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Abstract

The task of analyzing circuit performance has become very challenging in sub-

100nm technologies due to the effects of numerous variations, particularly process

variations. Traditional multi-process-corner methods, which have been used to ac-

count for these variations for many years, cannot be scaled to these technologies

as they become computationally expensive and over-pessimistic. Therefore, a sta-

tistical approach to performance analysis must be developed in order to predict

circuit performance and yield more efficiently and accurately, and to guide circuit

optimization.

In this thesis, we focus on the statistical analysis of timing and leakage power.

Our approach considers both inter-die and intra-die process variations, as well as

the effect of spatial correlations, and develops efficient techniques for handling this

problem. We propose a grid-based model for spatial correlations that correctly

takes spatial correlations into account, by partitioning the chip areas into grids.

Within the same grid, perfect correlations are assumed for process parameters of

the same type, and the correlation values between any pair of grids degrades with

increasing distance.

A novel statistical static timing analysis (SSTA) method is first proposed. In

this method, Gaussian probability distributions are used to approximate all process

variations, and linear functions of process variables are used to represent the sensi-

tivities of delays to all process variables. Prior to our work, most previous methods

for SSTA were unable to account for the effect of spatial correlations in a compu-

tationally efficient way. We present a novel method that deals with the effects of

spatial correlations on delays using the principal component analysis method to ro-

tate the set of correlated variables into an independent set. A PERT-like (Program
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Evaluation and Review Technique) traversal of the circuit graph is then performed

by using sum and max operations, as in the static timing analysis, but with the sum

and max operations defined analytically on Gaussian random variables. The use of

principal components has several benefits: first, it allows SSTA to be carried out in

linear-time; second, it permits dimension reduction to remove unimportant process

parameters from the analysis; and third, it provides a technique to exactly handle

the effects of structural correlations in the circuit due to reconvergent fanout. Since

this method involves only analytical formulas for computations, the method has a

very efficient computational complexity which is linear in the number of gates and

interconnects, as well as the number of varying process parameters and grid par-

titions that are used to model spatial correlations. We show that the probability

distribution of circuit delay and thus yield of timing can be predicted accurately by

the proposed method by verifying with Monte Carlo simulations. We also demon-

strate that spatial correlations must be considered appropriately to achieve correct

results of timing analysis and yield.

Next, we present a general framework for SSTA that can incorporate non-

Gaussian-distributed process variables and/or nonlinear delay functions of the vari-

ables, by extending the approach for handling Gaussian process variables and linear

delay functions. To incorporate the non-Gaussian and nonlinear function varia-

tional sources, any delay is expressed in a generalized form by introducing a non-

linear non-Gaussian term to the linear function form in the technique for Gaussian

sources of variation and linear delay functions. The sum and max operations are

then extended to handle random variables in generalized forms. The method is

fully compatible with the technique for handling Gaussian variation sources and

linear delay functions, and preserves its computational efficiency in processing lin-

ear Gaussian process parameters. We show that the probability distributions of
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circuit delays computed by the new technique are closer to the results of Monte

Carlo simulations than a method that approximates non-Gaussian distributions

with Gaussians and nonlinear functions with linear functions, especially at high

timing yield levels.

Finally, we present an algorithm for analyzing full-chip leakage power under

process variations, considering the spatial correlations of intra-die variation. The

analysis is input-pattern-independent that computes the leakage power dissipation

of each gate as a weighted sum of the leakage over all possible input vectors of

the gate, with the weights as the probabilities of input vectors. The approach

considers both the subthreshold and gate-tunneling leakage power, as well as their

interactions. With process variations, each leakage component is approximated by

a lognormal distribution, and the total chip leakage is computed as a sum of the

correlated lognormals. Since the lognormals to be summed are large in number

and have complicated correlation structures due to spatial correlations and the

correlation between the two leakage mechanisms, we propose an efficient method

to reduce the number of correlated lognormals for summation to a manageable

number by identifying dominant states of leakage currents and taking advantage of

the spatial correlation model and input states at the gates. An improved approach

utilizing principal components of correlated process parameters is also proposed

to further improve run-time efficiency. We show that the proposed methods are

effective in predicting the probability distribution of the total chip leakage, and

that ignoring spatial correlations can underestimate the standard deviation of full-

chip leakage power.
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Chapter 1

Introduction

As integrated circuits have continued to scale down further, the manufacturing

process has become less predictable. After manufacturing, the process parameters

and the dimensions of the fabricated devices and wires can be very different from

their designed values. For example, an oxide thickness that is nominally 25Å may

turn out to be, after manufacturing, thicker than the designed value at 27Å , or

thinner at 24Å. Such variations in the process parameters can induce substantial

fluctuations in the performance of VLSI circuits. Performance parameters such as

timing and power may be affected either positively or negatively, and the net result

of this may be a low manufacturing yield, as a majority of the manufactured dies fail

to meet the performance specifications. Therefore, manufacturing process induced

variation, or process variation, is an important consideration in VLSI circuit design

and yield analysis. Other sources of variations can be categorized as environmental

variations, which are mainly caused by changes in circuit operating conditions,

such as fluctuations in the temperature and supply voltage. Generally speaking,

process variations are amenable to being handled by probabilistic methods, since
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optimizing a probability density function of the yield can ensure that a certain

fraction of all chips work correctly, and the remaining chips may be discarded

after manufacturing, and the others are guaranteed to work. On the other hand,

environmental variations that affect a chip during normal operation are typically

worst-cased. This is because it is not enough, for example, to guarantee that a chip

works correctly 99% of the time: it must always work correctly under the worst-case

operating conditions.

In this thesis, we will mainly focus on the effects of process variations, and

propose statistical techniques to analyze circuit performance under these variations.

In this chapter, we will first introduce some background on process variations and

process-variation-aware circuit performance analysis, and then present our research

goals and the contributions of the thesis.

1.1 Process Variations Trends

Process variations have been a long-standing problem, but several recent trends

have made the problem more serious in current and future technologies:

• In [56], the total variabilities of nanometer-scale technology process para-

meters were observed and forecasted, based on the International Technology

Roadmap for Semiconductors (ITRS) [7] projections and on insight from IBM

technologies. Table 1.1 [56] lists, for five technologies ranging from 250nm to

70nm, the mean values and 3σ values of different process parameters, the ef-

fective transistor gate length (Leff), the transistor gate oxide thickness (Tox),

the supply voltage (Vdd), the transistor threshold voltage (Vth), the intercon-

nect width (Wint) and thickness (Tint), and the metal resistivity (ρ). It is
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Table 1.1: Trends of total process variabilities from 250nm to 70nm technologies

(compiled from [56]).

Technology 1997 1999 2002 2005 2006

Parameters mean 3σ mean 3σ mean 3σ mean 3σ mean 3σ

Leff (nm) 250 80 180 60 130 45 100 40 70 33

Tox (nm) 5 0.4 4.5 0.36 4 0.39 3.5 0.42 3 0.48

Vdd(V ) 2.5 0.25 1.8 0.18 1.5 0.15 1.2 0.12 0.9 0.09

Vth(V ) 0.5 0.05 0.45 0.045 0.4 0.04 0.35 0.04 0.3 0.04

Wint(μm) 0.8 0.2 0.65 0.17 0.5 0.14 0.4 0.12 0.3 0.1

Tint(μm) 1.2 0.3 1 0.3 0.9 0.27 0.8 0.27 0.7 0.25

ρ(Ωm) 45 10 50 12 55 19 60 19 75 25

clear that the magnitudes of the total process variabilities, as measured by

3σ/mean increase with technology scaling.

• The number of process parameters that show significant variations (i.e., vari-

ations that significantly impact circuit performance) increases with technol-

ogy scaling. In previous technology generations, gates and transistors were

primarily subject to substantial variabilities during a typical manufacturing

process, but interconnects are now also starting to show large levels of vari-

ability, especially as the number of metal layers becomes higher, and the

mismatches of metals may be independent in each layer [79].

• Process variations can be decomposed into inter-die variation and intra-die

variations. Inter-die variations correspond to the variability of process para-

meters from one die to another, while intra-die variations are the variations

inside a single die. It used to be the case that inter-die variations domi-

nated intra-die variations, and it was sufficient to consider only the effect of

inter-die variation on circuit performance, ignoring that of intra-die variation.
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However, in the sub-100nm regime, not only do the total process variations

increase, but the proportion of the total variability that is attributable to

intra-die variations has also increased to a nonnegligible level that can sig-

nificantly affect the variability of performance parameters on a chip. For

instance, the percentage of Leff variations that is within-die increases from

40% to 65% as the technology goes from 250nm to 70nm [56]. As a con-

sequence, simple corner-based worst-casing techniques that have been used

for many years, which assume that all process parameters are at their mini-

mum or maximum values all over the chip, are too pessimistic. In principle,

this may be overcome by more sophisticated, region-based cornering, but the

number of corners to be explored under this scheme grows exponentially with

the number of regions, making such an approach impractical [67].

These trends in process variation result mainly from aggressive technology scal-

ing. Specifically, in nanometer technologies, the minimum feature sizes have ap-

proached the resolution limits of photolithography systems and etch, and modern

CMOS processes are forced to operate in a sub-wavelength lithography regime. For

example, 193nm lasers are currently used to fabricate devices with dimensions of

90nm or less [7, 32]. While clever techniques for resolution enhancement (RET)

such as optical proximity correction (OPC) [32, 33] and phase shifting masking

(PSM) [23, 48] can overcome some of these effects, the level of control over feature

sizes and the so-called critical dimensions (CDs) is reduced. While some of these

variations can be modeled deterministically, there is a remnant that is either truly

random or is modeled as being random due to the difficulty of a full deterministic

analysis. This results in a proportional increase in the total variability, as well as

the intra-die variability of process parameters that results in mismatches of process

parameters within a single die. Device parameters also become more variable: for
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instance, as devices grow smaller and the number of dopant atoms per transistor

is in the range of 10 to 100, the level of control in the uniformity and number of

these atoms decreases [8,14], and this process parameter affects device parameters

such as the threshold voltage, and eventually, the switching speed of the gate that

the transistor lies in.

In addition, as the size of a wafer increases, in terms of multiples of the feature

size1, so does the variability of manufacturing process variation. In particular, some

of the process variations that were originally at the inter-die, within-wafer level are

projected onto the intra-die level, thus further increasing intra-die variations.

In summary, in current and future technologies, with the number and magnitude

of process variations both increasing, process variations have become an increasing

concern. Besides inter-die variation, intra-die variation also should be taken into

account appropriately in order to correctly predict the effects of process variations

on circuit performance.

1.2 Circuit Performance Analysis under Process

Variations

Since process variations can significantly affect circuit performance parameters such

as timing and power, it is important to analyze the relation between these in order

to predict their impact on circuit performance, for parametric yield prediction as

well as variation-aware circuit design and optimization. We will now overview

several classes of analysis techniques.

1Note that even if the wafer size remains constant, reductions in the feature size result in an

increase in the wafer size, measured in units of the feature size.
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Multi-Corner-Based Methodology

In general, the value of a process parameter after manufacturing falls into a bounded

range from a minimum to a maximum value. A process corner corresponds to a set

of values of process variables in the parameter space where each parameter in the

space takes either the minimum or maximum value. A worst-case corner is defined

as the corner where the process parameters take their extreme values that can result

in the worst behavior for a typical circuit. Traditional circuit analysis deals with

process variations by predicting the worst-case circuit behavior evaluated at worst-

case corners. Unfortunately, with the number and magnitude of process variables

increasing, checking a small set of worst-case corner could be risky if it may not

cover the region sufficiently, or excessively conservative, if the corners are chosen to

embody a pessimistic worst-case [79, 84]. Therefore, a multi-corner-based method,

which predicts the circuit behavior by analyzing the circuit at all enumerative

corners, has to be used to evaluate worst-case behavior. However, the multi-process

corner based methodology also suffers from the following disadvantages.

• First, the method is too computationally intensive: on the one hand, as the

number of varying process parameters increases, the number of process corners

to enumerate, which grows exponential with the number of process variables,

grows too high; on the other hand, under intra-die variation, the process

parameter values of devices [wires] in the same chip can vary differently, and

therefore, the number of process corners required must also consider region-

based analysis (alluded to in Section 1.1), which worsens the exponential

behavior.

• Second, the approach is too conservative and pessimistic in that the process

corner corresponding to the worst-case performance may have a very low
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probability of occurrence, which results in a over-pessimistic results. As an

example, suppose there are two independent sources of variations p1 and p2

with Gaussian distribution N(μ1, σ1) and N(μ2, σ2), respectively. Then, using

the corner-based method, the worst-case could be found by inspecting the

corners are at (p1, p2) = (μ1±3σ1, μ2±3σ2). However, the probability of each

of the (p1, p2) corners is as low as 1.96 × 10−5, significantly less than at the

3σ point. This pessimism is liable to become especially severe as the number

of varying process parameters grows higher. Amending this procedure so

that the corners correspond to 3σ points does not help either: fundamentally,

the problem here is that the level sets of the Gaussian are ellipsoids, and

worst-casing over the corners of a multidimensional box is doomed to failure.

Monte Carlo Simulation Approach

The effects of process variations on circuit performance can also be predicted by

Monte Carlo simulation method [37, 61, 66]. The approach is an iterative process

where each iteration consists of two basic steps, sampling and simulation. In each

sampling step, a set of sampled values of process parameters are generated according

to the distribution of process parameter variations, or samples as delay/power for all

circuit nodes generated according to their distributions. The simulation step then

simply runs a circuit/timing/power simulation, using the generated sample values.

The Monte Carlo method is very accurate in predicting the distribution of circuit

performance. However, for an integrated circuit, the number of iterations required

for convergence is generally greater than 10, 000. Although smart techniques can be

used to reduce the sampling size, it is still a large number so as to achieve desirable

accuracy of simulation result. Therefore the approach is highly computationally

expensive, and is not practical even for medium size circuits.

7



Statistical Analysis Method

Statistical performance analysis methods provide a good possibility for analyzing

circuit performance with good accuracy and efficient run-time. These approaches

directly exploit the statistical information of the process parameters and utilize

efficient stochastic techniques [61] to determine the probability distribution of the

circuit performance. In these methods, instead of using fixed values of process

parameters (as is done in each multi-corner analysis), random variables are used

to model the uncertainty of process parameters. In timing analysis, the delays

of gates and interconnects and arrival times at intermediate nodes are all random

variables. Therefore, unlike conventional deterministic static timing analysis (STA)

which computes timing based on deterministic values, the statistical static timing

analysis (SSTA) method stochastically computes delays and arrival times on a set of

random variables. Therefore, probabilistic characteristics, such as the probability

density function (PDF) of circuit timing, can be obtained and yield of timing can

also be predicted from the computation. Similarly, for statistical leakage power

analysis, the leakage power of each gate is modeled as a random variable and the

result of computation is probability distribution and yield of full-chip leakage.

It is worth mentioning that under process variations, circuit optimization tech-

niques should be also adapted to be capable of considering the effects the process

variations. Therefore, the importance of analyzing circuit performance under process

variation is not limited to yield prediction, but also for variation-aware circuit de-

sign and optimization. Multiple-process corner based methods are too pessimistic,

and may result in over-constrained circuit optimization. Therefore, although more

computational effort goes into reoptimizing the circuit to meet the worst-case per-

formance requirement over all corners, this does not significantly contribute to im-
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proving the yield of circuit performance. The alternative of using accurate Monte

Carlo methods suffers from a different drawback: the expensive run-time prohibits

these methods from being used within a circuit optimization algorithm. In contrast

to these, statistical methods for circuit performance analysis are computationally

efficient and can achieve good accuracies, and therefore, have the potential to be

practically be integrated into various steps of the design flows, such as technology

mapping, synthesis, and physical design.

1.3 Our Contributions

In modern chip design, circuit performance is greatly constrained by timing and

power. In nanometer-scale technologies, leakage power has become a major com-

ponent of total chip power dissipation, and it is highly sensitive to manufacturing

variations due to its exponential dependency on some process parameters. There-

fore, in this thesis, we will focus on the analysis of timing and leakage power, and

propose efficient statistical performance analysis methods for timing and leakage

power dissipation under the effect of inter-die and intra-die variations. As intra-die

variations exhibit spatial correlation, i.e., devices [wires] spatially located close to

each other tend to experience more similar variations than those placed far away,

the effect of spatial correlations are also considered in the analysis using a model

proposed in Chapter 2. The major contributions of the thesis are:

• Model for spatial correlation: In order to analyze the impact of intra-die vari-

ations, spatial correlations in intra-die variation of process parameters must

be modeled correctly. In this thesis, we propose a model for spatial correla-

tion by partitioning the die region into nrow × ncol = n grids. Since devices
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[wires] close to each other are more likely to have more similar characteristics

than those placed far away, we assume perfect correlations among the devices

[wires] in the same grid, high correlations among those in close grids and

low or zero correlations in far-away grids. Under this model, if the number of

grids partitioned is n, then for each process parameter, a covariance matrix of

size n× n can then be used to represent the spatial correlation of the process

parameter among the grids. The advantage of this model is its flexibility in

representing spatial correlation by a covariance matrix, where the covariance

matrix could be determined from data extracted from manufactured wafers or

a test structure methodology can be used to support the evaluation of process

parameter variations and spatial correlations as developed in [13]. In this

thesis, the model of spatial correlation is used for both timing and leakage

power analysis.

• Statistical static timing analysis: We propose an algorithm for statistical sta-

tic timing analysis that computes the distribution of circuit delay while con-

sidering inter-die and intra-die variations as well as the effect of spatial cor-

relations. The method approximates probability distributions of all process

variations by Gaussians and models the circuit delay as a Gaussian random

variable approximated as a maximum of correlated multivariate normal dis-

tributions, considering both gate and wire delay variations in the circuit. In

order to manipulate the complexities brought about by the correlation struc-

ture, the principal component analysis technique is employed to transform

the sets of correlated parameters into sets of uncorrelated ones. The statis-

tical timing computation is then performed with a PERT-like circuit graph

traversal with computational complexity O(p×n× (Ng +NI)), where Ng and

NI are the number of gates and interconnects, respectively, p is the number of
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varying process parameters and n is the number of grid squares in the spatial

correlation model. Therefore, the cost is, at worst, p × n times the cost of a

deterministic STA. We believe that this is the first method that can fully han-

dle spatially correlated distributions under reasonably general assumptions,

with a complexity that is comparable to traditional deterministic STA. This

framework can also be applied to analysis, such as computing minimum delay

distributions for short-path analysis (to check for hold time violations), for

required arrival time (RAT) analysis, etc., by extending the same framework

of maximum of delays to compute the distribution of minimum of delays.

This work was published in [17].

• Statistical timing analysis with non-Gaussian distributed process parameters

and nonlinear delay functions: Statistical timing analysis methods which as-

sume process variations to take the form of linear functions of Gaussians, can

be very run-time efficient. However, as delay shows nonlinear sensitivities

to some process parameters, and some process variations, which show non-

Gaussian distributions and cannot be well approximated with Gaussians, it is

essential to develop an SSTA technique that can handle non-Gaussian process

parameters and nonlinear delay functions to achieve desirable accuracy. For

this purpose, we first propose three general frameworks for statistical tim-

ing analysis that can be used for handling Gaussian process variations and

linear delay functions. Based on one of the framework, we present a novel

and efficient technique for handling arbitrary distributed process variations

and nonlinear delay functions in parameterized block-based statistical timing

analysis. The method is fully compatible with the previous SSTA technique

for dealing with Gaussian process parameters and linear delay functions. and

the computational efficiency in processing such types of process variations
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is preserved. We show that developing SSTA technique that is capable of

incorporating non-Gaussian sources of process variations and/or nonlinear

delay functions is important to correctly predict the circuit timing, as well

as for validating the approximations of process parameters as Gaussians and

models of delay functions as linear ones, in order to selectively apply crucial

process parameters as non-Gaussian distributed or with nonlinear functions

to improve computational efficiency. This work was published in [19].

• Statistical leakage power analysis: We propose an input-pattern-independent

method for predicting, under process variations, the probability distribution

of the total circuit leakage power, considering subthreshold and gate-tunneling

leakage powers and their interactions. Spatial correlations of intra-die varia-

tions and the correlation between these two leakage mechanisms, which were

ignored in most of the previous works, are also considered. In the method,

each leakage component is approximated by a lognormal distribution, and the

total chip leakage is computed as a sum of the correlated lognormals. How-

ever, the lognormals to be summed are large in number and have complicated

correlation structures, due to spatial correlations as well as correlations be-

tween the subthreshold leakage and gate leakage. To enhance the efficiency of

the algorithm, the number of correlated lognormals for summation is reduced

to a manageable number by applying dominant states for leakage currents,

taking advantage of the spatial correlation model and input states at the

gates. An improved algorithm upon this approach by utilizing principal com-

ponents of spatially correlated process parameters is also proposed. We show

that spatial correlations must be considered in order to correctly estimate the

full-chip leakage. An early version of this work was published in [18].
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The thesis is organized as follows: Chapter 2 introduces the model for process

variations and proposes a grid-based model to capture the effect of spatial corre-

lations in intra-die variations. A statistical timing analysis technique for handling

Gaussian distributed process variables and linear delay functions will be presented

in Chapter 3. The techniques for incorporating arbitrary distributed process vari-

ations and arbitrary delay functions are given in Chapter 4, and then a method

for statistical leakage power prediction is proposed in Chapter 5. The last chapter

concludes the thesis.
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Chapter 2

Modeling Process Variations

Process variations can be separated into the following categories as illustrated in

Figure 2.1: inter-die variations are the variations from lot to lot, wafer to wafer or

die to die, while intra-die variations correspond to variability within a single die.

Inter-die variations affect all the devices on same die in the same way, e.g., making

the transistor gate lengths of devices on the same chip all larger or all smaller than

their nominal values, while intra-die variations may affect different devices on the

same chip in different ways, e.g., causing some transistors to have smaller-than-

nominal gate lengths and other transistors have larger-than-nominal gate lengths.

Therefore, the total variation of a process parameter p for some device [wire] in a

die can be modeled as [4, 73, 81]:

Δptotal = p − p0 = Δpinter + Δpintra (2.1)

where p0 is the nominal value of process parameter, Δpinter and Δpintra are ran-

dom variables for inter-die and the intra-die variation, respectively. Since inter-die

variation has a global effect within a single chip, a single random variable Δpinter

is used for all devices [wires] on the same chip.
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Figure 2.1: Decomposition of process variations into inter-die variations and intra-

die variations.

In this chapter, we will introduce models for the inter-die and intra-die variations

and for spatial correlations in intra-die variation. The statistical timing analysis and

leakage power analysis techniques in later chapters will be based on the proposed

models here.

2.1 Inter-die Variation

Inter-die variation refers to the variation of some parametric values across nomi-

nally identical manufactured dies spatially located on the same wafer (die-to-die),

or different wafer (wafer-to-wafer) or different lots (lot-to-lot). Therefore, inter-die

variation has a global effect on the process parameters of all devices/wires on the

same chip and is accounted for in circuit design as a shift in the mean of some

parameter value across any one chip [12]. Inter-die variation can further be decom-

posed into systematic and random components, where the systematic component is

a deterministic nonrandom term often caused by effects, such as process gradients

15



across the wafer, while the random term corresponds to unexplained or unmod-

eled1 random variations. Although it is possible to deterministically characterize

some parts of the systematic component based on some knowledge of the manufac-

turing process (e.g., the systematic trends may follow a “bowl” shape across the

wafer), the unknown or random part is usually modeled by a statistical distribu-

tion. After incorporating variations due to the deterministic variations, the total

random inter-die variation for a process parameter can be modeled by a Gaussian

probability distribution [12]:

Δpinter ∼ N(0, σp,inter) (2.2)

where σp,inter is the standard deviation of the inter-die variation.

2.2 Intra-die Variation

Intra-die variation refers to the variation of some parametric values across identi-

cally designed devices [wires] spatially located on the same die. It can arise from

a number of manufacturing sources, and two sources are of particular importance:

the projection of variation trends to the die level from the wafer level, and the

interaction between the fabrication process and circuit local layout pattern [12].

The former results in spatially-location dependent variations of process parameters

across the die, while the latter proximity and layout dependent. Intra-die variation

can also be divided into systematic and random variations. The systematic vari-

1In practice, random variations are not necessarily always truly random. Sometimes, one may

choose to model a deterministic variation as random, either because the deterministic model is

too difficult to develop, or because the cost of performing an analysis with the deterministic model

is too high.
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ations are those may be modeled deterministically, and the random variations are

the remaining unmodeled variations.

A number of models for intra-die variations have been developed in literature.

The Pelgrom model [62] characterizes the mismatch of two equally sized transistors

by a global systematic component and a local random component, with the global

component as a Gaussian random variable whose variance is inversely proportional

to the transistor geometry area and the local component as a Gaussian whose

variance decreases with the distance between two transistors. The model of intra-

die variation of gate CD is proposed in [59, 60]. It first generates the spatial CD

maps for all gates categories depending on layout patterns and proximities. Then,

from the circuit layout and spatial CD maps, the intra-die variation of each gate CD

is modeled with a systematic component which is a category and location dependent

deterministic function, and a random residual which is a Gaussian random variable

whose variance is proximity dependent. In this thesis, we use the model proposed

in [47] described as the following. According to the sources of variation, the intra-

die variation Δpintra for a process parameter p of some device [wire] is decomposed

into three components, a systematic global component δglobal, a systematic local

component δlocal and a random component ε [47]:

Δpintra = δglobal + δlocal + ε (2.3)

The global component, δglobal, corresponds to the slowly and smoothly varying

global systematic trend spatially across the die. Across a die, it can be modeled by

a slanted plane and expressed as a simple linear function of position [12,28,47,57]:

δglobal(x, y) = δ0 + δxx + δyy (2.4)

where (x, y) is the position of device [wire] within the die, δx and δy are the gradients
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of the parameters, indicating the spatial variations of parameters along the x and

y direction across the die, respectively.

The local component, δlocal, corresponds to the systematic variation caused

by the interactions between the fabrication process and die pattern, and is thus

proximity-dependent and layout-specific. It can be modeled deterministically from

the extracted chip layout pattern and precharacterized spatial maps of process pa-

rameters as in [59].

The random residue, ε, stands for the remaining uncertainties or unmodeled

intra-die variation which is usually modeled as a Gaussian random variable. As

will be explained in Section 2.3, since the global systematic process variation can

create spatially correlated structure of process variations, the vector of all random

components across the chip has a correlated multivariate normal distribution:

�ε ∼ N(0, Σ) (2.5)

where Σ is the covariance matrix [61] of process parameters. The detailed model

for this covariance matrix will be described in the next section. For spatially un-

correlated parameters, Σ becomes a diagonal matrix where the entries represent

variances. If the variances of the process parameters described by this matrix are

assumed to be uniform across the chip, then Σ is a multiple of the identity matrix.

On the other hand, in the presence of spatial correlations, Σ is nondiagonal, and

captures the correlation structure of the process variations across the die.

2.3 Spatial Correlations

It is observed that, due to the slowly varying global process and operation condi-

tions, the global systematic variations often have a relatively low spatial frequency
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and are smooth across the wafer and die [12,47]. As a result of the smooth spatial

variation of process parameter, devices [wires] located close to each other are more

likely to have the similar characteristics than those placed far away. Statistically,

this behavior translates into the spatial correlation of process parameters.

The model of spatial correlation can be based on the separation distance directly

as in [29,81]. In this thesis, to model the intra-die spatial correlations, we propose

a grid-based model by partitioning the die region into nrow×ncol = n grids. Since

devices [wires] close to each other are more likely to have more similar characteristics

than those placed far away, we assume perfect correlations among the devices [wires]

in the same grid, high correlations among those in close grids and low or zero

correlations in far-away grids. For example, in Figure 2.2, gates a and b (whose

sizes are shown to be exaggeratedly large) are located in the same grid square,

and it is assumed that their parameter variations (such as the variations of their

gate length), are always identical. Gates a and c lie in neighboring grids, and their

parameter variations are not identical but highly correlated due to their spatial

proximity (for example, when gate a has a larger than nominal gate length, it is

highly probable that gate c will have a larger than nominal gate length, and less

probable that it will have a smaller than nominal gate length). On the other hand,

gates a and d are far away from each other, their parameters may be uncorrelated,

(e.g., when gate a has a larger than nominal gate length, the gate length for d may

be either larger or smaller than nominal).

In this model, it is assumed that nonzero correlations may exist only among

the same type of process parameters in different grids, and there is no correlation

between different types of process parameters2. For example, the values of transistor

2In case the assumption is not strictly true [73], the model can be adapted to handle correlations

between process parameters of different types, either by decomposing the correlated parameters
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Figure 2.2: Grid model for spatial correlations.

gate lengths for transistors in a grid are correlated with those in nearby grids, but

are uncorrelated with other parameters such as interconnect metal width or gate

oxide thickness in any grid. Therefore, the parametric variation for a spatially

correlated parameter in a single grid at location (x, y) can be modeled using a

single random variable p(x, y). In total, this representation requires n random

variables, each representing the value of a parameter in one of the n grids, and a

covariance matrix of size n×n representing the spatial correlations among the grids.

The covariance matrix could be determined from data extracted from manufactured

wafers3. Test structure methodologies can be developed to support the evaluation

of process parameter variations as in [13, 29, 59]. For example, to construct the

covariance matrix for gate critical dimensions, the process parameter values across

the die should be measured and extracted [29]. The number and sizes of grid regions

divided can then be determined by iteratively computing the process parameter

into an uncorrelated set using an orthogonal transformation via the principal component analysis

technique, or by constructing a covariance matrix for all correlated parameters.
3Different semiconductor foundries could have different data for process variations and, corre-

spondingly, different spatial correlation structures.
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covariance over the separation distance of devices [29] using the measured values

and refining the grid size until it converges.

Another grid-based model, the quadtree spatial correlation model, was proposed

in [5]. The chip area is first divided into several regions using multi-level quadtree

partitioning: at the lth level, the area is partitioned into 2l × 2l squares, with the

top-most zero level has one region covering the whole die, while the bottom-most

kth level has 2k ×2k regions if the quadtree has a depth of k. Then, an independent

random variable, Δpl,r is associated with each square region (l, r) to represent the

process variation of parameter p in the rth region at level l. The total variation

of parameter p in region (i, j) is modeled as the sum of the independent random

variables of all squares at all levels that cover this region:

Δpi,j =
∑

0<l<k, all regions (l,r) that cover (i,j)

Δpl,r (2.6)

In this way, if a quadtree model of depth k is used, a process parametric variation in

any region is modeled as a sum of k+1 independent random variables, and the total

number of such independent random variables is 20 + 21 + 22 + · · ·+ 2k = 2k+1 − 1.

As an example, a quadtree model of depth two is illustrated in Figure 2.3 with

the top-most level has one region and bottom-most level 22 × 22 regions. The

variation of process parameter p in region (2, 1) is modeled as:

Δp2,1 = Δp0,1 + Δp1,1 + Δp2,1 (2.7)

This model can be seen as a special case of our proposed model as shown in

Figure 2.2. Our proposed model is more general than the model used in [5], since

it is purely based on neighborhood. For example, consider again the case in Figure

2.2, by our model, the parameter in grid (1, 2) has equal correlations with that in

grid (1, 1) and (1, 3). While by the model of [5], it will have higher correlation with
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Figure 2.3: A depth-2 quadtree model for spatial correlations proposed in [5].

grid (1, 1) than grid (1, 3), i.e., the correlations are uneven at the two neighbors of

grid (1, 2).

It should be noted that not all process parameters exhibit spatial correlation.

For example, in manufacturing, due to effects such as random dopant fluctuations,

the intra-die variations of some parameters such as Tox and Na are truly uncorre-

lated from transistor to transistor.
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Chapter 3

Statistical Static Timing Analysis

In this chapter, we present an efficient statistical timing analysis algorithm that

predicts the probability distribution of the circuit delay, considering both inter-die

and intra-die variations, while accounting for the effects of spatial correlations in

intra-die parameter variations. The procedure uses a first-order Taylor series expan-

sion to approximate the gate and interconnect delays. Next, principal component

analysis techniques are employed to transform the set of correlated parameters into

an uncorrelated set. The statistical timing computation is then easily performed

with a PERT-like circuit graph traversal using statistical sum and max functions.

The run-time of the algorithm is linear in the number of gates and interconnects,

as well as the number of varying process parameters and grid partitions that are

used to model spatial correlations.
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3.1 Introduction

As introduced in Chapter 1, conventional static timing analysis techniques handle

the problem of variability by analyzing a circuit at multiple process corners. How-

ever, it is generally accepted that such an approach is inadequate, since the com-

plexity of the variations in the performance space implies that if a small number of

process corners is to be chosen, these corners must be very conservative/pessimistic

as well as risky. For true accuracy, this can be overcome by using a larger number

of process corners, but then the number of corners that must be considered for an

accurate modeling will be too large for computational efficiency, and the method is

also over-pessimistic as explained in Chapter 1.

The limitations of traditional static timing analysis techniques lie in their deter-

ministic nature. An alternative approach that overcomes these problems is statis-

tical static timing analysis (SSTA), which treats delays not as fixed numbers, but

as probability density functions, taking the statistical distribution of parametric

variations into consideration while analyzing the circuit.

In the literature, the statistical timing analysis approaches can be classified into

continuous and discrete methods. Continuous methods [5, 9, 58, 78] use analytical

approaches to find closed-form expressions for the PDF of the circuit delay. For

simplicity, these methods often assume a normal distribution for the gate delay, but

even so, finding the closed-from expression of the circuit distribution is still not an

easy task. Discrete methods [6,45,53] are not limited to normal distributions, and

can discretize any arbitrary delay distribution as a set of tuples, each corresponding

to a discrete delay and its probability. The discrete probabilities are propagated

through the circuit to find a discrete PDF for the circuit delay. However, this

method is liable to suffer from the problem of having to propagate an exponential
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number of discrete point probabilities. In [27], an efficient method was proposed

by modeling arrival times as cumulative density functions and delays as probability

density functions and by defining operations of sum and max on these functions.

Alternatively, instead of finding the distribution of circuit delay directly, several

attempts have been made to find upper and lower bounds for the circuit delay

distribution [6, 11, 58].

Statistical timing analyzers can also be categorized into path-based and block-

based techniques. A path-based SSTA method, such as the works in [5, 30, 46, 58],

enumerates all signal propagation paths or selective critical paths, finds the proba-

bility distribution of each individual path delay and then computes PDF of circuit

delay by integration over all paths in space. Although the computation of proba-

bility distribution for a single path is not difficult for arbitrarily distributed process

parameter or arbitrary delay functions, the integration over all paths requires the

joint probability density function of all paths and thus the correlation information

among all paths must be computed which is of extremely high complexity. In ad-

dition, path-based methods suffer from the requirement that they may require the

enumeration of paths: the number of paths can be exponential with respect to the

circuit size. Therefore, such methods are not realistic for practical usage. A block-

based SSTA method, such as [4, 9, 11, 27, 39, 45, 53, 78, 80], models delays of gates

[wires] as random variables, and propagates/computes signal arrival times using

sum and max operations similarly to propagating arrival times by a deterministic

STA. Since block-based methods have linear run-times with respect to the circuit

size and are good for incremental modes of operation, they are of the most interest.

Although many prior works have dealt with inter-die and intra-die variations,

most of them have ignored intra-die spatial correlations by simply assuming zero

correlations among devices on the chip [6,9,11,16,25,27,37,44–46,53]. The difficulty
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in considering spatial correlations between parameters is that it always results in

complicated path correlation structures that are hard to deal with. Prior to our

work of this chapter, very few studies have taken spatial correlations into considera-

tion. The authors of [78] consider correlation between delays among the transistors

inside a single gate (but not correlations between gates). The work in [46] uses a

Monte Carlo sampling-based framework to analyze circuit timing on a set of se-

lected sensitizable true paths. Another method in [58] computes path correlations

on the basis of pair-wise gate delay covariances and used an analytic method to de-

rive lower and upper bounds of circuit delay. The statistical timing analyzer in [20]

takes into account capacitive coupling and intra-die process variation to estimate

the worst case delay of critical path. Two parameter space techniques, namely, the

parallelepiped method and the ellipsoid method, and a performance-space proce-

dure, the binding probability method, were proposed in [36] to find either bounds or

the exact distribution of the minimum slack of a selected set of paths. The approach

in [5] proposes a model for spatial correlation and a method of statistical timing

analysis to compute the delay distribution of a specific critical path. However, the

probability distribution for a single critical path may not be a good predictor of

the distribution of the circuit delay (which is the maximum of all path delays), as

will be explained in Section 3.2. Moreover, the method may be computationally

expensive when the number of critical paths is too large. In [4], the authors further

extend their work in [5,6] to compute an upper bound on the distribution of exact

circuit delay.

In this chapter, we will propose a block-based SSTA method that computes the

distribution of circuit delay while considering correlations due to path reconver-

gence as well as spatial correlations. We will model the circuit delay as a correlated

multivariate normal distribution, considering both gate and wire delay variations.
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In order to manipulate the complicated correlation structure, the principal compo-

nent analysis technique is employed to transform the sets of correlated parameters

into sets of uncorrelated ones. The statistical timing computation is then per-

formed with a PERT-like circuit graph traversal. The complexity of the algorithm

is O(p×n×(Ng +NI)), which is linear in the number of gates Ng and interconnects

NI , and also linear in p, the number of spatially correlated random variables, and

the number of grid squares, n, that are used to model variational regions. In other

words, the cost is, at worst, p × n times the cost of a deterministic static timing

analysis. We believe that this is the first method that can fully handle spatially

correlated distributions under reasonably general assumptions, with a complexity

that is comparable to traditional deterministic static timing analysis. This work

can also be extended, using the same framework of maximum of delays (Section

3.3.3), to find the distribution of minimum of delays which can be applied to the

analysis of the worst-case clock skew, required arrival time (RAT) analysis, etc.

The remainder of this chapter is organized as follows. Section 3.2 formally

formulates the problem to be solved in this work. The algorithm is presented in

Section 3.3 and its run time complexity analysis is given in the following section.

The extension to handle inter-die variation and spatially uncorrelated intra-die

components is introduced in Section 3.5, and the extension for short path analysis

is presented in Section 3.5. Finally, a list of experimental results and their analysis

are shown in Section 3.6.

3.2 Problem formulation

Under process variations, parameter values, such as the gate length, the gate width,

the metal line width and the metal line height, are random variables. Some of these

27



variations, such as across-chip linewidth variations (ACLV) which are mainly caused

by proximity and local effects [79], are deterministic, while others are random: this

work will focus on the effects of random variations, and will model these parame-

ters as random variables. The gate and interconnect delays, as functions of these

parameters, also become random variables. Given appropriate modeling of process

parameters or gate and interconnect delays, the task of SSTA is to find the PDF

of the circuit delay.

The static timing analysis works with the usual translation from a combinational

circuit to a timing graph [67]. The nodes in this graph correspond to the circuit

primary inputs/outputs and gate input/output pins. The edges are of two types:

one set corresponds to the pin-to-pin delay arcs within a gate, and the other set

to interconnections from the drivers to receivers. The edges are weighted by the

pin-to-pin gate delay, and interconnect delay, respectively. The primary inputs of

the combinational circuit are connected to a virtual source node, and the primary

outputs to a virtual sink node with directed virtual edges. In the case that primary

inputs arrive at different times, the virtual edges from the virtual source to the

primary inputs are assigned weights of the arrival times. Likewise, if the required

times at the primary outputs are different, the weights of the edges from the outputs

to the virtual sink are appropriately chosen.

For a combinational logic circuit, the problem of static timing analysis is to

compute the longest path delay in the circuit from any primary input to any primary

output, which corresponds to length of the longest path in the timing graph. In

static timing analysis, the technique that is commonly referred to in the literature

as PERT is commonly used1. This procedure starts from the source node to traverse

1In reality, this is actually the critical path method (CPM) in operations research. However,

we will persist with the term “PERT,” which is widely used in the static timing analysis literature.
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the graph in a topological order and uses a sum operation or max operation (at a

multi-fanin node) to find the longest path at the sink node. For details, the reader

may refer to [41, 67].

Since we will employ a PERT-like traversal to analyze the distribution of circuit

delay, we define a statistical timing graph of a circuit, as in the case of deterministic

STA.

Definition 3.2.1 Let Gs = (V, E) be a timing graph for a circuit with a single

source node and a single sink node, where V is a set of nodes and E a set of directed

edges. The graph Gs is called a statistical timing graph if each edge i is assigned

a weight di, where di is a random variable, where the random variables may be

uncorrelated or correlated. The weight associated with an edge corresponds to gate

delay or interconnect delay. For a virtual edge, the weight is random variables with

mean of its deterministic value and standard deviation of zero and it is independent

from any other edges.

Definition 3.2.2 Let a path pi be a set of ordered edges from the source node to

the sink node in Gs, and Di be the path length distribution of pi, computed as

the sum of the weights dk for all edges k on the path. Finding the distribution of

Dmax = max(D1, . . . , Di, . . . , Dnpaths
) among all paths (indexed from 1 to npaths) in

the graph Gs is referred to as the problem of SSTA of a circuit.

Note that for the same nominal design, the identity of the longest path may

change, depending on the random values taken by the process parameters. There-

fore, finding the delay distribution of one critical path at a time is not enough,

and correlations between paths must be considered in finding the maximum of the

PDFs of all paths. Such an analysis is essential for finding the probability of failure
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of a circuit, which is available from the cumulative density function (CDF) of the

circuit delay.

For an edge-triggered sequential circuit, the statistical timing graph can be

constructed similarly by breaking the circuit into a set of combinational blocks

between latches, and the analysis includes statistical checks on setup and hold time

violations. The former requires the computation of the distribution of the maximum

arrival time at the latches, which requires the solution of the SSTA problem as

defined above. On the other hand, the latter problem requires the distribution of

the minimum arrival time at the latches to be computed, and this can be solved

by a trivial extension of the framework for the SSTA problem proposed in this

chapter using min operators, as will be mentioned in Section 3.5.3, instead of max

operators.

We will use the models of inter-die and intra-die process variations described

in Chapter 2. For intra-die variation, we only consider the impact of global and

random components. However, the local component can also be accounted for in

the proposed method, given, for instance, the chip layout and precharacterized

spatial maps of parameters as in [59]. For transistors, we consider the following

process parameters [56] as random variables: transistor length Leff and width Wg,

gate oxide thickness Tox, doping concentration density Na; for interconnect, at

each metal layer, we consider the following parameters: metal width Wintl , metal

thickness Tintl and interlayer dielectric (ILD) thickness HILDl
, where the subscript

l represents that the random variable is of layer l, where l = 1 . . . nlayers. However,

the SSTA method presented in this chapter is general enough that it can be applied

to handle variations in other parameters as well.

For spatial correlation, we use the grid-based model proposed in Section 2.3.

It is assumed that nonzero correlations may exist only among the same type of
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process parameters in different grids, and there is no correlation between different

types of process parameters. (Note here that we consider interconnect parameters

in different layers to be “different types of parameters,” e.g., Wint1 and Wint2 are

uncorrelated2.)

The process parameter values are assumed to be normally distributed random

variables. The gate and interconnect delays, being functions of the fundamental

process parameters, are approximated using a first-order Taylor series expansion.

We will show that as a result of this, all edges in graph Gs are normally distributed

random variables. Since we consider spatial correlations of the process parameters,

it turns out that some of the delays are correlated random variables. Furthermore,

the circuit delay Dmax is modeled as a multivariate normal distribution. Although

the closed form of circuit delay distribution is not normal, we show that the loss of

accuracy is not significant under this approximation.

3.3 SSTA Algorithm

The core SSTA method is described in this section, and its description is organized

as follows. At first, in Section 3.3.1, we will describe how we model the distri-

butions of gate and interconnect delays as normal distributions, given the PDFs

that describe the variations of various parameters. In general, these PDFs will be

correlated with each other. In Section 3.3.2, we will show how we can simplify

the complicated correlated structure of parameters by orthogonal transformations.

Section 3.3.3 will describe the PERT-like traversal algorithm on the statistical tim-

2This assumption is not critical to the correctness of our procedure, but is used in our ex-

perimental results. Our method is general enough to handle correlations between parameters of

different types.
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ing graph by demonstrating the procedure for the computation of max and sum

functions. Finally, Section 3.3.4 will explain why orthogonal transformations are

important in our method.

For clarity of presentation, the approach in this section is presented to handle

intra-die variations. The extension to accounting for inter-die variations will be

presented in section 3.5. We here assume that all types of process parameters have

spatial correlations. The extension of this work to incorporate the effect of this

component will be shown in Section 3.5.

3.3.1 Modeling Gate/Interconnect Delay PDFs

In this section, we will show how the variations in the process parameters are

translated into PDFs that describe the variations in the gate and interconnect

delays that correspond to the weights on edges of the statistical timing graph.

Before we introduce how the distributions of gate and interconnect delays will

be modeled, let us first consider an arbitrary function d = f(�P ) that is assumed

to be a function on a set of process parameters �P , where each pi ∈ �P is a random

variable with a normal distribution given by pi ∼ N(μpi
, σpi

).

We can approximate the function d linearly using a first order Taylor expansion:

d = d0 +
∑

∀ parameters pi

[
∂f

∂pi

]
0

Δpi (3.1)

where d0 is the nominal value of d, calculated at the nominal values of process

parameters in the set �P , ∂f
∂pi

is computed at the nominal values of pi, Δpi = pi−μpi

is a normally distributed random variable and Δpi ∼ N(0, σpi
).

In this approximation, d is modeled as a normal distribution, since it is a linear

combination of normally distributed random variables. Its mean μd, and variance
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σ2
d are:

μd = d0 (3.2)

σ2
d =

∑
∀i

[
∂f

∂pi

]2

0

σ2
pi

+ 2
∑
∀i�=j

[
∂f

∂pi

]
0

[
∂f

∂pj

]
0

cov(pi, pj) (3.3)

where cov(pi, pj) is the covariance of pi and pj .

It is reasonable to ask whether the approximation of d as a normal distribution

is valid, since the distribution of d may, strictly speaking, not be Gaussian. We can

say that when Δpi has relatively small variations, the first order Taylor expansion

is adequate and the approximation is acceptable with little loss of accuracy. This

is generally true of intra-die variations, where the process parameter variations are

relatively small in comparison with the nominal values. For this reason, as functions

of process parameters, the gate and interconnect delays can be approximated as a

sum of normal distributions (which is also normal) applying the Equation (3.1).

Computing the PDF of interconnect delay

In this work, we use the Elmore delay model for simplicity to calculate the inter-

connect delays3. Under the Elmore model, the interconnect delay is a function of

the resistances �Rw and capacitances �Cw of all wire segments in the interconnect

tree and input load capacitances �Cg of the fanout gates, or receivers.

dint = d(�Rw, �Cw, �Cg) (3.4)

Since the resistances and capacitances above are furthermore decided by the process

parameters �P of the interconnect and the receivers, such as Wintl , Tintl , HILDl
, Wg,

3However, it should be emphasized that any delay model may be used, and all that is required

is the sensitivity of the delay to the process parameters. For example, through a full circuit

simulation, the sensitivities may be computed by performing adjoint sensitivity analysis.
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Leff and Tox, the sensitivities of the interconnect delay to a process parameter pi

can be found by using the chain rule:

∂dint

∂pi
=

∑
∀Rwk

∈�Rw

∂d

∂Rwk

∂Rwk

∂pi
+

∑
∀Cwk

∈ �Cw

∂d

∂Cwk

∂Cwk

∂pi
+

∑
∀Cgk

∈ �Cg

∂d

∂Cgk

∂Cgk

∂pi
(3.5)

The distribution of interconnect delay can then be approximated on the computed

sensitivities.

We will now specifically consider the factors that affect the interconnect delay

associated with edges in the statistical timing graph. Recall that under our model,

we divide the chip area into grids so that the process parameter variations within

a grid are identical, but those in different grids exhibit spatial correlations. Now

consider an interconnect tree with several different segments that reside in differ-

ent grids. The delay variations in the tree are affected by the process parameter

variations of wires in all grids that the tree traverses. For example, in Figure 2.2,

consider the two segments uv and pq in the interconnect tree driven by gate a.

Segment uv passes through the grid (1, 1) and pq through the grid (1, 2). Then the

resistance and capacitance of segment uv should be calculated based on the process

parameters of grid (1, 1), while the resistance and capacitance of segment pq should

be based on those of grid (1, 2). Hence, the distribution of the interconnect tree

delay is actually a function of random variables of interconnect parameters in both

grid (1, 1) and grid (1, 2), and should incorporate any correlations between these

random variables. Similarly, if the gates that the interconnect tree drives reside

in different grid locations, the interconnect delay to any sink is also a function of

random variables of gate process parameters of all grids in which the receivers are

located.

In summary, the distribution of interconnect delay function can be approximated
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by:

dint = d0
int +

∑
i⊂Γg

[
∂d

∂Li
eff

]
0

ΔLi
eff +

∑
i⊂Γg

[
∂d

∂W i
g

]
0

ΔW i
g (3.6)

+
∑
i⊂Γg

[
∂d

∂T i
ox

]
0

ΔT i
ox +

nlayer∑
l=1

{ ∑
i⊂Γint

[
∂d

∂W i
intl

]
0

ΔW i
intl

+
∑

i⊂Γint

[
∂d

∂T i
intl

]
0

ΔT i
intl

+
∑

i⊂Γint

[
∂d

∂H i
ILDl

]
0

ΔH i
ILDl

}

where d0
int is the interconnect delay value calculated with nominal values of process

parameters, Γg is the set of indices of grids that all the receivers reside in, Γint is the

set of indices of grids that the interconnect tree traverses, and ΔLi
eff = Li

eff −μLi
eff

where Li
eff is the random variable representing transistor length in the ith grid.

The parameters ΔW i
g , ΔT i

ox, ΔW i
intl

, ΔT i
intl

and ΔH i
ILDl

are similarly defined.

As before, the subscript “0” next to each sensitivity represents the fact that it is

evaluated at the nominal point.

Computing the PDF of gate delay and output signal transition time

The distribution of gate delay and output signal transition time at the gate output

can be approximated in a similar manner as described above, given the sensitivities

of the gate delay to the process parameters.

Consider a multiple-input gate, let dpini
gate be the gate delay from the ith input

to the output and Spini
out be the corresponding output signal transition time. In

general, both dpini
gate and Spini

out can be written as a function of the process parameters

�P of the gate, the loading capacitance of the driving interconnect tree �Cw and the

succeeding gates that it drives �Cg, and the input signal transition time Spini
in at this
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input pin of the gate

dpini
gate = Dgate(�P , �Cw, �Cg, S

pini

in ), (3.7)

Spini
out = Sgate(�P , �Cw, �Cg, S

pini

in ). (3.8)

The distributions of dpini
gate and Spini

in can be approximated as Gaussians using linear

expressions of parameters, where the mean values of dpini
gate or Spini

in can be found

by using the mean values of �P , �Cw, �Cg and Spini
in in functions Dgate or Sgate, and

the sensitivities of either dpini
gate or Spini

in to process parameters can be computed

applying the chain rule. The derivatives of �Cw and �Cg to the process parameters

can be easily computed, as �Cw and �Cg are functions of process parameters. The

input signal transition time, Sin, is a function of the output transition time of the

preceding gate and the delay of the interconnect connecting the preceding gates and

this gate, where both interconnect delay (as discussed earlier) and output transition

time of the preceding gate (as will be shown in the next paragraph) are Gaussian

random variables that can be expressed as a linear function of parameter variations.

Therefore, at a gate input, the input signal transition time Sin is always given as

a normally distributed random variable with a mean and first-order sensitivities to

the parameter variations.

To consider the effect of the transition time of an input signal on the gate delay,

the output signal transition time Sout at each gate output must be computed in

addition to pin-to-pin delay of the gate. In conventional static timing analysis,

Sout is set to Spini
out if the path ending at the output of the gate traversing the ith

input pin has the longest path delay dpathi
. In SSTA, each of the paths through

different gate input pins has a certain probability to be the longest path. Therefore,

Sout should be computed as a weighted sum of the distributions of Spini
out , where the

weight equals the probability that the path through the ith pin is the longest among
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all others:

Sout =
∑

∀input pin i

{Prob[dpathi
> max∀j �=i(dpathj

)] × Spini
out }, (3.9)

where dpathi
is the random path delay variable at the gate output through the

ith input pin. The result of max∀j �=i(dpathj
) is a random variable representing for

the distribution of maximum of multiple paths. As will be discussed later in Sec-

tion 3.3.3, dpathi
and max∀j �=i(dpathj

) can be approximated as Gaussians using sum

and max operators, and their correlation can easily be computed. Therefore, finding

the value of Prob[dpathi
> max∀j �=i(dpathj

)], i.e., Prob[dpathi
− max∀j �=i(dpathj

> 0)]

becomes computing the probability of a Gaussian random variable greater than

zero, which can easily be found from a look-up table. As each Spini
out is a Gaussian

random variable in linear combination of the process parameter variations, Sout is

therefore also a Gaussian-distributed random variable and its sensitivities to all

process parameters ∂Sout

∂pi
can easily be found from its linear expression.

3.3.2 Orthogonal Transformation of Correlated Variables

In statistical timing analysis without spatial correlations, correlations due to recon-

vergent paths has long been an obstacle. When the spatial correlation of process

parameters is also taken into consideration, the correlation structure becomes even

more complicated. To make the problem tractable, we use the Principal Compo-

nent Analysis (PCA) technique [51] to transform the set of correlated parameters

into an uncorrelated set.

PCA is a method that can be employed to examine the relationship among a

set of correlated variables. Given a set of correlated random variables �X with a

covariance matrix R, PCA can transform the set �X into a set of mutually orthogonal
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random variables, �X ′, such that each member of �X ′ has zero mean and unit variance.

The elements of the set �X ′ are called principal components in PCA, and the size

of �X ′ is no larger than the size of �X. Any variable xi ∈ �X can then be expressed

in terms of the principal components �X ′ as follows:

xi = (
∑

j

√
λj · vij · x′

j)σi + μi, (3.10)

where x′
j is a principal component in set �X ′, λj is the jth eigenvalue of the covariance

matrix R, vij is the ith element of the jth eigenvector of R, and σi and μi are,

respectively, the mean and standard deviation of xi.

Since we assume that different types of parameters are uncorrelated, we can

group the random variables of parameters by types and perform principal compo-

nent analysis in each group separately, i.e., we compute the principal components

for �Leff , �Wg, �Tox, �Na, �Wintl and �Tintl individually. Clearly, not only are the principal

components of the same type of parameters independent, but so are the principal

components of different type of parameters.

For instance, let �Leff be a random vector representing transistor gate length

variations in all grids and it is of multivariate normal distribution with covariance

matrix RLeff
. Let �L′

eff be the set of principal components computed by PCA.

Then any Li
eff ∈ �Leff representing the variation of transistor gate length of the ith

grid can then be expressed as a linear function of the principal components

Li
eff = μLi

eff
+ ai1 × L

′1
eff + · · ·+ ait × L

′t
eff , (3.11)

where μLi
eff

is the mean of Li
eff , l

′i
eff is a principal component in �L′

eff , all l
′i
eff

are independent with zero means and unit variances, and t is the total number of

principal components in �L′
eff .
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In this way, any random variable in �Wg, �Tox, �Na, �Wintl , �Tintl and �HILDl
can be

expressed as a linear function of the corresponding principal components in �W ′
g,

�T ′
ox, �N ′

a, �W ′
intl

, �T ′
intl

and �H ′
ILDl

. Superposing the set of rotated random variables

of parameters on the original random variables in gate or interconnect delay in

Equation (3.6), the expression of gate or interconnect delay is then changed to the

linear combination of principal components of all parameters

d = d0 + k1 × p′1 + · · ·+ km × p′m, (3.12)

where p′i ∈ �P ′ and �P ′ = �L′
eff ∪ �W ′

g ∪ �T ′
ox ∪ �N ′

a ∪ �W ′
intl

∪ �T ′
intl

∪ �H ′
ILDl

and m is the size

of �P ′.

Note that all of the principal components p′i that appear in Equation (3.12) are

independent. Equation (3.12) has the following properties:

Property 1 Since all p′i are orthogonal, the variance of d can be simply computed

as

σ2
d =

m∑
i=1

k2
i . (3.13)

Property 2 The covariance between d and any principal component p′i is given by

cov(d, p′i) = kiσ
2
p′i

= ki. (3.14)

In other words, the coefficient of p′i is exactly the covariance between d and p′i.

Property 3 Let di and dj be two random variables:

di = d0
i + ki1 × p′1 + · · ·+ kim × p′m, (3.15)

dj = d0
j + kj1 × p′1 + · · ·+ kjm × p′m. (3.16)

The covariance of di and dj, cov(di, dj), can be computed by

cov(di, dj) =
m∑

r=1

kirkjr. (3.17)

39



In comparison, without an orthogonal transformation, the value of cov(di, dj) must

be computed by a more complicated formula as will be described in Section 3.3.4.

3.3.3 PERT-like Traversal of SSTA

Using the techniques discussed up to this point, all edges of the statistical timing

graph may be modeled as normally distributed random variables. In this section,

we will describe a procedure for finding the distribution of the statistical longest

path in the graph.

In conventional deterministic STA, the PERT algorithm can be used to find

the longest path in a graph by traversing it in topological order using two types of

functions:

• the sum function, and

• the max function.

In our statistical timing analysis, a PERT-like traversal is employed to find the

distribution of circuit delay. However, unlike deterministic STA, the sum and max

operations here are functions of a set of correlated multivariate Gaussian random

variables instead of fixed values:

1) dsum =
∑l

i=1 di, and

2) dmax = max(d1, · · · , dl).

where di is a Gaussian random variable representing either gate delay or wire delay

expressed as linear functions of principal components in the form of Equation (3.15),

and l is the number of random variables that sum or max function is operating on.
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Computing the distribution of the sum function

The computation of the distribution of sum function is simple. Since the dsum =∑l
i=1 di is a linear combination of normally distributed random variables, dsum is a

normal distribution. The mean μdsum and variance σ2
dsum of the sum are given by

μdsum =

l∑
i=1

d0
i , (3.18)

σ2
dsum

=

m∑
j=1

(

l∑
i=1

kij)
2. (3.19)

Computing the distribution of the max function

The max function of l normally distributed random variables dmax = max(d1, · · · , dl)

is, strictly speaking, not Gaussian. However, we have found that, in practice, it can

be approximated closely by a Gaussian. This idea is similar in spirit to Berkelaar’s

approach in [9, 35], although it is more general since Berkelaar’s work restricted

its attention to delay random variables that were uncorrelated4. In this work, we

use the Gaussian distribution to approximate the result of a max function, so that

dmax ∼ N(μdmax , σdmax). We also approximate dmax as a linear function of all the

principal components p′1 · · · p′m

dmax = μdmax + a1p
′
1 + · · ·+ amp′m. (3.20)

Therefore, determining this approximation for dmax is equivalent to finding the

values of μdmax and all ai’s.

From Property 2 of Section 3.3.2, we know that the coefficient ar equals cov(dmax, p
′
r).

Then the variance of the expression on the right hand side of Equation (3.20) is

4Many researchers in the community were well aware of Berkelaar’s results as early as 1997,

though his work did not appear as an archival publication.
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computed as s2
0 =

∑m
r=1 a2

r =
∑m

r=1 cov2(dmax, p
′
r). Since this is merely an approx-

imation, there may be a difference between the value s2
0 and the actual variance

σ2
dmax

of dmax. To diminish the difference, we can normalize the value of ar by

setting it as

ar = cov(dmax, p
′
r) ·

σdmax

s0
. (3.21)

We can see now that to find the linear approximation for dmax, the values of

μdmax , σdmax and cov(dmax, pi) are required. In the work of [78], similar inputs

were required in their algorithm and the results from [22] were applied and seen to

provide good results. In this work, we have borrowed the same analytical formula

from [22] for the computation of the max function.

According to [22], if ξ and η are two random variables, ξ ∼ N(μ1, σ1), η ∼
N(μ2, σ2), with a correlation coefficient of r(ξ, η) = ρ, then the mean μt and the

variance σ2
t of t = max(ξ, η) can be approximated by

μt = μ1 · Φ(β) + μ2 · Φ(−β) + α · ϕ(β), (3.22)

σ2
t = (μ2

1 + σ2
1) · Φ(β) + (μ2

2 + σ2
2) · Φ(−β)

+(μ1 + μ2) · α · ϕ(β) − μ2
t , (3.23)

where

α =
√

σ2
1 + σ2

2 − 2σ1σ2ρ, (3.24)

β =
(μ1 − μ2)

α
, (3.25)

ϕ(x) =
1√
2π

exp

[
−x2

2

]
, (3.26)

Φ(x) =
1√
2π

∫ x

−∞
exp

[
−y2

2

]
dy. (3.27)

The formula will not apply if σ1 = σ2 and ρ = 1. However, in this case, the max

function is simply identical to the random variable with largest mean value.
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Moreover, from [22], if γ is another normally distributed random variable and

the correlation coefficients r(ξ, γ) = ρ1, r(η, γ) = ρ2, then the correlation between

γ and t = max(ξ, η) can be obtained by

r(t, γ) =
σ1 · ρ1 · Φ(β) + σ2 · ρ2 · Φ(−β)

σt
. (3.28)

Using the formula above, we can find all the values required. As an example,

let us see how this can be done by first starting with a two-variable max function,

dmax = max(di, dj). Let dmax be of the form of Equation (3.20). We can find the

approximation of dmax as follows:

1. Given the expressions of di and dj each as linear combinations of the principal

components, compute their mean and standard deviation values μdi
, σdi

and

μdj
, σdj

, respectively, as described in Property 1 of Section 3.3.2.

2. Find the correlation coefficient between di and dj where cov(di, dj), the co-

variance of di and dj, can be computed using Property 3 in Section 3.3.2.

Now if r(di, dj) = 1 and σdi
= σdj

, set dmax to be identical to di or dj,

whichever has larger mean value and we can stop here; otherwise, we will

continue to the next step.

3. Calculate the mean μdmax and variance σ2
dmax

of dmax using Equations (3.22)

and (3.23).

4. Find all coefficients ar of p′r. According to Property 2, ar = cov(dmax, p
′
r),

also, cov(di, p
′
r) = kir and cov(dj, p

′
r) = kjr. Applying Equation (3.28), the

values of cov(dmax, p
′
r) and thus ar can be calculated.

5. After all of the ar’s have been calculated, determine s0 =
√∑m

r=1 ar
2. Nor-

malize the coefficient by resetting each ar = ar
σdmax

s0
.
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The calculation of the two-variable max function can easily be extended to a

multi-variable max function by repeating the steps of the two-variable case recur-

sively.

As mentioned at the beginning of this section, max of two Gaussian random

variables is not strictly Gaussian. This approximation can sometimes introduce

serious error, e.g., when the two Gaussian random variables have the same mean and

standard deviation and correlation value of -1, and the distribution of the maximum

is a half Gaussian. During the computation of multi-variable max function, some

inaccuracy could be introduced since we approximate the max function as normal

even though it is not really normal, and proceed with further recursive calculations.

To the best of our knowledge, there is no theoretical analysis available in literature

that quantifies the inaccuracies when a normal distribution is used to approximate

the maximum of a set of Gaussian random variables. However, a numerically based

analysis was provided in [22] which suggests that in some situations the errors can

be great, but for many applications this approximate is quite satisfactory. We will

show results in Section 3.6 that suggest that such inaccuracies are not significant

in the circuit context, and we will see that our results match very well with the

simulation results from a Monte Carlo analysis.

Moreover, recall that we have a “normalization” step to diminish the difference

between the variance computed from the linear form of max approximation and

the real variance of the max function. As in the case of approximating the max as

normal distribution, there is no theoretical proof about how this “normalization”

step can affect the accuracy of the approximation. Another option to diminish the

difference is to move it into an independent random Gaussian component, and it

is difficult to state definitively which of these options is better. In our work, we

choose the former option and find that it provides excellent accuracy, as will be
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shown in Section 3.6, where the statistics of the “normalization” ratio for several

test circuits are provided.

At this point, not only the edges, but also the results of sum and max functions

are expressed as linear functions of the principal components. Therefore, using

a PERT traversal by incorporating the computation of sum and max functions

described above, the distribution of arrival time at any node in the timing graph

becomes a linear function of principal components, and so the distribution of circuit

delay can be computed at the virtual sink node.

The overall flow of our algorithm is shown in Figure 3.1. It is noticed that this

work is in some sense parallel to the work of [36]: in [36], delays are represented as

linear combinations of global random variables, while in our work, they are linear

functions of principal components; in [36], the max of delays are reexpressed as

linear functions using binding probabilities, while in our work, the linear functions

are found by an analytical method from [22].

To further speed up the process, the following technique may be used: During

the max operation of SSTA, if the value of μ + 3 · σ of one path has a lower delay

than the value of μ−3 ·σ of another path, we can simply calculate the max function

ignoring the former path.

3.3.4 The Utility of Principal Components

The previous sections described our SSTA algorithm. The purpose of this section

is to elaborate why the orthogonal transformation is required to transform the set

of correlated process parameters to an uncorrelated set, and how it can simplify

the problem of SSTA considering spatial correlations.

Let di and dj be the distributions of two gate delays. For simplicity, we assume
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Input: Process parameter variations

Output: Distribution of circuit delay

1. According to the size of the chip, partition the chip region into n = nrow ×
ncol grids.

2. For each type of parameter, determine the n jointly normally distributed ran-

dom variables and the corresponding covariance matrix.

3. Perform an orthogonal transformation to represent each random variable with

a set of principal components.

4. For each gate and net connection, model their delays as linear combinations

of the principal components generated in step 3.

5. Map the circuit into a statistical timing graph by adding one virtual-source

node, one virtual-sink node and corresponding edges.

6. Using sum and max functions on Gaussian random variables, perform a

PERT-like traversal on the graph to find the distribution of the statistical

longest path. This distribution achieved is the circuit delay distribution.

Figure 3.1: Overall flow of our statistical timing analysis.

46



that the gate lengths �Leff are the only spatially correlated parameters. We also

assume that di and dj are sensitive to the same set of correlated random variables

of gate lengths L1
eff , . . . , L

n
eff . Using Equation (3.6), di and dj can be expressed as

di = d0
i + ci1L

1
eff + · · ·+ cinLn

eff , (3.29)

dj = d0
j + cj1L

1
eff + · · ·+ cjnL

n
eff . (3.30)

Obviously, the covariance of di and dj is decided by the covariance structure of

�Leff . The direct calculation of cov(di, dj) is of a complicated form as in the work

of [58]

cov(di, dj) =

n∑
a=1

n∑
b=1

ciacjbcov(La
eff , L

b
eff ). (3.31)

In contrast, in our method, we first perform orthogonal transformations on �Leff .

Any element Ll
eff ∈ �Leff is expressed as

Ll
eff = μLl

eff
+ al1l

′1
eff + · · ·+ alml

′m
eff . (3.32)

Next, by superposition we transform di and dj to:

di = d0
i + ki1l

′1
eff + · · ·+ kiml

′m
eff , (3.33)

dj = d0
j + kj1l

′1
eff + · · ·+ kjml

′m
eff . (3.34)

The value of cov(di, dj) can be simply computed using the coefficients of �L′
eff by

cov(di, dj) =
∑m

r=1 kirkjr in linear time O(m). The advantage in this computation

is that we need not know which specific parameters in di and dj are correlated.

In fact, consider the coefficients of l
′1
eff in both di and dj , ki1 =

∑n
r=1 cirar1 and

kj1 =
∑n

r=1 cjrar1. It can be seen that the covariance of gate lengths have all

been incorporated in the coefficient of the principal components l
′1
eff , . . . , l

′m
eff . For
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this reason, we ensure that the computation of cov(di, dj) can actually take the

correlations of gate lengths into consideration correctly.

The direct computation of the covariance of path delays is in a similar form.

In general, the path delays are correlated when the gate delays on these paths are

correlated. As shown in the work of [58], the path covariances can be computed

on the basis of pair-wise gate delay covariances; however, the number of paths

is numerous which makes it computationally difficult to apply such a path-based

method to large circuits.

In our method, with the orthogonal transformation, the covariances of path de-

lays are manifested as the coefficients of the independent principal components as in

the case of correlated gate delays. The covariances of the paths can then be simply

computed in linear time based on these coefficients only, and it is not necessary to

keep track of how the gates on the paths are correlated or which parts are corre-

lated. For the same reason, in this algorithm, besides the spatial correlations, path

correlations due to reconvergence (structural correlations) can also be accounted for

automatically by using the orthogonal transformation on the spatially correlated

parameters. However, when spatially uncorrelated parameters are involved in the

computation, the structural correlations due to these independent parameters can

not be dealt with by this method easily. The extension of the work for handling

spatially uncorrelated parameters will be given in Section 3.5.2.

3.4 Computational Complexity

We present a run time complexity analysis here to show which factors most greatly

affect the CPU time of the algorithm.
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The flow shown in Figure 3.1 can be divided into two parts: model precharacter-

ization (steps 1, 2 and 3) and SSTA (steps 4, 5 and 6). Model precharacterization

consists of construction of parameter variations and grid-based spatial correlation

models, and the computation of Principal Components (PC) for spatially corre-

lated parameters. The computation of PCs requires calculations of eigenvectors

and eigenvalues of the covariance matrix and its time complexity is O(p ·n3), where

n is total number of grids into which the chip is divided and p is the number of

spatially correlated parameters considered. While this step may seem to be a bot-

tleneck of the algorithm, it is a only one-time computation for a process. Once

the models of parameter variations are constructed, they can be repeatedly used

to analyze any design. Meanwhile, for spatial correlated parameters, the PCs com-

puted from the covariance matrix are only model-dependent, so that for different

designs analyzed with the same parameter model, the same set of PCs can be ap-

plied. In other words, the step of model precharacterization is in fact a one-time

library construction at early stage and therefore can be excluded from the run time

complexity analysis of the algorithm.

The run-time of the SSTA algorithm can be divided into:

1. The time required to find the delay distribution of the gate and intercon-

nect5: This run time depends on how many different grids the interconnect

passes through and how many grids the gates are located in, and in gen-

eral these numbers are bounded by constant numbers. The run time is also

proportional to the total number of principal components, since we perform

orthogonal transformation at each wire segment of interconnect. For each

random variable, the number of principal components is no more than the

5The time required to precharacterize the sensitivities of delay on parameter variations is

excluded from this analysis, since that task can be carried out offline, rather than during SSTA.
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total number of grids n partitioned on the chip. The total number of prin-

cipal components is no more than p · n. Thus, the time required to find the

distribution of a single gate or wire can be estimated as O(p · n). If Ng is the

total number of gates and NI the number of net connections in the circuit,

the time of this part can be estimated as O(p · n · (Ng + NI)).

2. The time required to evaluate the max function: The cost of this operation is

proportional to the number of random variables involved in the max operation

and the number of principal components of each random variable. The max

operation is used at all multi-input gates and at the last level (sink node)

where the maximum circuit delay is computed. This number can be upper

bounded by the total number of net connections NI in the circuit. Thus, the

run time of this part is O(p · n · NI).

3. The time required to compute output transition time at each gate output:

For a gate with k > 2 inputs, it requires k2 max operations and k − 1 sum

operations, which are constant numbers of max and sum operations. The

computation is required for all gates and thus the total cost is O(p · n · Ng).

4. The time required to evaluate the sum function: The sum operation must

be performed at all gates and interconnects encountered during the PERT-

like traversal. A single sum operation requires O(n), and therefore, the total

complexity for this part is O(p · n · (Ng + NI)).

Therefore, the run time complexity of the algorithm is O(p · n · (Ng + NI)), which

is p · n times that of deterministic STA.
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3.5 Extending the Method to Handle Inter-die

Variations, Spatially Uncorrelated Parame-

ters, and Min-delay Computations

In this section, we will first describe how this work can be extended to include the

effect of inter-die variations in addition to intra-die variations. Subsequently, we will

explain how spatially uncorrelated parameters can be incorporated into the current

proposed algorithm. Finally, we will show how minimum delay computations can

easily be incorporated into this framework.

3.5.1 Inter-die Variations

As explained in Chapter 2, any process parametric variation can be modeled as

Δptotal = Δpinter + Δpintra, (3.35)

where Δpinter is the inter-die variation and Δpintra is the intra-die variation of the

process parameter.

Since inter-die variation has a global effect on all the transistors [wires] within

a single chip, and therefore a single random variable, Δpinter, can be applied to

all transistors [wires] to model the effect of inter-die variation. Consequently, the

covariance matrix for each type of spatially correlated parameter is changed by

adding to all entries a value of σ2
pinter

, the variance of inter-die parametric variation.

Based on the new covariance matrices, the same SSTA methodology can still be

applied to compute distribution of chip delay.
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3.5.2 Spatially Uncorrelated Parameters

In practice, it is observed that not all process parameters are spatially correlated.

For example, the variations of Tox or Na are independent from transistor to tran-

sistor. To model the intra-die variation of a spatially uncorrelated parameter, a

separate random variable must be used for each gate [wire] to represent such in-

dependence, instead of a single random variable for all gates [wires] in the same

grid for the spatial correlated parameters. Consequently, the timing analysis frame-

work introduced in previous sections must be further extended to accommodate the

spatially uncorrelated parameters.

As an example, let us consider the case that gate oxide thickness Tox is the

only spatially uncorrelated parameter. The idea described here can easily be ex-

tended to the case where there is more than one uncorrelated parameter. With

inter- and intra-die variations, the variation of Tox for the ith transistor can be

expressed as ΔT inter
ox + ΔT intra

ox,i , where ΔT inter
ox is the random variable representing

for the inter-die variation of gate oxide thickness Tox, and ΔT intra
ox,i the intra-die

variation of Tox of the ith transistor. Accordingly, the expressions for device [wire]

delays are reformulated by substituting ΔT inter
ox + ΔT intra

ox,i for where the random

variable for intra-die variation of gate oxide thickness of the ith transistor appears.

Since the orthogonal transformations of parameters are performed only on spatially

correlated parameters, the variables ΔT inter
ox and ΔT intra

ox,i are preserved in the de-

lay expressions of linear combination of principal components and either variable

is independent from the principal components and any other random variables in

the delay expressions. The timing propagation using the sum and max operators

remains the same, except that after each sum or max operation, the random vari-

ables for intra-die variations of the spatially uncorrelated ΔT intra
ox,i parameters, are
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merged into one random variable, so that, for the arrival time at each circuit node,

only one independent random variable is kept for all intra-die variations of spatially

uncorrelated parameters, similar to the “residual” variances lumping into the in-

dependently random part in [80]. That is, all delays and arrival times are in the

following form, with an extra independent random term in addition to Equation

(3.12):

d = d0 + k1 × p′1 + · · · + km × p′m + km+1 × r, (3.36)

where km+1× r is the merged independent term and r is a zero mean and unit vari-

ance random variable that is uncorrelated and independent with all other random

variables.

Although structural correlations can be automatically taken into account us-

ing orthogonal transformation on spatially correlated parameters as explained in

Section 3.3.4, the structural correlations due to spatially uncorrelated parameters

cannot be efficiently dealt with by this methodology, since directly keeping all un-

correlated random variables in the delay form results in a huge number of variables,

and merging of these independent random variables during the propagation lose the

correlation information. To reduce the inaccuracies caused, one can appeal to the

available literature on handling structural correlations in SSTA [6, 27, 53]. In this

work, we have ignored the structural correlations caused by the spatially uncorre-

lated parameters. However, since the structural correlations from spatially corre-

lated parameters are considered, the inaccuracies introduced from this assumption

are not significant, as will be demonstrated in Section 3.6.
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3.5.3 Distribution of the Minimum of a Set of Gaussians

In circuit performance analysis, computations such as finding the required arrival

time (RAT) for long-path analysis, and minimum delay computations for short-path

analysis (to check for hold time violations) require the computation of the minimum

of a set of delays, which becomes finding the distribution of the minimum of a set

of random variables under process variations.

The procedure for calculation of maximum of a set of Gaussians can be uti-

lized to compute the minimum of a set of Gaussian random variables, d1 · · ·ds.

Specifically, dmin = min(d1, · · · , ds) can be computed as

dmin = −max(−d1, · · · ,−ds), (3.37)

where di is a normally distributed random variable and max is the operator intro-

duced is Section 3.3.3.

3.6 Experimental Results

The proposed algorithm was implemented in C++ as the software package, MinnSSTA,

and tested on the edge-triggered ISCAS89 benchmark circuits by working on the

combinational logic blocks between the latches. All experiments were run on a

Linux PC with a 2.0GHz CPU and 256MB memory. We experimented with para-

meters of 100nm technologies on a 2-metal layer interconnect model. The process

parameters (Table 3.1) used here are based on predictions from [24,56].

Since the computation requires physical information about the locations of the

gates and interconnects, all cells in the circuit were first placed using the placement

tool, Capo [77]. Global routing was then performed to route all the nets in the
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Table 3.1: Parameters used in the experiments.

Parameters Leff Wg Tox Na (×1017cm−3) Wint Tint HILD

(nm) (nm) (nm) nmos/pmos (nm) (nm) (nm)

p̄ 60.0 150.000 2.500 9.70000/10.04000 150.0 500.0 300.0

3σinter 9.0 11.250 0.250 0.72750 15.0 25.0 22.50

3σintra 4.5 5.625 0.125 0.36375 7.5 12.5 11.25

δxxmax + δyymax 4.5 5.625 0.125 0.36375 7.5 12.5 11.25

circuits. Depending on the size of circuit, we divided the chip area into different

sizes of grids, so that each grid contains no more than a hundred cells. Due to the

lack of access to real wafer data, the covariance matrix for intra-die variations used

in this work were derived from the spatial correlation model used in [5] by equally

splitting the variance into all levels.

To verify the results of our method MinnSSTA, we used Monte Carlo (MC)

simulations based on the same grid models for comparison. To balance the accuracy

and run time, we chose to run 10,000 iterations for the Monte Carlo simulation.

We first present the experimental results assuming that all process parameters

are spatially correlated while using fixed values for the spatially uncorrelated process

parameters (Tox and Na). Table 3.2 shows a comparison of the results of MC with

those from MinnSSTA. For each test case, the mean and standard deviation (SD)

values for both methods are listed. The results of MinnSSTA can be seen to be

very close to the MC results: the average error is −0.23% for the mean and −0.32%

for the standard deviation. In Figure 3.2, for the largest test case s38417, the plots

of the PDF and CDF of the circuit delay for both MinnSSTA and MC methods are

provided. It is observed that the curves almost perfectly match each other. This

demonstrates the accuracy of the PCA approach for correlated process parameters,

including its ability to account for structural correlations.
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Figure 3.2: A comparison of MinnSSTA and MC methods (assuming fixed values

of Tox and Na) for circuit s38417. The curve marked by the solid line denotes the

results of MinnSSTA, while the plot marked by the starred lines denotes the results

of MC. Note that the differences between the curves are exaggerated because of the

high slopes and the fact that the scale does not include the origin, but the mean

and the variance of the two are very close to each other, as are the delay points

corresponding to 95% and higher timing yields.

Next, the results for considering the variations of the spatially uncorrelated

process parameters (Tox and Na) are given in Table 3.3. On average, the error

is 1.06% for the mean value and −4.34% for the standard deviation. In Table

3.7, the 99% and 1% confidence points achieved by MC and MinnSSTA are also

provided and the average errors are −2.46% and −0.99%, respectively. Again, for

the largest test case s38417, the PDF and CDF curves of the circuit delay for both

MinnSSTA and MC methods are plotted in Figure 3.3, It can be seen that, at

the range of lower and higher circuit delay values, the circuit delay distribution
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Table 3.2: Comparison results assuming fixed values of Tox and Na.

Benchmark Monte Carlo (MC) MinnSSTA (MinnSSTA−MC)
MC

%

Name Mean(ps) SD(ps) Mean(ps) SD(ps) Mean SD

s38417 988.6 91.0 985.8 90.8 -0.28% -0.22%

s38584 1726.9 153.1 1720.9 151.6 -0.35% -0.98%

s35932 1165.5 101.6 1162.7 101.3 -0.24% -0.30%

s15850 1370.2 131.1 1367.2 129.6 -0.22% -1.14%

s13207 1219.9 116.1 1217.3 116.2 -0.21% 0.09%

s9234 674.6 65.4 673.7 64.8 -0.13% -0.92%

s5378 413.1 38.5 411.8 38.4 -0.31% -0.26%

s1196 499.9 45.8 499.3 46.2 -0.12% 0.87%

s27 102.5 9.9 102.3 9.9 -0.20% 0.00%

computed from MinnSSTA matches well with that of the Monte Carlo simulation,

although there are some deviations in the central portion. As mentioned in Section

3.5.2, some error may be introduced from the structural correlations, which are not

handled exactly in the presence of uncorrelated intra-die components. Based on

our analysis of the experiments, we find that the cause for the small error that is

introduced here is primarily because our implementation does not handle structural

correlations between the uncorrelated variables. We believe that, by appending into

the existing framework an algorithm that handles structural correlation [6, 27, 53],

the error of the results in Table 3.3 can be further reduced.

In Table 3.3, the CPU times for both methods are provided. To show that the

PCA steps require very little run time, the run time for this part is also listed;

however, as pointed out earlier, this can be considered a preprocessing step that

is carried out once for each technology, and its cost need not be considered in the

computation. We can see that the CPU time of MinnSSTA on all test cases is very

fast. The circuit with the longest run time, s35932, was analyzed in only about 500
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Figure 3.3: A comparison of MinnSSTA and MC methods for circuit s38417, con-

sidering all sources of variation, some of which are spatially correlated and some of

which are not. The curve marked by the solid line denotes the results of MinnSSTA,

while the plot marked by the starred lines denotes the results of MC.

seconds, while the MC simulation required over 15 hours.

In the proposed approach, in order to make the computed value of standard

deviation of dmax the same as that of the approximated linear expression, the coef-

ficients of process parameters in the linear expression are normalized by the ratio

of the standard deviation of dmax (namely, σdmax) to that of the linear expression

s0. In Table 3.4, the statistics of this ratio for all testcases are listed, including

the mean, standard deviation, minimum and maximum values of the ratio and the

probability of the ratio falls into each given range. In general, the higher the ratio,

the larger the error for estimating dmax, and thus the less accurate for estimating
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Table 3.3: Comparison results of the proposed method and Monte Carlo simulation

method.
Benchmark Monte Carlo (MC) MinnSSTA

(MinnSSTA−MC)
MC

%

Name #Cells #Grids Mean(ps) SD(ps) CPU(s) Mean(ps) SD(ps) CPU(s) PCA(s) Mean SD

s38417 23815 256 995.6 130.3 21005 1022.0 125.4 406.11 0.15 2.65% -3.76%

s38584 20705 256 1738.4 226.4 24039 1798.2 215.6 460.36 0.15 3.44% -4.77%

s35932 17793 256 1214.7 161.8 53922 1251.2 144.7 505.71 0.15 3.00% -10.57 %

s15850 10369 256 1388.2 178.9 8856 1397.8 172.1 175.96 0.15 0.69% -3.80%

s13207 8260 256 1230.7 158.8 9060 1239.7 154.9 172.62 0.15 0.73% -2.46%

s9234 5825 64 688.6 90.6 5346 690.6 85.2 32.23 0.02 0.29% -5.96%

s5378 2958 64 421.1 54.3 3907 420.8 51.8 27.41 0.02 -0.07% -4.60%

s1196 547 16 505.9 66.0 781 502.7 64.4 1.51 0.01 -0.63% -2.42%

s27 13 4 103.6 13.7 9 103.0 13.6 0.00 0.00 -0.58% -0.73%

Table 3.4: Statistics of ratio of standard deviation of accurate value σdmax to s0 of

the linear expression.
Circuit Ratio of σdmax to s0 Probability of the ratio in each range

Name mean stdev minimum maximum < 1 = 1 (1, 1.01) [1.01, 1.1] > 1.1

s38417 1.0031 0.0051 ≈ 1 1.0262 0.0004 0.3246 0.5582 0.1168 0

s38584 1.0037 0.0054 ≈ 1 1.1804 0.0023 0.4124 0.1700 0.0001 0

s35932 1.0120 0.0278 ≈ 1 1.1583 0.0022 0.2883 0.4290 0.2350 0.0454

s15850 1.0018 0.0033 ≈ 1 1.0233 0.0034 0.4029 0.5538 0.0398 0

s13207 1.0028 0.0048 ≈ 1 1.0260 0.0008 0.3256 0.5843 0.0893 0

s9234 1.0017 0.0035 1 1.0209 0 0.3825 0.5636 0.0538 0

s5378 1.0012 0.0023 1 1.0289 0 0.4310 0.5563 0.0126 0

s1196 1.0007 0.0021 ≈ 1 1.0150 0.0021 0.7068 0.2764 0.0148 0

s27 1.0006 0.0014 1 1.0030 0 0.8 0.2000 0 0

the circuit delay distribution using the proposed approach. For example, the test-

case s35932 has the highest probability of 0.045 for the ratio to be greater than 1.1,

and also has the largest errors predicting the circuit mean and standard deviation.

Over all testcases, the average value of the ratio is 1.003, which is a reasonably

small number so that the accuracy of the proposed statistical SSTA should not be

affected significantly by this normalization step.

To further verify the applicability of the proposed algorithm, we have demon-

strated it on a path-balanced circuit whose topology is a binary tree of depth 10.
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Table 3.5: Experimental results on a binary tree circuit of depth-10.
Approach Mean(ps) SD(ps) 99% Point(ps) 1% Point(ps)

MC 669.8 86.2 894.8 486.3

MinnSSTA 666.2 80.8 854.0 478.3

(MinnSSTA−MC)
MC

% −0.54% −6.26% −4.56% −1.65%

Table 3.6: Comparison of timing analysis with and without spatial correlations.
Benchmark Anal. w/ corr. (MC) Anal. w/o corr. (MCNoCorr) (MC−MCNoCorr)

MCNoCorr
%

Name Mean(ps) SD(ps) Mean(ps) SD(ps) Mean SD

s38417 995.6 130.3 996.7 98.7 0.11% -24.25%

s38584 1738.4 226.4 1741.9 180.5 0.20% -20.27%

s35932 1214.7 161.8 1253.6 140.0 3.20% -13.47%

s15850 1388.2 178.9 1393.8 121.9 0.40% -31.86%

s13207 1230.7 158.8 1233.8 110.2 0.25% -30.60%

s9234 688.6 90.6 691.9 61.9 0.48% -31.68%

s5378 421.1 54.3 424.7 38.2 0.85% -29.65%

s1196 505.9 66.0 507.6 48.8 0.34% -26.06%

s27 103.6 13.7 103.7 10.2 0.10% -25.55%

Table 3.5 lists the results achieved by MinnSSTA and (MC). The errors obtained are

−0.54% for the mean and −6.26% for the standard deviation; −4.56% and −1.65%

for the 99% and 1% confidence point, respectively. This shows that the proposed

approach can predict the timing yield well, even for path-balanced circuits.

To show the importance of considering spatial correlations, we consider the

difference between performing statistical timing analysis while considering spatial

correlation and while ignoring it. Since this is a comparison to determine why spa-

tial correlations are important, the CPU time is not a consideration. Therefore,

we run another set of Monte Carlo simulations (MCNoCorr) on the same set of

benchmarks, this time assuming zero correlations among the devices and wires on

the chip. The comparison between the data is shown in Table 3.6. It can be ob-

served that although the mean values are close, the variances of the uncorrelated
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Figure 3.4: A comparison of SSTA with and without considering spatial correla-

tions, under Monte Carlo analysis, for circuit s38417. The curve marked by the

solid line denotes the case where spatial correlations are ignored, while the curve

with the starred lines denotes the results of incorporating spatial correlations; this

is identical to the curve in Figure 3.3.

cases (MCNoCorr) are much smaller than the correlated cases (MC). On average,

the standard deviation of the correlated case increases by 25.93%. Again, we plot

the PDF and CDF curves of both simulations for circuit s38417 in Figure 3.4. It is

seen that the CDF and PDF curves of MCNoCorr deviate significantly from those

of MC. In other words, statistical timing analysis without considering correlation

may incorrectly predict the real performance of the circuit and could even overesti-

mate the performance of the circuit. This underlines the importance of developing

efficient SSTA methods that can incorporate spatial correlations.
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Table 3.7: Comparison of 99% and 1% confidence point.
Bench. MC MinnSSTA (MinnSSTA−MC)

MC
% MPC (MP C−MC)

MC
%

mark 99% Pt. 1% Pt. 99% Pt. 1% Pt. 99% Pt. 1% Pt. Worst Best Worst Best

Name (ps) (ps) (ps) (ps) (ps) (ps) Case Case Case Case

s38417 1333.3 722 1313.6 730.4 -1.48% 1.16% 1758.1 522.1 31.86% -27.69%

s38584 2310.3 1261.3 2299.5 1296.9 -0.47% 2.82% 3056.0 915.4 32.28% -27.42%

s35932 1635.2 882.3 1587.6 914.8 -2.91% 3.68% 2051.2 613.0 25.44% -30.52%

s15850 1844.8 1012.9 1797.9 997.7 -2.54% -1.50% 2442.9 725.2 32.42% -28.40%

s13207 1629.9 893.1 1599.8 879.6 -1.85% -1.51% 2175.4 646.6 33.47% -27.60%

s9234 922.6 499.7 888.7 492.5 -3.67% -1.44% 1207.3 359.7 30.86% -28.02%

s5378 559.9 308.9 541.2 300.4 -3.34% -2.75% 736.6 219.2 31.56% -29.04%

s1196 673.4 370.4 652.4 353.0 -3.12% -4.70% 874.2 265.8 29.82% -28.24%

s27 138.4 74.9 134.6 71.4 -2.75% -4.67% 179.3 55.6 29.55% -25.77%

As an alternative, we consider the option of using multiple process corners

(MPC) for these experiments, where the circuit delays are evaluated at all possi-

ble corners of process parameter values at μ ± 3 · σ, where μ is the mean and σ

the standard deviation of the process parameter. Table 3.7 compares the worst-

case and best-case delays obtained at exhaustive process corners using the MPC

method, with the 99% and 1% confidence point delay achieved from the Monte

Carlo simulation (MC) accordingly. On average, the MPC approach overestimates

the worst-case delay of circuit by 30.81% and underestimates the best-case delay

by 28.08%. These results also emphasize the importance of considering spatial

correlations during SSTA, as is done by our algorithm.

3.7 Conclusion

In this chapter, we have proposed an algorithm for performing SSTA, considering

spatial correlations related to intra-die process variations. We show that performing

statistical timing analysis while ignoring spatial correlations may not be adequate to
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predict the circuit performance correctly, and that fast and accurate SSTA methods,

such as ours, that incorporate spatial correlations are essential. An analysis of the

complexity shows it to be reasonable, and like conventional STA, it is linear in the

number of gates and interconnects. The penalty that is paid here is that unlike

deterministic STA, it is also linear in the number of grid squares. As a trivial

extension of maximum of delays, the computation for the distribution of minimum

of delays is also provided.

The current algorithm is limited by the following: it assumes that the probability

distributions of all process variations are Gaussian and the distribution of gate [wire]

delays have linear dependency on the variations of process parameters. In Chapter

4, we will extend the method to solve the problem of statistical timing analysis that

can incorporate non-Gaussian process parameter variations and nonlinear delay

dependencies.
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Chapter 4

Incorporating Non-Gaussian

Distributed Process Parameters

and Nonlinear Delay Functions

In this chapter, we present a general framework and an efficient method of block-

based SSTA that can deal with process variations with non-Gaussian distributions,

and/or delay functions with nonlinear dependencies on process parameter varia-

tions. We extend techniques for evaluating the sum and max functions in SSTA

from the linear, Gaussian case of Chapter 3, to the nonlinear, non-Gaussian case.

The proposed approach is shown to be accurate and efficient in predicting timing

characteristics and yield of circuit.
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4.1 Introduction

In Chapter 3, we proposed an efficient method for timing analysis under process

variations, under the assumption that where all process variations have or can be

approximated by Gaussian distributions, and all delays have linear sensitivities to

the process parameters.

There are two limitations to this approach. First, although some types of distri-

butions can be approximated by a Gaussian, others may display asymmetric types

of distributions (e.g., lognormal distributions), or symmetric types of non-Gaussian

distributions (e.g., uniform distributions) that cannot be well-approximated by a

Gaussian. For example, via resistance is known to have an asymmetric probability

distribution. A second issue is related to the use of a first-order Taylor expansion to

approximate a delay function as a linear function of the variations of process para-

meters. The linear approximation can only be justified under the assumption that

variations are small. With technology scaling, as the percentage change in process

variations becomes larger, delays may show nonlinear dependencies on some sources

of variations, so that a linear approximation is not accurate enough. For instance,

the dependence of delay on the transistor channel length, Leff , is essentially nonlin-

ear, and assuming a linear dependency can result in significant inaccuracies under

large variations [43]. Therefore, it is desirable to develop SSTA techniques that can

deal with non-Gaussian-distributed process parameters and/or nonlinear effects on

gate [wire] delays1, in order to obtain sufficiently accurate results for analyzing the

timing yield.

