

then Ib = 0. Hence Equations (C.2) and (C.3) hold.

va vb = 0

Ia Ib

gx1 gx2 gxK gx(K+1)

g1 g2 gK

Figure C.2: Power grid model of C.1 with I0
k = 0 ∀k and vb = 0

To show Equation (C.4), based on Equation (C.8), it is enough to show that

in the circuit of Figure C.2, for a fixed va we have:

|Ia| ≥ |Ib| (C.9)

104

Based on KCL, the equality holds if gk = 0, ∀k and otherwise we have |Ia| > |Ib|.
Also if there was no resistive path between a and b, Ia = Ib = 0 and as a result

gaa = gba = 0. Therefore Equation (C.4) holds.

Te same argument shows that Equations (C.5), (C.6), and (C.7) hold if we set

I0
k = 0, ∀k and va = 0.

Finally, since every node in the power grid is connected to at least one other

node in the grid, there is one non-zero stamp associated with every node and there-

fore, all diagonal entries of the LHS are greater than zero. Hence, Equations (C.3)

and (C.6) hold for every node in the grid. �

