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ABSTRACT

One of the most significant challenges currently confronting the VLSI circuit design

community is the problem of ever increasing variations in the manufacturing process

and the operating environment of high performance digital circuits. The escalating im-

pact of environmental and process variations on the performance of current and future

technology VLSI circuits, necessitates the use of circuit design techniques that can ac-

count for these uncertainties.

From a circuit design perspective, the variations may be classified as controllable

or uncontrollable in nature. Controllable variations are aclass of variations that can

be directly reduced or controlled by circuit design techniques that specifically target

these types of variation. Some examples of such variations are temperature fluctuations,

which can be controlled by modifying the temporal and spatial distribution of hot spots

on chip, and voltage variation, which can be controlled by optimizing the power grid of a

chip. The variations that are uncontrollable in nature are those for which a circuit design

cannot exercise any direct influence. From the point of view of a circuit designer, most

variations arising from the limitations of the manufacturing process are uncontrollable

in nature. Although uncontrollable variations cannot be directly reduced, their impact

on the circuit performance can be controlled by robust circuit design techniques. To

enable such robust circuit design, it becomes essential forVLSI computer-aided design

(CAD) tools to keep sufficient design margins by incorporating their effect. This thesis

presents variation-aware design automation techniques, accounting for both controllable

and uncontrollable types of variations, by focusing on three important issues in digital

circuit design: power grid design, gate sizing, and timing analysis.

The first part of the thesis addresses the problem of mitigating the controllable varia-

tions in the operating environment of a digital circuit, manifested in the form of voltage

drop on the power supply network of wires. To control the voltage variations, two
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topology optimization heuristics for the design of power ground networks have been

proposed. These power grid design techniques maintain the desirable property of reg-

ular structure of the supply network by proposing a locally regular, globally irregular

power grid topology. The first power grid design scheme is based on a sensitivity based

heuristic, which iteratively adds wire in the local regionsof the power grid to obtain

maximum reduction in the voltage drop on the grid wires, for agiven increase in the

wire area. A second power distribution network design algorithm is presented, based on

a recursive bipartitioning approach. This algorithm runs considerably faster than the first

one by utilizing the idea oflocality of power grid, and employing abstractions of differ-

ent parts of the power grid circuit. Our proposed piecewise-uniform grid topology has

a better wire area utilization as compared to other commonlyused grid topologies, and

our power grid design algorithm runs considerably faster compared to some previous

approaches.

In the next part of the thesis, we focus on the problem of improving the timing yield

of a digital circuit by performing gate sizing in the presence of uncontrollable manufac-

turing process variations. Our method formulates this robust gate sizing problem as a

geometric program by employing posynomial delay models anda boundeduncertainty

ellipsoid variation model for the random process parameters. Throughour formula-

tion, we provide a novel worst-casing solution that reducesthe pessimism involved in

worst-casing by incorporating the effects of spatial correlations of circuit parameters in

the optimization procedure. We use a graph pruning technique to reduce the number

of constraints and intermediate variables for the optimization set up. This uncertainty-

aware gate sizing problem is then solved efficiently using convex optimization tools.

Experimental results show that for the same circuit area, our robust gate sizing solution

has a better timing yield than the conventional, deterministically based worst-case gate

sizing solution.

The last part of the thesis explores the problem of performing circuit timing analysis

in the face of randomly varying process parameters. A statistical static timing analysis
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(SSTA) technique, which incorporates correlated parameters, both Gaussian and non-

Gaussian, is developed to predict the probability distribution of the circuit delay. Prior

to our work, most SSTA techniques could handle only a few correlated non-Gaussian

variables. The proposed technique is the first scalable SSTAmethod, which can in-

clude correlated non-Gaussian parameters of variation in the statistical timing analysis

framework. The SSTA procedure employsindependent component analysis (ICA)as

a preprocessing step, which enables the procedure to efficiently handle the correlated

non-Gaussian parameters. Our algorithm has a linear complexity (O(n ∗ NG)) in the

number of grids (n), and the number of gates (NG) in the circuit. We demonstrate the

accuracy of our SSTA procedure by verifying it with the MonteCarlo analysis.
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Chapter 1

Introduction

The self-fulfilling prophecy of Gordon Moore’s law [Moo65],predicting that the number

of transistors on a chip would approximately double every eighteen months, has led to

aggressive technology scaling and shrinking of the featuresize. As a direct consequence

of technology scaling, from only a few transistors in 1965 [Moo65], hundreds of mil-

lions of transistors are being integrated on a chip today. Table 1.1, compiled from the lat-

est version of International Technology Roadmap for Semiconductors (ITRS) [SIA05],

lists some of the trends in technology scaling, and indicates an estimate of more than

three-quarters of a billion transistors on a single chip in 30nm technology in 2010.

Year Technology Number of Number of f VDD Power

Node (nm) Transistors Wire Levels (GHz) (V) (W)

2005 54 193M 11 5.2 1.1 167

2006 48 193M 11 6.8 1.1 180

2007 42 386M 12 9.3 1.1 189

2008 38 386M 12 11.0 1.0 198

2009 34 386M 12 12.4 1.0 198

2010 30 773M 12 15.0 1.0 198

2011 27 773M 12 17.7 0.9 198

Table 1.1: Trends in IC technology parameters [SIA05].

This astronomical number of on-chip transistors chip, makes it increasingly difficult

to control the operating conditions of the chip. The variations in the operating environ-

ment, such as the temperature and voltage changes lead to theproblem of signal integrity

and variable delay of a circuit. The limitations of the deep-submicron fabrication process
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technology and new physical phenomena that express themselves as small geometries,

make it practically impossible to control the dimensions ofthe critical device parame-

ters. The manufacturing process-driven uncertainties in the device parameters results in

causing a spread in circuit performance measures such as thedelay and power. While

the signal integrity issues arising from the environmentalvariations may cause a chip to

fail in the worst case, the variations in the circuit parameters affect the timing and power

yield of the chip.

The increasing impact of environmental and process variations on the performance

of current and future technology VLSI circuits necessitates the use of circuit design

techniques that can account for these uncertainties. Giventhe complexities of these

variations, it is essential for the VLSI computer-aided design (CAD) tools to incorpo-

rate their effect, in order to enable the design of robust circuits that are insensitive to the

variations as much as possible. This thesis focuses on such VLSI CAD techniques for

variation-aware design of digital circuits. We address theproblems arising from envi-

ronmental and process-driven variations and provide robust design automation solutions

to these problems.

In this chapter, we will first discuss some trends in and sources of environmental

and process variations, and then list the contributions of our research and explain the

organization of this thesis.

1.1 Variations: Trends and Sources

Although variations have been a long standing problem, trends in current and future

technologies have made their impact a much more serious problem than it has ever

been.

Table 1.2, compiled from [Nas00], shows the trends in the mean (µ), and the stan-

dard deviation (σ), of some important circuit parameters namely, the effective channel

length (Le), gate oxide thickness (Tox), on-chip supply voltage (VDD), n-mos transistor
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threshold voltage (Vth), interconnect width (Wint), thickness (Tint) and resistivity (ρ).

1997 1999 2002 2005 2006
Parameters

µ 3σ µ 3σ µ 3σ µ 3σ µ 3σ

Le (nm) 250 80 180 60 130 45 100 40 70 33

Tox (nm) 5 0.4 4.5 0.36 4 0.39 3.5 0.42 3 0.48

VDD (V) 2.5 0.25 1.8 0.18 1.5 0.15 1.2 0.12 0.9 0.09

Vth (V) 0.5 0.05 0.45 0.045 0.4 0.04 0.35 0.04 0.3 0.04

Wint (µm) 0.8 0.2 0.65 0.17 0.5 0.14 0.4 0.12 0.3 0.1

Tint (µm) 1.2 0.3 1 0.3 0.9 0.27 0.8 0.27 0.7 0.25

ρ(Ωm) 45 10 50 12 55 19 60 19 75 25

Table 1.2: Trends in parameters variations [Nas00].

It is clear from this data, that theσ/µ ratio increases significantly as technology

scales from250 nm to70 nm. Moreover, the number of parameter variations affecting

the performance of the circuit is rapidly increasing. Some examples of the sources of

these environmental and process variations are listed below.

1. Supply Voltage Variations:Shrinking of device sizes results in exponential in-

crease in the chip densities. These extremely large number of devices draw large

amounts of currents from the power/ground (P/G) distribution network of wires,

which connect to all the transistors on the chip. Together with the increase in

the amounts of current drawn, the resistances of the interconnects have also in-

creased due to the decrease in wire widths. Moreover, the amount of currents

drawn from the power grid wires in a given region of the chip varies, depending

on the switching activities of the gates in the underlying functional block. For

instance, an arithmetic-logic unit (ALU) block is likely toexhibit a much higher

switching activity, on an average, than a cache unit. This variable switching be-

havior of the functional blocks results in different current density regions of the
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chip, which leads to the problem of a variable voltage drop inthe supply wires

and fluctuations in the supply voltage distributed to the on-chip transistors.

2. Subwavelength Lithography:In nanometer technologies, the minimum feature

sizes are much smaller than the wavelength of light used in the photolithography

process. For example, 193 nm lasers are currently used to fabricate the devices of

dimensions 90nm or less [GKSY03,SIA05]. Thus, the ability to precisely control

the critical dimensions of devices in the nanometer regime becomes increasingly

difficult.

In the current technology nodes, not only the critical dimensions of the minimum

feature size line, but also the quality of line and line edgesis gaining importance.

The line edge roughness of photoresist lines and the corresponding polysilicon

lines is becoming significant as gate linewidth control becomes comparable to the

size of the photoresist polymer unit. The current state-of-the-art roughness for

sub-100nm gate length technology has been reported to be of the order of 5-15

nm [KWW04], which may lead to significant device parameter fluctuations.

3. Diffusion Process for Nanometer Devices:As the devices become smaller, the

number of dopant atoms per transistors fall in the range of 10to 100 [BKD04]. At

these levels, it becomes extremely difficult for the diffusion and the ion implanta-

tion process technology to exactly guarantee a uniform number of dopant atoms

for every transistor. This random dopant density causes variations in the threshold

voltage of transistors on chip [AK98].

4. Chemical-Mechanical Planarization:Variations in interconnect height and width

can arise from the chemical-mechanical planarization (CMP) process, and results

from the difference in hardness between the interconnect material and the dielec-

tric. Ideally, after etches have been trenched into the dielectric below an intercon-

nect layer and copper on the wafer, the CMP process should remove the unwanted
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copper, leaving only the wires and vias. However, as the copper line is softer

than the dielectric material, erosion due to CMP process causes uneven removal

of copper and dielectric, resulting in variations in the interconnect dimensions.

The above list is not exhaustive as several other sources of variations affect the circuit

performance.

From a design perspective, these variations may be broadly classified into two cate-

gories:

• Controllable Variations: These are a class of variations that can be controlled

directly by a circuit designed specifically to target these types of variation. Some

examples of such variations are temperature and voltage fluctuations. A designer

can use some well-known circuit design techniques to reducethe voltage and tem-

perature variations. For instance, a method to appropriately place thermal vias in

the chip area is likely to help in controlling the temperature gradient across the

chip. Similarly, a scheme to ably size the wires of the power supply network

or place decoupling capacitors (decaps) at the appropriatelocations could aid in

reducing the voltage variations.

• Uncontrollable Variations: The variations that are uncontrollable in nature are

those for which a circuit design cannot cause any direct reduction. From the

perspective of a designer, the process-driven uncertainties in the channel length,

transistor width, via resistance, oxide thickness, etc., are uncontrollable in nature.

However, the desired circuit performance must be achieved in spite of these un-

controllable variations. Although it is not possible to directly control or reduce

these types of variations, it is still possible to account for their impact on the cir-

cuit performance. A circuit designer usually relies on sometype of guard-banding

approach to control the effect of these uncontrollable variations. To achieve the

desired circuit performance, in the presence of these typesof uncertainties, ex-

tra resources such as larger transistors, wider wires, redundant logic are typically
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used.

1.2 Research Problems and Contributions

In this thesis, we propose CAD solutions for problems related to both controllable and

uncontrollable type of variations. Specifically, we propose solutions to the following

problems:

1. Power distribution network design: The P/G network of wires electrically con-

nect the externalVDD and ground nodes to all the on-chip transistors. The problem

of voltage drop1 on these P/G wires, is a case of variations in the operating en-

vironment of a chip. These variations can be regarded as controllable variations,

as circuit design techniques can directly control or reducethem. We present two

topology optimization techniques for the design a high performance power supply

network, subject to various reliability constraints.

• In the first power grid design technique, we propose a sensitivity based

greedy heuristic, which analytically estimates the reduction in voltage drop

with an increase in the wire area, in different regions of thechip area, and

then iteratively selects the most sensitive region for wireadditions. We ex-

tend this approach to include a congestion cost in our objective function so

that the construction of grids by our method does not aggravate the conges-

tion problem. Compared to other commonly used grid structures, the power

grids designed by our procedure show considerable savings in the wire area.

However, the runtimes achieved by our algorithm are not veryfast.

• To overcome the efficiency issues in our first power grid design scheme, we

present a second algorithm based on the idea of hierarchicalgrid design and

the notion of locality (to be explained in Section 2.7) in power grid design.

1Also referred to as the IR drop problem.
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This grid design procedure employs a recursive bipartitioning approach and

uses abstractions of parts of the power grid system.

Our methods propose and optimize for a novel piecewise-uniform power grid

topology, that is suggested in our work. Such a topology, employing a locally

regular, globally irregular grid structure, has the advantages of judicious use of

wire area, combined with the relative ease of grid design. Experimental results

show that our algorithm is considerably fast: we can design large power grids

consisting of thousands of wires, and more than a million nodes in about 6 to

13 minutes of runtime. Our proposed designs achieve significant savings in wire

area compared to other grid topologies (about 12% to 24% reduction), and the

power grids designed by a multigrid-based previous work [WMS05] (about 6% to

12% reduction). The abovementioned power grid design schemes were published

in [SS05] and [SS06b].

2. Robust gate sizing:The variations arising from the process limitations resultin

the circuit parameters such as the transistor channel length, width, oxide thickness

and dopant density to deviate from their nominal values. This results in change of

the circuit delay from the original nominal value that it wasdesigned for. If the de-

viation of the delay from its nominal value is a positive shift, the new delay could

exceed the original target delay, and cause a decrease in thetiming yield of the

chip, which is defined as the fraction of total number of manufactured chips that

meet the original delay specifications. Thus, the presence of random variations in

the circuit parameters could lead to reducing the profitability of the manufactured

chips. From a gate sizing point of view, the presence of theserandom perturba-

tions can be seen as uncontrollable type of variations. These uncertainties, arising

from the fabrication process limitations, cannot be directly controlled or reduced

by a gate sizing scheme. However, their effect on the circuitperformance can be

controlled. By accounting for the worst-case impact of these variations on the
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circuit timing, the desired timing yield can still be achieved.

Traditionally, the robust gate sizing problem has been solved by guard-banding

approaches. These methods are based on padding the timing constraints by a

margin that safeguards against the effect of variations. However, most of these

methods employ an arbitrary amount of guard-banding, e.g.,by setting the orig-

inal delay specification much tighter than the required target delay. Such ad hoc

methods fail to capture important statistical attributes of the circuit such as the

path correlations or the spatial correlations between varying parameters, and may

result in overly pessimistic designs, spending more resources than necessary to

achieve a specified timing yield.

In this thesis, we propose a novel and an efficient worst-casing methodology for

the robust gate sizing problem. Our scheme reduces the pessimism involved in tra-

ditional worst-casing methods by incorporating the effectof spatial correlations in

the optimization procedure. We employ a bounded model for the parameter varia-

tions, in the form of an uncertainty ellipsoid, which captures the spatial correlation

information between the physical parameters such as channel lengths and transis-

tor widths. The use of the uncertainty ellipsoid, along withthe assumption that the

random variables, corresponding to the varying parameters, follow a multivariate

Gaussian distribution, enable us to size the circuits for a specified timing yield.

The value of the desired timing yield can be chosen from the quantile function

tables of the well-knownChi-squaredistribution [JW02]. In our formulation,we

reduce the problem of overestimation of the variational components of the delay

terms, by employing a circuit graph pruning technique [VC99], and using variable

size ellipsoids at different topological levels of the circuit. Generating a first order

Taylor series approximation of posynomial gate delay models, we formulate the

resulting robust optimization problem as a geometric program [BV04]. The op-

timization problem is solved using highly efficient convex optimization methods
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such as the interior point algorithm. Experimental resultsshow that for the same

transistor area, the circuits sized by of our robust optimization approach have, on

an average, 12% fewer timing violations as compared to the gate sizing solutions

obtained via the traditional, deterministically based guard-banding method. An

early version of this work was published in [SNLS05].

3. Statistical timing analysis incorporating correlated non-Gaussian parame-

ters: The presence of random variations in the physical parameters of the tran-

sistors, and the interconnects of a circuit make the resultsof deterministic static

timing analysis (STA) mostly irrelevant. To provide meaningful information that

the designers can use for the desired optimization tradeoffs in the presence of pa-

rameter uncertainties, the timing analysis methods must bevariation-aware. Tra-

ditional variation-aware timing analysis techniques consist of performing a multi-

corned-based analysis or a Monte Carlo analysis. Both thesemethods suffer from

some serious weaknesses. The corner-based analysis involves enumerating all

possible corners, i.e., all combinations of min/max valuesof each varying param-

eter, which can be exponential in the number of parameters. More importantly, a

corner-based methodology can arrive at a worst-case cornerwhich may actually

have an extremely low probability of occurrence. Accounting for such a worst

corner case results in an overly pessimistic design. The Monte Carlo analysis

technique is based on sampling the random variables from a known probability

distribution, and performing repeated timing analysis on the sampled points. For

reasonably accurate prediction of the probability distributions of a circuit, the

method requires a static timing analysis step for each of thehundreds of thou-

sands of sample points. This renders the Monte Carlo technique very inefficient

and impractical to use for large circuits consisting of tensof thousands of gates.

In recent years, statistical static timing analysis (SSTA)has emerged as a promis-

ing and an efficient alternative to perform variation-awaretiming analysis of a
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circuit. The SSTA procedures can predict the timing yield ofthe circuit by ex-

tracting the probability distributions of the circuit delay. Most SSTA algorithms

[CS05,VRK+04,AMK+05] achieve efficiency in their methods by assuming that

the varying parameters can be accurately modeled by random variables following

a Gaussian distribution. The normality assumption enablesthe use of closed form

analytical expressions to evaluate the result of the basic statistical timing oper-

ations. However, not all parameters of variations can be accurately modeled as

Gaussians. Moreover, the non-normal parameters exhibit statistical dependence

arising from the spatial correlations in the circuit layout. Thus, in the presence

of these correlated non-Gaussian parameters, the SSTA algorithms that assume

normality can result in significant inaccuracies in estimating the probability dis-

tribution of a circuit. There have been some recent works, inthe existing literature

on SSTA, that extend the Gaussian SSTA algorithms to includenon-Gaussian ran-

dom variables [KS05, CZNV05]. However, these extensions are can only handle

a few non-normal variables, and are not scalable to problemswith large number

of variables.

We present an efficient SSTA algorithm which is the first published work that

can scalably handle a large number of correlated non-normalrandom variables

in a reasonable runtime. We can efficiently handle the non-Gaussian parameters

by employing anindependent component analysis(ICA) technique [Bel, HO99,

HO00, MP99], that enables us to achieve statistical independence between cor-

related non-Gaussian parameters. Using a moment-matching-based scheme we

can extract the probability distribution function (PDF) and the cumulative distri-

bution function (CDF) of all arrival time and delay random variables in an ana-

lytical closed-form expression. The time complexity of ourSSTA procedure is

O(n ∗ NG), wheren is the number of grids the chip layout is divided into, and

NG is the number of gates in the circuit, which is the same linearcomplexity as
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of the Gaussian SSTA algorithms. Our SSTA method can processas many as 256

correlated non-normal parameters in about 5 mins of runtime. We demonstrate the

accuracy of our SSTA procedure by verifying it against MonteCarlo simulations.

The average of the absolute errors of the proposed SSTA procedure, compared to

Monte Carlo analysis, is 0.99% forµ, 2.05 % forσ, 2.33% for the 95% point, and

2.36% for the 5% quantile point of the circuit delay. An earlyversion of this work

was published in [SS06a].

1.3 Organization of the Thesis

The three research areas of power grid design, robust gate sizing and statistical timing

analysis are each addressed in a separate chapter of this thesis. Chapter 2 comprises the

algorithms for power grid design. In this chapter, Sections2.6 and 2.7 contain the two

proposed topology optimization solution techniques to design a high performance and a

reliable power grid. Chapter 3 addresses the robust gate sizing problem, and consists of

two formulations, explained in Sections 3.4 and??, to perform uncertainty-aware gate

sizing. The problem of SSTA with non-Gaussian parameters iscontained in Chapter 4.

Finally, Chapter 5 summarizes the findings of this research thesis.
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Chapter 2

Power Grid Design Algorithms

2.1 Introduction to Power Grid Design

The network of interconnects, routed across multiple metallayers on the chip, that dis-

tribute the power supply and the ground to the logic gates on the chip is known as the

power/ground (P/G) network or the supply network. Since, the P/G network electrically

connects to all the devices on chip, its design has a big impact on the chip performance.

Thus, the P/G distribution networks must be efficiently simulated, analyzed and opti-

mized. The key constraints in the design of the P/G networks are those of:

IR drop: The P/G networks consist of metal wires carrying currents. These wires of-

fer resistance to the current flow, and hence a voltage drop occurs across them.

Since the supply network is required to distribute power to all of the gates on

the chip, large currents flow through these networks, and thus the voltage drop

can be significant. This large voltage drop, along with the fact that the relentless

push for low power has driven the supply voltage requirementbelow the 1 volt

region [SIA05], drastically reduces the noise margins to maintain correct logic

levels. Even if the drop is not large enough to cause logic inversion of voltage

levels, it may still affect the performance of the chip by increasing the delays of

logic gates as the current drive of the gates is proportionalto the supply voltage.

Electromigration: When current flows through the metal wires, the electrons collide

with the metal atoms. These collisions result in a momentum transfer between

conducting electrons and diffusing metal atoms to produce aforce on the latter

in the direction of electron flow. Over a period of time, the metal wires can be-

come ruptured because of this collision force. This phenomenon of displacement

of metal atoms due to the electron flux is known as electromigration (EM). The
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problem of electromigration is a serious one in the P/G wires, since the currents

always flow in one direction in these wires, i.e., from theVDD nodes to the ground

nodes. This problem is further aggravated due to the increase in current densi-

ties (defined as current per unit cross-sectional area of thewire) in the P/G wires

because of the increase in the currents and the concomitant reduction in the wire

widths due to technology scaling.

Ground bounce due to inductive effects:A sudden change of current flowing through

a wire will induce abrupt voltage changes on that wire and itsneighboring wires

due to the inductance of the power grid. If these wires are a part of the on-chip P/G

network, the induced voltage fluctuation is called theLdi/dt noise. Due to this

induced noise on the ground lines, today, we can no longer assume the existence

of a universal ground node on the chip. The inductive noise orthe ground bounce

can cause severe signal integrity issues. Moreover the presence of inductance also

leads to difficulties in the accurate analysis of P/G networks, e.g., the coupling

capacitors between the power and ground lines now become floating capacitors

and the Modified Nodal matrix [LC01] ceases to be diagonally dominant, which

can lead to nonconvergence of iterative solvers.

As mentioned in Chapter 1, supply voltage fluctuations can beregarded as control-

lable type of variations. Employing some well-known power grid design techniques

can directly control and reduce the voltage variations. To meet the constraints of IR

drop and electromigration, the typical techniques available to the designers of supply

networks are:

1. Wire sizing: By increasing the wire widths, the interconnect resistances are de-

creased and hence the IR drop is reduced. Increasing the widths also decreases

the current density, and hence addresses the electromigration problem.
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2. Adding decoupling capacitors (decaps):Decoupling capacitors are the on-chip

capacitors that are deliberately added between the power grid and the chip sub-

strate. The decaps act as charge reservoirs and maintain therequired voltage levels

within the clock cycle to prevent the dynamic or transient IRdrop, also known as

the voltage droop.

3. Using appropriate topologies for the P/G network:By optimizing the topology

of the supply network, i.e., by “wisely” removing or adding wires in the supply

grid or by optimal assignment of pads, it is possible to meet the voltage drop

constraints.

In this chapter of the thesis, we present two topology optimization schemes to design a

power grid which meets the static IR drop and the electromigration constraint. Using

our power grid solution, a suitable decap placement scheme may be used, as a post-

processing step, to safeguard against the transient voltage droop problem. Since we use

a DC power grid analysis, our methods do not focus on the inductive noise in the P/G

network. At an early stage of design, it is important to use simple models to efficiently

optimize the power grid system. A more detailed transient simulation method may be

employed later to analyze and reduce the inductive noise in the power grid wires.

2.2 Previous Work

Most of the previous works in the area of P/G network design perform the design opti-

mization by wire sizing and adding decoupling capacitors.

The methods of [TSL03,TS01,WC02,DMS89,WHC+01,BVGY01] all provide wire

sizing schemes to design the P/G network. In [TS01, TSL03], equivalent circuit mod-

els of many series resistors in the original network is constructed, and then wire widths

are optimized by transforming the constrained nonlinear programming to a sequence of

linear programs. The problem is formulated by assuming the currents in segments to be
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fixed, and representing the branch voltages as variables. Anoptimization scheme to cal-

culate both the lengths and widths of P/G networks, using a sequential network simplex

method is proposed in [WC02]. The authors of [DMS89] size thewires of P/G networks

by building an optimization engine that first finds an initialfeasible solution, and then

iteratively looks for the optimal solution along a feasibledirection, using a sensitivity

analysis method. In [WHC+01], a wire sizing algorithm is proposed based on the conju-

gate gradient method and circuit sensitivity analysis. In this problem formulation, only

the wire conductances are used as the variables and the adjoint method [PRV95] is used

to calculate the gradient. A heuristic based on minimizing total wire area is developed

in [BVGY01] that determines the optimal wire widths and the network topology, i.e., a

tree or a mesh structure by solving a nonlinear convex optimization problem.

Schemes for optimal assignment of decoupling capacitors are presented in [SGS00,

CL97, WMS05, ZPS+06]. A combined technique to appropriately size the wire widths

and add decaps through a heuristic based on the transient adjoint sensitivity analysis

is proposed in [SGS00]. In [CL97], a decap optimization procedure involving an iter-

ative process of circuit simulation and floor planning is proposed. A multigrid-based

approach to reduce the power grid system size is presented in[WMS05]. This method

use a sequential quadratic programming method to optimize acost function that adds

decaps and performs wire sizing. Recently, in [ZPS+06], a decap budgeting algorithm,

based on macromodeling was proposed.

The authors of [MK92, Cai88, OP98] all provide techniques for topology optimiza-

tion of a power grid. In [MK92], a P/G network optimization method is provided by

removal of selected wires. The problem is solves by formulating it as a nonlinear com-

binatorial optimization problem and relaxing some of the constraints. The wires are

represented as conductance links between the nodes, and a decision variable vector is

used to determine the presence or absence of these conductance links. Some other works

in topology optimization [Cai88,OP98] address the problemof optimal pad assignment

to the power/ground grid structures.
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The wire sizing and decap placement methods of [TSL03, WC02,TS01, DMS89,

WHC+01, BVGY01, SGS00, CL97] all assume that the topologies of P/G networks are

fixed, and only the widths of the wire segments, and the positions of decaps need to

be determined. These techniques of power grid design by wiresizing and decap place-

ment have a significant cost of over-utilization of the chip area. Furthermore, if the

wire widths of the supply network vary throughout the chip, the routing of signal nets

becomes much more difficult as a lot of book-keeping must be done to keep track of

the locations and widths of P/G wires. In the works on topology optimization, the em-

phasis is on optimal assignment of the pins to the pads and placement of pads on the

power grid. The fact that the topology has a significant influence on the final layout

area is recognized, but the quest for a good topology design technique remains an open

problem.

2.3 Proposed Power Grid Topology

In general, it is desirable to have as much regularity as possible in the power grid in or-

der to permit the locations of power grid wires to be easily accounted for during signal

routing. Furthermore, a regular grid structure can easily be analyzed [SG03] as it results

in simpler circuit models. A highly irregular grid (for example, one that has been sized

irregularly, or one in which wires have been selectively removed) may well provide an

excellent solution if the power grid design problem is viewed in isolation. However, if

we consider theentiredesign flow, a high degree of irregularity can be an impediment

to the design methodology, as it may require a large amount ofbook-keeping to keep

track of the precise locations of the power wires, and to determine which regions have

excessive wiring congestion. Moreover, the number of optimizable parameters for such

a problem can be very large, which may make the optimization highly computational.

At the other extreme, a fully regular grid has few optimizable parameters and is ideal for

the signal router. However, the constraint of full regularity can be overly limiting, since
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the requirement of regularity may cause the design to use excessive wiring resources.

For instance, if all wire widths were to be required to be identical, the wires could be

over-sized in regions that have relatively low current densities.

Our work proposes structured regularity in the power grid, with a topology that is

intermediate to fully regular grids and highly irregular grids. These grids can be thought

of as being a piecewise-uniform grid that isglobally irregularandlocally regular. This

structure combines the best of both worlds: it has the advantages for faster routing that

is afforded by fully regular nets, while offering the flexibility in optimization and better

resource utilization permitted by irregular topologies. It is possible, in some cases, that

due to the regularity in the grid structure, the number of tracks available for signal net

routes in high congestion regions are insufficient. However, this aggravation of conges-

tion arising due to a regular grid design, can be checked and controlled if such a problem

is anticipated and accounted for in the grid design procedure. In [SHSN02], a procedure

is developed to simultaneously design the supply grid, under voltage droop constraints,

and the signal net, under congestion considerations. Starting from an initial dense reg-

ular grid, the non-critical power grid wires in the high congestion regions are removed

followed by a heuristic wire sizing step to overcome the effects of wire removal. The

resulting grid is irregularly sized and thus, loses the advantages of structured regularity.

We use a toy example to illustrate the possible design choices for a power grid topol-

ogy. For simplicity, let us assume that for the given exampleproblem we can divide the

chip into four rectangular regions or tiles having different current densities as shown in

Figure 2.1(a).

The design in Figure 2.1(b) corresponds to the case where thevoltage drop con-

straints are met by constructing a regularly structured grid with regularly sized elements

with the same number of wires in the four tiles, i.e., four wires in each tile. This design

uses more wire resources than required, since the wire sizesand the minimum number of

wires in each tile are chosen according to the region with theworst-case voltage drop.

The design in Figure 2.1(c) meets the design constraints by employing three wires in

17



each tile but the wires in the upper half are sized individually and irregularly to decrease

the resistance and reduce the voltage drop. Such a design makes the task of the signal

router more difficult, since it must keep track of the variable amount of space available

in each region. The design in Figure 2.1(d) utilizes the lowest wiring area by using vari-

able pitches and by sizing individual wires separately. However, besides the fact that

this design would make the routing of signal nets very difficult, the optimization itself

involves numerous design variables and is therefore computationally intensive. The de-

sign in Figure 2.1(e) is essentially the design we propose and optimize in this work. This

design is piecewise-uniform as within a tile it employs a near-constant pitch and uses

the same wire sizing throughout the chip. The wires are sizeduniformly throughout the

chip so as to maintain regularity and meet the IR drop needs. Such a design is more

economical in utilization of wiring resources than designsin Figure 2.1(b) and (c), and

has the desirable property of regularity that Figure 2.1(d)lacks, and does not complicate

the routing problem for signal nets. Moreover, due to an inherent structure in the design,

it is easy to optimize.

(a) (b) (c) (d) (e)

Current  Densities

High High

Med Low

Figure 2.1: (a) Current densities for an example chip that illustrates the possible choices

for a power grid topology. Possible Designs of P/G Network (b) Grid with 4 wires in

each tile and regular wire sizing. (c) Grid with 3 wires in each tile and irregular wire

sizing. (d) A non-uniform grid with variable pitches throughout and irregular sizing. (e)

A piecewise-uniform grid with 4 wires in the upper half tiles, 2 wires in bottom-left tile

and 1 wire in bottom-right tile and uniform sizing.
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In the following sections of this chapter, after discussingthe power grid design pre-

liminaries and hierarchical analysis method , two techniques are presented to design a

locally regular, globally irregular power grid that meets the reliability constraints. The

procedure in the first technique is based on an iterative sensitivity based heuristic op-

timization. The second power grid design technique uses theprinciples of hierarchical

design and the property of locality.

2.4 Preliminaries

2.4.1 Power Grid Circuit Model

A power grid comprises metal wires running in the orthogonaldirections and spanning

multiple layers (typically, 5 to 8 for current microprocessor designs). The wires in two

consecutive layers of metal are electrically connected to each other by using vias. The

wires in the top-most metal layers are electrically connected to theVDD pads that are

located either on the peripheral power ring, as in the case for a chip with a wire-bond

package, or are distributed over the entire chip area, usingC4 bumps, as in the case of a

flip-chip package. This system of pad connections and network of metal wires carrying

currents from theVDD pads to the underlying gates in the functional blocks, can be

modeled as an equivalent electrical circuit comprising possibly millions of nodes. Under

DC conditions, as illustrated in Figure 2.2, the power grid can be modeled as a resistive

mesh, with the pads replaced by voltage sources. As seen in the figure, the wires are

replaced by their equivalent resistances and the worst-case switching activities of the

gates in the underlying functional blocks determines the loading currents.

Using the circuit model as shown in Figure 2.2, the branch resistanceri of branchi

can be expressed as:

ri = ρs
p

wi
(2.1)
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Figure 2.2: A power grid and its equivalent circuit model under DC conditions.

whereρs is the sheet resistivity,wi is the width of the wire segment corresponding to

the branchi, andp is the pitch of the power grid wires in the orthogonal direction,

which is the same as the length of the wire segment. The pitch of the power grid wires

could be different for different layers and in fact, may not even be constant for a given

layer. After converting the voltage sources in the power grid model of Figure 2.2 to

their Norton equivalents, the solution to the node voltagesof the circuit is given by the

following system of Modified Nodal Analysis (MNA) equations:

G ·V = J, J,V ∈ Rn, G ∈ Rn×n (2.2)

wheren is the number of electrical nodes in the power grid circuit,G is the conductance

matrix which contains stamps of all branch resistances,V is the vector of node voltages

andJ is a vector of load currents and the Norton currents of voltage sources.

For all nodesj and all branchesi in the power grid circuit, the following constraints

must be satisfied:

1. The IR drop constraint : Vj > Vspec

2. The current density or EM constraints : |Ii| < σwi

The voltage of nodej is denoted asVj, the branch current of branchi is denoted asIi

andσ is the specified current density for a fixed thickness (height) of the metal layer.
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In the following sections of this chapter, we describe the design procedures for con-

structing a power grid that meets the two above constraints.The inputs to our power grid

design problem are the number of power pads and their preciseconnection locations to

the grid wires in the top layer, the placed functional blocksand an estimate of worst

case currents drawn by the gates in the functional blocks. The amount of current drawn

by each of the functional blocks can be determined by estimation techniques such as

the ones proposed in [KNH95] and [WMR04]. Although, these methods extract time

varying current waveforms, appropriate simplifications can be made to these techniques

to estimate worst case steady state currents drawn by the functional blocks. We use the

power grid circuit model as shown in Figure 2.2. Each nodej in the power grid circuit

is loaded by a constant current sourcecj. Given the current estimateIfk
drawn by a

functional blockk, and the physical coordinates of the placed functional block k, the

values of constant current sources loading the power grid are chosen in such a way that

the sum of all current sources at node locations lying over the functional blockk add

up to the functional block currentIfk
. The values of constant current sources and the

functional block currents are expressed by the following relation:

∑

j∈{Nodes over blockk}

cj = Ifk
(2.3)

2.4.2 Terminology

The following terminology would be adhered to in this chapter of the thesis. Atile or

a partition is a rectangular region of the chip and the chip is divided into many tiles

or partitions. Askeleton gridis an imaginary grid with wires running in orthogonal

directions which is superimposed over the entire chip area.This skeleton grid which is

a uniform and a continuous grid of constant pitch is a place-holder for adding the wires.

The concept of the skeleton grid is explained in Section 2.6.An electrical node in a tile

having links to other nodes in the same tile is called aninternal node, the nodes at the

edges of tiles that connect a tile to its neighboring tiles are calledport nodesand the
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nodes corresponding to theVDD or ground pads are treated asglobal nodes.

2.5 Circuit Analysis by Macromodeling

To detect the nodes and branches in the power grid circuit which violate the IR drop

and EM constraints, our iterative power grid optimization algorithms use an explicit

power grid analysis step in each iteration. For the purposesof determining the most

critical nodes and branches in the circuit, our work uses thehierarchical circuit analysis

technique of [ZPS+00]. This section discusses the adaptation of the macromodeling

method to our work.

As will be explained in Sections 2.6 and 2.7, both of our proposed power grid design

schemes employ a method of dividing the large power grid areainto smaller rectangular

regions, referred to as partitions or tiles, and designing the subgrids locally in these

smaller regions. In such a scenario of working with the partitions of a power grid system,

the hierarchical modeling idea can be efficiently applied toour power grid systems.

Referring to the MNA Equation of (2.2), and splitting the system into internal nodes

and port nodes, we can rewrite the system of equations as:




Gaa Gab

GT
ab Gbb









Va

Vb



 =





Ja

Jb + I



 (2.4)

where

• Va andVb are the vector of the voltages at the internal nodes and the port nodes,

respectively.

• Ja andJb are the vectors of current sources connected at the internalnodes and

the ports, respectively.

• I is the vector of currents through the interfaces between theports.

• Gab is the conductance of links between the internal nodes and the ports.
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• Gaa is the conductance matrix corresponding to the connectionsonly between the

internal nodes.

• Gbb is the conductance matrix corresponding to the connectionsonly between the

port nodes.

As we are employing a resistive mesh model and DC excitations, each rectangular

tile can be abstracted as a multiport electrical element which has a linear current-voltage

relationship. These multiport elements are referred to asmacromodels. If m is the

number of wires in the horizontal direction in a tile andn is the number of vertical

wires in a tile, each macromodel can be regarded as aq-port linear element, where

q = 2(m+ n), with its transfer characteristic given by the following equation:

I = AV + S (2.5)

whereI ∈ R
q, A ∈ R

q×q,V ∈ R
q,S ∈ R

q, A is the port admittance matrix,V is the

vector of voltages at the ports, corresponding to the voltages at the nodes on edges of

the tiles,I is the current through the interface between the tiles, andS is a vector of

current sources between each port and ground.

Referring to the matrix algebra, explained in detail in [ZPS+00], the macromodel

elements, the admittance matrixA, and the current source vectorS, can be derived from

the following relations:

A = LbbL
T
bb

S = LbaL
−1
aa Ja − Jb (2.6)

whereLaa, Lba, andLbb represent the submatrices of the Cholesky factor matrixL, of

the conductance matrixG, with indicesa andb, corresponding to the internal nodes, and

the ports, respectively.

Figure 2.3 shows the conversion of tiles of the power grid into macromodels. In this

example, the power grid which is divided into 9 tiles, is reduced to a system of nine

23



X

X
X

X
X X X X X X X X X X

X
X

X
X

X XXXX
X
X
X
X
X

X X XXXXXXXX
X
X

X
X
X

X
X
X
XX

X
X
X
XXXXX

(a) (b)

Vertical P/G
      wire   

A tile 

      wire   
Horizontal P/G

  Ports

(A1,S1) (A2,S2) (A3,S3)
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(A7,S7) (A8,S8) (A9,S9)

Figure 2.3: Converting the P/G network to a system of macromodels. (a) A P/G network

with port nodes at the tile boundaries. (b) The P/G network changed to a system of

macromodels connected to each other through the port nodes.

multiport elements given by the macromodel parameters (A,S). The macromodels are

connected to each other through port connections.

The macromodel parameters (A, S ) of each tile are stamped into the MNA equation

in the global system given by

MX = b (2.7)

where

• M is the matrix containing the conductance links between global nodes and the

tiles, the conductance links between the tiles, and the stamps ofA for each tile.

• X is the vector of voltages of global nodes and ports.
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• b is the vector of current sources at global nodes and stamps ofS for each tile.

The above Equation (2.7) is solved, either using a direct solver (as for the first power

grid design scheme) or by using an iterative solver (as for the second power grid design

procedure), to determine the global node and port voltages.If it is required to solve for

the voltages of the internal nodes of any tile or partition, the elements of the interface

current vectorI are determined by Equation (2.5), and are fed back into Equation (2.4),

which is then solved by a direct solver by reusing the Cholesky factors, and performing

backward substitution of the already determined elements of the port voltage vectorVb.

Since in our optimization procedures, while designing local power grids, only a few

tiles or partitions are required to be processed in any iteration, the power grid system

solution by hierarchical analysis proves very efficient. For the purposes of efficiency, we

also use the step of sparsification ofA matrix as proposed in [ZPS+00]. This increases

the sparsity of the global matrixM at the cost of reasonable simulation errors.

2.6 Solution Technique 1: A Sensitivity-based Heuristic

This section of the thesis presents a design method, based onthe computation of the

sensitivity of node voltages with respect to increase in wire area, for optimizing the P/G

network by using locally regular, globally irregular grids. The procedure divides the

power grid chip area into rectangular subgrids or tiles. Treating the entire power grid

to be composed of many tiles connected to each other, enablesthe use of a hierarchical

circuit analysis approach to identify the tiles containingthe nodes having the greatest

drops. Starting from an initial configuration with an equal number of wires in each

of the rectangular tiles, wires are added in the tiles using an iterative sensitivity based

optimizer. A novel and efficient table lookup scheme is employed to provide gradient in-

formation to the optimizer. Incorporating a congestion penalty term in the cost function

ensures that regularity in the grid structure does not aggravate congestion.
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The sequence of entire optimization procedure is summarized in the following steps:

1. The chip is divided intok rectangular tiles. An imaginaryskeleton grid(to be

defined in Section 2.6.1) is superimposed on the chip area. The actual supply grid

is built on the skeleton grid, to maintain wire alignments across tile boundaries.

Starting with an equal number of wires in all tiles in both horizontal and vertical

directions, an initial sparse actual grid is formed on the skeleton grid.

2. Each tile is further divided intob bins or smaller rectangular regions. An initial

congestion value is assigned to each bin in both horizontal and vertical directions.

Such congestion values could be obtained from probabilistic congestion estima-

tion techniques such as [LTKS02] and [WBG04].

3. The grid is analyzed using the macromodeling technique asdescribed in Section

2.6.2, and the most critical nodex in tile i, having the maximum voltage drop from

VDD, is determined.

4. The voltage sensitivity of the most critical nodex, with respect to increase in

wire area in tilei, due to the addition ofl wires, is computed using the sensitivity

calculation method, as described in Section 2.6.3.

5. The increase in congestion of bins of tilei, due to the addition ofl wires is

computed, as explained in Section 2.6.4. The cost function is calculated as the

weighted sum of the voltage sensitivity term and the congestion term.

6. The number of horizontal or vertical wires in the tile having the minimum cost, is

increased byl. The current sources to internal nodes of the tile are reassigned, so

that the sum of the current sources at all internal nodes is the total current drawn

by the P/G buses in that tile. The congestion values of the bins in the tile chosen

for wire additions are updated.
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7. Steps 4, 5, 6 and 7 are repeated until the voltage of the mostcritical node is greater

than a specified value, and the EM constraints for all wires inthe grid are met.

The following sections explain each of these steps in details.

2.6.1 Building the Power Grid

W
ire 2

W
ire 1

Tile 2

Tile 1Tile 1

Tile 2

Skeleton grid
wires

Tile 1

Tile 2

  W
ire 1

W
ire 3

W
ire 1

W
ire 2

W
ire 3

W
ire 1

W
ire 2

(c)(b)(a)

Figure 2.4: Illustration of the procedure to build the powergrid on a skeleton grid.

The P/G wires must lie on the skeleton grid, shown with light lines. The positions of

actual P/G wires are shown with dark lines. (a) The initial structure of the grid. (b) The

structure of the grid after two wires are added in tile1. The wires are added to maintain

a near-constant pitch within the tile. (c) The grid structure after addition of two wires in

tile 2. The wires in tiles1 and2 are added at the same local positions so that they are

aligned with each other.

Our optimization procedure builds a non-uniform, locally regular, globally irregular

grid, with different densities of wires in different tiles.However, if each region uses a

constant wire pitch within it, wires in the adjacent regionsare likely to be misaligned

which would result in the cost of extra vias to electrically connect these wires. We use
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the concept of askeleton grid, illustrated in Figure 2.4 (a), to avoid this scenario. The

skeleton grid is an imaginary uniform grid superimposed over the layout area, and the

wires of the non-uniform real grid, i.e., the actual grid to be designed, are placed on

this grid. The pitches of the skeleton grid are chosen such that if the actual grid were

to completely occupy the skeleton grid, it would have enoughwires to meet the voltage

drop constraints.

Figure 2.4 depicts how the actual non-uniform grid built on auniform skeleton grid.

In this example, the layout is divided into four tiles. The thick shaded lines are the

power grid wires that demarcate the tile boundaries. The initial structure of a non-

uniform power grid, built on a skeleton grid, is shown in Figure 2.4(a). One way to

achieve perfect local regularity in the grid structure is touse a constant wire pitch inside

a tile. However, if the wire densities of adjacent tiles are different, a constant pitch

would result in the non-alignment of wires across tile boundaries. Hence, we place the

wires inside a tile to achieve a near-constant pitch. As shown in Figure 2.4(b), the wires

additions inside a tile are distributed to maintain a near-constant pitch, as per the idea of

local regularity.

Our method maximizes wire alignment across tile boundariesby adding the wires

on the skeleton grid in the same pre-determined order in all tiles in each iteration. For

example, in Figure 2.4(b) and (c), the wires are added in the tiles in the following order:

wire 1 first, and then wire 2 and wire 3. Since the wires in tilesare always added in

the same order at identical local positions inside a tile, the wires in adjacent tiles are

aligned with each other. As seen in Figure 2.4(c), wires 1 and2 in adjacent tiles, tile 1

and tile 2 are aligned with each other. Such a structure aids the routing of signal nets as

the only book-keeping that is required is related to the presence or absence of wires on

the skeleton grid in the given tile.
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2.6.2 Port Approximation Technique

After dividing the whole power grid area into smaller rectangular regions or tiles, we

observe that the nodes on the edges of the tiles are on the sameconducting wire. There-

fore, it is reasonable to make an approximation that collapses some of the nodes1 at the

edge2. We use this observation to reduce the size of the macromodels, making an ap-

proximation to reduce the number of ports of a tile from2(mi + ni) to 2(k + p) ports

wherek ≤ mi andp ≤ ni. Each of the rectangular tiles is considered as a2(k+ p)-port

linear element by making an approximation that the voltage variation of some nodes on

the edges of the rectangular tiles is small.

To further maintain the accuracy of the circuit solution, during the reduction of the

edge nodes of the tiles, anyVDD and ground pad nodes that lie on the tile edges are

always preserved and so are their immediate neighbors. Alsofor every removed node,

its immediate neighbor is always preserved, thus approximating for only small voltage

variations on the edges. The corner nodes of the tiles are never removed. Figure 2.5

illustrates this process where a 20 port tile is reduced to a 14 port tile.

To validate that this reduction from2(m+ n) ports to2(k + p) ports is a reasonable

approximation, we perform simulations of power grid circuits and empirically choose

the value ofk andp so that there is a reasonable upper bound on the error in the solution

of the original and the approximated systems.

Tables 2.1 and 2.2 list the the orders of errors and runtime improvements for the

approximations for the power delivery to a 2cm× 2cm chip with aVDD value of 1.2

Volts, and pads distributed throughout the chip. For the experiments in Table 2.1, the

chip is divided into10 × 10 subgrids, i.e., 100 tiles with each tile having 10 horizontal

and 10 vertical wires. The exact number of ports without any port approximations is 44

1This is a coarser and faster approximation than that used in multigrid-based meth-
ods.

2Even if the grid boundaries do not have these wires, the assumption is likely to be
valid for reasonably dense grids.
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Figure 2.5: Reducing the number of ports of a tile of a power grid. (a) A tile of the

original P/G network with 20 port nodes. (b) The port nodes ofthe tile reduced to 14 by

combining some nodes.

and this corresponds to the simulation data on the last row. The range of voltages for the

exact simulation without any port approximations is 0.88V -1.20 V.

Table 2.2 represents the experiments for which the chip is divided into 12 × 12

power grid, i.e., 144 tiles with each tile having 12 horizontal and 12 vertical wires. The

exact number of ports without any port approximations is 52 and this corresponds to the

simulation data on the last row. The range of voltages for theexact simulation without

any port approximations is 0.90V - 1.20 V.

Tables 2.1 and 2.2, show the orders of the average and maximumerrors for simula-

tions with the port approximations as compared to a simulation without removing any

ports.

As seen in these tables, we gain significant runtime improvement from these ap-

proximations while ensuring that the errors remain within reasonable bounds. For a

power grid design problem in which the bound on the worst casevoltage drop is to be

kept within 8%-10% ofVDD, the level of accuracy given by an average error of about

1%-3% is adequate. Since we are at the early design level, there is a fair amount of
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# of Ports Kept Avg Error % Max Err % Runtime (sec)

4 9.21% 13.24% 0.54

8 7.52% 10.02% 0.67

10 5.89% 9.50% 0.78

12 5.38% 8.08% 0.87

20 3.19% 6.58% 1.88

24 2.60% 5.08% 2.79

28 2.41% 5.06% 3.95

32 1.57% 3.51% 5.46

36 1.27% 2.71% 7.19

40 0.07% 1.02% 9.49

44 0.00% 0.00% 11.60

Table 2.1: Errors for port approximations for a10 × 10 grid.

uncertainty involved in various design parameters like switching current waveforms and

exact placement of the underlying functional blocks. Hence, it is advantageous to work

with an efficient and reasonably accurate model of the power grid as opposed to a com-

pletely accurate but inefficient model.

2.6.3 Voltage Sensitivity Calculation

Sensitivity analysis is a standard technique employed for circuit optimization when it is

desired to find out how the response of output changes with respect to changes in circuit

element values. The advantage of using the sensitivity based method is that it eliminates

the cost of doing an extra simulation after making changes inthe circuit, and uses the

factors of coefficient matrix of the original solution.

For our problem, the sensitivity calculations in matrix form provide the gradient
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# of Ports Kept Avg Error % Max Err % Runtime (sec)

4 10.41% 14.57% 0.71

8 8.78% 11.34% 1.23

12 5.87% 9.00% 1.90

16 4.88% 7.83% 2.81

20 3.78% 7.16% 4.14

24 3.33% 8.08% 6.09

32 2.58% 4.58% 11.27

36 2.35% 4.51% 15.07

40 1.52% 2.16% 19.26

48 0.05% 0.78% 30.58

52 0.00% 0.00% 36.55

Table 2.2: Errors for port approximations for a12 × 12 grid.

information to guide the direction of optimization. The analysis, as explained in Sec-

tions 2.5 and 2.6.2, determines the most critical node that has the greatest voltage drop.

The task of sensitivity computation is to determine the identity of the tile to which the

addition of l horizontal or vertical wires would have the greatest impact, in terms of

improving the worst case voltage drop. To explain the sensitivity calculation method,

the following notation will be used:
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k : Number of rectangular tiles into which the power grid is divided.

Vxi : Voltage of the most critical nodex found in tile i.

pi : Number of wires in tilei.

mi : Number of wires in tilei in the horizontal direction.

ni : Number of wires in tilei in the vertical direction.

W : The wire width for the power grid, assumed to be constant forthe entire layout.

Lhi : The length of the horizontal wire in tilei.

Lvi : The length of the vertical wire in tilei .

Ari : Wiring area used in tilei.

Vi : The vector of port voltages of tilei which contains the most critical nodex .

t : Numbers of ports kept for tiles after the port approximations.

l : The number of wires added in any tile in each iteration.

The following relations exist between the above defined terms.

Ari = W (miLhi + niLvi) (2.8)

pi = mi + ni (2.9)

Using the chain rule, we can make the following calculations:

δVxi

δAri
=

δVxi/δpi
δAri/δpi

(2.10)

From Equations (2.8) and (2.9) it follows:

δAri
δpi

=
δAri/δmi

δpi/δmi

+
δAri/δni
δpi/δni

(2.11)

δAri
δpi

= W (Lhi + Lvi) (2.12)

To calculate the numerator of the right hand side (RHS) of Equation (2.10), i.e.,δVxi/δpi,

we use the following procedure. Consider the global system,MX = b as described by

Equation (2.7). Let us assume that by the process of adding wires in tilei, M changes

toM + δM , andb changes tob + δb. It can be easily seen that the changesδM in the
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global matrixM , are in the entries corresponding to the stamp of the first macromodel

parameterAi, and the changesδb in the vectorb, take place in the entries corresponding

to stamps of second macromodel parameterSi. The sensitivities of particular response

variables, i.e., the port voltages entries in theX vector in Equation (2.7), can be calcu-

lated by the following equations [PRV95]:

(M + δM)(X + δX) = b + δb (2.13)

Simplifying Equation (2.13) by substituting from Equation(2.7), and neglecting the

second-order variation, i.e.,δMδX, we obtain:

MδX = −δMX + δb

δX = M−1(−δMX + δb) (2.14)

If we are concerned only with thejth response variable, i.e., the voltage sensitivity of

jth port variable, Equation (2.14) can be written as:

δXj = [jthrow ofM−1](−δMX + δb) (2.15)

Thejth row ofM−1 can be calculated by solving the system

MT ξj = ej (2.16)

whereξj is a column vector representing thejth row ofM−1, andej is a column vector

corresponding to thejth column of the identity matrix. Equation (2.15) can be rewritten

as:

δXj = ξTj (−δMX + δb) (2.17)

Referring to Equation (2.17), the following relations can be found:

δXj

δbk

= ξjk (2.18)
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whereξjk is thekth component of theξj, and

δXj

δMmn
= −ξjmXn (2.19)

whereξjm is the negative ofmth component of column vectorξj multiplied by nth

component of the original solution vectorX. Using the Equations (2.18) and (2.19), and

applying the chain rule, we can compute the sensitivities ofvoltages at the ports of the

tile which contains the most critical nodex, with respect to an addition ofl wires in tile

i, by the following equation:

δXj

δpi
=

t
∑

m=1

t
∑

n=1

δXj

δMmn

δMmn

δpi
+

t
∑

k=1

δXj

δbk

δbk

δpi
(2.20)

wheret is the number of kept ports for the tiles after the port approximations and the

summation indices in the terms
∑t

m=1

∑t
n=1 and

∑t
k=1 arise due to the change in the

macromodel (At×t,St×1) stamps for tilei, where the extra wires are added. For the

purposes of efficiency, the two unknown quantities in Equation (2.20),
(

δMmn

δpi

)

and
(

δbk

δpi

)

, are calculated using a table lookup scheme described in thefollowing section.

Table Lookup

The number of wires in a tile in horizontal and vertical directions can assume a finite

set of values starting from the initial number of wires, to a maximum number that cor-

responds to the number of wires on the skeleton grid inside a tile.

The macromodel matrixA depends only on the number of wires in a tile, and the

vectorS depends on the number of wires and the value of current sources in a tile.

However, since our model assumes equal valued current sources placed at the internal

nodes of the tile, theS vector can be calculated for a current source of unit value atthe

internal nodes, and then a new̃S vector can be computed as a scalar multiple of theS

vector by the following relation:

S̃ = cS (2.21)
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whereS̃ is the vector for the tile with a current source of magnitudec placed at the

internal nodes, andS is the vector for the tile with a current source of unit magnitude

placed at the internal nodes.

# of Horizontal # of Vertical
Index

Wires Wires
At×t St×1

: : : : :

q 3 3 A1 S1

: : : : :

p 3 7 Â1 Ŝ1

: : : : :

100 10 10 A100 S100

Table 2.3: A Table lookup example to illustrate the simplification of voltage sensitivity

computation.

Given that macromodel parameters (A,S) depend on only the number of wires in

a tile, we construct, in advance, a table that contains the corresponding macromodel

parameters for a set of values of horizontal and vertical wires in a tile.

The structure of the table is shown in Table 2.3. We can now make the following

computations from the table lookup:

δMmn

δpi
≈ ∆Mmn

∆pi
= (Auv)p − (Auv)q (2.22)

δbk

δpi
≈ ∆bk

∆pi
= c((Sr)p − (Sr)q) (2.23)

where (u, v) are the rows and columns ofAt×t and (m, n) are the rows and columns of

M corresponding to the stamp ofA. Similarly r is the row ofSt×1, andk is the row in

b corresponding to the stamp ofS. The indexq is the index in the table corresponding

to the current numbers of horizontal and vertical wires in a tile, andp is the index in the
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table corresponding to the number of horizontal and vertical wires after an addition of

l wires in either of the directions. These equations hold because any change in theM

matrix and theb vector, due to an addition of a wire in the tile, would only be in the

stamps ofA andS.

Tile 1 Tile 1
Tile 1

   (a)    (b)

Wires Added in

Figure 2.6: Change in the grid structure by addition of wiresin tile 1. (a) Tile 1 with

3 wires initially. (b) Four more wires added in tile1. The corresponding change in

macromodel parameters(A1,S1) can be calculated using Table 2.3 as a lookup table.

The table lookup procedure can be better understood with thehelp of a small exam-

ple. Let us consider a chip area divided into four tiles. We wish to compute the terms

in the left hand side (LHS) of Equations (2.22) and (2.23), with respect to addition of

wires in tile 1. Figure 2.6 illustrates the change in the gridstructure by wire additions in

tile 1.

The global system of Equation (2.7), corresponding to the example of Figure 2.6,
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where the chip is partitioned into four tiles, is described by:

M =























G00 G01 G02 G03 G04

GT
01 A1 G12 G13 G14

GT
02 GT
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GT
03 GT

13 GT
23 A3 G34

GT
04 GT

14 GT
24 GT

34 A4























and b =
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The entries corresponding to the index0 are associated with the global nodes and the

other indices correspond to the tile numbers.

As seen in Equation (2.24), after addition of two wires in tile 1, the only changes in

M are in the entries corresponding toA1, and the only changes inb are in the entries

corresponding toS1. After the wire additions, the new macromodel parameters are

(Â1,Ŝ1). Since we have a pre-constructed table of the form of as shown in Table 2.3,

all that is required is to search in the table for indexq, corresponding to the number of

wires in tile 1, before the wire addition, and indexp, corresponding to the number of

wires in tile 1, after the wire addition. The entries stored in the table for indexq are

(A1, S1), and the entries stored in the table for indexp are (Â1,Ŝ1). Hence, we can now

easily evaluate Equations (2.22) and (2.23).

All the terms in the RHS of Equation(2.20) are now known from the solutions of

Equations (2.18), (2.19), (2.22) and (2.23). The evaluation of Equation (2.20), yields

the sensitivities of the port voltages with respect to the wire addition in the tile.

We now require the sensitivity of the most critical (i.e., LHS of Equation (2.10))

node which could be an internal node of a tile. Since our modelof the power grid as

shown in Figure (2.2) is purely linear, we can relate the portvoltages to the most critical

node by the following equation:

Vxi = C
T
V +Dx (2.24)

whereV is the vector of port voltages,CT is a row vector andDx is a constant. Refer-

ring to Equation (2.4), these terms are calculated as:
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C
T = xth row (for the internal node x) of matrix−G−1

aaGab.

Dx = xth component of vectorG−1
aa Ja.

If the most critical node is not in the same tile in which a wireis being added then the

termsCT andDx are constant. Therefore, from Equation (2.24)

δVxi

δpj
= CT δV

δpj
(2.25)

If the most critical node is indeed in the same tile in which a wire is being added,

δVxi

δpi
= C

T δV

δpi
+ V

δCT

δpi
+
δDx

δpi
(2.26)

Thus, from Equations (2.25) and (2.26) we get the LHS of Equation (2.10), which is

simply the change in voltage of the most critical node by making an addition ofl wires

in tile i. This is the gradient information we require to guide the optimization process

described in the Section 2.6.5. The table-lookup scheme is implemented as a file read,

and therefore does not increase the memory requirements of the optimization procedure.

We also perform afidelity testto check the sensitivity calculations. In this test, we

first find the worst node in the circuit, and then compute the sensitivities of the worst

node with respect to addition ofl wires in various tiles, one tile at a time. The tiles are

then sorted in decreasing order of sensitivity values. Next, we make the actual change

of addition of l wires in the sorted order and observe the voltage change of the worst

node. We find that the sorting of tiles according to the sensitivity calculations indeed

match the order of the voltage change obtained by the actual addition of extra wires.

In other words, the tile computed to have the greatest voltage sensitivity for the worst

node obtains the maximum voltage improvement, or greatest voltage drop reduction,

after actual addition ofl wires in that tile. The tile calculated to have the second largest

sensitivity has the second largest voltage improvement, and so on. The successful results

of the fidelity test are critical, as they validate the greedyapproach to add wires in the

tile having the maximum sensitivity according to the sensitivity calculations.

We empirically choose to keep the values ofl to be from 5-7 wires added in a tile in

every iteration. For larger values ofl, the orders of errors in the sensitivity computations

39



increase, as the assumptions made to neglect the second order variations, i.e.,δMδb in

the derivation of Equations (2.18) and (2.19) no longer hold.

2.6.4 Congestion-Aware Power Grid Design

The constraint of maintaining local regularity may come at the expense of worsening the

congestion problem, where signal nets are unable to find sufficient routable resources to

complete their routing, and are forced to take detours. If structured regularity enforces

placement of power grid wires in regions where the demand forrouting resources from

signal nets is high, it would clearly aggravate congestion.

To overcome this potential problem of congestion arising due to local regularity in

the grid structure, we follow a pre-emptive strategy without compromising the property

of structured local regularity in the power grid design. We introduce a term in the cost

function which penalizes addition of power grid wires in high congestion regions. Since

the input to our power grid design problem is a floorplan or a placed net-list, probabilistic

congestion estimation techniques such as [LTKS02] and [WBG04] can be used to assign

congestion numbers to different regions of the chip. Dividing the chip into rectangular

tiles for the purposes of building the power grid, produces tiles with fairly large areas

from the perspective of signal net routing. Hence, we further tessellate each tile into

smaller rectangular regions calledbins. As shown in Figure 2.7(a) and (b), after the chip

area is divided into rectangular subgrids or tiles, the tiles are further divided into smaller

rectangular bins. Considering the bins in tilei arranged inyi rows andzi columns,

probabilistic congestion estimation techniques can be useto generate two matricesUih

andUiv , each of sizeyi × zi, whose entries correspond, respectively, to the associated

horizontal and vertical usage of each bin due to the signal net routing. The horizontal

and vertical capacities,cih and civ , respectively, of each bin in tilei is given by the

40



(b)

A  bin

A  tile

(a)

Figure 2.7: (a) An example of a chip divided into four tiles demarcated with thick dark

lines representing P/G wires. The P/G wires inside a tile areshown with thin dark lines.

(b) A tile is further divided into 16 bins. The dark lines are P/G wires inside the tile.

following relations:

cih =
hi

minPh
(2.27)

civ =
wi

minPv
(2.28)

where (minPh) and (minPv) are the minimum horizontal and vertical pitches, respec-

tively, of the metal layer, and,hi andwi are the height and the width, respectively, of

each bin in tilei. The horizontal and vertical congestions of each bin are calculated

and stored in matricesCih andCiv , respectively. For a bin indexed by rowa and col-

umnb, the congestion value is given by the fraction of total bin capacity utilized by the

following relation:

Cih[a, b] =
Uih[a, b]

cih
(2.29)

Civ [a, b] =
Uiv [a, b]

civ
(2.30)

In each iteration of the optimization loop, addition ofl wires in tile i change the values

in congestion and usage matrices for exactlyl columns orl rows, depending on whether
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the wires added were in the vertical or the horizontal direction. For instance, addition of

one vertical wire in tilei, at a position corresponding to all bins indexed by columnb,

changes the values of the usage matrixUiv in the following way:

Uiv [j, b]new = Uiv [j, b]old +
W

minPv
, j = 1 · · · yi (2.31)

whereW is the wire width, assumed to be constant for the entire layout. Using Equa-

tions (2.29) and (2.30), the new congestion values, after wire additions, can be calcu-

lated.

We defineCongVavgi
as the average vertical, andCongVmaxi

as the maximum ver-

tical congestion of all bins indexed by columnb as:

CongVavgi
[b] =

yi
∑

j=1

Civ [j, b]

yi
(2.32)

CongVmaxi
[b] = maxCiv [j, b], j = 1 · · · yi

The average horizontal,CongHavgi
, and the maximum horizontal,CongHmaxi

, conges-

tion of all bins indexed by rowa is similarly defined as:

CongHavgi
[a] =

zi
∑

j=1

Civ [a, j]

zi
(2.33)

CongHmaxi
[a] = maxCiv [a, j], j = 1 · · · zi

The average vertical and horizontal congestion for all of the bins in tilei is:

CongVavgi
=

zi
∑

j=1

CongVavgi
[j]

zi
(2.34)

CongHavgi
=

yi
∑

j=1

CongHavgi
[j]

yi

The maximum vertical and horizontal congestion for all the bins in tile i is given by:

CongVmaxi
= max(CongVmaxi

[1], · · · , CongVmaxi
[zi]) (2.35)

CongHmaxi
= max(CongHmaxi

[1], · · · , CongHmaxi
[yi])
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The penalty term introduced for congestion is the following:

Congi =γ(CongVavgi
+ CongHavgi

)+

(1 − γ)(CongVmaxi
+ CongHmaxi

) (2.36)

where,γ is a parameter∈ [0, 1] to appropriately penalize the average and the maximum

congestion.

The cost function associated with adding wires in tilei is a weighted sum of the

voltage sensitivity term,δVx

δAri
, computed using the procedure described in Section 2.6.3,

and the congestion penalty term,Congi.

Costi = βCongi − α
δVx
δAri

(2.37)

where,α andβ are normalized weight parameters. The voltage sensitivityterm repre-

sents the cost to benefit ratio of voltage drop reduction withincrease in area, and the

congestion term penalizes for aggravating congestion by wire additions in the congested

regions. The cost function guides the optimization loop as the tile having the minimum

value of the cost function is selected for wire additions.

2.6.5 Optimization Objective and Constraints

We use a greedy optimization heuristic based on the information obtained from the

sensitivity and congestion computations. Using some of thedefinitions in the previous
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sections, the optimization problem is formulated as follows:

Minimize
k

∑

i=1

Costi (2.38)

Subject to

Min(Vx) ≥ Vspec ∀nodex

Pvi ≈ c1λv, ∀i : 1 tok

Phi ≈ c2λh, ∀i : 1 tok

Iwirej

W
≤ σ ∀wirej

wherek is the number of tiles in the P/G grid,Phi andPvi are the wire pitches in the

horizontal and vertical direction in tilei, λh andλv are the pitches in the horizontal

and vertical directions of theskeleton grid, c1 andc2 are some integer constants. These

approximation constraints enforce the wires in a tile to be placed on the skeleton grid

with a near-constant pitch within a tilei. As described in Section 2.6.1, these constraints

aid in maximum alignment of wires in the adjacent tiles. The wire pitches are related to

the line resistances by the following relations

Rvi =
ρsPhi
W

and Rhi =
ρsPvi
W

(2.39)

whereRvi andRhi are the line resistances of the vertical and horizontal wires in tile i,

ρs is the sheet resistivity andW is the wire width which is assumed to be constant for

the entire layout.

The last set of constraints are the EM constraints, whereσ is the current density for

a fixed thickness of the metal layer andIwirej
is the current flowing through wirej.

The optimization procedure iteratively addsl wires in tile i, by selecting the tile

index i based onCosti as given by the cost function of Equation (2.37). The additions

of wires on the skeleton grid ensures the approximation constraints to obtain a near-

constant pitch within a tile. The IR drop and EM constraints,for nodes and branches in

tile i, are checked by the hierarchical circuit analysis step described in Section 2.5. The
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iterative method of wire additions in a tile continues untilthe power grid system satisfies

the reliability constraints of IR drop and EM.

2.6.6 Speedup Techniques

In the optimization procedure, we can generate the following savings in the some of the

steps to achieve significant speed up.

• Instead of calculating the voltage sensitivities and congestion values for all the

tiles, we can define anactive sensitivity windowaround the most critical node so

that there are enough pads within the window, and then make the sensitivity and

congestion calculations for only the tiles inside that window. Typically, when the

pads are distributed over the entire chip, as in a flip-chip package, the sensitivity

window would be the tile containing the worst node and its neighboring tiles.

• By adding a few wires in only one of the tiles, we need to compute the Cholesky

factors of theG matrix for only the changed tile. The factors of other unchanged

tiles are reused.

• In any analysis step after the initial one, we do not necessarily have to solve all the

tiles to determine the most critical node. After solving forthe tile j, that had the

worst drop, all the tiles having greater minimum voltages inthe previous iteration

than the minimum of voltage of tilej in the current iteration, need not be solved.

2.6.7 Extension to Multiple Metal Layers

The proposed optimization technique can be easily extendedto design a power grid for

chips having multiple layers of metal. Typically, the uppermetal layers use wider wire

widths than the lower layers. Also, adding wires in upper layers would yield greater

reduction in the IR drop, since the upper layer wires affect the voltages at larger number

of sinks. The chip area can be divided into rectangular tilesin each of the layers. In
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any iteration, to determine the layer and the tile for wire additions that would result in

the greatest IR drop reduction, with minimum wire area increase, we require the voltage

sensitivity, i.e.,δVxi

δAri
for a few tiles in each layer. The penalty for congestion aggravation

can also be set appropriately for different layers. Since the top metal layers are not

much used for the signal net routing, they can be assigned a lesser congestion penalty

term. Hence, the power grid is designed by iteratively adding wires in the tile and layer

combination which yields the least cost.

2.6.8 Experimental Results

The proposed optimization scheme was implemented in C usinga sparse matrix li-

brary [mes], and results on several power networks were tested 3. Due to the unavail-

ability of benchmark circuits for power networks, the circuits were randomly generated

but with real circuit parameter values. The circuit parameter values, sheet resistivity

(ρs), wire width (W), current density (σ), minimum wire pitches (minPh) and (minPv),

and the ranges of worst case current sources were taken from [SIA01] and [Con00] for

power delivery to a 2cm×2cm chip in 130nm technology withVDD = 1.2V. The voltage

constraints for the power grids, i.e.,Vspec was 1.08V, i.e., 90% ofVDD. Also, due to the

unavailability of large block level benchmark circuits, wecould not use the probabilis-

tic technique to estimate congestion values for different regions of the chip. Instead,

we randomly generated congestion numbers to model the initial horizontal and vertical

usages of the bins due to the assumed signal net routing. The congestion values were

generated such that the signal nets consumed between 30% and60% of the bin capaci-

ties. The bin size was assumed to be20µm× 20µm. The experiments were performed

on Pentium-4 processor Linux machines, each with a clock speed of 2.4 GHz.

3The design of ground networks is fundamentally the same as that of a power net-
work. The only difference in the design of ground networks isthat the currents flow into
the nodes of the ground network and all nodes are required to be less than a specified
voltage.
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Scale :  1 wire in figure = 10 grid wires

(a) Optimized non-uniform power

grid for a wire-bond package

Scale :  1 wire in figure = 10 grid wires

(b) Optimized non-uniform power grid

for a flip-chip package

Figure 2.8: The wire density pattern of power grids constructed by the proposed op-

timization for a 2cm×2cm chip divided into 100 tiles, superimposed over the current

density patterns. The regions with darker shades have higher current densities.

Figure 2.8 illustrates the non-uniform grids obtained at the end of the optimization

heuristic for a 2cm×2cm chip divided into 100 tiles. Figure 2.8(a) refers to the case

when theVDD pads are distributed at the periphery of the chip, as for a wire-bond pack-

age. Figure 2.8(b) shows the grid obtained when the pads are distributed throughout

the chip, as for a flip-chip package. The grids are superimposed on the current density

patterns, where darker colors represent higher current density regions. The light dashed

lines represent the skeleton grid and the dark solid lines represent the actual grid. Ac-

cording to the scale chosen, one solid line is a substitute for ten wires in the actual grids.

The highest current density regions, represented by the darkest shade in the figure, has

a range of currents of about five to six times greater than the range of currents in the

lowest current density regions, represented by the lightest shade in the figure. As seen
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from the figure, it is not always true that the densest grids would lie in tiles with the

highest current densities. The requirement to maintain sufficient voltage levels, in re-

gions which draw high currents, can be met with fewer wires, provided there are enough

pad connections to the P/G wires in that region. Hence, factors such as the pad locations

also affect the density of the power grids in a given region.

Two sets of experiments were conducted that intended to compare our approach

with:

1. The wire area utilized by a uniformly structured grid and constant wire width

throughout the chip. Table 2.4 refers to this comparison.

2. The wire area utilized by a uniform grid for which wires aresized differently in

different regions of the chip. Table 2.5 refers to this comparison. The number

of wires for the uniform grids of Table 2.5 is less than that ofthe uniform grids

of Table 2.4, but the wire widths are more for wires in some of the high current

density tiles of the uniform grids of Table 2.5.

# of # of Wire Area Wire Area
Vinitx

Voptx Ports Wires Regular Proposed
% Reduction CPU Time

Ckt # of Tiles
(V) (V) Per Tile Per Iter Grid (cm2) Design (cm2) in Wire Area (mins)

1 80 0.852 1.081 52 5 0.0962 0.0739 23.12% 86.2

2 100 0.847 1.083 44 5 0.0840 0.0699 16.82% 67.4

3 144 0.852 1.087 36 6 0.0922 0.0764 17.14% 55.6

4 160 0.858 1.083 32 7 0.0984 0.0861 12.46% 48.3

Table 2.4: A comparison of the wire area used by the locally regular, globally irregular

power grids, designed using the proposed method, and the grids employing a globally

regular structure, and a constant wire size.

For the power grids of Table 2.4 and Table 2.5, theVDD pads were distributed

throughout the chip. The weights in the cost function of equation (2.37), were set to

α = 1 andβ = 0, so that this power grid design for the comparison did not consider the
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congestion problem. As listed in Table 2.4, the number of tiles into which the chip was

divided for optimization are given in the second column. Thethird column (Vinitx) refers

to the voltage of the most critical node before the optimization, when starting from an

initial grid with equal number of wires in all tiles. Column four (Voptx) indicates the

voltage at the end of the optimization process. This voltageis measured using an ex-

act simulation of the power grid circuit, i.e., without the approximation of reducing the

number of ports and sparsification ofA matrix. The optimization is run for about two to

five additional iterations even after meeting the voltage drop constraint, so that the errors

introduced by the port approximations and sparsification can be accounted for by a little

over-design. Also, if the grid meets the IR drop constraintsbut the EM constraints are

not yet satisfied, the optimization is continued by iteratively adding wires in the tiles

where EM constraints are violated, until all wires have a current density less than the

specified current density. The number of ports retained for each tile after the process

of Port Approximationis shown in the fifth column. Column six shows the number of

wires that were added in every iteration in the tile having the least cost for wire addi-

tion. The seventh column shows the amount of wiring area thatwould be utilized by a

P/G network topology having a constant pitch of wires throughout the chip and constant

wire width. By enumeration, a minimum number of wires that satisfy the voltage drop

constraint, was chosen to construct this regular grid. The eighth column (Wire Area

Proposed Design) shows the amount of wire area used by the proposed design at the end

of the optimization. The wire widths used by the proposed optimization is the same as

the one used for the regular grid for a fair comparison. As seen from the table, there is

a saving of about 12% to 23% in wire area by the proposed optimization scheme over

the topology having a regular grid and constant sizing with same number of wires in all

tiles.

Table 2.5 shows the comparison of wire area of the proposed P/G network structure

with a design that employs wire width sizing, starting from an initial uniform grid with

same number of wires in all tiles and uniform wire widths. It should be emphasized
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Wire Area Wire Area % Reduction
# of # of Sized

Sizing Proposed Design in Wire
Ckt

Tiles Tiles (cm2) (cm2) Area

1 80 32 0.0843 0.0739 14.07%

2 100 38 0.0883 0.0699 20.84%

3 144 48 0.0894 0.0764 14.54%

4 160 62 0.1096 0.0861 21.44%

Table 2.5: A comparison of the wire area used by the locally regular, globally irregular

power grids, designed using the proposed method, and the grids employing a globally

regular structure, with irregular wire sizing.

that the number of wires in the tiles for the regular grid of Table 2.5 is less than that

(about 0.6-0.7×) of the regular grid design that is listed in column seven of Table 2.4

and the minimum wire width of the regular grid design of Table2.5 is the same as that

of the proposed design. The third column in Table 2.5 refers to the number of tiles in

which the wire widths were incrementally sized. The tiles with high current densities are

identified and the wire widths in those tiles are incrementally sized until the voltage drop

constraints are met. We compare the sizing solution againstthe four optimized power

networks of Table 2.4. The fourth column (Wiring Area Sizing) lists the wire area used

of various chips by the wire sizing solution. The fifth column(Wire Area Proposed

Design) lists the wire area used by the proposed optimization. The last column indicates

the percentage change in the wire area. There is a reduction of 14% to 21% in wire

area by the proposed optimization scheme over the design with the wire width sizing

technique.

To verify that the proposed design technique of producing locally regular and glob-

ally non-regular power grids is congestion-aware, we perform another series of exper-
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γ = 0.25 γ = 0.5 γ = 0.75

# of α = 1, β = 0 α = 1, β = 1 α = 1, β = 1 α = 1, β = 1

Area
Congestion

Area
Congestion

Area
Congestion Area Congestion

Ckt Tiles
(cm2)

Avg Max
(cm2)

Avg Max
(cm2)

Avg Max
(cm2)

Avg Max

1 120 0.753 0.615 2.039 0.788 0.565 1.312 0.795 0.545 1.395 0.784 0.512 1.476

2 150 0.712 0.593 1.895 0.734 0.572 1.214 0.742 0.561 1.314 0.734 0.534 1.371

3 180 0.789 0.658 1.952 0.809 0.591 1.118 0.816 0.572 1.232 0.812 0.567 1.291

Table 2.6: A comparison of non-congestion-aware and congestion-aware, piecewise-

uniform power grid design.

iments. As shown in Table 2.6, we design the piecewise-uniform power grid proposed

in this thesis, both with and without the congestion penaltyterm in the cost function.

According to the cost function equation (2.37), the values in the table corresponding to

the parameters,α = 1 andβ = 0, refer to the design of the proposed locally regular

and globally regular supply grid with no penalty for congestion. The values in Table 2.6

corresponding to the parameters,α = 1 andβ = 1, refer to the congestion-aware design

of the piecewise-uniform supply grid. In this design, the normalized weight parameters,

α andβ, are used in the cost function to balance the objectives of (i) reducing the IR

drop with minimum increase in area and (ii) minimizing congestion aggravation. As

given by equation (2.36), the value of the parameterγ is varied to relatively penalize

the maximum and the average congestion of all bins. The valueof γ < 0.5 penal-

izes the maximum congestion more than average congestion. As seen in Table 2.6, the

congestion-aware design achieves substantial reduction in the maximum and the average

congestion values over a design with no congestion penalty.However, the congestion-

aware design utilizes more wiring area than the non-congestion-aware design. This is

due to the fact that in a congestion aware design , in every iteration, the wires are placed

in suboptimal locations from the point of view of IR drop reduction. Hence, more wires

are needed to meet the IR drop constraint. The tradeoff between congestion reduction
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and wire area increase can be explored by changing the relative weights,α andβ, to

penalize one objective more than the other in the cost function of equation (2.37).

The runtime of the proposed design of the power grid is a function of the number of

wires added in each iteration step and the number of ports that are removed to make the

macromodels. To better understand the runtime, accuracy and area-reduction tradeoffs,

we perform a series of experiments in which we construct a grid using the proposed

optimization scheme for power delivery to 2cm×2cm chip divided into 100 tiles. The

runtime, accuracy and wire area reduction tradeoff is explored by varying the number of

ports kept for the tiles and the number of wires added per iteration.

Average Error

Design # of # Wires per % Reduction in in Optimal CPU time

Ports Iteration Wire Area Design (mins)

1 44 5 19.41% 2.14% 63.4

2 44 6 16.23% 2.32% 60.6

3 44 7 13.34% 2.64% 58.9

4 40 5 19.09% 3.67% 56.2

5 40 6 16.50% 3.95% 54.5

6 40 7 14.41% 4.23% 53.4

7 36 5 19.52% 5.81% 41.6

8 36 6 17.12% 6.04% 40.4

9 36 7 13.21% 6.23% 39.2

10 28 5 18.98% 9.02% 19.7

11 28 6 16.47% 9.55% 18.6

12 28 7 13.59% 10.17% 17.1

Table 2.7: Various tradeoffs involving number of ports kept, number of wires added in

each iteration, reduction in wire area, runtime, and accuracy in power grid design.
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As shown by Table 2.7, on the one hand, the runtime significantly reduces by re-

moving more ports while forming the macromodels, but on the other hand, the errors in

measurement of voltages increase. If we add more wires per iteration for the same num-

ber of kept ports, the runtime slightly improves but at the cost of accuracy and savings

in the wire area. By adding more wires per iteration, we are increasing the amount of

over-design and hence reducing the improvement in area reduction over other topolo-

gies. Thus according to the level of accuracy and the order ofruntime required, we can

choose the appropriate parameters to guide the optimization.

2.7 Solution Technique 2: A Partition-based Approach

using Locality

To improve the slow runtimes of our power grid design technique, described in Section

2.6, we present in this section of the thesis a highly efficient alternative algorithm for

supply network design.

This work proposes an algorithm, which employs a successivepartitioning and grid

refinement scheme, for designing the power distribution network of a chip. In our iter-

ative procedure, the chip area is recursively bipartitioned, and the wire pitches and the

wire widths of the power grid in the partitions are repeatedly adjusted to meet the volt-

age drop and current density specifications. By using the macromodels of the power grid

constructed in the previous levels of partitioning, the scheme ensures that a small global

power grid system is simulated in each iteration. The idea isbased on the notion that

due to the locality properties of the power grid, the effectsof distant nodes and sources

can be modeled more coarsely than nearby elements, and includes practical methods

that enhance the convergence of the iterative conjugate-gradient based solution engine

that is used in each step. Finally, a post-processing step atthe end of the optimization is

employed to maximize the alignment of wires in adjacent partitions.
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Schemes for automated power distribution network design can be divided into the

following two categories, based on tradeoffs between the accuracy of the embedded

power grid simulator and the level of sophistication of the optimizer:

(A) Heuristic iterative optimization methods, employing an explicit and exact circuit

analysis step in the main optimization loop to determine constraint violations in

the power grid [SS05], [SGS00].

(B) Mathematical optimization schemes, formulating the problem as a nonlinear pro-

gram by approximating the circuit equations, and solved with the aid of nonlinear

optimization techniques [TSL03,WHC+01,WC02,WMS05,MK92].

The desirable characteristic of the supply network design methods based on scheme (A)

is the guaranteed accuracy of the final solution, ensured by the process of performing

an explicit circuit simulation step in each iteration, to detect and fix the IR drop and EM

violations. However, these methods typically have large runtimes as each simulation of

a power network, comprising hundreds of thousands of electrical nodes, is extremely

time consuming. The methods built on scheme (B), solve the supply net design problem

by formulating it as an optimization problem of minimizing anonlinear function sub-

ject to nonlinear constraints. In this scheme, typically, the circuit analysis is implicitly

carried out by explicitly or implicitly listing the circuitconstraints, i.e., the Kirchoff’s

current and voltage laws and the device equations, as a part of the constraints set. In

the original form, the solution to such a nonlinear problem formulation is known to be

computationally intensive which makes it prohibitive for problems involving millions

of design variables. Hence, to achieve efficiency these methods typically either employ

some constraint relaxations to transform a general nonlinear optimization problem to

special forms of nonlinear programs such as the convex program, which can be effi-

ciently solved, or introduce some approximations to reducethe problem size. Although,

these methods provide a solution that is more efficient than those from scheme (A), the
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final solution is inherently subject to inaccuracies due to the relaxations and approxima-

tions introduced in the original nonlinear problem formulation.

In this work, we propose a novel and fast, yet accurate, algorithm to design the power

distribution network in the form of a non-uniform power grid. We use a hierarchical

design approach, based on successive partitioning of the chip area, to design the supply

network.

2.7.1 Locality in the Structure of Power Grid

Our procedure achieves efficiency by using the notion oflocality, similar to that pro-

posed in [Chi04].4 This concept is based on the observation that nearby elements have

the greatest influence on the voltage at any node. Therefore,while constructing the

power grid locally in a specific region of the chip, it sufficesto use fine-grained and ac-

curate models only in or near the that region. The regions of chip that arefar awayfrom

the specific region are not likely to affect the local grid design in the specific region, and

can be abstracted away using coarse models.

This concept of locality is illustrated in Figure 2.9, wherea violating grid region,

i.e., a region that violates the constraints, is shown by theshaded rectangle. Generally

speaking, these violations can be fixed by adding more power grid wires locally in and

around the violating region. Due to locality, as we make these local changes, it is rea-

sonable for the details of parts of power grid in the regions far away from the violating

region to be abstracted away, as shown in Figure 2.9(b). The use of these abstractions,

or macromodels, for parts of the power grid circuit has two main advantages.Firstly,

they improve the speed of the analysis, since they reduce thesize of the system to be

solved. Secondly, by focusing the grid design effort on the details of the local region

only, the search space for choosing the optimal design parameters, e.g., the wire pitches

4Recently, the implications of property of locality for a transient power grid simula-
tion was presented in [PC06]. Since our work deals with a static or a DC simulation of
power grid, we do not incorporate these transient effects inour work.

55
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Power Grid
Abstraction

Violating Region
of Power Grid
Fixed Locally

(b)(a)

Violating Region
of Power Grid

Figure 2.9: The concept of locality in power grid design. (a)A detailed power grid with

a violating region shown with the shaded rectangle. (b) Details of regions of power grid

far from the violating region abstracted away and the violations fixed locally.

and the wire widths, is significantly reduced.

The idea of working with detailed local models and abstractions of far away regions

is especially useful in the case of flip-chip packages where the power pads are distributed

throughout the chip area by using C4 bumps. For a flip-chip package, most violations of

power grid in a specific regions can be fixed by locally modifying the power grid just in

and around the violating regions. Due to the availability ofa sufficient number of pads

around the violating region, the power grid wires in the local region contain the path of

least resistance for the current to flow from the nearestVDD pads to the violating nodes.

The same idea may not be true of chips with wire-bond packages, since the power pads

are on the periphery of the chip, and the strategy of local modification of the grid may

not work because of the concentration of power pads on the chip periphery. However,

the hierarchical design method mitigates the effect of weaklocality in grid design, as

may be the case for wire-bond chips. By the process of successive bipartitioning, the

hierarchical grid design procedure ensures the presence oflow-resistivity conduction
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paths in various regions of the chip. Due to the availabilityof these high-conductance

paths, it is reasonable to expect that a violating region of the power grid, which may or

may not exhibit a strong locality property, would be appropriately fixed by employing a

top-down hierarchical partitioning scheme.

2.7.2 Outline of the Power Grid Design Procedure

Based on the hierarchical design approach and the notion of locality in power grid de-

sign, we propose an efficient and accurate grid design procedure. The method em-

ploys an iterative scheme of recursively partitioning the chip area and constructing the

power grid locally in the partitions by adjusting the wire pitches and the widths. The

power grids constructed by our design procedure have a locally regular, globally irreg-

ular structure, as described in Section 2.3. The grids within a partition are constructed

to be uniform, i.e., they have the same wire width and wire pitch, but power grid wires

in different partitions may have different widths and pitches, as determined by the cur-

rent density requirements of the underlying functional blocks. Such a locally uniform,

globally non-uniform power grid structure has the desirable properties of efficient wire

area utilization, ease of power grid circuit modeling and optimization. The outline of

our method is as follows:

• We present a heuristic algorithm to design a supply grid thatmeets the IR drop and

the EM constraints. The optimization is carried out under DCconditions using an

iterative refinement scheme. In our implementation, the power grid is designed

for the top two metal layers of the chip, but the same procedure can be easily

extended to design a power network spanning multiple layersof metal.

• We commence by dividing the chip area into two partitions. The power grid in the

two partitions is then constructed by placing thick or very wide wires at an initial

pitch. The pitches in the two partitions are then repeatedlyreduced until the initial

grid meets the constraints.
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• In each of the subsequent iterations, a previous partition is further divided into

two smaller partitions and a refined power grid is reconstructed locally in these

smaller partitions. The grid refinement process comprises of decreasing the wire

width by a factor of the width in the previous partitioning level, and then iteratively

decreasing the wire pitches. The solution of the grid designed in the previous

iterations is used to guide the design of the power grid in thecurrent iteration.

• We use a previously proposed macromodeling technique [ZPS+00], described in

Section 2.5, to construct abstractions of partition of the power grid. Employing

a hierarchical circuit analysis method in each iteration, to determine the nodes

and branches which violate the reliability constraints, ensures the accuracy of

grid design. Since, in each iteration we construct the macromodels of only two

partitions, and reuse the macromodels formed in previous iterations, the analysis

step is very fast.

• We further speed up the circuit analysis step. In order to reduce the simulation

time for the global matrix system, we use a preconditioned conjugate gradient

based iterative linear solver, with an initial guess vectorwhose components are

derived from the power grid solution of the previous iteration. Thus, reusing

the grid solution of the previous iteration to drive the griddesign in the current

iteration aids in making the procedure faster.

• At the end of the optimization, a post-processing step is used to maximize the

alignment of wires in adjacent partitions.

In the following sections we explain the power grid design scheme based on the recur-

sive bipartitioning and grid refinement idea. We employ thisgrid design procedure to

construct power grids for the top two metal layers. The extension of the grid design

procedure for power grids spanning multiple metal layers indescribed in Section 2.7.7.
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2.7.3 Grid Refinement

A power grid covering the entire chip area comprises thousands of wires, and its equiv-

alent circuit, as shown in Figure 2.2, contains millions of electrical nodes, making it

prohibitive to simulate. To achieve efficiency in the circuit analysis step, it thus be-

comes essential to work with a coarse initial power grid representation, which yields a

power grid circuit of manageable size, and then iterativelyrefine the coarse model. In

our power grid design procedure, we construct the coarse grid by using unrealistically

thick power grid wires initially, and then subsequently improve the coarse grid model

by a grid refinementoperation, in which a power grid containing a smaller numberof

thick wires is replaced by a grid comprising of a larger number of thinner wires. In our

power grid circuit model, we assume the via resistances to beproportional to the overlap

area of horizontal and vertical wires. Hence, for thicker wires we have a few vias having

higher resistances. Replacement of smaller number of thicker wires with larger number

of thinner wires, results in more number of vias, but with lower resistances.

The advantage of using a grid with thick wires is that it greatly reduces the system

size, as there are fewer electrical nodes in the equivalent circuit model of Figure 2.2.

Moreover, since we employ a hierarchical approach for powergrid design, the coarse

grid representation is adequate for the abstractions of parts of power grid circuit. How-

ever, such a grid may result in over-utilization of the chip wiring resources. Hence in

our optimization procedure, we begin with a grid with very thick power grid wires to

gain speed up in the circuit analysis step, and then subsequently perform grid refinement

in later iterations to achieve savings in the wire area.

The effective resistance of a given region of a power grid circuit depends on both the

number of wires in the region, and the resistances of the individual wires. Having more

wires reduces the effective resistance of the grid by increasing the number of paths that

current can take from aVDD pad to any node. Assuming a constant wire width for the

given region, as required for a locally regular structure ofthe power grid in our work,

59



the number of wires is determined by the wire pitch of the region. On the other hand,

the resistance of the individual wires depend on the widths of the wires.

Figure 2.10: A power grid with thick wires and large pitch refined to a grid with thinner

wires and smaller pitch.

Figure 2.10 depicts the grid refinement operation. As seen inthe figure, by a grid

refinement operation, a coarse grid with thick wires and a large pitch, is converted to a

grid of thinner wires and smaller pitch. It is reasonable to expect that the impact of an

increase in the resistances of the individual wire segmentsof the refined power grid, due

to reducing the wire widths of the coarse grid, would be offset by having more wires

in the refined grid. Moreover, since the magnitude of currents carried by more thinner

wires of the refined grid reduces, the wires in the new and the old grid are expected

to have similar current densities. This observation that the effective resistance of a

power grid circuit depends both on the wire width, and the wire pitch, forms the basis

of employing grid refinement in our optimization procedure.

The grid refinement idea is similar to the multigrid based method of coarsening

the power grid system [WMS05]. However, the method in [WMS05] deals with a fixed

topology of the supply network and optimizes the parametersof a pre-constructed power

grid. As will be explained in the following sections, in our method, the optimization pro-

cedure decides the topology of the power grid by repeatedly adjusting the wire pitches

and wire widths, while maintaining the locally regular, globally irregular structure of
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the supply network.

2.7.4 Power Grid Design by Recursive Bipartitioning
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Figure 2.11: The recursive bipartitioning process to design the power grid. Each parti-

tion cut is equivalent to adding two elements in the binarypartition tree. The height of

the tree represents the level of partitioning. The two shaded elements refer to the two

partitions where the new power grid is designed in the current iteration.

We apply thedivide and conquerapproach to our power grid design procedure by

successively dividing the chip area into smaller regions orpartitions and iteratively con-

structing power grids in the smaller partitions, using the notion of locality, introduced in

Section 2.7.1. The recursive bipartitioning idea employs the strategy of solving a small

local power grid design problem in each step, and involves the selection of optimal

pitches for two partitions, such that (i) the new grids constructed in the two partitions

each meet all of their specifications, and (ii) the previously constructed grids in the other

partitions maintain their correctness in terms of meeting the IR drop and EM constraints.

Figure 2.11 illustrates the recursive bipartitioning process. As shown in the figure,

the process of partitioning the chip area to iteratively construct the power grid is equiv-
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alent to growing analmost completebinary tree5 referred to as thepartition tree. Parti-

tions that have already been processed are represented as the non-shaded tree elements,

and the two partitions being processed in the current iteration, referred to as theactive

partitions, are shown as the shaded tree elements. Each element in the partition tree con-

tains information about the wire widths and the pitches of the power grid constructed in

the corresponding partition. The height of the partition tree determines the current level

of partitioning. A new partition is constructed by making a vertical (horizontal) cut, by

introducing a vertical (horizontal)partition wire halfway across the parent partition as

a part of the power grid. Consecutive levels of partitioningalternate the cut directions

between vertical cuts and horizontal cuts. The process of adding two children to a parent

node in the tree is equivalent to the grid refinement operation described in Section 2.7.3.

In other words, when two child nodes are added to a parent nodein the tree, the coarse

power grid in the partition corresponding to the parent nodeis replaced by finer grids of

the child nodes.

In the following sections we explain the idea of recursive bipartitioning for power

grid design in detail.

First Level of Partitioning

As seen in Figure 2.11(b), the first level of partitioning is equivalent to adding two child

nodes to the root of the partition tree. In this step, we beginwith the full chip area and

divide it into two parts by adding a vertical power grid partition wire across the chip

going through its middle. We define this as avertical cutacross thefirst partitioning

level, referred to asPart1.

Figure 2.12 depicts the division of the chip into two partitions. Next, we select an

initial wire width and pitch for the partitions such that theworst case voltage drop meets

5As the smaller partitions are produced by the splitting the larger partition in se-
quence from left to right, the resulting partition tree has children added from left to
right, which makes the tree an almost complete binary tree.
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Partition 1 Partition 2Partition Wire

Figure 2.12: First level of partitioning: A chip divided into two partitions and the power

grid constructed in the two partitions.

its specifications. These choices are made by constructing an initial grid in the two

partitions, and then iteratively decreasing the pitches ofpower grid in the two partitions

until there are no IR drop and EM violations. This choice of starting point for the initial

wire widths and the pitches is determined empirically, or based on designer input, so

that we begin not too far away from the final solution point in the search space.

The circuit analysis step, which detects constraint violations in the power grid, is

performed using the macromodeling approached discussed inSection 2.5, coupled with

a preconditioned conjugate gradient based iterative solver to speed up the power grid

circuit simulation. Using the macromodeling idea, all nodes in the two partitions, except

the port nodes, are abstracted away. The port nodes lie on thepartition wire through

which the two partitions connect to each other. Figure 2.13 depicts this situation, where

the left and the right partitions are abstracted as macromodels connected to each other

through the port nodes located on the partition wire. As seenin the figure, the power

grid constructed in the two partitions is reduced to a systemof two macromodels that

connect to each other through the port nodes. Using the matrix algebra described in

63



Partition 1 Partition
wire

Partition 2

Partition 2
Port Nodes

Partition 1
Port Nodes

Partition 1 Partition 2

Port Connections

Macromodel 1 Macromodel 2

Port Connections

(A1,S1) (A2,S2)

Figure 2.13: Power grid constructed in the two partitions changed to a system of macro-

models. The macromodels connect with each other through theport nodes on the parti-

tion wire.

Section 2.5, we construct the macromodels given by the parameters(A,S) for the two

partitions. Following the hierarchical circuit analysis approach explained in Section 2.5,

the macromodel parameters are stamped in the global system,MX = b, as given by

MNA Equation (2.7).

The global system is solved, and subsequently, the node voltages within the two

partitions are determined to check for any IR drop and EM violations. We improve the

runtime of our procedure by solving the global system given by Equation (2.7) using an

iterative solver: specifically, a conjugate gradient method with diagonal preconditioning.

As will be explained in the following sections, we can reuse the solution of the power

grid designed in the previous iteration to speed up the current iteration of the grid design

procedure by employing an iterative linear solver to solve the global matrix of Equation

(2.7).

In case a partition does not meet the voltage drop and currentdensity specifications,

the wire pitch of the partition is reduced by a factorβ1, and the process of creating

the macromodels and solving the power grid system using the iterative linear solver is

repeated. As an implementation detail, it is worth emphasizing that at this first level
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of partitioning, we use unrealistically thick wires, e.g.,wires having widths between

80 and 150µm, and these will later (after further partitioning) be replaced by thinner

wires through the grid refinement operation. The vias, connecting the top two metal

layers, are assumed to have resistances proportional to theoverlap wire area between

the horizontal and vertical layers. Thus, during the grid refinement process the via

resistances and number of vias are appropriately adjusted.Due to using thicker wires

initially, the system size of each partition is fairly small, e.g., 1000 to 3000 nodes. As

a consequence, the iterative process of constructing new macromodel parameters (A,S)

after decreasing the wire pitch and simulating the grid repeatedly is extremely fast. At

the end of this step, we obtain a coarse power grid constructed in the two partitions that

span the entire chip area.

Second Level of Partitioning

Recall thatPart1, the previous level of partitioning, used a vertical wire that divided

the chip area in the left and right halves. We use the power grid constructed at the first

partitioning level to guide the grid design at the next level, referred to asPart2. The

second level of partitioning has two steps, as depicted in Figure 2.11(c) and (d), referred

to asPart21 andPart22 , respectively. First, the power grid constructed in the left

partition is ripped up. Next, a horizontal cut is made in the left partition by introducing

a horizontal power grid partition wire in the middle of this region. As a result, the left

partition is further divided into top-left and bottom-leftpartitions, as shown in Figure

2.14. As seen in Figure 2.11(c),Part21 begins by adding child nodes to the parent nodes

2 and 3 in the partitiontree, or equivalently, growing the almost complete binary tree to

the next level. Leaving the previously constructed grid in the right partition intact, a finer

grid is designed in each of the two new partitions, i.e., the top-left and the bottom-left

partitions.

The grid design procedure for these two partitions is similar to that employed in
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Figure 2.14: The second partitioning level in the power griddesign procedure. The

coarse grids in the left and the right partitions are refined in this level.

Part1, where grids were constructed in the left and the right partitions. We begin the

grid construction in the top-left and bottom-left partitions by using the notion of grid

refinement to construct an initial grid whose wire width is chosen using a multiplicative

factor,γ2 < 1, on the wire width at the parent node, i.e., the wire width used for the grid

in the left partition at the first level. In general we set,wk = γk · wk−1, wherewk is the

wire width for thekth level of partitioning andγk is the multiplicative factor used when

refining from the(k − 1)st level of partitioning to thekth level. The via resistances,

assumed proportional to the overlap area between the horizontal and vertical wires, are

appropriately adjusted at each partitioning level. This isprecisely the grid refinement

technique explained in Section 2.7.3 and shown in Figure 2.10, with the difference that

we now also maintain a coarse macromodel for the right partition. The grid of the left

partition, which had thicker wires and a larger pitch, is therefore replaced with the grids

in partitions top-left and bottom-left that each have thinner wires but a smaller pitch. The

macromodel parameters(A,S) are calculated for the top-left and bottom-left partitions
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and they are stamped in the global system of Equation (2.7), along with the macromodel

parameters of the right partition which were previously computed inPart1.

To solve the global matrix system of Equation (2.7), we use a preconditioned conju-

gate gradient iterative solver to speed up the solution of the linear system of equations.

The simulation speed up is obtained by the observation that since the result of the grid

refinement operation is designed to offer a similar effective resistance, it is reasonable to

expect that the perturbation between the old system (i.e., the power grid design obtained

at the end of the first level of partitioning), and the new system (i.e., the refined power

grid for the left partition at the second partitioning level), would be small. Hence, we

can use the voltages of port nodes located on the vertical cutwire, solved by the old

global system of Equation (2.7), as the components of the initial guess vectorX0 corre-

sponding to the same ports in the new system. The other components of the guess vector

X0, which correspond to the voltages of the newly introduced port nodes by addition of

a partition wire, are set to be equal toVspec. Thus, each componenti of the initial guess

vector used for the conjugate gradient method, after introducing each new horizontal or

vertical partition wire is given by:

X
0
i =







Vportold
: i ∈ Port node of the old system

Vspec : i /∈ Port node of the old system
(2.40)

We find that reusing the solution of power grid design of the previous iteration for solv-

ing the new global matrix system improves the runtime of our supply net design pro-

cedure. The guess vector as formed by equation(2.40) provides a fairly good starting

point for the conjugate gradient method, as a result it converges to the final solution in

only a few steps. To improve the conditioning of the problem,we use a diagonal or

a Jacobi preconditioner for the conjugate method. We pre-multiply the global system

of Equation (2.7) by a diagonal matrix
∑

consisting of the reciprocals of the corre-

sponding diagonal entries of the global MNA matrixM . Alternatively, we could have

chosen Cholesky preconditioning, which is known to have better conditioning proper-
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ties [Ber99]. However, as the step of solving the global system is a part of the inner loop

in the grid design procedure, it is much cheaper to from a diagonal preconditioner as

compared to the more expensive operation of finding the Cholesky factors of the global

matrix M . After solving the global matrix system and determining theport voltages

from the solution vectorX, using the hierarchical analysis technique, the IR drop and

EM violations are detected for the power grid in the top-leftand bottom-left partitions.

The violations are corrected by inserting more wires in the partitions, by reducing the

pitch by a factorβ2.

In addition to the voltage drop and the current density specifications, there is an

additional requirement that the grids of the top-left and bottom-left partitions must meet.

It is essential that the process of ripping up the original grid of the left partition and

replacing it with the grids constructed in the top-left and the bottom-left partitions does

not render the grid of the right partition ineffective in terms of meeting the specifications.

To inspect whether the correctness of the grid in the right partition is maintained, we

could completely solve the right partition power grid again. However, this would be

costly in terms of runtime, as we would need to check the voltages of all of the nodes

of the grid within the right partition, each time the pitchesof the top-left or bottom-

left partitions are decreased. To avoid this high simulation cost, we make use of the

abstraction of the power grid of the right partition effectively. It is reasonable to expect

that a very small change in port voltages of right partition would result only in a small

change in the voltages of the internal nodes of the right partition. Thus, the voltages at

only the port nodes of the right partition grid are evaluated. These voltages are compared

with the port voltages of the right partition power gird obtained at the end ofPart1 and

a grid violation, referred to aspreviousgrid violated, is flagged if the maximum change

in the port voltages is greater than a specified value,MAXspec.

In the event of such a violation, the pitches of the top-left and bottom-left are further

decreased, thereby increasing the number of wires in the power grid in order to main-

tain the correctness of the previously designed grid in the right partition. This process
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ensures that the port voltages of the previously correct grid design are not significantly

disturbed by the new power gird which replaces the previous grid.

The process of power grid design inPart22 is similar to that of grid design inPart21.

In this case, as shown in Figure 2.11(d), the active partitions are the top-right and the

bottom-right partitions. ForPart22 , the old power grid system becomes the one de-

signed inPart21. The rest of the procedure of power grid design is essentially the same

and can be derived from the explanation for constructing thepower grid inPart21 .

Grid Refinement by Recursive Bipartitioning

In the process of growing the partition tree of Figure 2.11(e), when each time two child

nodes are added to a parent node in the partition tree, the coarser power grid in the

partition corresponding to the parent node is converted to finer grids in the two active

partitions corresponding to the child nodes. As described in the previous section, the

wire widths of the child nodes are some factor,γk < 1, of the widths of the parent

nodes. The via resistances, for connections between the horizontal and vertical wires,

are also recomputed for the new partitions according to the new overlap area between

the horizontal and vertical layers.

The wire width is kept constant while designing the local grid for the two active

partitions, and the search is restricted to choosing the optimal wire pitches only. Al-

ternatively, we could have chosen to make the wire width alsoa design variable in the

process of grid construction for the two partitions. However, changing the wire width

repeatedly in the local grid design process would lead to significant changes in the el-

ements of the conductance matrix from which the macromodel parameters(A,S) are

derived. Thus, the solution of the global MNA equation (2.7)could differ considerably

from one inner loop iteration to the next. This could result in slow convergence or many

inner loop iterations to find the best combination of wire widths and pitches that meet

the reliability constraints. Moreover, at the initial partitioning levels we are building a
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coarse solution to capture the essential features of the final power grid solution. Since

using reduced wire pitches and thicker wires are expected tohave similar effect on the

equivalent resistance of the grid, we choose a strategy of fixing the wire width, and lim-

iting the search space to find the optimal set of wire pitches,thus significantly reducing

the number of optimizable parameters and the computationaleffort.

With the growth of the partition tree, the number of partitions in the current parti-

tioning level increases exponentially with the number of levels.As a result, the number

of port nodes and thus, the size of the global system of equation (2.7), grows rapidly.

This adversely affects the runtime of the design procedure as in each iteration, follow-

ing a pitch decrease in any one of the active partitions, it isnecessary to construct the

global matrixM , whose dimensions are rapidly increasing which leads to increase in

number of conjugate gradient steps to solve the global system. To overcome this prob-

lem, we employ theport approximationtechnique suggested in Section 2.6.2, to reduce

the macromodel sizes. By this approach, some of the port nodes located on the partition

wires are collapsed. The port approximation scheme helps incontrolling the fast in-

crease of the global system of equation (2.7) at the cost of reasonable simulation errors.

However, the accuracy of the final solution is not compromised since the port approxi-

mation technique is switched off during the final few iterations of the design procedure.

The addition of two new child nodes in the partition tree can only take place if the

following are satisfied:

1. IR drop and EM constraints, for the new power grid being constructed in the two

active partitions, are met. These violations are detected by the hierarchical circuit

analysis step.

2. There were no previousgrid violated flags set, as described in Section 2.7.4.

These violations are detected by checking the port voltagesof all of the neigh-

boring partitions of the two active partitions. If the maximum change, between

the new port voltages of the neighboring partitions and the port voltages of the
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neighboring partitions before constructing the new grid inthe active partitions,

exceeds a specified value,MAXspec, the previousgrid violation flags are set to

true.

3. The wire pitches in the two active partitions are greater than the minimum wire

pitch,pmin.

In order to fix the violations 1 and 2, the pitch of one or both the active partitions is de-

creased, depending on which of the two active partitions exhibits these violations. The

minimum pitch violation is an undesirable breakdown in our power grid design proce-

dure, and occurs when the grid refinement operation does not work, i.e., the increase

in the wire resistance by replacing a power grid having thicker wires with a power grid

having thinner wires cannot be compensated by adding more wires in the replacement

grid.

These minimum pitch violations cannot be fixed locally by modifying the grid in

the active partitions. In this case, we must traverse the partition tree to the other tree

elements that neighbor the active partitions, and add more wires in these neighboring

partitions by reducing the wire pitches within them. For example, referring to Figure

2.11, if power grid being designed for partition 7 runs into aminimum pitch situation,

more wires are added iteratively to partitions 5 and 6 until the constraints are met. Fix-

ing the minimum pitch violations thus adversely affects theruntime of the grid design

procedure. However, we found out empirically that if the width reduction factor at the

kth partitioning level,γk < 1, is chosen such that it is not too small, (empirical values

correspond toγk ∈ [0.65, 1)), such breakdowns are very rare events.

We conclude the optimization procedure at the end ofk levels of partitioning. The

value ofk is determined by specifying the minimum size of the partition by the following

relation:
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k = 2 · min

(⌈

log2

CHIPw
PARTw

⌉

,

⌈

log2

CHIPl
PARTl

⌉)

(2.41)

whereCHIPw andCHIPl are the chip dimensions, andPARTw andPARTl are the

specified dimensions of the minimum partition size.

2.7.5 Post Processing for Wire Alignment

(a) (b) (c)

Figure 2.15: The post-processing step to align the power grid wires in different parti-

tions. (a) Power grid wires in adjacent partitions are misaligned. (b) A minimum pitch

virtual grid, shown with dashed lines is constructed over the entire layout area. (c) The

power grid wires are moved to the nearest position on the virtual grid. The wires in

adjacent partitions are better aligned now.

At the end ofk-levels of partitioning, we have designed a power grid in each of the

2k partitions of the chip, with potentially different wire pitches in each partition. As

a result, the wires in the adjacent partitions maybe offset with respect to each other,

as illustrated by the simple example in Figure 2.15(a), where a power grid with four

partitions has misaligned wires in the adjacent partitions. This misalignment may lead

to use of extra vias to maintain the electrical connectivityof the power grid wires in

different metal layers.
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To alleviate the misalignment, we introduce a post-processing step in our grid de-

sign procedure, illustrated through the example in Figure 2.15. We use the idea of the

skeleton grid, described in Section 2.6.1, to align the wires in the adjacent partitions.

To rectify the misalignment in Figure 2.15(a), a skeleton grid, which is a uniform

virtual grid, is superimposed over the entire layout area, whose pitch ischosen to be

the minimum pitch of wires in all of the partitions. The virtual grid is a uniform grid

with wires having a constant pitch throughout the chip area.By choosing the pitch of

the virtual grid as the minimum of wire pitches of all the2k partitions, it is ensured that

the virtual grid would at least have the same number of wires in any partition as the

real local power grid. The virtual grid is represented by dashed lines in Figure 2.15(b).

Next, the power grid wires in all partitions are moved to the nearest location on the

virtual grid. The virtual grid thus acts as a place holder forthe real power grid wires.

As seen in Figure 2.15(c), the wires in the adjacent partitions are better aligned at the

end of the post-processing step. To ensure that the small movement of power grid wires

does not affect the correctness of the grid, we perform a complete simulation using the

hierarchical analysis technique. Our experiments showed that the post-processing step

hardly ever introduced any violations in the power grid circuit. In the rare cases where

this was not true, the violations were easily fixed by adding more wires in the violating

partitions. The extra wires are also added in such a way that they are placed on the

virtual grid, to remove any possibility of misalignment.

2.7.6 The Complete Algorithm

The pseudo-code of the main loop of the power grid design algorithm is presented in

Algorithm 1. We use the binary tree data structure to model the successive partitioning

of the chip area. This is represented by thetree array in Algorithm 1. Each element

of the tree array represents a node in the partitiontree of Figure 2.11, and contains the

information about the partition dimensions, and the wire width and pitch of the power
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Algorithm 1 Power Grid Design
1: Power Grid Design(func block currents,power padspos)

2: /*Initialize the root node of the partition tree*/

3: tree[1].wirewidth=Winit;

4: tree[1].wirepitch=Pinit;

5: tree[1].width=chipwidth;

6: tree[1].length=chiplength;

7: i=2; k=⌊log2(i)⌋;

8: cut dir=0; /* cut dir = 0/1 for a ver/horz cut*/

9: /*Begin Outer While Loop*/

10: while (i < MAX NUM PARTITIONS)do

11: parentindex=i/2;

12: [child1, child2]=Divide(tree[parentindex],cutdir);

13: /* Decrease the width,γk ∈ (0, 1) */

14: child1.wire width = γk * tree[parentindex].wire width ;

15: child2.wire width = γk * tree[parentindex].wire width;

16: specmet flag this part level = 0;

17: /*Begin Inner While Loop*/

18: while (specmet flag this part level ==0)do

19: child1.wire pitch=βk1
* tree[i].wire pitch;βk1

∈ [0, 1)

20: child2.wire pitch=βk2
* tree[i].wire pitch;βk2

∈ [0, 1)

21: [(A1, S1), (A2, S2)]=make pow grid (child1, child2);

22: [spec met flag1, spec met flag2]=

solv grid ((A1, S1), (A2, S2))

23: if (spec met flag1 AND spec met flag2) then

24: specmet flag this part level =1;

25: end if

26: if (!spec met flag1) then

27: βk1
=δk ∗ βk1

; δk ∈ (0, 1) /*Decrease the pitch*/

28: end if

29: if (!spec met flag2) then

30: βk2
=δk ∗ βk2

; δk ∈ (0, 1) /*Decrease the pitch*/

31: end if

32: end while

33: /*End Inner While Loop*/

34: prev grid viol flag=1;

35: while (prev grid viol flag ==1)do

36: [prev grid viol flag]=chk other parts(child1, child2);

37: if (prev grid viol flag == 0)then

38: βk1
=δk ∗ βk1

; δk ∈ (0, 1) /*Decrease the pitch*/

39: βk2
=δk ∗ βk2

; δk ∈ (0, 1) /*Decrease the pitch*/

40: end if

41: end while

42: /* Add two child nodes to the tree*/

43: tree[i]=child1;

44: tree[i+1]=child2;

45: i=i+2;

46: cut dir=!cut dir;

47: end while

48: /*End Outer While Loop*/

49: post processingof grid to align wires();
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grid constructed in the partition corresponding to the treenode. In lines 2 to 8 of the

pseudo-code, the root node of the tree, which represents thefull chip area, is initialized.

The outer while loop, extending from lines 10 to 47, performsthe recursive bipartition-

ing and grid construction process. Inside the outer loop, a parent partition is divided

into two child partitions in lines 11 to 15. TheDivide subroutine, shown on line 12, im-

plements the task of dividing the chip area of the parent partition into two smaller sized

partitions. The first inner while loop, in lines 18 to 32, performs the task of constructing

the local power grid in the two active partitions, subject toreliability constraints. Within

this loop, the steps of constructing the macromodel parameters(A,S) for the two active

partitions, as explained in Section 2.7.4, are contained inthe routinemake pow grid ,

listed on line 21. The steps of solution of the global system by preconditioned conju-

gate gradient method, and the solution of the partitions by the hierarchical approach,

as described in Section 2.7.4, are performed by the routinesolv grid , shown on line

22. In case the local grid, constructed in the two active partitions, does not meet the

reliability constraints, the pitches of the partitions arereduced by a factorδk, as shown

in lines 26 to 31. The second inner while loop, shown in lines 35 to 41, ensures that

the grid constructed in the active partition does not renderthe previously constructed

grids in other partitions ineffective, as explained in Section 2.7.4. This is ensured by the

routinechk other parts, shown on line 36, by checking the port voltages of neighbor-

ing partitions of the two active partitions. Lines 43 to 46, which are a part of the outer

while loop, add the two child nodes to the parent node, after asatisfactory local grid has

been designed in the two active partitions. At the end of the design procedure, the post-

processing step, as described in Section 2.7.5 is employed to improve the alignment of

power grid wires in the adjacent partitions. This task is performed by the subroutine

post processingof grid to align wires.

In summary, the main features of the power grid design algorithm are:

1. The design procedure is based on a recursive bipartitioning scheme. At each step
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a simple bipartitioning problem of figuring out the appropriate wire pitches of the

two active partitions is solved.

2. Using the concept of grid refinement, the power grid is iteratively refined. The

abstraction of grid constructed in previous levels of partitioning is used to guide

the power grid design in the active partitions.

3. Using the circuit analysis step to detect the IR drop and EMviolations in the inner

loop ensures the accuracy of the design scheme. The speed up of this method

over other power grid design schemes, relying on the explicit circuit analysis, is

obtained by making the analysis step extremely fast. This isachieved by:

• Controlling the circuit size by using very thick wires in theinitial levels of

partitioning. The wire width is successively reduced in each partitioning

level.

• Using the macromodeling technique for abstraction of powergrid in differ-

ent partitions and focusing on local analysis of the two active partitions.

• Solving the global matrix system by a preconditioned conjugate gradient

based iterative solver and using the starting guess vector of the voltages at the

port nodes, as determined by the solution of the power grid system designed

in the previous iteration.

• Employing the port approximation technique during the intermediate parti-

tion levels.

4. A post-processing step at the end of the design procedure is employed to improve

the wire alignment in adjacent partitions.
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Figure 2.16: Extending the grid design procedure to multiple metal layers M1to M4.

The dashed lines between the top two and the bottom two layersrepresent via connec-

tions between layers M2 and M3. (a) First level of partitioning has been completed for

the metal layers M3-M4. Grids in the left and right partitions for the bottom two layers

are being designed. (b) The top-left and bottom-left partitions for layers M3-M4 being

processed in the second level of partitioning for the top twometal layers. (c) The top-

left and bottom-left partitions for layers M1-M2 being processed in the second level of

partitioning for the bottom two metal layers.

2.7.7 Extension to Multiple Layers

In the previous sections, we have described the proposed power grid design scheme to

construct power grids in the top two metal layers. The wires added to the grid, in each

iteration, are in the horizontal direction for the top layerand in vertical direction for the

metal layer one beneath the top layer.

The same approach can be easily extended to design a power grid spanning multiple

layers of metal. Figure 2.16 illustrates the procedure to design a power grid for a chip

77



having four metal layers, M1 to M4. The vertical dashed linesin the figure represent

the via connections between layers M2 and M3. In the case of multiple metal layers, the

levels of partitioning are defined with respect to each pair of consecutive metal layers.

The recursive bipartitioning moves from layers M3-M4 to M1-M2 and back to M3-

M4 for the next level of partitioning. For example, as a first step, the first level of

partitioning for the layers M3-M4 would involve constructing the power grid in the left

and right partitions for these two layers, with connectionsto a fixed uniform grid in the

bottom layers. As a good starting point, the initial pitch ofthe uniform grid in M1-M2

may be chosen in such a way that the initial voltage drop is bound to be no more than

some constant times the specified drop. Then, as seen in Figure 2.16(a), the power grid

is refined in the left and right partitions of layers M1-M2. The grid wires in the layers

M1-M2 have connections with the previously design power grid in the left and right

sections of layers M3-M4. The step of checking for previousgrid violated flags for the

active partitions, now defined with respect to a pair of metallayers, would now entail

evaluation of port voltages of the neighbors of the active partitions in the other pair of

layers as well. For instance, while refining the power grid inthe top-left and bottom-

left partitions of layers M3-M4, as shown in Figure 2.16(b),the port voltages would

be checked for the port nodes connecting to the right partition of layers M3-M4, and

also for the ports connecting to the left partition of layersM1-M2. As seen in Figure

2.16, the almost complete binary partition trees are definedwith respect to each pair of

metal layers. The wires in different layers can be of different sizes as typically, the wires

in top two metal layers are much wider than the ones in the intermediate metal layers.

Thus, the width reduction factor,γ is defined with respect to each pair of layers.γkl1−l2

represents the width reduction factor for thekth partitioning level defined with respect

to the pair of metal layersl1 − l2. Other steps in the proposed design procedure remain

the same while designing a multi-layered power grid.
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2.7.8 Experimental Results

The proposed power grid design scheme was implemented in C using a sparse matrix

library [mes] for both computing the macromodels and solution to the global system by

preconditioned conjugate gradient method, and design of several power networks were

tested. Separate sparse matrices are used for each partition grids and for the nodes con-

necting the two partitions, so that when the grid in a previous partitioning level is ripped

up the entire conductance matrix need not be recomputed. Theinput to our power grid

design procedure is a floorplan with functional block current estimates and the locations

and number of the power pads on the chip. The output is a non-uniform power grid that

meets the IR drop, EM and minimum pitch constraints. We couldfind only two real

benchmark floorplans [SSH+03], [LHL04] for a microprocessor chip in which the func-

tional block currents could be determined. These are the floorplans of ALPHA 21364

microprocessor chip. The block currents of the functional blocks in these floorplans

were estimated from the given power consumption estimates of each functional block,

in 130nm technology, using aVDD of 1.2V. The functional block currentIfk
, of a block

k is computed asIfk
= Powerk/VDD, wherePowerk is the total power consumption of

blockk. Due to the paucity of real full chip level benchmark floorplans, with functional

block current estimates, we randomly generated floorplans and assigned realistic block

currents to various functional blocks in the floorplans. Theblock currents were assigned

by assuming the total power consumption of the chips to be between 40 to 80 Watts and

distributing the total power consumed randomly between thevarious functional blocks.

For each of our experiments, we assume an availability of 400to 600 power pads, dis-

tributed either throughout the chip, as in the case of a flip-chip package, or 200 to 300

pads located on the chip periphery, as in the case of a wire-bond package. The power

pads are assumed to be connected to the top metal layer which has wires running only

in the horizontal direction.

The circuit parameter values, sheet resistivity (ρs), current density (σ) and mini-
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mum wire pitches (pmin), were taken from [SIA01] and [Con00] for power delivery to

a 2cm×2cm chip in 130nm technology withVDD = 1.2V. The voltage constraints for

the power grids, i.e.,Vspec was 1.08V, i.e., 90% ofVDD. The via specific resistances

are chosen to be0.001Ωµ2. The experiments were performed on P-4 processor, Linux

machines with a speed of 2.4 GHz and 2GB RAM.

At the beginning of our optimization procedure, in the first level of partitioning,

Part1, the initial wire widths and wire pitches for the two partitions are chosen such

that the worst case voltage drop is about twice the specified drop, e.g., 20%-25% of

VDD. This choice of starting point for the initial wire widths and the pitches selection

has been empirically determined so that we begin not too far away from the final solution

point in the search space. Choosing an initial pitch and width assignment corresponding

to a much worse initial voltage drop, e.g., 50% ofVDD, would mean that the design

procedure has to spend much more time to reach the feasibility region and find a point

that meets the reliability constraints. On the other hand, choosing a starting point which

is very near to the feasibility region, e.g., 10%-12% ofVDD, may lead to over utilization

of wiring resources as the design heuristic may not have enough iterations to explore the

search space, before it finds a feasible solution that has a wire width and pitch assign-

ment which may be suboptimal in terms of wire area used. We assume equal pitches of

the wires in horizontal and vertical directions within a partition, but, clearly this is not a

restriction in the proposed scheme.

We construct the power grid by the proposed scheme for a set ofeight benchmark

floorplans, both for a flip-chip (FC) and a wire-bond (WB) case. Table 2.8 shows the

results for these power grid constructions. For each experiment for both the FC and

the WB case, corresponding to one row in Table 2.8, the initial power grid in the first

partitioning level comprises very thick wires in the range of 60 to 100µm. In subsequent

partitioning levels, the width reduction factor,γk is assigned an appropriate empirically

tuned value in the interval[0.65, 1) so that at the end ofk levels of partitioning, the final

value of wire width for the power grid in2k partitions is between 2 to 6µm. Moreover,
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it was empirically found that by keeping the value ofγk in the above interval minimizes

the minimum pitch violations. We found that by choosing the value ofγk in the interval

[0.65, 1), only about 5%-8% of iterations exhibit the minimum pitch violations, where

the grids designed in the previously processed partitions have to be altered. The design

procedure is terminated at the end ofk = 8 levels of partitioning. The value ofMAXspec

parameter, to flag the previousgrid violations, was chosen to be 15mV.

# of # of Wire Area Runtime
Ckt

Blocks Nodes (cm2) (sec)

Flip-Chip Wire-Bond Flip-Chip Wire-Bond Flip-Chip Wire-Bond

pg-1 17 1557628 1635925 0.0834 0.0876 355 598

pg-2 17 1186124 1216726 0.0792 0.0824 431 704

pg-3 65 1261633 1376425 0.0781 0.0816 565 784

pg-4 80 1051237 1208613 0.0732 0.0776 521 791

pg-5 100 1217203 1343793 0.0756 0.0874 522 781

pg-6 124 1136898 1199516 0.0762 0.0824 625 817

pg-7 140 1648223 1703717 0.0904 0.1084 416 625

pg-8 162 1292815 1364712 0.0892 0.1032 433 618

Table 2.8: Results of power grids designed by the proposed scheme for both flip-chip

and wire-bond cases.

The first two rows in Table 2.8 represent the power grid constructed for the two real

benchmark floorplans of ALPHA 21364 chip. The other rows correspond to the power

grid designed for the randomly generated floorplans. The second column in the table

shows the number of blocks in the floorplan. The next two columns indicate the number

of electrical nodes in the final optimized power grid circuit. For each circuit there are

more than a million electrical nodes in the final circuit. Theoptimization is terminated

when the worst voltage of all nodes in the final power grid circuit is greater thanVspec
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and all branches meet the current density specifications at the end ofk = 8 levels of

partitioning and the post-processing step to align the wires. The worst voltage measured

by performing an accurate simulation, at the end of the design procedure without the

port approximation technique, verifies the accuracy of the final solution. The wire area

consumed by the final power grid is listed in the fifth and the sixth column, for a flip-

chip and a wire-bond case, respectively. The last two columns report the runtime for

constructing the power grid by the proposed design procedure. The runtimes of the

proposed power grid design procedure are in the range of about 6 to 11 minutes for the

grids designed for the flip-chip case and about 10 to 14 minutes for the wire-bond case.

The order of the runtimes obtained underscores the efficiency of the design algorithm,

considering the fact that for each of the test cases in Table 2.8, the final power grid for

both the flip-chip and the wire-bond case, spanning the entire chip area in two layers of

metal, comprises more than a million electrical nodes.

As seen in Table 2.8, the proposed scheme performs better forthe flip-chip case than

the wire-bond case, both in terms of utilizing lower wire area and in its faster runtimes.

This can be ascribed to the fact that the notion of locality inpower grid design, which

is one of the motivating factors of the proposed algorithm, is more pronounced in the

case of a flip-chip package, where there are sufficient numberof pads near the violating

regions. For a wire-bond chip, the fact that the pads around the chip periphery are

located far way from the violating regions that may be located at the center of the chip,

could make local grid correction step for fixing the violations, a suboptimal choice.

Hence, the procedure has to expend a larger amount of computational time and wiring

resources to meet the reliability constraints for a wire-bond chip.

In the next set of experiments, we compare our bipartitioning-based power grid de-

sign scheme with the sensitivity based grid design heuristic presented in Section 2.6. We

construct power grids for four randomly generated benchmark floorplans, using the two

grid design procedures. Table 2.9 lists the results of this comparison between the two

methods. The columns underProp Method 1label, refer to the grid design procedure
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Wire Area (cm2) Runtime (sec)

% Saving in Slow

Proposed Proposed Proposed Proposed Wire Area down of
Ckt

Method 1 Method 2 Method 1 Method 2 for Method 1 Method 1

Ckt-A 0.0745 0.07865 3516 604 5.6% 5.8×

Ckt-B 0.0842 0.0874 2898 632 3.8% 4.6×

Ckt-C 0.0912 0.0975 3219 592 6.9% 5.4×

Ckt-D 0.0796 0.0816 3478 684 2.5% 5.2×

Table 2.9: A wire area and runtime comparison of the two proposed power grid design

methods.

proposed in Section 2.6. Similarly, the results for the second grid design procedure, pre-

sented in Section 2.7, are listed under the columns labeledProp Method 2. For both the

procedures, we assume a flip-chip scenario, with about 400-600 VDD pads distributed

throughout the chip area. For the first grid design method, wetessellate the chip area

into 100 tiles, and after the port approximation step, keep 40 ports per tile. For the

bipartitioning-based grid design algorithm, we usek = 8 levels of partitioning. As seen

from the data in the table, the first method has about 3% to 6% better wire area utiliza-

tion than the second method. However, the second power grid design procedure has a

significant advantage over the first one, in terms of runtime.It is, on an average, about

5× faster than the first technique. Therefore, we conclude thatby paying a small wire

area penalty, we can use the bipartitioning-based power grid design scheme, as a much

more efficient alternative to the sensitivity-based grid design method of Section 2.6.

In another set of experiments, we compare the proposed powergrid design algo-

rithm with a previous grid design scheme [WMS05]. We implemented a simple version

of the multigrid-based power grid optimization scheme of [WMS05] in C++ to compare

the results of our proposed power grid design algorithm withthis method. Table 2.10
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Runtime Wire Area

# of Wires (sec) (cm2) % Saving % Saving

Ckt Multigrid Prop Multigrid Prop Multigrid in Wire in Run

Scheme Method Scheme Method Scheme Area Time

Ckt-1 1000× 1000 572 595 0.0733 0.0768 4.5% 3.8%

Ckt-2 1100× 1100 584 663 0.0758 0.0810 6.4% 11.9%

Ckt-3 1150× 1150 585 690 0.0773 0.0852 9.2% 15.2%

Ckt-4 1200× 1200 591 713 0.0781 0.0854 8.5% 17.1%

Ckt-5 1250× 1250 627 741 0.0808 0.0870 7.1% 15.4%

Ckt-6 1300× 1300 692 781 0.0854 0.0946 9.7% 11.4%

Table 2.10: Results of power grids designed for flip-chip circuits by the proposed

method and the multigrid-based scheme.

shows a comparison of the performance of the proposed power grid design algorithm

with the multigrid-based technique of [WMS05]. The two schemes are used to design

power grids for six randomly generated floorplans for a flip-chip case. The floorplans

comprise 60 to 100 functional blocks with currents assignedrandomly to each block so

that the total power consumption of the chip is between 40 to 80 Watts. Some functional

blocks are assigned about 3 to 4 times more power than the other blocks so that there

are distinct high and low current density regions on the chip. The assignment of block

currents, to model the high and low current density regions,follows from the obser-

vation that most full-chip microprocessor floorplans have about 30%-50% of chip area

dedicated to caches which consume much less power than the other functional blocks,

e.g., arithmetic and logic units [LHL04]. In our implementation of the multigrid-based

method, only the wire widths are optimized by setting the weights corresponding to

the decoupling capacitor cost and the congestion term to zero in the objective function

of [WMS05]. A uniform power grid is constructed for the six cases using the multigrid-
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based design scheme, with an initial constant wire width of1.5µ for all wires. Next,

by enumeration, the numbers of wires in the uniform grid topology is determined so

that the initial voltage drop is about two times the specifieddrop. This initial starting

point, in terms of the initial voltage drop, is the same as chosen for selecting the initial

pitches inPart1 of our proposed design procedure. The second column in the table 2.10

lists the number of horizontal and vertical wires used for the uniform grid construction.

Following a series of network reductions, about 8 to 14 levels of reduction for each cir-

cuit, the top level power grid is reduced to a much smaller grid so that the problem size

is sufficiently small. The wire sizing solution for reduced network is then obtained by

solving a constrained nonlinear optimization problem by using a sequential quadratic

programming software [LZT]. The back-mapping to the original network is performed

by solving a series of linear programs as formulated in [WMS05].

The fourth and the fifth columns in the table show a comparisonof the runtimes of

the two schemes. For all of the six circuit examples, the total time taken by the multigrid-

based scheme to perform the network reduction, solve the nonlinear optimization prob-

lem and solve a series of linear programs for back-mapping isgreater than the proposed

power grid design algorithm. On an average for the six example cases the proposed

method is about 12% faster than the multigrid-based design algorithm. Columns six and

seven show the wire area utilized for each of the example circuits by the two design

methodologies. The wire area utilized by the proposed heuristic is about 5%-10% less

than the grid design method of [WMS05]. In the multigrid-based design method, each

column (row) of vertical (horizontal) wire is constrained to have the same wire width

in order to reduce the number of design variables for efficiently solving the resulting

nonlinear program. Since the width of all of the wire segments on a column (row) of

the wire is determined by the highest current density blocks, the power grid has to be

over-designed in the low current density regions of the chip. The proposed design algo-

rithm is run fork = 10 levels of partitioning. By designing local power grids in each

partition, it is ensured that the wiring resources are utilized in a judicious manner as per
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the current density requirements.

To measure the quality of the solution given by the proposed scheme, in terms of

the wire area utilized, we also implement an exact wire sizing scheme and compare our

results with the exact scheme. The power grids by the exact scheme are constructed

by formulating the IR drop and EM constraints as nonlinear constraints in terms of the

wire widths as the optimization variable, and minimizing the wire area objective func-

tion. A sequential quadratic programming software [LZT] isused to solve the nonlinear

problem to determine the wire sizes of the variables. The setup for implementing the

exact sizing scheme is very similar to that of implementing the multigrid technique.

The only difference is that wire width corresponding to eachbranch resistance is now

treated as a separate variable as opposed to having one variable for the entire column

(row) of a vertical (horizontal) wire, as done in the multigrid method. Since it is very

inefficient to solve a nonlinear optimization problem for large power grid systems, we

perform the comparison for grids of small sizes constructedfor a toy chip of dimensions

300µ × 300µ. For our proposed approach, we usek = 9 levels of partitioning with

an initial wire thickness of10µ. We perform the comparison between the two schemes

both for a flip-chip and a wire-bond chip.

# of Wires Wire Area Wire Area Runtime (sec) Runtime (sec)

Ckt Exact Proposed Exact Proposed Exact Proposed Exact Proposed Exact

Scheme Method Scheme Method Scheme Method Scheme Method Scheme

Flip-Chip Wire-Bond Flip-Chip Wire-Bond

Ckt-1 20× 20 1.033 1.000 1.052 1.000 2 487 3 483

Ckt-2 30× 30 1.041 1.000 1.061 1.000 4 622 6 630

Ckt-3 40× 40 1.025 1.000 1.046 1.000 6 815 7 811

Ckt-4 50× 50 1.044 1.000 1.072 1.000 9 1246 9 1232

Table 2.11: Results of power grids designed for flip-chip circuits by the proposed

method and the exact wire sizing scheme.

Table 2.11 shows the results of the comparison. Columns three and four of the table

represent the wire area utilized by the proposed and the exact method, normalized with
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respect to the the exact sizing scheme. As seen in the table, for the four example circuits,

our proposed method has an over utilization cost of about 2%-4% for the flip-chip case

and about 4%-7% for the wire-bond case. The higher overhead of the wire-bond case is

expected due to the lack of strong locality. However, as seenfrom the run time numbers

in columns 8 and 10, the nonlinear programming solution for the exact sizing method

becomes very inefficient and impractical to use as the numberof optimization variables

increase from a few hundreds in Ckt-1 to a few thousands in Ckt-4. Even though the

wire area utilized by the exact method would be the most judicious, the high runtime

prohibits the use of such a scheme to construct real power grids. As seen in the table,

our proposed approach is extremely efficient and has a small wire area over-use cost as

compared to the exact method.

In another set of experiments we study the effect of choosingdifferent levels of par-

titioning for the power grids designed for the same input floorplan. Table 2.12 represents

# of Wire Area Runtime
SNo.

Partition Levels (cm2) (sec)

1 7 0.0812 560

2 8 0.0762 625

3 9 0.0756 688

4 10 0.0752 784

Table 2.12: Power grids designed for pg-6 floorplan by choosing different partitioning

levels.

these experiments for constructing power grids for the pg-6floorplan and assuming the

flip-chip case. As seen in the table, the algorithm runs faster for smaller number of

partitioning levels. This can be ascribed to the fact that byincreasing the height of par-

tition tree of Figure 2.11(e), the number of partitions and consequently the size of the

global system of Equation (2.7), even with the port approximation technique increases,
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which results in greater simulation time in each iteration.The cost of using fewer par-

titioning levels is over-utilization of wiring resources.The number of wires required in

the partition is determined by the the maximum of all currentdemands over the entire

partition area. Since the partition size is larger for a smaller value ofk, more wiring

resources are wasted in the region within the large partitions where the current require-

ments are less than the maximum. By splitting the partitionsinto smaller sizes, the

regions for different current demands can be isolated, and power grids with better area

utilization can be constructed separately in these regions. However, beyond a point, the

runtime penalty for increasing the granularity of partitions or the number of partitioning

level, outweighs the savings in the wire area.

2.8 Conclusion

In this chapter of the thesis, we have presented two power grid design schemes, as tech-

niques to address the issue of controllable type of environmental variations, in the form

of voltage fluctuations on supply network wires. Our power grid design schemes con-

structs locally regular, globally irregular grids. Such a piecewise-uniform grid topology

shows a significant reduction in the wire area used when compared to the area consumed

by the uniform grid topologies. This design also aids in an easier routing scheme for

the signal nets later in the design, as minimal book-keepingneeds to be done for the

proposed P/G architecture. Moreover, such a structured power grid design is easy to op-

timize. For our techniques, we use the hierarchical analysis method for the simulation

of the power grid system. Including a simulator in the optimization loop ensures the

accuracy of the optimized solutions.

For the first method, we have proposed a sensitivity-based heuristic to add wires in

specific regions of the chip to meet the IR-drop and EM constraints. Including a conges-

tion penalty term in the cost function helps in controlling the aggravation in congestion

without compromising the local structured regularity of the supply grid. Experimental
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results show that the grids designed using our proposed scheme save 12% to 23% of

wiring area over other commonly used grid topologies. However, the runtime of our

procedure is not very desirable and needs to be improved.

To overcome some of the inefficiency of our first power grid design method, we have

presented a second considerably fast supply network designalgorithm. The method is

based on an iterative grid refinement scheme by recursive bipartitioning of the chip area.

The concept of locality in power grid design is used to abstract away the details of some

parts of power grid by the macromodeling technique. Using the grid abstractions, along

with the strategy of constructing an initial coarse grid followed by a successive refine-

ment of the grid, and reusing the solution of grid designed inthe previous iteration as a

starting guess point for the conjugate gradient linear solver, speeds up the circuit anal-

ysis step significantly. Experimental results on real and randomly generated realistic

test cases show that the proposed power grid design algorithm is considerably fast and

has efficient utilization of the wiring resources. Our proposed method is able to de-

sign power networks comprising thousands of wires, and morethan a million nodes,

in about 6 to 13 minutes of runtime. When compared to a multigrid-based power grid

design scheme, it is found to save about 7% to 12% of wire area,and on an average is

14% faster. However, as compared to the first power grid design algorithm, the second

grid design procedure spends about 3% to 7% more wire area, for the same benchmark

floorplans, but on an average, is about 5× faster than the first method.
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Chapter 3

Robust Gate Sizing Techniques

In Chapter 2, we presented two power grid design schemes as techniques for reducing

controllable variations in the supply levels. In this chapter, we address the problem of

accounting foruncontrollablevariations, arising mainly from the limitations of the man-

ufacturing process. From a circuit design point of view, these process-driven uncertain-

ties cannot be directly controlled by any specific circuit design techniques. However, the

effects of these variations on the circuit performance can still be controlled. A designer

can reduce the impact of these uncertainties by accounting for them, e.g., by maintain-

ing sufficient margins in the design so that when these variations manifest themselves,

the design margins ensure that the desired performance criteria are still met.

This method of designing the circuit robustly, by adding design margins, to safeguard

against process variations and other uncertainties, can beregarded as a worst-case design

methodology. Such schemes, typically consist of identifying a worst-case scenario in

which the parameter uncertainties would be manifested to have the greatest impact on

the circuit performance. After identifying such a scenario, the circuit is designed to meet

the performance specifications for this worst-case occurrence of parameter variations.

By keeping sufficient design margins, the effect of random process parameter variations

are accounted for, thus ensuring robust circuit design. A critical step in this design

paradigm is the identification of the worst-case situation.The use of an ad hoc method

for this purpose could lead to excessively large design margins, and an overly pessimistic

design. Moreover, identifying a possible but a highly improbable worst-case scenario

would lead to extra guard-banding against the effect of variations, resulting in the design

incurring excessive penalties and overheads.

In this chapter of the thesis, we propose a novel worst-casing methodology, by way

of a robust gate sizing scheme, to design a circuit for the required timing yield. Our
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method uses the statistical properties of the parameters ofvariations, such as the prob-

ability distributions and spatial correlations, to reducethe pessimism associated with

conventional worst-case design schemes. Through our method, we provide flexibility to

the user to specify a target timing yield, and perform gate sizing to achieve this specifi-

cation. An early version of this work was published in [SNLS05].

3.1 Introduction to Robust Gate Sizing

The limitations of the manufacturing process in the currenttechnologies leads to random

variations in various circuit parameters such as the transistor width, channel length, and

oxide thickness, which may cause a large spread in the circuit performance measures

such as the delay and power. Since it is impossible to controlprocess-driven variations,

it is essential for the design tools to account for these uncertainties to enable the design

of robust circuits that are as insensitive to the device parameter variations as possible.

The optimization of gate sizes offers a degree of flexibilityin addressing this issue.

The gate sizing problem determines an optimal set of transistor sizes, defined as the ratio

of the transistor width (w) to the effective channel length (Le), that minimize the area

or power consumption of a combinational circuit, subject tomeeting the specified delay

constraints. Conventional gate sizing tools employ a static timing analysis (STA) routine

to generate the delay constraints by adding intermediate variables at the output of each

gate in the circuit, and then solve the resulting optimization problem to determine the

widths of the devices in the circuit. The minimum length is chosen for all the devices.

However, due to the fact that the nominal designs are perturbed by the random pro-

cess variations, a large number of chips may fail to meet the original delay specifications.

This leads to a reduction in the timing yield of the circuit, defined as the fraction of total

chips whose delay does not exceed the original specified value. An obvious way to in-

crease the timing yield of the circuit is to design for the worst-case scenario, e.g., choose

a delay specification of the circuit much tighter than the required delay. Unless this new
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specification is appropriately selected, this could lead tolarge overheads in terms of the

circuit area and the power, as the optimizer may have to aggressively size the critical

as well as the non-critical paths. Hence, it is necessary to develop smart worst-casing

methodologies in the presence of process uncertainties, that keep the area and the power

budgets within reasonable bounds.

In this work, we present a novel worst-casing scheme, based on robust optimiza-

tion theory. In our method, we modify the delay constraints to incorporate uncertainty

in the parameters due to the process variations. Anuncertainty ellipsoidmethod is

used to model the random parameter variations, assuming normal distribution of pa-

rameters. Spatial correlations of intra-die parameter variations are incorporated in the

optimization procedure. The resulting optimization problem is relaxed to be a geometric

program (GP), and is efficiently solved using convex optimization tools. By using the

well-known Chi-squareprobability distribution function, the desired timing yield can

be parameterized into the optimization formulation. Our formulation is based on the

principle of adding uncertainty related, parameter correlation-aware, margins to delay

constraints at the output pin of each logic gate. However, byusing these guard-bands

for the delay constraints at the output of each node in the circuit graph1, instead of the

whole path delay, leads to a problem of overestimation of theeffect of variations. We

reduce this problem by employing a graph pruning technique to reduce the number of

intermediate nodes in the circuit graph, and the corresponding arrival time variables in

the optimization formulation. The use of variable size uncertainty ellipsoid at different

topological levels of the circuit graph helps in further removing the extra timing margins

in the constraints.

The organization of this chapter is as follows. We review theprevious work on

uncertainty-aware gate sizing in Section 3.2. Section 3.3 covers the preliminaries of ge-

1The graph obtained by modeling each pin of a gate as a vertex, and each pin-to-pin
connection, in the whole circuit, as an edge is referred to asthe circuit graph or the
timing graph.
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ometric programming, the traditional gate sizing formulation, the ellipsoid set and the

Chi-square probability distribution. In Section 3.4, we present our formulation of the

robust sizing problem, and use a simple example to explain the details of this formula-

tions. Section 3.4.3 points out the problem of overestimation of the effect of variations

in our robust formulation. The graph pruning technique and the use of variable amounts

of timing margins at different topological levels of the circuits, as methods to reduce

this pessimism in the robust formulation, are described in Section 3.4.4 and 3.4.5. Ex-

perimental results are presented in Section 3.5, and Section 3.6 concludes this chapter.

3.2 Previous Work

Traditional gate sizing methodologies [FD85], [SRVK93] solve the deterministic opti-

mization problem of gate sizing without accounting for variations in parameters. These

methods use posynomial delay constraints and formulate theproblem as a geometric

program. Section 3.3.2 reviews the formulation used in these conventional gate sizing

works. While the method of [FD85] performs sizing based on a sensitivity-based heuris-

tic, [SRVK93] offers an exact optimization algorithm to perform gate sizing, based on

convex programming techniques. There have been several recent attempts to perform

uncertainty-aware gate sizing to reduce the timing violations or increase the timing

yield. In [BVSH02], the gate sizing problem is formulated asa nonlinear optimiza-

tion problem with a penalty function added to improve the distribution of timing slacks.

One of the first works on statistical gate sizing [JB00] proposes formulation of statistical

objective and timing constraints, and solves the resultingnonlinear optimization formu-

lation. In other works on robust gate sizing [CPR04, SSZ05, ACBZ05, CSS+05], the

central idea is to capture the delay distributions by performing a statistical static timing

analysis (SSTA), as opposed to the traditional STA, and thenuse either a general nonlin-

ear programming technique or a statistical sensitivity-based heuristic procedures to size

the gates. In [RVW04], the mean and variances of the node delays in the circuit graph
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are minimized in the selected paths, subject to constraintson delay and area penalty.

Some of the above mentioned variation-aware gate sizing works are heuristics [SSZ05,

ACBZ05, CSS+05] without provable optimality properties. The sensitivity-based ap-

proaches optimize the statistical cost function in a local neighborhood, and cannot guar-

antee convergence to the globally optimal solution. Othersrely on nonlinear noncon-

vex optimization techniques [RVW04, JB00, CPR04], which are either not scalable to

practical circuits or may get stuck in locally optimal solutions. Some of these works

[JB00,CPR04] ignore important statistical properties of varying parameters such as the

spatial correlations.

In [MDO05], the authors present an interesting approach to optimize the statistical

power of the circuit, subject to timing yield constraints under convex formulation of

the problem as a second-order conic program. However, the formulation suffers from

the same problem of overestimation of statistical nodal delay constraints as [SNLS05],

which will be explained in Section 3.4.3, and we partially correct this by the techniques

described in Section 3.4.4 and 3.4.5. More importantly, thesolution in [MDO05] relies

on a local search over the gate configuration space to identify a size that will absorb

the slack assigned by the optimization solution. Such a method based on local searches

has to assume that the delay of the gate depends only on the fixed local choices, e.g., a

particular size and the fanout load of a gate. In reality, thegate delay is also a function

of the slope of the signals at the input pins of the gate, whichin turn are functions of the

sizes of the fanin gates and the interconnect delay. Hence, although local search method

of [MDO05] works well for simple delay models as functions ofoutput load only, it is

unlikely to work for a realistic delay model also considering input slews.

Recently a novel method for optimizing the binning yield of achip was proposed

in [DS06]. This method provides a binning yield loss function that has a linear penalty

for delay of the circuit exceeding the target delay, and proves the convexity of this for-

mulation. However, the method has to rely on an SSTA engine toevaluate the gradient

of the binning yield loss function for optimization purposes. This could potentially make
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the overall procedure considerably slow for many iterations of the optimization loop. As

the objective function in the optimization formulation in this work is non-differentiable,

the procedure could also run into some serious numerical problems while generating the

subgradients of the objective function.

In this work, we propose a novel gate sizing technique based on robust optimiza-

tion theory [BV04]. For simplicity, our implementation uses the Elmore delay based

model, but our approach is applicable to any posynomial delay model, such as the rich

class of generalized posynomial delay models proposed in [KKS98]. In our method,

we first generate posynomial constraints by performing an STA. We then addrobust

constraintsto the original constraints set by modeling the intra-chip random process

parameter variations as Gaussian variables, contained in aconstant probability density

uncertainty ellipsoid[JW02], centered at the nominal values. The method of [XHL+05]

also uses the ellipsoid uncertainty model, but for optimization of small size analog cir-

cuit. We use the well known Chi-square distribution tables to assign a timing yield value

in our optimization constraints. Under the ellipsoid uncertainty model, the resulting op-

timization formulation is relaxed to be a GP, and is efficiently solved using the convex

optimization tools. Furthermore, using a GP to perform robust gate sizing ensures that

the optimizer finds a global minimum, which is not guaranteedin the case of a gen-

eral nonlinear program. The relaxation of the robust counterpart of the conventional

deterministic GP-based gate sizing solution as another GP is a major contribution of

this work; in general, it is not true that the robust versionsof convex programs are also

convex programs [BV04].

Our robust gate sizing scheme is a type of worst-case design method, but by in-

corporating spatial correlations in the design procedure,we reduce some pessimism in

the design. Spatial intra-die correlations between the parameter variations are incorpo-

rated in the optimization scheme by using a grid-based spatial correlation model used

in [CS03] and [ABZ03]. In addition, we show that the nodal constraints formulation

adds pessimism, and reduce some of this pessimism by employing the graph pruning
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technique of [VC99]. Heuristic methods for assigning smaller timing margins at lower

topological levels of the circuit graph, and increasing theguard-banding at higher levels,

by employing different sized uncertainty ellipsoids, alsohelps in reducing the effects of

this pessimism.

We focus on the intra-die variations inLe andw parameters; however, the method

can be easily modified to include inter-die variations. Process-driven variations in the

interconnect widths and thickness can also be included in our method. The following

sections in this chapter, describe in details the various steps of our robust gate sizing

method.

3.3 Preliminaries

In this section, we will review some of the basic tools and formulations that we build on

to obtain our robust optimization formulation.

3.3.1 Geometric Programming

A function is called amonomialfunction if it can be written in the form:

f(x) = cxa11 x
a2
2 · · ·xan

n

= c

n
∏

i=1

xai

i (3.1)

wherex ∈ R
n
++, c > 0 andai ∈ R. The variables in a monomial function, and the

coefficientc are strictly positive, and the exponentsai can be any real numbers.

A sum of monomials is called aposynomialfunction. It can be written as:

f(x) =

k
∑

j=1

cj

n
∏

i=1

x
aij

i (3.2)

whereck > 0. Posynomials are closed under addition, multiplication, and nonnegative

scaling. Monomials are closed under multiplication and division.
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From Equations (3.1) and (3.2), a geometric program can be defined as an optimiza-

tion problem of the form:

Minimize f0(x)

Subject to fi(x) ≤ 1, i = 1, · · · , m

hi(x) = 1, i = 1, · · · , p (3.3)

wheref0, · · · , fm are posynomial function as in Equation (3.2), andh1, · · · , hm are

monomial functions as in Equation (3.1).

Geometric programs are not, in general, convex optimization problems. However,

by a simple transformation of variables,xi = eyi in the objective and the constraint

functions of Equation (3.3), they can be converted to a convex program [BV04], and

hence can be efficiently and globally solved using the convexoptimization methods. A

generalized geometric program (GGP) [KKS98], is an extension of the GP of Equation

(3.3), and can also be similarly transformed to a convex program.

3.3.2 Deterministic Gate Sizing as a Geometric Program

The conventional deterministic gate sizing problem is formulated as:

Minimize Area =

n
∑

i=1

aixi0

Subject to: (3.4)






























ti ≤ Tspec ∀i ∈ PO

tj + dji(X0) ≤ ti ∀j ∈ fanin(i)
...

xmin ≤ xi0 ≤ xmax ∀gate i

wherexi0 represents the nominal size of the gate,ai is some weighting factor such as the

number of transistors in a gate cell,tj are the intermediate input arrival time variables at

the fanin of gatei, dji is the delay of gatei, from thejth input pin to the output pin, as
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a function of the vectorX0 of the nominal gate sizes,Tspec is the specified target delay,

xmin andxmax are the lower and upper bounds on the gate sizes, respectively.

Using the Elmore delay model2, each gatei in the circuit can be replaced by an

equivalentRoni
Ci element, whereRoni

represents the effective on resistance of the pull-

up or the pull-down network, and the termCi subsumes the source, drain and gate

capacitances of the transistors in the gate. The expressions forRoni
andCi for a gatei

are given by:

Roni
=
c1Lei

wi
, Ci = c2Lei

wi + c3 (3.5)

where, the constantsc1, c2 andc3 can be derived from [SRVK93]. Both the capacitances

and the on resistance of the transistors in a gate are posynomial functions of the gate

size, characterized by the widthsw of the transistors in the gate. Consequently, the

termRoni
Ci which is the equivalent delay contribution of gatei in the circuit is also a

posynomial function ofw.

From Equations (3.4) and (3.5), the delay constraints at each node of the circuit

graph can be written as:

ti ≤ Tspec ∀i ∈ PO

tj +
∑

l

Kl

∏

k

xakl

k0
≤ ti ∀j ∈ fanin(i) (3.6)

where,Kl is a constant coefficient of thelth monomial term in the posynomial delay ex-

pression, and can be derived from (3.5),xk represents the width of gatek , andak is the

exponents of thekth components of theX0 vector,∈ {−1, 0, 1}. By substituting Equa-

tion (3.6) in Equation (3.4) for all gates in the circuit, theconventional transistor sizing

is formulated as a GP optimization problem of Equation (3.3), having a posynomial

2Traditional gate sizing methods of [FD85] and [SRVK93] alsouse the Elmore delay.
In any GP based formulation, the Elmore delay model is used for simplicity. Alterna-
tively, generalized posynomial delay models [KKS98], which have a higher accuracy,
can be used for the GP formulation.
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objective function and posynomial constraints, which can be solved using the convex

optimization techniques. In Section 3.4, we show how the robust version of the standard

GP formulation, for the deterministic case, can be converted to another GP.

3.3.3 The Ellipsoidal Uncertainty Set

For any vectorsΩ andΩ0 ∈ Rn, and a non-singular matrixP ∈ Rn×n, an ellipsoid set

U is defined as [JW02]:

U = {Ω : (Ω −Ω0)
TP−1(Ω − Ω0) ≤ ψ2} (3.7)

If P is a symmetric and positive definite matrix, an alternative representation of (3.7) is

realized by substituting,P−1/2(Ω − Ω0) = u as:

U = {Ω0 + P 1/2
u| ‖u‖2 ≤ ψ} (3.8)

where‖u‖2 = u
T
u is the 2-norm of vectoru. For a symmetric and postive definite

matrixP , the matrixP 1/2 can be computed by the Cholesky factors ofP . The ellipsoid

represents an-dimensional region, where the vectorΩ varies around the center point

Ω0. The vectoru characterizes the movement ofΩ aroundΩ0.

Figure 3.1 illustrates the ellipsoid inR2. The half-lengths of the axis of the ellipsoid

are a factorψ of the square roots of the eigenvalues,λ1 andλ2, of the matrixP , and the

direction of the axis is given by the eigenvectors ofP , e1 ande2.

Considering the vectorΩ to consist of random variables corresponding to the param-

eters of variations, with an associated covariance matrix given byP , and assuming that

the parameters of variation follow a Gaussian distribution, the ellipsoid set described in

Equations (3.7) and (3.8), can be used as a bounded model of variations. In particular,

it can be shown that the constant probability density contours of a multivariate normal

distribution represent an ellipsoid set. The joint probability distribution function (PDF)

of the multivariate normal random vectorΩ, with a covariance matrixP is:

fΩ(Ω) =
1

(2π)n/2|P |1/2 e
{− 1

2
(Ω−Ω0)TP−1(Ω−Ω0)} (3.9)
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Figure 3.1: An uncertainty ellipsoid set in two dimensions.The ellipsoid set is used as

a bounded model for multivariate normal parameter variations.

where|P | is the determinant of the covariance matrixP , andn is the number of com-

ponents in the variation vectorΩ. It is clear from Equation (3.9), that the PDF of a

multivariate normal distribution would be a constantc, if (Ω−Ω0)
TP−1(Ω−Ω0) = c.