1For conciseness, in the remainder of the thesis, we will use the term “non-Gaussian parameter”

to refer to a non-Gaussian-distributed process parameter, and “nonlinear function parameter” to

a process parameter whose variation has nonlinear effects on delays.
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The task of developing an SSTA technique that is capable of handling arbi-

trary non-Gaussian and/or nonlinear function parameter is very challenging. As

described in Section 3.1, approaches for SSTA can be classified into continuous

methods and discrete methods. For contininuous methods, when arbitrary non-

Gaussian-distributed or nonlinear function parameters are involved, the task of

developing analytic forms for SSTA operations is nontrivial. Discrete methods can

represent more general probability distributions, but during SSTA event propaga-

tion, it is difficult for them to maintain correlation information due to the global

sources of variations among the delays/arrival times. Existing discrete methods are

limited to cases when all gate [wire] delays are independent, which is not practical.

In this chapter, we present a parameterized block-based SSTA approach, and

one of the challenging tasks herein lies in computing the sum and max functions

while keeping the correlations of delays due to global sources of variations. A pa-

rameterized SSTA method models gates or wires delays D as explicit functions of

variations of the Δpi process parameters. Using this representation, parameterized

SSTA approach propagates and computes circuit timing characteristics A (such as

arrival and required arrival times, delay, timing slack) as functions of the same set

of process parameters, and thus the distribution of circuit delay is also expressed as

a function of process parameters. Since the parameterized forms of delays/arrival

times lend themselves easily to the computation of correlations, delay correlations

due to global variation sources can be well preserved during timing propagation.

Another advantage of parameterized SSTA is that explicit dependencies of circuit

timing characteristics on process parameters can be obtained with the analysis,

which can be useful not only for predicting the probability distributions of circuit

timing and manufacturing yield, but also for circuit optimization, improving ro-

bustness of the design, and manufacturing line tailoring. The procedure described
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in Chapter 3 is an example of a parameterized SSTA algorithm, while nonpara-

meterized techniques [11, 27, 45, 58] are less attractive because they do not relate

circuit timing variations to changes in the underlying process parameters.

There have been some recent works on parameterized block-based SSTA that

are capable of handling non-Gaussian and/or nonlinear function parameters. The

method in [4] can handle linear functions, but non-Gaussian process parameters: it

proceeds by computing the upper bounds of parameterized arrival times during the

propagation, and applying a heuristic method to improve the quality of the bound

by propagating multiple arrival times. The works of [82, 83] use quadratic timing

models instead of linear models to capture the nonlinear dependencies of gate/wire

delays and arrival times on Gaussian-distributed process parameters. In [82], the

computation of the max function is simplified by converting the quadratic forms

of delay functions to those without cross terms, using orthogonalization, and the

quadratic approximation of the nonlinear max operation is performed via moment

matching. In [83], the result of the max operation is computed using analytical

formulas for handling the case with only Gaussian and linear function parameters,

assuming the delays in quadratic forms are Gaussian random variables. The SSTA

framework proposed in [40] can handle arbitrary distributed process parameters

and nonlinear delay dependencies, by modeling gate delays and arrival times as

polynomials using Taylor series expansions on the process parameters, and using

regressions to approximate the result of max back to a polynomial. However, as

regressions are required in the framework, the run-time is rather slow and the

method is not scalable to large scale circuits.

In this chapter, we will present an efficient parameterized block-based SSTA

method that can handle arbitrarily distributed parameters and arbitrary nonlinear

delay dependencies on process parameter, by extending the sum and max functions
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in SSTA approach for Gaussian and nonlinear function parameters. The chapter is

organized as follows. The framework for the parameterized SSTA approach for han-

dling Gaussian-distributed process parameters and linear sensitivities of delays to

process parameters is first summarized in Section 4.2. A generalized framework for

handling arbitrarily distributed parameters and arbitrary nonlinear delay depen-

dencies on process parameters, and an efficient method to implement the framework

are then provided in Section 4.3. Finally, the experimental results will be shown in

Section 4.4.

4.2 Framework for Handling Gaussian and Lin-

ear Function Parameters

In this section, we will summarize the framework for parameterized block-based

SSTA that can handle Gaussian and linear function parameters. We will then gen-

eralize this framework in the next section to handle arbitrarily distributed process

parameters and arbitrary delay functions.

Note that the SSTA approaches proposed in Chapter 3, first published in [17],

and the work in [80], are both parameterized block-based methods using similar

frameworks. In both works, any gate or wire delay is represented as a linear function

of process variations, and this representation is referred to as a first-order canonical

form in [80]:

A = a0 +
n∑

i=1

ai · ΔXi + an+1 · ΔRa (4.1)

Here, a0 is the mean or nominal delay, and ΔXi = Xi − X̂i is variation of process

parameter Xi, centralized by subtracting its mean value X̂i. Each ΔXi represents
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for a global source of variation that has a global effect on all delays, and is modeled

as a Gaussian random variable N(0, σXi
); all ΔXi variables are mutually indepen-

dent. The coefficient ai is the sensitivity of delay to Xi, and ΔRa is the variation of

local uncertainty that only affects the delay locally, and is modeled as a normalized

Gaussian random variable that is independent of all other sources of variations.

The sensitivity of the delay to Ra is given by an+1.

This first-order canonical form is equivalent to the delays/arrival times expressed

by Equation (3.36) that are employed in the proposed SSTA approach in Chapter

3: ΔXi and ΔRa correspond to the principal component p′i and the normalized

independent Gaussian random variable r in expression (3.36), respectively. In this

chapter, we will follow the notations and terms in Equation (4.1) for presentation.

The circuit timing characteristics are computed by propagating signals from

the source node to the sink using two basic operations: propagation of arrival time

through a timing edge and computation of the latest arrival time at a node. The

first operation requires the computation of the sum function C = A + B, where A

and B are each in the first-order canonical form of (4.1). The resulting sum C can

also be written in canonical form, and can be computed as follows:

c0 = a0 + b0 (4.2)

ci = ai + bi (i = 1, · · · , n) (4.3)

cn+1 =
√

a2
n+1 + b2

n+1 (4.4)

The second operation requires the computation of the max function C = max(A, B).

A first-order canonical form Capp is used to approximate C, where each coefficient,
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ci, is computed as follows:

c0 = μmax(A,B) = a0 · Φ(β) + b0 · Φ(−β) + α · ϕ(β) (4.5)

ci = cov(Capp, ΔXi)/σ
2
Xi

= cov(max(A, B), ΔXi)/σ
2
Xi

= ai · Φ(β) + bi · Φ(−β) (i = 1, · · · , n) (4.6)

where α, β, Φ(.) and ϕ(.) are as defined in Section 3.3.3.

The variance of max(A, B) can be computed by:

σ2
max(A,B) = (σ2

A + a2
0) · Φ(β) + (σ2

B + b2
0) · Φ(−β) + (a0 + b0)θϕ(β) − c2

0 (4.7)

As mentioned in Chapter 3, to diminish the difference between the exact values

of σ2
max(A,B) and

∑n
i=1 ci, we can either normalize the coefficients c1, · · · , cn, or lump

the difference to an independent random variable. If the latter option is applied,

as in the work of [80], the approximation Capp theoretically predicts the results of a

linear regression: the exact mean and variance of max(A, B) are matched, and the

coefficients c1, · · · , cn are obtained by minimizing the expected value of the squared

error. The approximation here also makes statistical sense, since it minimizes the

error in regions of higher probability more than in regions of lower probability.

In fact, the approximation Capp for max(A, B) can be interpreted in several

ways.

• Computing Capp so that it is a linear regression to ΔX1, · · · , ΔXn: Capp =

c0+c1ΔX1+ · · ·+cnΔXn+cn+1ΔRc, where each ci is a constant and cn+1ΔRc

is the error term, with Rc as a normalized Gaussian random variable.

Using a least squared regression, the mean of the squared error is:

SqrErr =

∫
Δ
−→
X

(max(A, B) − Capp)
2 · p(Δ

−→
X )dΔ

−→
X (4.8)
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where p(Δ
−→
X ) is the joint PDF function of Δ

−→
X = {ΔX1, · · · , ΔXn}.

The minimum squared error can be achieved when d(SqrErr)
dci

= 0, for i =

1, · · · , n that gives:

E[max(A, B)] = E[Capp] (4.9)

E[max(A, B) · ΔXi] = E[Capp · ΔXi] (for i = 1, · · · , n) (4.10)

where E[.] is the symbol for the mean of a random variable.

Equation (4.9) matches c0 to the mean of max(A, B). Given (4.9), expression

(4.10) can be written as cov(max(A, B), ΔXi) = cov(Capp, ΔXi), and since

cov(Capp, ΔXi) = ci · σ2
Xi

, the values of each ci can directly be computed by

ci = cov(max(A, B), ΔXi)/σ
2
Xi

.

In the case where each ΔXi is a Gaussian random variable, the values of

E[max(A, B)] and each cov(max(A, B), ΔXi) can be analytically computed

using Clark’s result [22]. Therefore, the approximation Capp can be obtained

analytically, and the coefficient cn+1 of the error term can be obtained by

matching the exact value of variance of max(A, B), which, again, can be

computed by Clark’s result.

• Computing Capp as a linear regression to A and B: Capp = s + pA + qB +

eRc where eRc is the error term, with Rc as a normalized Gaussian random

variable, and s, p, q and e being constants.

Similarly, the minimum squared error of the approximation is obtained when:

E[max(A, B)] = E[Capp]

cov(max(A, B), A) = cov(Capp, A)

cov(max(A, B), B) = cov(Capp, B) (4.11)
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By solving the equations above for p, q and s, we get:

p =
cov(max(A, B), B) · cov(A, B) − cov(max(A, B), A) · σ2

B

cov2(A, B) − σ2
A · σ2

B

q =
cov(max(A, B), A) · cov(A, B) − cov(max(A, B), B) · σ2

B

cov2(A, B) − σ2
A · σ2

B

s = E[max(A, B)] (4.12)

If A and B are Gaussian random variables, analytical forms for cov(max(A, B), A)

and cov(max(A, B), B) are available, and thus the values p, q and s can be

computed for the regression, while the error term eRc can be obtained by

matching the exact value of variance of max(A, B) from Clark’s result in [22].

• Using the concept of tightness probability to approximate max(A, B).

Given random variables A and B, the tightness probability TA of A is defined

as the probability that A is greater than B: TA = Prob(A > B). The

tightness probability TB of B is similarly defined, and TA + TB = 1. In

the work of [80], the concept of tightness probability is utilized in the linear

approximation of max(A, B). If Capp is in a first-order canonical form to

approximate max(A, B), then the values of each ci, for i = 1, · · · , n can be

computed by:

ci = TA · ai + (1 − TA) · bi (4.13)

The values of c0 and cn+1 in Capp can be obtained by matching the exact mean

and variance of the max function.

Intuitively, the use of tightness probabilities TA and TB = (1−TA) as weight-

ing coefficients can be justified by the reasoning that the larger the tightness

probability TA, the more likely that max(A, B) equals A. Figure 4.1 shows

the approximation of the maximum of two canonical forms A and B with one

72



process variable ΔX. In the figure, A and B are shown with thick dashed

lines, and the exact maximum is a piecewise linear function C = max(A, B)

consisting of two pieces shown with bold solid lines. The first-order approxi-

mation Cappr is a line with a slope more than the slope of line A and less than

the slope of line B. The line Cappr is closer to line A than to line B, because

the probability of A > B is larger than that of A < B by comparing the cor-

responding intervals of ΔX. In case of multiple varying process parameters,

we have a similar picture but with hyperplanes instead of lines.

Theoretically, if A and B are both Gaussian random variables in first-order

canonical forms, the use of tightness probabilities in the approximation of

max(A, B) happens to be able to predict the result of a linear regression.

This can be verified, for instance, by the formulas for linear regression in

(4.12). In (4.12), if Clark’s results are used, we get p = Φ(β) and q = Φ(−β),

and thus each coefficient ci of Capp can be computed by:

ci = p · ai + q · bi = Φ(β) · ai + Φ(−β) · bi (4.14)

Note that the value of Φ(β) is in fact the probability that the Gaussian random

variable A−B is greater than zero, which is the tightness probability of A, and

similarly Φ(−β) is the tightness probability of B. Therefore, the expression

(4.13) has exactly same form as the linear regression (4.14.)

The interpretations above provide three possible frameworks for statistical ap-

proximation of max(A, B) in parameterized SSTA for handling process variables

with Gaussian distributions and linear effects on delays. Any of the frameworks

can be further extended to handle process variables with non-Gaussian distribution

and nonlinear delay effects. In next section, to incorporate non-Gaussian and/or

nonlinear function process variations, the ideas of approximating max(A, B) with
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Figure 4.1: Linear approximation of maximum of two canonical forms A and B,

where A = a0 +a1ΔX and B = b0 +b1ΔX. Since ΔX is Gaussian-distributed, only

the range from [−3σ, 3σ] is illustrated. The two-piece bold solid lines C=max(A,B)

shows the exact maximum of A and B. The dotted line pointed to by Cappr =

c0 + c1ΔX is the approximation of the max function.

the concept of tightness probabilities will be extended. However, in this case, the

approximation is a heuristic, rather than an approach that can compute the exact

same result of the linear regression of the max function.

4.3 Framework for Handling Non-Gaussian and/or

Non-linear Function Parameters

In this section, we present a generalized framework and an efficient parameter-

ized SSTA method that can handle arbitrarily distributed process parameters and

arbitrary delay functions: The first-order canonical form is first extended to a gener-

alized canonical form in order to incorporate non-Gaussian-distributed parameters

and nonlinear delay function parameters. The sum and max functions are then
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extended to variables in the generalized canonical forms, and an efficient method

that can compute these functions are described in the following sections.

4.3.1 A Generalized Canonical Form for the Delay

A generalized canonical form of gate or wire delay is defined by extending the form

of (4.1) as follows:

A = a0 +

nLG∑
i=1

aLG,i · ΔXLG,i + fA(ΔXN ) + an+1 · ΔRa (4.15)

Here a0 is the mean value of the delay, ΔXLG = {XLG,1, XLG,2, · · · , XLG,nLG
} is the

set of random variables for the global sources of variation that are both Gaussian-

distributed and have linear effects on delay, and nLG is number of such types of

variations. The sensitivity of the delay to ΔXLG,i is given by aLG,i. We also define a

set of random variables, of cardinality nNLG, ΔXN = {ΔXN,1, ΔXN,2, · · ·XN,nNLG
}.

The elements of this set correspond to the global sources of variations that are non-

Gaussian-distributed or have nonlinear effects on the delay, and fA is a function

describing the dependence of the delay on non-Gaussian and nonlinear function

parameters, with a mean value that is normalized to zero. Finally, ΔRa is a nor-

malized Gaussian parameter that represents local sources of variations, and an+1 is

its sensitivity to the delay.

The generalized canonical form differs from the original first-order canonical

form of delay only in the term fA(ΔXN ) that describes dependencies of A on non-

Gaussian and nonlinear function parameters. For convenience, this term is referred

to as a non-Gaussian nonlinear term in this chapter. Note that fA can be either

a nonlinear function of non-Gaussian-distributed process parameters, or a linear

function of non-Gaussian process parameters, or a nonlinear function of Gaussian
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process parameters. The function fA can be a function of arbitrary type, and the

non-Gaussian parameters can have any arbitrary probability density function. For

numerical computations, nonlinear functions and non-Gaussian distributions can

be specified by tables.

4.3.2 The Computation of the sum Function

As in the case for first-order canonical forms, it is straightforward to compute the

sum function for two random variables, each specified in generalized canonical form.

If C = A + B, where A and B are both in generalized canonical form, then C can

also be expressed in a generalized canonical form, with its coefficients specified by:

c0 = a0 + b0 (4.16)

cLG,i = aLG,i + bLG,i (1 < i < nLG)

fc(ΔXN ) = fA(ΔXN) + fB(ΔXN)

The computation of c0 and each cLG,i is simple. The term fc(ΔXN ) is obtained by

computing the sum of the non-Gaussian nonlinear terms of A and B. In practice,

this can be computed by numerically summing the tables describing fA(ΔXN) and

fB(ΔXN).

4.3.3 The Computation of the max Function

It is necessary to use an approximation in computing the max of two random

variables, each specified in generalized canonical form. In order to preserve the

correlations of delays, a random variable Capp in generalized canonical form is used

to approximate C = max(A, B). The framework introduced in Section 4.2 for
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computing Capp can be applied here, by using the concept of tightness probability:

c0 = E[max(A, B)] (4.17)

cLG,i = TAaLG,i + (1 − TA)bLG,i, for 1 < i < nLG

fc(ΔXN) = TAfA(ΔXN) + (1 − TA)fB(ΔXN )

As in the case for first-order canonical form, this approximation for the maxi-

mum of two generalized canonical forms is a linear approximation: c0 is matched

with the exact mean value of C = max(A, B); Capp is a linear combination of A and

B using the tightness probabilities, where the coefficient cLG,i is computed as a lin-

ear combination of coefficients aLG,i and bLG,i, and the non-Gaussian nonlinear term

fC as a linear combination of functions fA and fB, weighted by the corresponding

tightness probabilities TA and TB, respectively. The sensitivity coefficient cn+1 for

the local independent source of variations is computed so as to make the variance

of Cappr equal to the variance of the exact maximum C = max(A, B), where the

exact variance σ2
C is expressed through the mean and the second moment as:

σ2
C = E[max(A, B)2] − (E[max(A, B)])2 (4.18)

Figure 4.2 graphically shows the interpretation of a linear approximation for the

maximum of generalized canonical forms that depend only on one nonlinear function

parameter. The canonical forms for A and B are shown using thick dashed curves

in the figure, and the exact maximum C = max(A, B) is shown using a bold solid

curve. The approximation of the maximum, Cappr, is represented by a solid thin

curve: here, the curve of Cappr is closer to curve A, because, as can be observed in

Figure 4.2, max(A, B) is more often equal to A than to B; in other words, A has

a higher probability of being the maximum.
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Figure 4.2: Approximation of the maximum of two generalized canonical forms A

and B, where A = a0 + fA(ΔX) and B = b0 + fB(ΔX). The figure shows the

range of ΔX from [−3σ, 3σ] as ΔX is Gaussian-distributed. The bold solid curve

C = max(A, B) is the exact maximum of A and B. The dotted line pointed to by

Cappr = c0 + fC(ΔX) is the approximation of the max function.

Finding the approximation for the maximum of two generalized canonical forms

requires the computation of the tightness probability TA, the mean E[max(A, B)]

and the second moment E[(max(A, B))2] of max(A, B) that are defined as follows:

TA = Prob(A > B)

=

�
A>B

p(ΔXN , ΔXLG, ΔXa, ΔXb)dΔXN dΔXLGdΔXadΔXb (4.19)

E[max(A, B)] =

� ∞

−∞
...

� ∞

−∞
max(A, B)p(ΔXN , ΔXLG, ΔXa, ΔXb)dΔXN dΔXLGdΔXadΔXb

(4.20)

E[(max(A, B))2] =

� ∞

−∞
...

� ∞

−∞
(max(A, B))2p(ΔXN , ΔXLG, ΔXa, ΔXb)dΔXN dΔXLGdΔXadΔXb

(4.21)

where p(ΔXN , ΔXLG, ΔXa, ΔXb) is the joint probability density function of all

process parameter variations.

If the vector of ΔXN is empty, then the computations regress to the maximum

of two first-order canonical forms, which can be computed analytically in a very
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efficient way. However, when there are non-Gaussian probability distributed or

nonlinear function parameters, simple analytical formulas may not exist for the

maximum of two generalized canonical forms. In the remainder of this section, we

will focus mainly on the computation of tightness probability, the mean and the

second moment for the max function.

Computations of Tightness Probability, Mean and Second Moment

The computations of tightness probability, mean and second moment for the max

function involve the evaluations of the integrals in (4.19), (4.20) and (4.21) which

can be very hard to compute analytically for arbitrary non-Gaussian process para-

meter PDFs and arbitrary nonlinear functions, fA. The obvious way to solve this

problem is to apply a numerical technique, but this results in losing the desired

computational efficiency. In this section, we present a combined approach that

processes Gaussian and linear function parameters analytically, and uses a numeri-

cal technique only for non-Gaussian or nonlinear function parameters. The method

is efficient for realistic cases where most sources of variations can be captured accu-

rately enough by Gaussian distributions and linear delay functions, and only a few

of them demonstrate significant nonlinear behavior or non-Gaussian distribution.

Therefore, as will be illustrated in the experimental results section, the proposed

technique does not reduce the efficiency of dealing with Gaussian and linear func-

tion parameters, and can handle additionally up to 7 to 8 non-Gaussian and/or

nonlinear function process parameters with reasonable run-times.

There are two equivalent ways of presenting the technique for computating the

tightness probability, mean and the second moment. One is based on conditional

probability and conditional moments, while the other uses transformation of the

integrals defining the tightness probability, mean and the second moment. We begin
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with a presentation of the first approach.

The generalized canonical form in expression (4.15) can be reorganized by com-

bining the non-Gaussian nonlinear term and the mean value a0:

A = (a0 + fA(XN )) +

nLG∑
i=1

aLG,i · ΔXLG,i + an+1 · ΔRa (4.22)

Then, for the fixed values of the non-Gaussian and nonlinear function parameters

ΔXN , A can be regarded a first-order canonical form, ACond, with only Gaussian

and linear function parameters and its mean value is a0 + fA(XN). Now, consider

two generalized canonical forms A and B represented in the form of Equation (4.22).

When all ΔXN are at fixed values, the conditional tightness probability TA,cond, con-

ditional mean c0,cond and conditional second moments m2,cond of max(A, B) become

functions of non-Gaussian and nonlinear function parameters ΔXN :

TA,cond(ΔXN ) = P (A > B|ΔXN) (4.23)

c0,cond(ΔXN ) = E[max(A, B)|ΔXN ]

m2,cond(ΔXN ) = E[(max(A, B))2|ΔXN ]

Here, we assume that non-Gaussian and nonlinear function parameters ΔXN are

independent of all of the Gaussian and linear function parameters ΔXLG. In fact,

this is a rather valid assumption: correlated random variables tend to have similar

distributions, and if a linear parameter is correlated with a nonlinear one, indepen-

dence can be achieved by orthogonal transformation techniques, such as principal

component analysis or independent component analysis. Therefore, the joint con-

ditional probability density function of ΔXLG, under the condition of frozen values

of ΔXN , is simply the joint probability density function of the ΔXLG:

p(ΔXLG|ΔXN) = p(ΔXLG) (4.24)
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Thus, we can use analytical Clark’s formulas in [22] for computing the conditional

tightness probability, mean and second moments for the maximum of two general-

ized canonical forms, under the condition that the values of all non-Gaussian and

nonlinear function parameters are frozen; however, a0 and b0 should be substituted

by a0 +fA(ΔXN) and b0+fB(ΔXN). Since this method uses only analytical formu-

las, the required values can be computed efficiently. The actual values of tightness

probability, mean, and second moment of max(A, B) can be computed by integrat-

ing the conditional tightness probability, mean and second moment over the space

of non-Gaussian and nonlinear function parameters with their joint probability

density function:

TA =

∫ ∞

−∞
TA,cond(ΔXN)p(ΔXN )dΔXN (4.25)

E[max(A, B)] =

∫ ∞

−∞
c0,cond(ΔXN )p(ΔXN)dΔXN (4.26)

E[(max(A, B))2] =

∫ ∞

−∞
m2,cond(ΔXN)p(ΔXN)dΔXN (4.27)

The integrations in Equations (4.25), (4.26) and (4.27) can be evaluated nu-

merically. In the simplest case, it is performed by integrating numerically in m

orthogonal discretized regions of non-Gaussian and nonlinear function parameters.

Note that this discretized grid is created solely for the purpose of numerical in-

tegration, and it is unrelated to the grid in Chapter 2 that was used to model

spatial correlations. Inside each integration grid, we compute the conditional tight-

ness probability, conditional mean and conditional second moment by formulas

(4.23). Then the integrals of Equation (4.25), (4.26) and (4.27) can be computed

approximately as sums of corresponding values over all the discretization grids. For

example, the numerical formula for tightness probability is as follows:

TA =

m∑
k=1

TA,cond,k(ΔXN) · pk(ΔXN) · Vk (4.28)
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where TA,Cond,k(ΔXN ) is the conditional tightness probability that A > B under the

condition that non-Gaussian and nonlinear function parameters have fixed values

inside the kth grid of integration; pk(ΔXN) is the value of the joint probability

density function of the non-Gaussian and nonlinear function parameters in kth

grid; Vk is volume of the kth grid. The computational complexity of numerical

integration, performed by discretizing the integration region, is exponential with

respect to the number of nonlinear and non-Gaussian parameters. Our experiments

show that for reasonable accuracy it is enough to have as little as 5 to 7 discrete

points for each variable. This approach is applicable for cases with up to 7 to 8

nonlinear and non-Gaussian variables. For higher dimensions the integrals can be

computed by a Monte Carlo integration technique.

To better understand the technique for computing the required values of tight-

ness probability, mean and standard deviations of max(A, B), we now provide an

alternative explanation for an equivalent derivation by a transformation of the in-

tegrals. Let us start with the evaluation of tightness probability in Equation (4.19).

Given the condition that the ΔXN variables are independent of the ΔXLG variables,

the joint probability density function of all sources of variations can be decomposed

into:

p(ΔXN , ΔXLG, ΔXa, ΔXb) = p(ΔXN) · p(ΔXLG, ΔXa, ΔXb) (4.29)

Then the tightness probability TA can be computed by:

TA =

∫
A>B

p(ΔXN) · p(ΔXLG, ΔXa, ΔXb)dΔXLGdΔXadΔXbdΔXN (4.30)

For fixed values of ΔXN , the region A > B, where A and B are in generalized

canonical forms, can be regarded as comparing two Gaussian random variables
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AG(ΔXN ) and BG(ΔXN), where

AG = (a0 + fA(ΔXN )) +

nLG∑
i=1

aLG,iΔXLG,i + an+1ΔRa (4.31)

BG = (b0 + fB(ΔXN)) +

nLG∑
i=1

bLG,iΔXLG,i + bn+1ΔRb (4.32)

If we set

Q0(ΔXN ) =

∫
AG(ΔXN )>BG(ΔXN )

p(ΔXLG, ΔXa, ΔXb)dΔXLGdΔXadΔXb (4.33)

then the tightness probability can be computed as:

TA =

∫
A>B

p(ΔXN) · p(ΔXLG, ΔXa, ΔXb)dΔXLGdΔXadΔXbdΔXN

=

∫ ∞

−∞
p(ΔXN )Q0(ΔXN )dΔXN (4.34)

Note that Q0(ΔXN ) for fixed values of ΔXN is in fact the tightness probabil-

ity of AG(ΔXN) in max(AG(ΔXN ), BG(ΔXN)), where AG(ΔXN) and BG(ΔXN)

are both Gaussians for fixed ΔXN . Since there is an analytical formula [22] for

the tightness probability for Gaussian random variables, for fixed values of ΔXN ,

Q0(ΔXN) can be computed efficiently. The tightness probability TA in (4.34) can

then be obtained by numerical integration over the space of non-Gaussian and/or

nonlinear process parameters XN .

Similarly, using the independence between ΔXN and ΔXLG, the mean and

second moment of max(A, B) can be computed as:

E[max(A, B)] =

� ∞

−∞
...

� ∞

−∞
max(A, B) · p(ΔXN ) · p(ΔXLG, ΔXa, ΔXb)dΔXLGdΔXadΔXbdΔXN

=

� ∞

−∞
...

� ∞

−∞
p(ΔXN )Q1(ΔXN )dΔXN (4.35)

E[max(A, B)2] =

� ∞

−∞
...

� ∞

−∞
max(A, B)2 · p(ΔXN ) · p(ΔXLG, ΔXa, ΔXb)dΔXLGdΔXadΔXbdΔXN

=

� ∞

−∞
...

� ∞

−∞
p(ΔXN )Q1(ΔXN )dΔXN (4.36)
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where Q1(ΔXN ) and Q2(ΔXN) are defined as:

Q1(ΔXN ) =

� ∞

−∞
...

� ∞

−∞
max(AG(ΔXN ), BG(ΔXN ))p(ΔXLG, ΔXa, ΔXb)dΔXLGdΔXadΔXb (4.37)

Q2(ΔXN ) =

� ∞

−∞
...

� ∞

−∞
(max(AG(ΔXN ), BG(ΔXN )))2p(ΔXLG, ΔXa, ΔXb)dΔXLGdΔXadΔXb (4.38)

For fixed values of ΔXN , Q1(ΔXN ) and Q2(ΔXN ) are the mean and second

moment, respectively, for the maximum of two Gaussian random variables and

these can be found using analytical formulas. The mean and second moment of

max(A, B) can then be computed by numerical integration over the space of non-

Gaussian and/or nonlinear process parameters XN .

4.4 Implementation and Results

The proposed approach was implemented on top of EinsStat [80], an industrial

statistical timing analysis tool. In the implementation, a process variation can have

a non-Gaussian distribution and the delay dependence on a process parameter can

be a nonlinear function. These are both specified by tables using an appropriately

chosen discretization. The integrals for the mean, second moment and tightness

probability are computed by numerical integration.

We first tested our implementation on computing max(A, B) of two first-order

canonical forms A and B with non-Gaussian parameters:

A = 10 + 0.5 · ΔX1 + ΔX2 + 0.5 · ΔRa (4.39)

B = 10 + ΔX1 + 0.5 · ΔX2 + 0.5 · ΔRb (4.40)
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where ΔX1 and ΔX2 are random variables with lognormal probability distribu-

tions, ΔRa and ΔRb are Gaussian random variables for the locally independent

randomness. Figure 4.3(a) shows the probability density function of max(A, B)

computed by the proposed technique, by the original parameterized SSTA tech-

nique for linear Gaussian process parameters (where non-Gaussian distributions

are approximated with Gaussians having the same mean and standard deviation),

and by Monte Carlo simulation. The PDF computed by the proposed technique

matches the Monte Carlo results much closer than the PDF computed by the orig-

inal technique. The proposed technique and Monte Carlo simulation both predict

asymmetric PDFs with similar trends especially at the tails of PDFs. The PDF

computed by the original technique has a symmetric shape and substantially un-

derestimates the worst-case value.

Next, we tested our technique on max(A, B) with nonlinear (cubic) functions

of Gaussian parameters:

A = 10 + (ΔX1)
3/18 + (ΔX2)

3/9 + 0.5 · ΔRa (4.41)

B = 10 + (ΔX1)
3/9 + (ΔX2)

3/18 + 0.5 · ΔRb (4.42)

Figure 4.3(b) compares the PDFs computed by the original technique, by the

proposed technique and by Monte Carlo simulation. The original technique uses

linear approximation of nonlinear functions that passes through the same -3σ and

+3σ points. The proposed technique predicts virtually the same result as Monte

Carlo, while the original technique significantly over-estimates the standard devia-

tion.

To choose the number of discretization points that provides a good tradeoff

between accuracy and run-time, we ran tests on a small industrial design A (3,042

gates and 17,579 timing arcs). Table 4.1 shows the CPU-time of our technique for
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Figure 4.3: Comparison of PDFs for maximum of two generalized canonical forms

A and B. (a) shows the results on a non-Gaussian distribution, where A = 10 +

0.5 ·ΔX1 + ΔX2 + 0.5 ·ΔRa and B = 10 + ΔX1 + 0.5 ·ΔX2 + 0.5 ·ΔRb, where all

variational sources ΔXi are lognormal and ΔRa is Gaussian. (b) shows results on

a nonlinear delay function, where A = 10 + (ΔX1)
3/18 + (ΔX2)

3/9+0.5 ·ΔRa and

B = 10 + (ΔX1)
3/9 + (ΔX2)

3/18 + 0.5 · ΔRb, and all variational sources ΔXi and

ΔRa are Gaussian.

different numbers of non-Gaussian parameters, for 5 and 10 discretization points.

The run time was measured on a single processor IBM Risc System 6000 model

43P-681. It is observed that processing three non-Gaussian parameters with 10

discretized points takes about 40 times longer than handling all three parameters

as Gaussians, but for 5 discretization points, the run-time is only about 3 times

longer. The PDF plots for design A are provided in Figure 4.4 for when 5, 10

and 20 discretized points are used. We observe that as the difference between PDF

curves for 10 and 20 points is almost undistinguishable, the curve with 5 points also

gives a result that is accurate enough. For nonlinear functions, we saw a similar

dependence of run-time on the number of discretization points. Therefore, for our
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other experiments, we have used only 5 discretized points.

Table 4.1: Comparison of the run-time as the number of non-Gaussian distributed

sources, and the number discretization points, are varied.

Number of non-Gaussians 3 2 1 0

CPU- 10 points 69.17 7.53 2.14 1.38

times (s) 5 points 3.82 1.54 1.40 1.38

Figure 4.4: Comparison of accuracy versus run-time for Design A, when different

numbers of discretized points (5, 10 and 20 points) are used in the computation.

We performed statistical timing analysis of the same design A with linear de-

lay functions of three lognormally distributed global sources of variations and a

Gaussian uncorrelated local variation. The average values of delay sensitivities to

each global and local variation were set to 2% and 6% of the corresponding nominal

delay values, respectively. Figure 4.5 shows the probability density functions of the

latest arrival time computed by three different techniques. The proposed technique

gives a close match to the Monte Carlo result. In contrast, the PDF computed by

the original SSTA technique for linear, Gaussian case deviates substantially from

the Monte Carlo result. The PDF computed by Monte Carlo simulation is not

Gaussian, but closer to lognormal because all three global sources of variation have
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Figure 4.5: Comparison of PDFs of arrival time at a timing point for design A when

different approaches are applied. All global sources of variations are lognormally

distributed in the experiments. The proposed technique is shown by the bold solid

curve, the original technique using Gaussian approximations by the thin solid curve,

and the Monte Carlo results by the dotted bold curve.

lognormal distributions. Unlike the proposed method, the original SSTA technique

for the linear, Gaussian case approximates all delays with a Gaussian distribution,

and therefore, it is hard for it to estimate the PDF well. The Monte Carlo predicts

the 0.1% and 99.9% confidence points of path delays as 19.4 ns and 32.0 ns, re-

spectively. The proposed algorithm estimates similar values of 19.6 ns and 31.5 ns,

respectively, while the original technique computes these values as 17.8 ns and

27.0 ns, respectively.

In the second set of experiments, the three global sources of variation had

Gaussian distributions but the delays of circuit gates and wires were cubic func-

tions of these variations. The values of delay sensitivities to each global source

of variation and uncorrelated local variation were set to 2% and 6% of the corre-

sponding nominal delay values, respectively. Figure 4.6 shows PDFs and CDFs of

the circuit delay computed by three different techniques. The proposed technique

computes the same mean value as Monte Carlo, while the original technique overes-
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Figure 4.6: Comparison of PDFs of arrival time at a timing point for design A

when different approaches are applied. The delay functions at all circuit nodes

are nonlinear (cubic) function of the variational sources in the experiments. The

proposed technique is shown by the bold solid curve, the original technique using

Gaussian approximations by the thin solid curve, and the Monte Carlo results by

the dotted bold curve.

timates it. The original technique computes the 99.9% confidence point as 22.7 ns,

as against 22.9 ns from Monte Carlo, while the original technique over-estimates

it as 23.7 ns. Thus, we can conclude that when parameter variations have non-

Gaussian distributions, or gate and wire delay depends on parameters nonlinearly,

the proposed technique is essential to correctly predict circuit delay distribution

and manufacturing yield.

Table 4.2 shows the run time of statistical timing analysis for five industrial

designs when different numbers of non-Gaussian parameters are used in the analysis.

In the set of tests, there are three global variational process parameters. In the

case when the number of non-Gaussians is zero, the three global sources are set as

Gaussian random variables, and in general, when the number of non-Gaussians is

set to k (0 ≤ k ≤ 3), the remaining 3−k sources remain Gaussians. We see that, as
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Table 4.2: Comparison of run-time versus the numbers of non-Gaussian process

parameters for various sizes of industrial designs.

Ckt Number of Timing Number of Non-Gaussians

Name Gates Arcs 3 2 1 0

A 3,042 17,579 3.8 s 1.5 s 1.4 s 1.4 s

B 11,937 57,151 12.3 s 5.53 s 4.3 s 3.07 s

C 53,317 392,097 79.1 s 35.8 s 27.3 s 18.7 s

D 70,216 363,537 93.3 s 41.3 s 30.5 s 19.7 s

E 1,085,034 5,799,545 2,083.1 s 982.0 s 788.5 s 703.6 s

the number of non-Gaussian parameters increases to 3, the run-time is only about 3

to 5 times longer compared to the case without any non-Gaussian parameters. The

size of the designs for tests varies from 3,042 up to 1,085,034 gates. For the largest

design E, the run-time is only about 35 minutes. In contrast, for the smallest design

A, the run-time of Monte Carlo simulation is about 5 hours. However, due to the

large size of designs, Monte Carlo simulations cannot be completed in a realistic

amount of time, and thus the run-times are not provided in the table. Statistical

timing analysis with nonlinear parameters has approximately the same run time.

4.5 Conclusion

In this chapter, we have presented a novel and efficient technique for handling

arbitrary non-Gaussian and nonlinear function parameters in parameterized block-

based SSTA. Our approach is based on an extension of the first-order canonical form

for representing delay and arrival time variations. Therefore this technique is fully

compatible with the parameterized SSTA approach for Gaussian and linear func-

tion parameters presented in Chapter 3, and preserves its computational efficiency
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in processing such types of process parameter variations. The experimental results

showed that the probability distributions of circuit delays computed by the new

technique are closer to the results of Monte Carlo simulations than the original pa-

rameterized SSTA which approximates non-Gaussian distributions with Gaussians

and nonlinear functions with linear functions, especially at the 99.9% confidence

level. It should be also noted that in many cases non-Gaussian distributions of pa-

rameter variations can be approximated with Gaussians with reasonable accuracy,

and only significantly asymmetric distributions requires handling as non-Gaussians.

This conclusion is very important in practice because it justifies approximating most

parameter distributions by Gaussians.

The limitation of the algorithm is that its run-time is exponential to the num-

ber of non-Gaussian and/or nonlinear function parameters. To further improve the

efficiency, it is possible to develop techniques that can compute the max function

analytically. In practice, as the number of non-Gaussian and/or nonlinear func-

tion parameters is not large, the algorithm is very efficient and provides a general

framework for SSTA handling non-Gaussian parameters and nonlinear functions of

delays. The method can be used to validate the approximation of process parame-

ters as Gaussians and usage of linear delay functions, and then selectively apply

crucial process parameters as non-Gaussian distributed or with nonlinear functions.

The method is also important for sign-off timing analysis.
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Chapter 5

Prediction of Leakage Power

Under Uncertainties

In this chapter, we present a method to analyze the leakage current of a circuit

under process variations, considering inter-die and intra-die variations as well as the

effect of the spatial correlations of intra-die variations. A lognormal distribution is

used to approximate the leakage current of each gate and the total chip leakage is

achieved by summing up the lognormals. In this work, both subthreshold leakage

and gate tunneling leakage are considered. The proposed method is shown to be

effective in predicting the CDF/PDF of the total chip leakage.

5.1 Introduction

Leakage power is increasing drastically with technology scaling, and has already

become a substantial contributor to the total chip power dissipation. According to

International Technology Roadmap for Semiconductors (ITRS) [7], leakage power is
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expected to increase to 50% of the total chip power and to dominate the switching

power of a circuit over the next few generations. Consequently, it is important

to accurately estimate leakage currents so that they can be accounted for during

design, and so that it is possible to effectively optimize the total power consumption

of a chip.

The major components of leakage in current CMOS technologies are due to

subthreshold leakage and gate tunneling leakage. For a gate oxide thickness, Tox,

of over 20Å, the gate tunneling leakage current, Igate, is typically very small [42],

while the subthreshold leakage, Isub, dominates other types of leakage in circuit.

For this reason, there have been extensive studies on subthreshold leakage over the

last ten years [38,69]. However, the gate tunneling leakage is exponentially depen-

dent on gate oxide thickness, e.g., a reduction in Tox of 2Å will result in an order

of magnitude increase in Igate. Therefore, with the continuous scaling of gate oxide

thickness, Igate is no longer negligible and is likely to dominate other leakage mech-

anisms in future generations, at least until new high-K dielectrics are introduced.

At this time, it is unclear when these will be introduced, and gate leakage is already

seen to be very significant in 90nm, 65nm and 45nm technologies [7], so that its

analysis is of profound importance.

In the literature, several research works on the analysis and minimization of

total circuit leakage including the effect of Igate have been conducted [42]. The

analysis of total leakage power of circuit is complicated by the state dependency of

subthreshold and gate tunneling leakage, and the interactions between these two

leakage mechanisms.

An added complication, which has been less widely studied, arises due to the

increasing importance of process variations in cutting-edge technologies. As a result

of this, the values of all process parameters can no longer be considered to be con-
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stants, but must be modeled as random variables that are described by probability

density functions. These variations translate into uncertainties in circuit perfor-

mance metrics. Specifically, total circuit leakage also becomes a random variable

that depends on the variations of fundamental process parameters that it is most

sensitive to parameters such as the transistor effective gate length and the gate

oxide thickness.

Under inter-die variations, if the leakage of all gates or devices are sensitive to

the process parameters in similar ways, the circuit performance can be analyzed

at multiple process corners using deterministic analysis methods. Otherwise, or

with intra-die variations, statistical methods must be used to correctly predict the

leakage. Specifically, the gate leakage can vary exponentially with these parameters,

the simple use of worst-case values for all parameters can result in exponentially

larger leakage estimates than are actually obtained. While these will certainly be

pessimistic, the inaccuracy in these values makes them practically useless.

Most of the previous works on statistical performance analysis has focused on

statistical timing analysis, and only a few works have investigated the variation of

leakage power under the effect of process variations [52, 55, 64, 65, 70]. In [55, 70],

analytical methods were proposed to estimate the mean and standard deviation

of the total chip subthreshold leakage power under intra-die parameter variations.

In [52], gate tunneling and the reverse biased source/drain junction band-to-band

tunneling (BTBT) leakage, and the correlations among these components were in-

cluded, in addition to subthreshold leakage, in the analysis of total leakage. In [65],

the probability density function of the total chip subthreshold leakage was derived.

The authors of [64] presented an analytical framework that provides a closed form

expression for the total chip leakage current as a function of process parameters

that can be used to estimate yield under power and performance constraints. How-
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ever, none of these have considered the effects of spatial correlations in intra-die

process variations.

In this chapter, we propose a method for predicting the distribution of total

circuit leakage power, including subthreshold and gate tunneling leakage and their

interactions, under both inter-die and intra-die variations of parameters. The spa-

tial correlations in intra-die variations and the correlation between these two leakage

mechanisms are also considered.

The remainder of the chapter is organized as follows. Section 5.2 formulates the

problem that we will solve here. A first method for estimating the distribution of

full-chip leakage power is given in Section 5.3, and this is followed by an improved

approach, presented in Section 5.4. Finally, a list of experimental results are shown

in Section 5.5.

5.2 Problem Description

The total leakage power consumption of a circuit is input-pattern-dependent, i.e.,

the value differs as the input signal to the circuit changes, because the leakage power

consumption, due to subthreshold and gate tunneling leakage, of a gate depends on

the input vector state at the gate. As illustrated in [3], the dependency of leakage

on process variations is more significant than on input vector states. Therefore, it

is sufficient to predict the effects of process variations on total circuit leakage by

studying the variation of average leakage current for all possible input patterns to

the circuit. However, it is impractical to estimate the average leakage by simulating

the circuit at all input patterns, and thus an input pattern-independent approach

is more desirable.
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In switching power estimation, probabilistic approaches [54] have been used

for this purpose. The work of [3] proposed a similar approach that computes the

average leakage current of each gate and estimates the total average circuit leakage

as a sum of the average leakage currents of all gates:

Iavg
tot =

Ng∑
k=1

Iavg
leak,k =

Ng∑
k=1

∑
∀veci,k

Prob(veci,k) · Ileak,k(veci,k) (5.1)

where Ng is the total number of gates in the circuit, Iavg
leak,k is the average leakage

current of the kth gate, veci,k is the ith input vector at the kth gate, Prob(veci,k)

is the probability of occurrence of veci,k, and Ileak,k(veci,k) is the leakage current of

the kth gate when the gate input vector is veci,k.

In this work, we will solve the problem of computing the probability distribution

of the average circuit leakage current Iavg
tot , formulated in Equation (5.1), under

process variations. Both subthreshold and gate tunneling leakage currents are taken

into account in the computation. We consider process variations of transistor gate

length Leff and gate oxide thickness Tox, since the subthreshold and gate tunneling

leakage currents are most sensitive to these parameters [52, 75]. We also assume

that Leff and Tox are normally distributed, with values of Leff spatially correlated

and Tox uncorrelated in different gates inside the chip as in Chapter 3. However, the

procedure used herein is not restricted to these assumptions, and can be generalized

to other spatially correlated or uncorrelated parameter variations.
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5.3 Computing the Distribution of Full-chip Leak-

age Current

We will now present the methodology used to estimate the distribution of average

full-chip leakage current, Iavg
tot , under process variations. As implied by Equation

(5.1), the distribution of Iavg
tot can be calculated in two steps: first, computing the

distribution of each Ileak,k(veci,k), the leakage current of the kth gate when the gate

input vector is veci,k; and second, finding the distribution of the weighted sum

of all Ileak,k(veci,k) terms. Since each Ileak,k(veci,k) can further be decomposed into

Isub,k(veci,k)+Igate,k(veci,k), where Isub,k(veci,k) and Igate,k(veci,k) are the subthresh-

old and gate tunneling leakage currents, respectively, for the kth gate with input

state veci,k, Iavg
tot can be computed as:

Iavg
tot =

Ng∑
k=1

∑
∀veci,k

Prob(veci,k) · (Isub,k(veci,k) + Igate,k(veci,k)) (5.2)

In the discussion that follows, we will first present how the distributions of

subthreshold leakage current, Isub,k(veci,k), and gate tunneling leakage current,

Igate,k(veci,k), are estimated in Section 5.3.1 and 5.3.2, respectively. The analytical

approach to obtain the probability density function for the total weighted sums

of all Isub,k(veci,k) and Igate,k(veci,k) terms will then be presented in Section 5.3.3.

As the same framework can be applied for computing the distribution of each

Isub,k(veci,k), for conciseness, we will use Isub for Isub,k(veci,k), and similarly, Igate

for Igate,k(veci,k), in later sections.
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5.3.1 Distribution of Subthreshold Leakage Current

The commonly used model for subthreshold leakage current through a transistor

expresses this current as [75]:

Isub = I0e
(Vgs−Vth)/nsVT (1 − e−Vds/VT ) (5.3)

Here, I0 = μ0Cox(Weff/Leff)V
2
T e1.8, where μ0 is zero bias electron mobility, Cox

is the gate oxide capacitance, Weff and Leff are the effective transistor width

and length, respectively, Vgs and Vds are gate-to-source voltage and drain-to-source

voltage, respectively, ns is the subthreshold slope coefficient, VT = kT/q is the

thermal voltage, where k is Boltzman constant, T is the operating temperature in

Kelvin (K), q is charge on an electron, and Vth is the subthreshold voltage.

It is observed that Vth is most sensitive to gate oxide thickness Tox and effective

transistor gate length Leff due to short-channel effects [75]. Due to the exponential

dependency of Isub on Vth, a small change on Leff or Tox will have a substantial

effect on Isub. From this intuition, we estimate the subthreshold leakage current per

transistor width by developing an empirical model through curve-fitting, similarly

to [52, 65]:

Isub = c × ea1+a2Leff +a3L2
eff +a4T−1

ox +a5Tox (5.4)

where c and the ai terms are the fitting coefficients.

In this way, Isub is modeled as an exponential function in the form of c × eU ,

where U is an explicit function of Leff and Tox. When Leff and Tox show process

variations, the exponent U , and thus Isub, become random variables. Since the

magnitude of process variations is observed to be around 10− 20% in practice, Isub

can be well approximated by expanding its exponent U using a first-order Taylor
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expansion at the nominal values of the process parameters:

Isub = c × eU0+β1·ΔLeff+β2·ΔTox (5.5)

where U0 is the nominal value of the exponent U , β0 and β1 are the derivatives of

U to Leff and Tox evaluated at their nominal values, respectively, and ΔLeff and

ΔTox are random variables representing for the variations in the process parameters

Leff and Tox, respectively.

Expression (5.5) for Isub can also be written as eln(c)+U0+β1·ΔLeff+β2·ΔTox. Since

ΔLeff and ΔTox are assumed to be Gaussian-distributed, Isub is seen as an expo-

nential function of a Gaussian random variable, with mean ln(c) + U0 and stan-

dard deviation
√

β2
1σ

2
Leff

+ β2
2σ

2
Tox

, where σLeff
and σTox are standard deviations of

ΔLeff and ΔTox, respectively.

In general, if x is a Gaussian random variable, then z = ex is a lognormal

distributed random variable and the probability density function of z is given by

[61]:

f(z) =
1

z
√

2πσ
e−(ln(z)−μ)2/(2σ2) (5.6)

where μ and σ are the mean and standard deviation of the Gaussian random vari-

able x, respectively. Therefore, it is obvious that Isub can be approximated as a

lognormally distributed random variable whose probability density function can be

characterized using the values of c, U0 and βi’s.

Since subthreshold leakage current has a well-known input state dependency

due to the stack effect [69], the PDFs of subthreshold leakage currents must be

characterized for all possible input states for each type of gate in the library, for

which the same approach described in this section can be applied. Once the library

is characterized, a simple look-up table (LUT) can then be used to retrieve the
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corresponding model characterized given the gate type and input vector state at a

gate.

5.3.2 Distribution of Gate Tunneling Leakage Current

In [15], an analytical model was proposed for the gate oxide tunneling current

density Jtunnel.

Jtunnel =
4πm∗q

h3
(kT )2(1 +

γkT

2
√

EB

)e
EF0,Si/SiO2

kT e−γ
√

EB (5.7)

Here m∗ is the transverse mass that equals 0.19m0 for electron tunneling and 0.55m0

for hole tunneling, where m0 is the free electron rest mass, h is Planck’s constant,

γ is defined as 4πTox

√
2mox/h, where mox is the effective electron [hole] mass in

the oxide, EB is the barrier height, EF0,Si/SiO2
= qφS − qφF − EG/2 is the Fermi

level at the Si/SiO2 interface, where φS is surface potential, φF is the Fermi energy

level potential, either in the Si substrate for the gate tunneling current through the

channel, or in the source/drain region for the gate tunneling current through the

source/drain overlap, and EG is the Si band gap energy.

In [15], the gate-tunneling current of PMOS devices is neglected due to the

larger effective mass and barrier height for holes compared to electrons at the

SiO2/Si interface. Moreover, only tunneling current in the gate-to-channel region is

considered, and edge direct tunneling (EDT) in the gate-to-drain and gate-to-source

overlap regions is ignored. This is because these overlap regions are significantly

smaller than the gate-to-channel region; moreover, EDT can be further reduced

using process technologies [74]. Therefore, in this work, the gate tunneling leakage

current is taken into account only for NMOS transistors at logic “1”.

Although the formulation (5.7) possesses a high accuracy, it does not lend itself

easily to the analysis of the effects of parameter variations. Therefore, we again use
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an empirically characterized model to estimate Igate per transistor width through

curve-fitting:

Igate = c′ × eb1+b2Leff+b3L2
eff +b4Tox+b5T 2

ox (5.8)

where c′ and the bi terms are the fitting coefficients.

Similar to the method for estimating the distribution of Isub, under the variations

of Leff and Tox, Igate can be approximated by applying first-order Taylor expansion

to the exponent U ′ of Equation (5.8):

Igate = c′ × eU ′
0+λ1·ΔLeff+λ2·ΔTox (5.9)

where U ′
0 is the nominal value of the exponent U ′, and λ0 and λ1 are the derivatives

of U ′ to Leff and Tox evaluated at their nominal values, respectively.

Under this approximation, Igate becomes a lognormal distributed random vari-

able, and its PDF can be characterized through the values of c′, U ′
0 and λ′

i. Since

the gate tunneling leakage current is input state dependent, the PDFs of the Igate

variables are characterized for all possible input states for each type of gate in the li-

brary, and a simple look-up table (LUT) is used for model retrieval while evaluating

a specific circuit.

5.3.3 Distribution of Full-Chip Leakage Current

Sections 5.3.1 and 5.3.2 show that each of Isub,k(veci,k) or Igate,k(veci,k), i.e., the

subthreshold or gate tunneling leakage current, respectively, of the kth gate when

its input vector is (veci,k), can be modeled as a lognormal random variable under

process variations. In this section, we will present the approach to find the dis-

tribution of Iavg
tot as formulated in Equation (5.2), which is a weighted sum of all
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Isub,k(veci,k) and Igate,k(veci,k) variables, weighted by Prob(veci,k) terms, the prob-

abilities of input vector veci,k at the gate. Since the probability of each veci,k can

be computed by specifying signal probabilities at the circuit primary inputs and

propagating the probabilities into all gates pins in the circuit, as in [3], in this

section, we focus on the computation of the PDF of the weighted sum.

As each of Isub,k(veci,k) or Igate,k(veci,k) has a lognormal distribution, it can easily

be seen that any multiplication by a constant maintains this property; specifically,

Prob(veci,k) · Isub,k(veci,k) and Prob(veci,k) · Igate,k(veci,k) are both lognormally dis-

tributed. Therefore, the problem of calculating the distribution of Iavg
tot becomes

that of computing the PDF of the sum of a set of lognormal random variables.

Furthermore, the set of lognormal random variables in the summation could be

correlated since:

• the leakage current random variables for any two gates may be correlated due

to spatial correlations of intra-die variations of process parameters

• within the same gate, the subthreshold and gate tunneling leakage currents

are correlated, and the leakage currents under different input vectors are

correlated, because they are sensitive to the same process parameters of the

same gate, regardless of whether these are spatially correlated or not.

In this section, we will present an efficient approach to predict the probabil-

ity density function of the full-chip leakage current, by computing the PDF of the

sum of correlated lognormal random variables, so that the spatial correlations of

process parameters, and correlations between different leakage components can be

correctly taken into account. This section is organized as follows. We first describe

Wilkinson’s method [2] for approximating a sum of correlated lognormal random
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variables. Next, a more efficient approach is then proposed to reduce the com-

putational complexity of this calculation. For clarity, the approach described first

considers only intra-die variations of process parameters. The extension to handling

inter-die variations is trivial, and will be shown briefly in the end of this section.

Finding the Sum of Correlated Lognormals by Wilkinson’s Method

Theoretically, the sum of several lognormal distributed random variables is not

known to have a closed form. However, it may be well approximated as a log-

normal, as is done in Wilkinson’s method [2]. That is, the sum of m lognormals,

S =
∑m

i=1 eYi , where each Yi is a normal random variable with mean myi
and stan-

dard deviation σyi
, and the Yi variables can be correlated or uncorrelated, can be

approximated as a lognormal eZ , where Z is normally distributed, with mean mz

and standard deviation σz. In Wilkinson’s approach, the values of mz and σz are

obtained by matching the first two moments, u1 and u2, of eZ and S as follows:

u1 = E(eZ) = E(S) =
m∑

i=1

E(eYi) (5.10)

u2 = E(e2Z) = E(S2) = V ar(S) + E2(S) (5.11)

=

m∑
i=1

V ar(eYi) + 2

m−1∑
i=1

m∑
j=i+1

cov(eYi, eYj ) + E2(S)

=
m∑

i=1

V ar(eYi) + 2
m−1∑
i=1

m∑
j=i+1

(
E(eYieYj ) − E(eYi)E(eYj )

)
+ E2(S)

where E(.) and V ar(.) are the symbols for the mean and variance values of a random

variable, and cov(., .) represents the covariance between two random variables.

In general, the mean and variance of a lognormal random variable eXi , where

Xi is normal distributed with mean mxi
and standard deviation σxi

, is computed
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by:

E(eXi) = emxi+σ2
xi

/2 (5.12)

V ar(eXi) = e2mxi+2σ2
xi − e2mxi+σ2

xi (5.13)

The covariance between two lognormal random variables eXi and eXj can be com-

puted by:

cov(eXi , eXj) = E(eXi · eXj ) − E(eXi)E(eXj) (5.14)

Superposing Equations (5.12), (5.13) and (5.14) into Equations (5.10) and (5.11)

results in:

u1 = E(eZ) = emz+σ2
z/2 = E(S) =

m∑
i=1

(emyi+σ2
yi

/2) (5.15)

u2 = E(e2Z) = e2mz+2σ2
z = E(S2) (5.16)

=

m∑
i=1

(e2myi+2σ2
yi − e2myi+σ2

yi ) + 2

m−1∑
i=1

m∑
j=i+1

(e
myi+myj +(σ2

yi
+σ2

yj
+2rijσyiσyj )/2

−emyi
+σ2

yi
/2e

myj +σ2
yj

/2
) + u2

1

where rij is the correlation coefficient between Yi and Yj.

Solving (5.15) and (5.16) for mz and σz yields:

mz = 2 ln u1 − 1

2
ln u2 (5.17)

σ2
z = ln u2 − 2 lnu1 (5.18)

The computational complexity of Wilkinson’s approximation can be analyzed through

the cost of computing mz and σz. The computational complexities of mz and σz

are determined by those of u1 and u2, whose values can be obtained using the for-

mulas in (5.15) and (5.16). It is clear that the computational complexity of u1 is

dominated by that of u2, since the former involves only one-looped sum, while the
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latter also contains a double-looped one: the complexity of calculating u1 is O(m),

while that of u2 is O(m ·Ncorr), where Ncorr is the number of correlated pairs among

all pairs of Yi variables. The cost of computing u2 can also be verified by examin-

ing the earlier expression of u2 in (5.11), in which the double-looped sum, in fact,

corresponds to the covariance of Yi and Yj , which becomes zero when Yi and Yj

are uncorrelated. Therefore, if rij 	= 0 for all pairs of Yi and Yj, the complexity of

calculating u2 is O(m2); if rij = 0 for all pairs of i and j, the complexity is O(m).

As explained earlier, for full-chip leakage analysis, the number of correlated

lognormal distributed leakage components in the summation could be extremely

large, which could lead to a prohibitive amount of computation. If Wilkinson’s

method is applied directly, when the total number of gates in the circuit is Ng,

the complexity for computing the sum will be O(N2
g ), which is impractical for large

circuits. In the remainder of this section, we will propose to compute the summation

in a more efficient way.

Reducing the Number of Correlated Lognormals to be Summed

Since Wilkinson’s method has a quadratic complexity with respect to the number of

correlated lognormals to be summed, we now introduce mechanisms to reduce the

number of correlated lognormals in the summation, to improve the computational

efficiency.

First, the number can be reduced by identifying dominant states for subthreshold

and gate tunneling leakage currents for each type of gate in the circuit.

Due to state dependencies of subthreshold and gate tunneling leakage currents,

the computation of full-chip leakage current must take into account all possible

input patterns at all gates in the circuit. In general, for a gate with Ninpin input pins,
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the number of input states to be considered can be 2Ninpin . However, the leakage

currents at some input states may not be as important as at others. It is sufficient

to identify the important ones, corresponding to dominant states, and consider the

leakage currents only at dominant states without losing much of accuracy.

When only subthreshold leakage current is considered, the dominant states for

subthreshold leakage current in a transistor stack correspond to those with only

one “off” transistor in the pull-up or pull-down chain [38, 69]. In this way, for a

transistor stack of length q, the number of input states to consider is reduced to a

much smaller size, q instead of 2q. However, when gate tunneling leakage current is

also considered, the dominant states must be characterized based on both leakage

mechanisms and their interactions.

The interaction effects between the two mechanisms are analyzed in [42] by

studying three scenarios for the middle transistor tn in a NMOS transistor stack of

length 3, as shown in Figure 5.1: in scenario (a) where tn has a conducting path to

supply and nonconducting path to gate output, Igate does not interact with Isub in

the stack and the total leakage in stack is the sum of the two; in scenario (b) where

tn has a nonconducting path to supply and conducting path to gate output, Igate

is one order of magnitude smaller than that of case (a) and can be ignored safely;

in scenario (c) where tn has a nonconducting path to supply and gate output, due

to the interaction between Isub and Igate, Isub can be ignored safely. For details, the

reader is referred to [42].

The analysis shows that a dominant state for subthreshold leakage current may

not be one for gate tunneling leakage current, e.g., scenario (b) is a dominant state

for Isub, but not Igate, and scenario (c) is a dominant state for Igate, but not Isub.

Therefore, one way of identifying the dominant states for leakage current for a

gate is to separately determine the set of dominant states for the subthreshold and
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Figure 5.1: Three scenarios of combined Isub and Igate for a three-input NMOS

transistor stack [42].

gate tunneling leakage currents. From the analysis above, the dominant states for

subthreshold and gate tunneling leakage currents can be identified by the following

rules. For a transistor stack, the set of dominant states for subthreshold leakage

current remains being those with only one “off” transistor in the pull-up or pull-

down chain, since the value of Isub is strongly reduced only when there is more

than one “off” transistor in the pull-up or pull-down chain. The determination of

dominant states for gate tunneling leakage current is based on the following rule:

in a transistor stack, the gate tunneling leakage current of a transistor is negligible

if there is a conducting path to the gate output from this transistor.

To show the accuracy of leakage current estimation considering only dominant

states under process variations, we compare, by Monte Carlo simulation, the distrib-

ution of the average subthreshold leakage current,
∑

∀veci,k
Prob(veci,k) · Isub,k(veci,k),

and the average gate tunneling leakage current,
∑

∀veci,k
Prob(veci,k) · Igate,k(veci,k),

for each type of gate in library using only dominant states with that using a full

set of input vectors, assuming all input vectors having equal probabilities of oc-

currence. Figure 5.2(a) shows as an example the PDF curves of simulations with
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dominant states and full set of states for average subthreshold leakage current for

a 3-input NAND gate when the 3σ values of Leff and Tox are 20%. A close match

is observed between these two PDF curves, and the same observation can be made

when we compare the PDF curves of gate leakage for a 3-input NAND gate, using

full-simulation and dominant states, as shown in Figure 5.2(b). For all types of

gates in our library, the error can be controlled within 2%.
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Figure 5.2: Comparison of PDFs of average leakage currents using dominant states

with that of full input vector states for a 3-input NAND gate, by Monte Carlo

simulation with 3σ variations of Leff and Tox 20%. The solid curve shows the

result when only dominant states are used, and the starred curve corresponds to

simulation with all input vector states.

Secondly, instead of directly computing the sum of random variables of all leak-

age current terms, by grouping leakage current terms by model and grid, and cal-

culating the sum in each group separately first, the computational complexity in the

computation of full-chip leakage reduces to quadratic in the number of groups.

This is because, as will be explained in this section, the summation in each
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group can be computed in linear time with respect to the number of leakage terms

in each group. The results of the sums in all groups are then approximated as

correlated lognormal random variables that can be then computed directly using

Wilkinson’s method. Since the number of groups is relatively small, a calculation

that is quadratic in the number of groups is practically very economical.

Consider any dominant state for subthreshold leakage current that has only one

“off” transistor in the transistor stack. It is observed that the values of subthreshold

leakage currents per unit width, and thus their probabilistic distributions under

process variations, are almost the same for any two transistor stacks that have the

same number of “on” transistors between the drain of the only “off” transistor and

the output of the gate. For example, it is observed that the subthreshold leakage

current per unit transistor width is the same for the pull-down of a NAND4 in

state 0111, a NAND3 in state 011, a NAND2 in state 01, and an INV in state

0. Therefore, this equivalence can be used to compactly store the PDF of the

subthreshold leakage current per unit width in an LUT, and different types of

gates, with different stack lengths, can be characterized by the same LUT entry. If

q is the length of the longest stack in the library, the number of different models is

2q in the LUT of Isub (q each for Isub for the PMOS and the NMOS).

For a dominant state of the gate tunneling leakage current, it is observed that

if a transistor shows gate tunneling leakage, the value and probability distribution

of Igate can be determined by the number of “off” transistors between the leaking

transistor and its supply in the transistor stack. In this way, the number of distinct

models that store the gate tunneling leakage current per unit width is limited.

Specifically, the total number of different models used in the LUT is only q − 2, if

the length of the longest stack in the library has length q.

Therefore, the total number of distinct models used in the LUT for the PDFs
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of the subthreshold and gate tunneling leakage currents is reduced to 2q + q − 2,

where q is the length of the longest stack in the library. Next, we will show that if

the leakage current terms to be summed in Equation (5.2) are grouped by the LUT

model that they correspond to and their grid location, then the sum in each group

can be computed in linear time with respect to the number of leakage terms in the

group. For illustration purposes, we only describe the computation of grouped sum

for subthreshold leakage current; the computation of gate leakage current proceeds

along similar lines.

The subthreshold leakage current term here refers to the term Prob(veci,k) ·
Isub,k(veci,k) in Iavg

tot in Equation (5.2). If Isub,k(veci,k) corresponds to the pth model

in the LUT for PDF of subthreshold leakage current and it is located in the lth grid,

then Prob(veci,k) · Isub,k(veci,k) can be written as αeU0,p+β1,p·ΔLl
eff+β2,p·ΔTox,k, where

the values of U0,p, β1,p and β2,p come from the pth model in the LUT; the coefficient

α is Prob(veci,k) · Weff,k · cp, where cp is the coefficient from the pth model; ΔLl
eff

represents the variation of Leff in the lth grid in the spatial correlation model, and

ΔTox,k the variation of Tox at this gate.

As we write the summation over all these lognormals, we observe that several

different gates within the circuit may use the same LUT model: in fact, in general,

the number of models is dramatically smaller than the total number of gates, and

in practice, can be upper-bounded by a constant. Let Isub,p,l = {I1
sub,p,l, · · · , Is

sub,p,l},
where s is the size of the set, be the group of all subthreshold leakage current terms

that use the pth model in the LUT and lie in the lth grid. Obviously, any Ij
sub,p,l can

be expressed in the form of:

Ij
sub,p,l = αje

U0,p+β1,p·ΔLl
eff+β2,p·ΔTox,j (5.19)

Note that each Ij
sub,p,l has the same values of U0,p, β1,p and β2,p from the pth model,
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but the values of αj may be different for different Ij
sub,p,l terms, corresponding to

different probabilities of occurrence, or different transistor widths. All Ij
sub,p,l terms

share the same variable ΔLl
eff since they are in the same lth grid, but each Ij

sub,p,l

has a different ΔTox,j variable, with all such ΔTox,j variables being independent of

each other (since the values of gate oxide thickness are uncorrelated from gate to

gate).

Then, the sum of all terms in Isub,p,l can be then written as:

Isum
sub,p,l =

s∑
j=1

Ij
sub,p,l = eU0,p+β1,p·ΔLl

eff ·
s∑

j=1

αj · eβ2,p·ΔTox,j (5.20)

Due to the independence of the Tox,j variables, the sum
∑s

j=1 αj · eβ2,p·ΔTox,j is

in fact a sum of independent lognormal random variables. As explained earlier in

the description of Wilkinson’s method, the sum of independent lognormal random

variables can be approximated by a lognormal random variable with computational

complexity linear to the number of independent lognormals. Therefore, the product

of the term, eU0,p+β1,p·ΔLl
eff , with the lognormal approximation of

∑s
j=1 αj ·eβ2,p·ΔTox,j

is also approximated as a lognormal, and the computational complexity of perform-

ing this calculation is O(s).

Now that each Isum
sub,p,l is approximated as a lognormal random variable, the full-

chip leakage can be calculated as the sum

Nmodels∑
p=1

n∑
l=1

Isum
sub,p,l, (5.21)

where Nmodels is the total number of models in the library, and n is the number of

grid partitions in the spatial correlation model. Note that any two Isum
sub,p,l terms may

be correlated due to spatial correlations of the process parameter Leff , and thus the

computational complexity of the sum is O(N2
models·n2). Since the number of different
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models of a library is upper-bounded by a constant, and the number of grids is

substantially smaller than the number of gates in the circuit, the computational

complexity for estimating the distribution of full-chip leakage current is reduced

from O(N2
g ) to a substantially smaller constant O(N2

models · n2).

Handling Correlations Between Leakage Currents in Different Groups

As described in the previous subsection, in order to reduce the number of correlated

lognormals to sum, the leakage current terms are summed in groups, where each

group is a set of terms that correspond to the same grid and the same model from

the LUT. Let Isum
p1,l and Isum

p2,l be the results of two grouped sums that are both

in the same lth grid, and utilizing models p1 and p2 from the LUT, respectively.

According to Equation (5.20), they can be computed as:

Isum
p1,l = eU0,p1+β1,p1·ΔLl

eff ·
s1∑

j=1

αj,p1 · eβ2,p1·ΔTox,j = eU0,p1+β1,p1·ΔLl
eff · eξ (5.22)

Isum
p2,l = eU0,p2+β1,p2·ΔLl

eff ·
s2∑

j=1

αj,p2 · eβ2,p2·ΔTox,j = eU0,p2+β1,p2·ΔLl
eff · eγ (5.23)

where s1 and s2 are the number of terms in Isum
p1,l and Isum

p2,l , respectively. The

term eξ is the random variable approximating
∑s1

j=1 αj,p1 · eβ2,p1·ΔTox,j , and eγ for∑s2
j=1 αj,p2 · eβ2,p2·ΔTox,j , as described in the previous subsection.

It should be noted that
∑s1

j=1 αj,p1 ·eβ2,p1·ΔTox,j and
∑s2

j=1 αj,p2 ·eβ2,p2·ΔTox,j may be

correlated. This is because although Isum
p1,l and Isum

p2,l correspond to different models

in the LUT, they may include leakage currents of the same gate, and obviously

leakage currents associated with the same transistors are correlated. Therefore, eξ

and eγ are correlated, and the correlation between ξ and γ must be considered while

adding up the sums of all groups for full-chip leakage current calculation.
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The correlation between eξ and eγ can be computed by:

cov(eξ, eγ) = E(eξ+γ) − E(eξ)E(eγ) (5.24)

= eμξ+μγ+(σ2
ξ+σ2

γ)/2(ecov(ξ,γ)/2 − 1)

where μξ [μγ ] and σγ [σγ ] are the mean and standard deviation of ξ [γ], respectively.

Thus, the covariance between ξ and γ can be obtained by solving Equation

(5.24) for cov(ξ, γ):

cov(ξ, γ) = 2 log

(
1 +

cov(eξ, eγ)

eμξ+μγ+(σ2
ξ+σ2

γ)/2

)
(5.25)

In Equation (5.25), the mean and standard deviation of ξ and γ are known

values. Since eξ and eγ are approximations of
∑s1

j=1 αj,p1 ·eβ2,p1·ΔTox,j and
∑s2

j=1 αj,p2 ·
eβ2,p2·ΔTox,j , respectively, the value of cov(eξ, eγ) can be obtained as:

cov(eξ, eγ) = cov

(
s1∑

j=1

αj,p1 · eβ2,p1·ΔTox,j ,

s2∑
j=1

αj,p2 · eβ2,p2·ΔTox,j

)
(5.26)

Note that any two ΔTox,j variables are independent, and thus the value of the

above right hand side can easily be computed as:

∑
j

αj,p1 · αj,p2 · e(β2
2,p1+β2

2,p2)σ2
Tox,j

/2 · (eβ2,p1·β2,p2·σ2
Tox,j − 1) (5.27)

where σTox,j
is the standard deviation of ΔTox,j .

Handling Inter-die Variations

The described framework for statistical computation of full-chip leakage consider-

ing spatial correlations in intra-die variations of process parameters can easily be

extended to handle inter-die variations. To include the effects of inter-die varia-

tions, for each type of process parameter, a global random variable can be applied
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to all gates in the circuit to model this effect. For spatially correlated process

parameters, this is reflected as an update of the covariance matrix by adding to

all entries the variance of the global random variable. For spatially uncorrelated

process parameters, it introduces a correlation term between the leakage currents

of different gates. However, the same framework of estimating the distribution of

full-chip leakage current for handling intra-die variations proposed in Section 5.3

can be applied.

5.4 An Improved Algorithm, Hybridized with the

PCA-based Approach

In previous sections, we proposed to improve the computational complexity by

reducing the number of correlated lognormals to sum. Another possible approach

is to modify the structure of each lognormal random variable so that the summation

can be computed efficiently, as was done using a PCA-based method in the work

of [71]. In this section, we will first present the method proposed in [71], and an

improved method hybridized with the PCA-based approach will be proposed in the

following section.

5.4.1 PCA-based Method

The work of [71] proposes a PCA-based method to compute the full-chip leakage

considering the effect of spatial correlations of Leff . The principle of the method

is very similar to the PCA-based statistical timing analysis introduced in Chapter

3. In this method, our proposed spatial correlation model introduced in Chapter 2

is used. The leakage current of each gate is approximated by a lognormal random
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variable in a form similar to expression (5.5) or (5.9)1, and then the expression is

rewritten in a “PCA form” by expanding the variable ΔLeff as a linear function of

principal components. For example, let I i
sub be the subthreshold leakage current of

the ith gate originally written in a form similar to Equation (5.5) as:

I i
sub = eU0,i+β1,i·ΔLl

eff+β2,i·ΔTox,i (5.28)

Here, ΔLl
eff is the random variable for the variation of Leff in the lth grid, and

ΔTox,i is the variation of Tox at the ith gate. Note that for any i 	= j, ΔTox,i and

ΔTox,j are independent since Tox is spatially uncorrelated.

If principal component analysis is performed on the set of correlated variables

ΔL1
eff , · · · , ΔLn

eff , as explained in Section 3.3.2, then ΔLl
eff can be expressed as a

linear function of the set of principal components:

ΔLl
eff = al1 × L

′1
eff + · · ·+ alNp × L

′Np

eff (5.29)

where the L
′j
eff variables are the mutually independent principal components com-

puted from the covariance matrix of ΔL1
eff , · · · , ΔLn

eff , the coefficients alj of each

L
′j
eff are computed from principal component analysis, and Np is the number of

principal components.

Then, the PCA form of I i
sub is:

I i
sub = eU0,i+

�Np
t=1 ki

t·L
′t
eff+β2,i·ΔTox,i (5.30)

where each ki
t = al1 ·β1,i can be computed by comparing this equation with Equation

(5.29).

1In [71], only process parameter Leff is considered and an independent uncertainty term is

introduced for ΔLeff . For convenience, we do not distinguish such differences, since these factors

can easily be considered and incorporated in any framework.
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In [71], the sum I i
sub + Ij

sub is reapproximated again by a lognormal random

variable Ih
sub in PCA form:

Ih
sub = eU0,h+

�Np
t=1 kh

t ·L
′t
eff+βh

r ·r (5.31)

where r is a normalized Gaussian random variable generated by merging the two

terms ΔT i
ox and ΔT j

ox, and βh
r is the coefficient of r.

In Equation (5.31), the value of U0,h can be directly computed using Wilkin-

son’s formula (5.17). The other coefficients can be obtained using the following

expressions:

kh
t = log

E(I i
sub · eL

′t
eff ) + E(Ij

sub · eL
′t
eff )

[E(I i
sub) + E(Ij

sub)]E(eL
′t
eff )

(5.32)

βh
r =

[
log

(
1 +

V ar(I i
sub) + V ar(Ij

sub) + 2cov(I i
sub, I

j
sub)

(I i
sub + Ij

sub)
2

)
−

Np∑
t=1

(kh
t )2

]0.5

Here, E(.), V ar(.) and cov(I i
sub, I

j
sub) can be computed using Equations (5.12),

(5.13), and (5.14). Note that all terms in Equation (5.32) are in PCA form. The

benefit of using a PCA form is that the mean and variance of a lognormal random

variable can be computed in O(Np), as can the covariance of two lognormal random

variables in PCA form. Therefore, the computation of all values and coefficients in

Ih
sub, and thus the sum of two lognormals in PCA form, can be computed in O(Np).

As mentioned in the description of Wilkinson’s method, the computation of full-

chip leakage current distribution requires a summation of Ng correlated lognormals.

Thus, the PCA-based method has an overall computational complexity of O(Np ·
Ng).
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5.4.2 Hybridization with the PCA-based Approach

In this section, we will present an improved algorithm by hybridizing the basic

approach proposed in Section 5.3 with the PCA-based method in [71].

We summarize the similarities and differences between the basic approach and

the PCA-based method as follows. Both methods use Wilkinson’s method to ap-

proximate sum of lognormal random variables. The basic approach in Section 5.3

improves run-time by reducing the number of correlated lognormals to sum, by first

calculating the sum of leakage currents by groups, where each group contains leak-

age currents in the same grid and using the same LUT model, and then computing

full-chip leakage by summing up leakage currents in all groups. The computational

complexity of this approach is O(n2 · N2
models), where n is the number of grids par-

titioned in the spatial correlation model and Nmodel is the number of models in the

LUT. The PCA-based method reexpresses each lognormal random variable in PCA

form, and then directly computes the summation of all correlated lognormals using

Wilkinson’s method in O(Ng · Np), where Ng is the total number of gates in the

circuit and Np is the number of principal components.

Similar to the basic approach, the improved algorithm proposed will compute

the full-chip leakage current hierarchically in groups, and the sum of leakage current

terms in each group will be computed in a more efficient way as in the PCA-based

approach:

First, the average total leakage current of each gate in the circuit is computed

as
∑

∀veci,k
Prob(veci,k) · (Isub,k(veci,k) + Igate,k(veci,k)), as defined in Equation (5.1)

and (5.2). By using the models from the LUT, the average total leakage current

becomes a weighted sum of several leakage current terms, and the number of the

terms is no more than Nmodels. In general, if the gate is located in the lth grid,
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then any leakage current term can be written in the form eU0+β1·ΔLl
eff+β2·ΔTox,k.

If we reapproximate the sum of any two leakage current terms in the same form,

Equation (5.32) can be utilized to compute the desired values in the approximation.

This is because the process parameters of all transistors in the same gate are fully

correlated, so that ΔLl
eff and ΔTox,k can be regarded as global random variables

in the same gate. Thus, Equation (5.32) can easily be reused by regarding ΔLl
eff

and ΔTox,k as principal components in the formula. Obviously, the complexity for

summing any two leakage current terms in the same gate is O(1), and thus the

computation of the average total leakage current of a gate is O(Nmodels). If the

total number of gates in the circuit is Ng, then the computational complexity of

this step is O(Nmodels · Ng).

Next, the total leakage current in each grid is computed separately. Clearly, for

all gates in the lth grid, any average leakage current of a gate is expressed as an

exponential function of the same random variable ΔLl
eff , while the average leakage

current terms for different gates correspond to different ΔTox,k variables: note that

all ΔTox,k variables are independent. The sum of average leakage current of any

two gates can be approximated in a manner similar to that used in computing the

average leakage current of a single gate, using the formula (5.32) by regarding ΔLl
eff

as a principal component. Therefore, the sum has a computational complexity of

O(1). Since this step must compute the total leakage current of all gates in all

grids, the computation complexity is O(Ng).

Finally, the full-chip leakage is computed by adding up the total leakage currents

computed in all grids. If the number of grids is n, n correlated lognormals, with

a complicated correlation structure, must be summed up. Therefore, we transform

all lognormals in the summation into PCA forms, and the sum can be computed

using the same methodology proposed in [71]. The computation complexity of this
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Table 5.1: Comparison of the proposed basic method with Monte Carlo simulation.

Total Circuit Leakage Current (μA)

Circuit Gate Grid Monte Carlo (MC) Basic Method Error% MCNoCorr Error%

Name Number Number mean std mean std mean std mean std mean std

c7552 5528 64 327.9 106.1 324.3 101.0 -1.1% -4.9% 327.8 90.7 0.0% -14.5%

c5315 3887 64 239.0 78.4 235.7 74.3 -1.4% -5.2% 239.5 67.2 0.2% -14.3%

c6288 2672 16 229.6 77.3 227.7 78.0 -0.8% 0.8% 229.7 71.8 0.0% -7.1%

c3540 2606 16 158.9 53.4 156.8 50.9 -1.3% -4.7% 158.3 44.1 -0.4% -17.4%

c2670 1925 16 113.7 37.8 112.6 36.6 -1.0% -3.3% 113.9 31.7 0.2% -16.3%

c1908 1261 16 73.5 24.9 72.3 23.5 -1.6% -5.6% 73.2 20.1 -0.4% -19.1%

c880 594 4 37.4 13.3 36.9 12.7 -1.3% -4.6% 37.3 10.5 -0.3% -21.4%

c432 294 4 18.3 6.5 17.9 6.2 -1.8% -5.0% 18.2 5.1 -0.4% -21.5%

step is O(Np · n).

From the analysis above, the total computational complexity of the improved

algorithm is O(Np · n + (Nmodels + 1) · Ng) = O(Np · n + Ng). This is better

than the complexity of O(Ng · Np) for the PCA-based method, since the number

of grids n is substantially smaller than the number of gates Ng in the circuit. If

n is a small constant, the basic approach which has a computational complexity

of O(n2 · N2
models) which may outperform the improved approach. However, as n

grows to a relatively larger number, the basic approach grows quadratically with n,

while improved approach grows linearly which results in a better run-time for the

improved approach, as compared to the basic method.

5.5 Experimental Results

In this section, the experimental results for full-chip statistical leakage estimation

will be presented. The results using the basic approach proposed in Section 5.3 will

be first provided, followed by those using the improved method in Section 5.4.
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Figure 5.3: Distributions of the total leakage using the proposed basic method

against Monte Carlo simulation method for circuit c7552. The solid line illustrates

the result of the proposed basic method, while the starred line shows the Monte

Carlo simulation results.

Our experiments were performed on the set of circuits in the ISCAS85 bench-

mark set. The circuits were synthesized with SIS with a cell library consisting of an

inverter, and NAND, NOR, AND, and OR gates with 2, 3 and 4 input pins. The

designs were placed using Capo [77]. The technology parameters that were used

correspond to the 100nm Berkeley Predictive Technology model [76], and the 3σ

value of parameter variations for Leff and Tox were set to 20% of the nominal para-

meter values, of which inter-die variations constitute 40% and intra-die variations

60%. The spatial correlation was modeled so that the correlation coefficient value

diminishes equally with the distance between any two grids, as in Chapter 3. The

number of grid partitions in the spatial correlation model used for each benchmarks

is listed in Table 5.1, and depends on the size of the circuit.

For comparison purposes, we performed Monte Carlo simulations with 10,000
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runs on the benchmarks. First, we present the experimental results of the proposed

basic method for full-chip leakage estimation introduced in Section 5.3. The results

of the comparison of this method with the Monte Carlo approach are shown in

Table 5.1. The average errors for the mean and sigma values are −1.3% and −4.1%,

respectively. In Figure 5.3, we show the distribution of total circuit leakage current

achieved using the proposed basic method and using Monte Carlo simulation for

circuit c7552: it is easy to see that the curve achieved by the basic method matches

well with the Monte Carlo simulation result. For all testcases, the run-time of

the basic method is less than one second, while the Monte Carlo simulation takes

considerably longer: for the largest test case, c7552, this simulation takes 3 hours.

To show the importance of considering spatial correlations, we run another set

of Monte Carlo simulations (MCNoCorr) on the same set of benchmarks, assum-

ing correlation coefficients of zero between the intra-die variations of effective gate

length Leff of any two gates on the chip. The comparison data is also shown in

Table 5.1. It can be observed that although the mean values are close, on average,

the variances of MCNoCorr, where spatial correlations are ignored, has a underes-

timation of 16.5% compared to MC, where the spatial correlations are taken into

account. This is because the leakage values of different gates are less correlated

when spatial correlations are ignored, and thus different gates have lower proba-

bilities of taking larger values of leakage simultaneously, which results in smaller

overall variations.

To visualize the difference, in Figures 5.4 and 5.5, for circuit c432, we show

the scatter plots for 2000 samples of full-chip leakage current generated by Monte

Carlo simulations, with and without consideration of spatial correlations of Leff .

The x-axis marks the multiples of the standard deviation value of ΔLinter
eff , inter-

die variations of effective gate length, ranging from −3 to +3, since a Gaussian
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Figure 5.4: Scatter plot of full-chip leakage considering spatial correlation for circuit

c432

distribution is assumed. The y-axis are the values of total circuit leakage current.

Therefore, at each specific value of ΔLinter
eff , the scatter points list the various sam-

pled values of total circuit leakage current due to variations in Tox and intra-die

variation of Leff . The plots also show a set of contours lines that correspond to,

with the effect of spatial correlation taken into account, a set of percentage points of

the CDF of total circuit leakage current at different values of ΔLinter
eff . In Figure 5.4,

where spatial correlations are considered, nearly all points generated from Monte

Carlo simulation fall between the contours of the 1% and 99% lines. However, in

Figure 5.5, where spatial correlations are ignored, the spread is much tighter in

general: the average value of 90% point of full-chip leakage, with spatial correla-

tion considered, is 1.5 times larger than that without for ΔLinter
eff ≤ −1σ; the same

ratio is 1.1 times larger otherwise. Looking at the same numbers in a different

way, in Figure 5.5, all points are contained between the 30% and 80% contours if

ΔLinter
eff ≤ −1σ. In this range, Isub is greater than Igate by one order of magni-

tude on average, and thus the variation of Leff can have a large effect on the total
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Figure 5.5: Scatter plot of full-chip leakage ignoring spatial correlation for circuit

c432

leakage as Isub is exponentially dependent on Leff . Consequently, ignoring spatial

correlation results in a substantial underestimation of the standard deviation, and

thus the worst-case full-chip leakage. For ΔLinter
eff > −1σ, Isub decreases to a value

comparable to Igate and Leff has a relatively weak effect on the variation of total

leakage. In this range, the number of points of larger leakage values is similar to

that when spatial correlation is considered. However, a large number of remaining

points show smaller variations and are within the 20% and 90% contours, due to

the same reasoning given above for ΔLinter
eff ≤ −1σ.

We also study the effect by varying Leff and Tox separately on the variations of

full-chip subthreshold and gate-tunneling leakage currents. In Table 5.2, the results

by varying Leff only keeping Tox at its nominal value are provided in columns 2

to 7, and the last 6 columns show the reverse. As seen in the table, the variations

of Leff and Tox can each individually lead to substantial variations in the full-chip

leakage. When only Leff varies, Isub varies substantially (the average ratio of the
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Table 5.2: Comparison of leakage by varying Leff and Tox independently

Circuit Leakage by varying effective gate length only (μA) Leakage by varying gate oxide thickness only (μA)

Name Itotal Isub Igate Itotal Isub Igate

mean std mean std mean std mean std mean std mean std

c7552 268.2 81.3 216.2 83.8 52.0 2.7 298.9 63.1 195.1 34.0 103.8 88.2

c5315 194.3 60.6 155.3 62.5 39.0 2.0 217.4 47.6 139.5 24.4 77.9 65.8

c6288 178.5 46.7 131.2 49.1 47.4 2.6 215.0 63.8 120.4 19.6 94.6 79.2

c3540 129.4 42.2 103.3 43.6 26.1 1.5 144.4 31.7 92.9 15.9 51.5 43.7

c2670 92.9 29.9 74.6 30.8 18.3 1.0 103.4 21.9 67.2 11.5 36.2 30.4

c1908 60.4 20.5 49.2 21.1 11.2 0.6 66.5 13.1 44.0 7.6 22.5 18.8

c880 30.6 10.9 24.5 11.2 6.1 0.4 34.1 7.5 22.0 3.8 12.1 10.4

c432 15.1 5.6 12.5 5.8 2.6 0.2 16.4 3.1 11.2 2.0 5.3 4.5

Avg 121.2 37.2 95.9 38.5 25.3 1.4 137.0 31.5 86.5 14.9 50.5 42.6

mean to the standard deviation is 40.2%) and Igate trivially (the corresponding ratio

is 5.5%), since Isub is more sensitive to the variation of Leff than Tox, and Igate is a

strong exponential function of Tox over Leff . In this case, Isub dominates Igate by 4

to 5 times and the variation of full-chip leakage is mainly due to Isub. In contrast,

when only Tox varies, the mean of Igate doubles and standard deviation increases

by 40 times, while standard deviation of Isub is about 3 times smaller compared

to the former case. In this case, although the mean of Igate is about two times

smaller than that of Isub, its standard deviation is 3 times larger than that of Isub.

Therefore, in this case, although Isub and Igate are both major contributors to the

full-chip leakage, the leakage variations are mainly due to Igate.

Since the proposed basic, improved method, and the PCA-based approach are

all based on Wilkinson’s approximation, the accuracies of these approaches for total

chip leakage estimations are essentially the same. A tabular comparison of accura-

cies is not provided and only the run-time efficiencies of the three methodologies are

compared in this section. In Table 5.3 and 5.4, we show the run-times for different
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Table 5.3: Run-time comparison of the proposed basic, PCA-based, and improved

methods for the ISCAS85 benchmarks

Benchmark c432 c880 c1908 c2670 c3540 c6288 c5315 c7552

Number of grids 4 4 16 16 16 16 64 64

Proposed basic method (s) 0.01 0.02 0.04 0.06 0.09 0.10 0.24 0.29

PCA-based method (s) 0.03 0.06 0.18 0.27 0.40 0.57 1.43 1.82

Proposed improved method (s) 0.01 0.03 0.06 0.09 0.12 0.14 0.19 0.25

Table 5.4: Run-time comparison of the proposed basic, PCA-based, and improved

methods for the ISCAS89 benchmarks
Benchmark s5378 s9234 s13207 s15850 s35932 s38584

Number of grids 64 64 256 256 256 256

Proposed basic method (s) 0.22 0.32 5.89 5.91 4.97 10.04

PCA-based method (s) 0.93 1.62 7.58 8.97 17.38 24.28

Proposed improved method (s) 0.16 0.30 0.47 0.56 1.03 1.34

methods for ISCAS85 and ISCAS89 benchmark sets, respectively. In general, the

proposed basic method is about 3 to 4 times faster than the PCA-based method.

As expected, the proposed improved approach does not show any run-time advan-

tage over the basic method for smaller grid sizes. However, run-time of both the

proposed basic and the PCA-based methods grows much faster with the grid size

than the improved method. In Table 5.3 and 5.4, when the number of grids grows

to greater than 64, the improved approach is about 100 times faster than the other

approaches. Therefore, the run-time can be significantly improved by combining

the PCA-based with the proposed basic leakage estimation approach.
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5.6 Conclusions

We have presented a method for analyzing the leakage current distribution of circuit

under process parameter variations considering the spatial correlations among pa-

rameters. The proposed method was shown to be effective in predicting the mean,

standard deviation and the PDF of the total chip leakage. We have also shown that

the spatial correlations of process parameters must be considered appropriately in

order to predict yield of chip correctly. We believe that this framework is general

to predict the total circuit leakage under other parameter variations. For example,

leakage has a strong dependence on temperature and the variation of temperature

is also highly spatially correlated. If the correlation statistics are available, this

method can easily be extended to capture the effects of temperature variations.
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Chapter 6

Conclusion

In current and future technologies, the increasing number and magnitude of process

variations make the prediction of circuit performance an important but very chal-

lenging task. As the conventional corner-based technique becomes too pessimistic

and slow, statistical circuit performance analysis techniques provide a good alter-

native.

In this thesis, we have focused on the problem of statistical circuit timing and

leakage power estimation with inter-die and intra-die variations. The effects of spa-

tial correlations in intra-die variations, which were ignored in most of the previous

works, are also considered in our works. We show that spatial correlation is es-

sential in order to correctly predict the probability distributions of circuit timing

and leakage power. The statistical timing and leakage power methods presented in

the thesis are shown to be both computationally efficient and accurate, and this is

demonstrated through comparisons against Monte Carlo simulations. The timing

and leakage power estimation techniques are important, both for yield prediction

in the post-layout stage, as well as for supporting circuit design and optimization
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in all stages of the design flow for shortening the design cycle and saving design

costs.

Although in recent years, quite some work has been done in statistical cir-

cuit performance analysis for timing and leakage, this area still requires further

research. First, statistical performance analysis technique requires proper mod-

eling of process variations including the decomposition and modeling of process

variations including spatial correlations. Without an appropriate model, the pre-

diction by statistical analysis could be a “garbage in and garbage out,” the result

would not make much sense and cannot guide the circuit optimization in the cor-

rect direction. Second, the statistical timing analysis technique depends on correct

characterization of gate/interconnect delay with respect to process parameter vari-

ations. A library that is characterized with worst-case and best-case corners must

be recharacterized, such as characterizing with nominal value and sensitivities to

process variations, in order to have accurate statistical timing analyzer. Third,

although statistical performance analysis methods are more computationally effi-

cient than corner-based methods and Monte Carlo approaches, they also show a

tradeoff between accuracy and run-time. This may not be a problem if this is solely

for the purpose of performance analysis. However, in order for the method to be

integrated into a framework for circuit performance optimization, a good balance

is required between the run-time and the accuracy. Finally, variation-aware circuit

optimization techniques [10,21,34,35,50,63,72] that can take into account process

variations are active fields for research and development. The technique should be

applied across the overall flow of circuit design, including steps such as technology

mapping [68], synthesis, buffer insertion [26], clock tree [49], physical design [1,31],

to overcome the limitations of traditional deterministic optimization techniques.
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