This relation represents precisely the surface of an ellipsoid given by Equation (3.7),

with c = ψ2. Since the covariance matrixP is symmetric and positive definite [JW02],

we can also equivalently represent the constant probability ellipsoid as Equation (3.8).

Thus from the discussion above, by assuming normality of parameter distribution, the

ellipsoid set can be regarded as a high-dimensional region inside which the parameters

randomly vary. This bounded model of parameter variations in the form of an ellipsoid

set is referred to as anuncertainty ellipsoid. In Section 3.4, we use this uncertainty ellip-

soid model to simplify our robust constraints and formulatethe robust GP optimization

problem.

3.3.4 Chi-square Distribution

If ri aren independent normally distributed random variables with meansµi and vari-

ancesσ2
i , the random variablez =

∑n
i=1(

ri−µi

σi
)2 is distributed according to the Chi-
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square distribution (χ2
n), with n degrees of freedom [JW02]. The Chi-square distribu-

tion is a special case of gamma distribution, and for a randomvariablez following the

Chi-square distribution, the cumulative density function(CDF) ofz is given by [DS02]:

F (z;n) =
γ(n/2, z/2)

Γ(n/2)
(3.10)

whereΓ is the gamma function, andγ is the incomplete gamma function [DS02].

Referring back to Equation (3.7), it can be proved that the random variablez =

(Ω −Ω0)
TP−1(Ω −Ω0) is χ2

n distributed [JW02]. Therefore, the solid ellipsoid given

by Equation (3.7) can be assigned a pre-specified amount of probabilityα as:

α = Fχ2
n
(ψ2) (3.11)

whereF is the Chi-square CDF function given by Equation (3.10).

As will be explained in Section 3.4, we use the uncertainty ellipsoid to pad the

deterministic delay constraints, and with the prespecifiedprobability α given by the

lower bound on timing yield specification, we define the size of the ellipsoid. This

determines the amount of margin required for each delay constraint.

3.4 Variation-Aware Gate Sizing

3.4.1 Effect of Variations on Constraints

The deterministic posynomial constraints of (3.6) can be represented as:

tj + fji(X0) ≤ ti (3.12)

wheretj + fji(X0) = tj +
∑

l Kl

∏

j x
ajl

j0
represents thejth constraint function,X0 is

the vector representing the nominal gate sizesx0i
for all gates. The conventional GP

optimization assigns a set of optimalx0 to the vectorX0, so that each delay constraint is

satisfied, i.e.,tj + fi(X0) ≤ ti for all constraintsi, and the area objective is minimized.
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However, due to the effect of process variations, the posynomial delay models of

the gate can no longer be assumed to be deterministic quantities. Thus, the constraint

inequalities at each node should be rewritten as:

tj + fij(X0,Ω) ≤ ti (3.13)

whereΩ is the random vector of perturbations around the nominal values of the parame-

ters. For the cases when the new value of the constraint function tj+fji(X0,Ω) > ti, the

effect of the random process variations leads to the original constraints being violated

and a possible timing failure for the circuit.

Assuming that the random parameter perturbations around the nominal values are

small, the new value of the gate delay modelfi(X0,Ω) can be approximated by a first

order Taylor series expansion as:

fji(X0,Ω0 + δΩ) = fji(X0,Ωo) +
∑

j

δfji(X0,Ω)

δ(Ωj)

∣

∣

∣

∣

Ωj0

(Ωj − Ωj0)

= fji(X0,Ω0) + ∇Ω0
fji(X0,Ω)δΩ

=
∑

l

Kl

∏

j

x
ajl

j0
+ ∇Ω0

(
∑

l

Kl

∏

j

x
ajl

j δΩ) (3.14)

where∇Ω0
represents the gradient calculated at the nominal values ofthe parameters,

andδΩ represents the zero-mean random variation in the parameters such as transistor

width, effective channel length and oxide thickness, around the nominal values. Note

that the coefficientKl also depends on the parameters, and therefore should be regarded

as a functionKl(Ω) of the perturbation vector.

In (3.14) the term,∇Ω0
(
∑

lKl

∏

j x
aj

j )δΩ is the variational term representing the

effect of process variations, added to the nominal term
∑

lKl

∏

j x
aj

j0
. To safeguard

against the uncertainty of process variations, it is necessary to meet the constraint,tj +

fi(X0,Ω) < ti, for the maximum value of the variational term. In other words:

tj +
∑

l

Kl

∏

j

x
ajl

j0
+ max

∀δΩ∈U
(∇Ω0

(
∑

l

Kl

∏

j

x
ajl

j δΩ) ≤ ti (3.15)
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Next, we show that by employing the concept of an uncertaintyellipsoidU , the con-

straint of (3.15) can be transformed to a set of posynomial constraints, so that the robust

optimization formulation remains a GP, and can be efficiently solved. Our robust GP

formulation is applicable for all cases where the original constraints are in the form of a

generalized posynomial [KKS98].

We use the uncertainty ellipsoid to model the process variations that randomly per-

turb the transistor parameters around the nominal values for which they were designed.

As the random vectorΩ of uncertain parameters varies around the nominal parameter

vectorΩ0, the variations are considered to be bounded within the ellipsoid regions de-

fined by (3.8). In other words, the variationδΩ from Ω0 is given byδΩ = P 1/2
u with

‖u‖2 ≤ ψ.

Alternatively, we could have chosen the variationδΩ in the parameters to be bounded

in ann-dimensional box given byΩmin ≤ δΩ ≤ Ωmax. However, using the box as a

model for bounded variation, ignores any correlation information between the random

components ofΩ, as each component can move independently inside a box, assuming

any values between the minimum and maximum range. Thus, optimizing for a max-

imum variation in such a box region would translates to an overly pessimistic design.

Moreover, ann-dimensional box modeling of parameter variations would beaccurate

only in the highly unlikely case when all parameters are statistically independent with

respect to each other, and follow a uniform distribution. Most parameters have been

observed to follow a distribution that resembles a Gaussianone. The advantage of us-

ing the ellipsoid uncertainty model is that it not only accurately models the region of

variation for normally distributed parameters, any correlations between the parameters

is directly captured by appropriately constructing the elements of the covariance matrix

P . The covariance matrix can be derived from a spatial correlation model such as the

ones used in [CS03] and [ABZ03].

In the next section, we show with the aid of a small example, the use of the un-

certainty ellipsoid model in converting the constraint of (3.15) to a set of posynomial
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constraints, and formulating the robust GP for gate sizing in the presence of process

variations.

1 2

(w1, Le1
) (w2, Le2

) Cload

Figure 3.2: A simple example circuit to explain the geometric program formulation for

robust gate sizing problem.

3.4.2 Robust GP formulation

We use a simple example to explain the procedure to incorporate the process variation

effects in the delay constraints set. We use the toy circuit of Figure 3.2, comprising of

just one driver gate and one load gate, for this illustration, but the idea can be generalized

to arbitrarily large circuits. In this example, we considerthe widths (w1, w2) and the

effective channel lengths (Le1 , Le2) of the two gates as the only varying parameters. The

scheme can be directly extended to include other parameters.

Applying the Elmore delay model to the gates of circuit of Figure 3.2, and for sim-

plicity, neglecting the interconnect delay and the effect of drain and source capacitances

of the driver gate, the delay constraint for the circuit can be written as:

K1Le1Le2w2

w1

+
K2Le2
w2

≤ Tspec (3.16)

whereK1 andK2 are constants. As explained in Section 3.4, to ensure that the delay

constraint of (3.16) is met under the effect of random process variations, the first order
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Taylor series expansion of the constraint function resultsin the following relation:

K1Le10Le20w20

w10

+
K2Le20
w20

+ (3.17)

max
∀δw,δLe∈U

(

K1Le10Le20δw2

w10

+
K1Le20w20δLe1

w10

+
K1Le10w20δLe2

w10

+
K2δLe2
w20

−
K1Le10Le20w20δw1

w2
10

−
K2Le20δw2

w2
20

)

≤ Tspec

wherew0 andLe0 represent, respectively, the nominal values of the transistorw andLe,

andδw andδLe are, respectively, the random variations inw andLe. Employing the

ellipsoid uncertainty model of (3.8) for the random parameter variations, leads to:
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(3.18)

whereP is the covariance matrix of the random vectorΩ consisting of the variations in

gatew andLe of the driver and the load gate of Figure 3.2, andu is the vector bounding

the variation within the 4-dimensional ellipsoid centeredat the nominal values ofw and

Le, with ‖u‖2 ≤ ψ.

We introduce two vectorsφ1 andφ2 to collect the positive and negative coefficients,

respectively, of the variational parameters of (3.17) as:

φ1 =

















0
K1Le10

Le20

w10
K1Le20

w20

w10
K1Le10

w20

w10
+ K2

w20

















, φ2 =

















−K1Le10
Le20

w20

w2
10

−K2Le20

w2
20

0

0

















(3.19)

From the definitions in (3.18) and (3.19), (3.17) can be rewritten as:

K1Le10Le20w20

w10

+
K2Le10
w20

+ max
∀u

(

〈P 1/2φ1,u〉 + 〈P 1/2φ2,u〉
)

≤ Tspec (3.20)
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where〈a, b〉 represents the inner product of vectorsa andb. From the well-known result

of the Cauchy Schwartz inequality3:

< a, b > ≤ ‖a‖2 · ‖b‖2 (3.21)

and the fact that in the ellipsoid uncertainty model,‖u‖2 ≤ ψ, a sufficient condition4

for (3.20) is:

K1Le10Le20w20

w10

+
K2Le10
w20

+ ψ‖P 1/2φ1‖2 + ψ‖P 1/2φ2‖2 ≤ Tspec (3.22)

We then introduce two additionalrobust variablesr1 andr2 as:

r1 = ψ‖P 1/2φ1‖2, i.e., r2
1 = ψ2φ1

TPφ1

r2 = ψ‖P 1/2φ2‖2, i.e., r2
2 = ψ2φ2

TPφ2 (3.23)

The inequality of (3.22) is then replaced by the following relaxed constraints:

K1Le10Le20w20

w10

+
K2Le10
w20

+ r1 + r2 ≤ Tspec (3.24)

ψ2φ1
TPφ1r

−2
1 ≤ 1 (3.25)

ψ2φ2
TPφ2r

−2
2 ≤ 1 (3.26)

As the optimizer tries to minimize the value of the robust variablesr1 andr2, the re-

laxed inequality constraints of (3.25) and (3.26) would enforce the equality constraint

of Equation (3.23).

The inequality of (3.24) is clearly a posynomial with the robust variablesr1 andr2

added to the original variable list of the gatew and the intermediate arrival time variables

t (not used in this example). By construction, all the elements ofφ1 are posynomials, and

3In our case, the equality in (3.21) also holds, as there are some points in the ellipsoid
set which have〈P 1/2φ1,u〉 = ‖P 1/2φ1‖2 · ‖u‖2.

4An equivalent condition for (3.20) is:
(

K1Le10
Le20

w20

w10
+

K2Le10

w20
+ ψ‖P 1/2(φ1 + φ2)‖2

)

≤ Tspec. However, this does not lead to the formulation of posynomial constraints of
(3.25) and (3.26).
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all the non-zero elements ofφ2 are negative of posynomials. The covariance matrixP

is assumed to have all non-negative elements. This is a justifiable assumption because it

is rare to find instances of parameters negatively correlated with each other. The spatial

correlation models yield either zero or a positive correlation between the parameters.

Thus, the quadratic termsφ1
TPφ1 =

∑

i,j Pijφ1i
φ1j

, andφ2
TPφ2 =

∑

i,j Pijφ2i
φ2j

are

a summation of monomials with positive coefficients. Consequently, the constraints of

(3.25) and (3.26) are also posynomials. Hence, by followingthe procedure described in

the above equations, we convert the non-robust posynomial constraint of (3.16) to a set

of robust posynomial constraints of (3.24-3.26), by introducing two additional variables.

Next, we address the issue of assigning a timing yield parameter to the optimization

formulation. As discussed in Section 3.3.4, we can assign a pre-specified probability

α to the uncertainty ellipsoid model of variations by using the χ2
n distribution. From

Equation (3.11), we can determineψ2 as the upper100αth percentile of theχ2
n distri-

bution from the standard tables of the Chi-square CDF. For instance, for the example

circuit of Figure 3.2, corresponding toα = 0.9 or 90%, the value ofψ determined from

theχ2
4 CDF tables, for the four-dimensional ellipsoid, isψ = 2.79. The value assigned

to ψ, determines the size of the uncertainty ellipsoid used to pad the nominal terms in

the timing constraints. The pre-specified probabilityα serves as the lower bound on

the timing yield, because the robust constraints formulated using the ellipsoid margin

corresponding to such anα, would be satisfied for at leastα% of all cases. Since there

are other points outside the ellipsoid set of the specified probability value that may not

cause timing violations, the timing yield could be more thanα.

For a general circuit, the procedure described for the example circuit of Figure 3.2

is repeated for each constraint. Thus, by addition of at mosttwo additional variables

for each constraint, robustness against the process uncertainties is added to original con-

straint set, while still maintaining the desirable posynomial structure of the constraints.

By this procedure, we convert the conventional GP formulation of the gate sizing prob-

lem to a robust gate sizing problem, which is also a GP and hence, can be efficiently
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solved using the convex optimization machinery.

3.4.3 Overestimation of Variations

The optimization formulation described in Section 3.4, adds margins to the determinis-

tic constraints generated by an STA procedure. Due to the fact that separate margins are

added at each node of the circuit graph, instead of the whole path, the resulting formu-

lation could result in a large overestimation of the variational component of the circuit

delay, which could lead to excessive design penalties.

1 2 m
t1 t2 tm

Cload

Figure 3.3: An example of a chain of inverters circuit to explain the problem of overes-

timation of variations in the robust GP formulation.

To understand the problem of this overestimation of variation, consider a simple

example circuit consisting ofm chain of inverters as shown in Figure 3.3. For this

simple circuit, an STA module would generate the following block-based constraints:

d1(X0) ≤ t1

t1 + d2(X0) ≤ t2
...

tm−1 + dm(X0) ≤ tm

tm ≤ Tspec (3.27)

wheredi is the delay of theith inverter, which is a function of the vector of nominal gate

sizesX0. By the method explained in Section 3.4, the equivalent robust constraints for
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the example circuit of Figure 3.3, can be written as:

d1(X0) + max
∀δΩ∈U

(∇Ω0
d1(X0,Ω)δΩ) ≤ t1

t1 + d2(X0) + max
∀δΩ∈U

(∇Ω0
d2(X0,Ω)δΩ) ≤ t2

...

tm−1 + dm(X0) + max
∀δΩ∈U

(∇Ω0
dm(X0,Ω)δΩ) ≤ tm

tm ≤ Tspec (3.28)

It is easy to see that for the simple circuit of Figure 3.3, thedelay is given by the whole

path delay asd1(X0,Ω) + · · · + dm(X0,Ω). Thus, the effect of variations can be ac-

counted for by a simple robust constraint of the form:

d1(X0) + · · ·+ dm(X0) + max
∀δΩ∈U

(∇Ω0
(d1(X0,Ω))+ (3.29)

· · · + dm(X0,Ω)δΩ) ≤ Tspec

For anym nonnegative functions,y1, · · · , ym, the following inequality is well-known:

max(y1 + · · ·+ ym) ≤ max y1 + · · · + max ym (3.30)

Therefore, for the variation terms in the constraints of (3.28) and (3.30), the following

inequality holds:

max
∀δΩ∈U

(∇Ω0

∑

i

di(X0,Ω)δΩ) ≤
∑

i

max
∀δΩ∈U

(∇Ω0
di(X0,Ω)δΩ) (3.31)

It is clear from (3.28), (3.30) and (3.31), that the approachof adding the variational

component of delay at each node leads to extra guard-banding.

Another way to understand the amount of pessimism introduced in the formulations

is by realizing that the actual probability of failure,pfail1, for the circuit of Figure 3.3 is

given by:

pfail1 = Pr(d1(X0,Ω) + · · ·+ dm(X0,Ω)) > Tspec (3.32)

109



On the other hand, the probability of failure,pfail2, as computed by the padding of

constraints at the each node in the circuit graph of Figure 3.3 is given by:

pfail2 = [Pr(d1(X0,Ω) > t1)] ∪ [Pr(t1 + d2(X0,Ω) > t2)] ∪

· · · ∪ [Pr(tm−1 + dm(X0,Ω) > Tspec)] (3.33)

Clearly, from Equations (3.32) and (3.33),pfail1 ≤ pfail2. Thus, the robust GP formula-

tion attempts to safeguard against a probability of timing failure that is greater than the

actual failure probability, which could lead to extra design margins.

For a simple circuit similar to the one in Figure 3.3, it is trivial to trace the path

delay, and then add margin to the whole path delay constraint. However, in general, the

number of paths in a circuit graph can be exponential in the number of nodes. Therefore,

enumeration of paths has a prohibitive cost for large circuits consisting of thousands of

gates.

To reduce the problem of unnecessary padding at the intermediate nodes in the cir-

cuit, without incurring the exponential cost of formulating the path-based constraints,

we employ a graph pruning technique proposed in [VC99]. The following section dis-

cusses this pruning method.

3.4.4 Graph Pruning

In [VC99], the authors propose a technique to reduce the number of variables, con-

straints and redundancy in the circuit optimization formulation, by removing the internal

nodes and the original edges connected to them in the circuitgraph. We apply this graph

pruning technique to our method to reduce the pessimism in our gate sizing formulation.

This technique alters the delay constraints formulation byoperating on the timing

graph of the circuit. An initial timing graph of the circuit is constructed by representing

each pin of a gate in the circuit as a vertex, and the connections between an input and

an output pin of the same gate, and between an output pin of a gate and an input pin
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of its fanout gate, as edges in the graph. The arrival time at apin of a gate is used

to annotate the edge originating at the node corresponding to that pin. Two additional

nodes, representing the primary inputs (PI) and primary outputs (PO) are added to the

vertex set of the graph. Figure 3.4 shows a simple circuit andits corresponding timing

graph.

1

5

7 PO

4

2

3

6

PI

(a) (b)

t1t1

t2
t2

t3

t3

t4

t4

t5

t5

t6

t6

t7
t7

d15

d25

d36

d46

d57

d67

Figure 3.4: A simple example circuit to illustrate the graphpruning method. (a) A

two-level combinatorial circuit. (b) Timing graph for the circuit.

In the graph pruning method, the nodes of the graph are iteratively screened for a

possible elimination by evaluating the cost of this node removal. The cost is typically

expressed as some simple function of change in the number of variables and constraints

in the optimization formulation, after the vertex under consideration is removed from

the graph. If the evaluated cost is negative, implying a reduction in the problem size,

the node is removed, and subsequently all incoming and outgoing edges of this node are

also pruned from the graph.

The change in the formulation of delay constraints by a node removal can be un-

derstood by considering a segment of a circuit graph shown inFigure 3.5. In the above

figure, we assume that nodel meets the removal criterion according to the pruning cost.
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Figure 3.5: A segment of the timing graph of a circuit to illustrate the removal of a node

in the graph pruning method. (a) The original graph segment.(b) The graph segment

after pruning nodel.

This node hasm fanins,i1, · · · , im, andn fanouts,o1, · · · , om. The timing constraints

for this graph segment before the node removal, as depicted by the graph segment of

Figure 3.5(a) are:

tik + dik,l ≤ tl ∀k ∈ 1, · · · , m

tl + dl,oj
≤ toj

∀j ∈ 1, · · · , n (3.34)

After eliminating nodel, and the corresponding arrival time variabletl, from the above

constraint set, we obtain:

tik + dik,l + dl,oj
≤ toj

∀k ∈ 1, · · · , m, ∀j ∈ 1, · · · , n (3.35)

These new constraints are shown graphically in Figure 3.5(b). The two sets of con-

straints in (3.34) and (3.35) are equivalent, and no timing information is lost in trans-

forming from one set to the other. Since the pruning cost determines the nodes to be

removed, a cost function constructed to reduce the problem size, e.g., a weighted sum

of change in the number of variables and number of constraints, results in making the

optimization formulation more compact after every pruningstep.
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Example of the Pruning Procedure

The application of the graph pruning method of [VC99] to reduce the pessimism in our

optimization formulation can be best explained using a simple example circuit, and its

corresponding timing graph. For this we refer back to the circuit of Figure 3.4. As shown

in the figure, the arrival times at each pin of the logic gates are represented by variables

t1, · · · , t7. For simplicity, it is assumed that the interconnects have zero delay and that

all primary inputs arrive at a timet = 0. Thedji variables in Figure 3.4(a), represent

the pin to pin delay of a logic gate. Figure 3.4(b) shows the corresponding timing graph

for the example circuit. By employing an STA procedure, the delay constraints at the

output of pin of each gate in the circuit of Figure 3.4(a) can be written as:

0 ≤ ti i ∈ {1, 2, 3, 4}

t1 + d15(X0,Ω) ≤ t5

t2 + d25(X0,Ω) ≤ t5

t3 + d36(X0,Ω) ≤ t6

t4 + d46(X0,Ω) ≤ t6

t5 + d57(X0,Ω) ≤ t7

t6 + d67(X0,Ω) ≤ t7

t7 ≤ Tspec (3.36)

whereX0 is the vector consisting of the sizes of the three gates of Figure 3.4(a), andΩ

is the random vector corresponding to the process uncertainties. From the discussion in

Section 3.4.3, adding margins for each of the constraints of(3.36) can result in excessive

guard-banding against the effect of variations, and hence apessimistic design.

As described in the previous section, the circuit timing graph of Figure 3.4(b), and

the corresponding constraints formulation of (3.36) can bealtered by selectively remov-

ing nodes from the graph. Figure 3.6 illustrates the application of the graph pruning

technique on the example circuit of Figure 3.4. For this specific example, the pruning
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Figure 3.6: The graph pruning method applied to the example circuit of Figure 3.4. (a)

The original circuit graph. (b) Graph after removing nodes 1, 2, 3 and 4. (c) Graph after

removing nodes 5 and 6. (d) The final pruned graph.

cost chosen is simply the difference in the number of variable and constraints after re-

moving a node from the graph. Figure 3.6(a) shows the graph obtained after eliminating

nodes 1, 2, 3 and 4 in the original graph. Similarly, Figure 3.6(b) represents the graph

after removing nodes 5 and 6, as well. The final pruned graph, obtained after removing

all nodes except the PI and the PO nodes is shown in Figure 3.6(d). For each pruned

node, a new edge is added between the fanin and fanout nodes ofthe removed node, and

the new edge is annotated with the pruned arrival times. Thisannotation is required to

generate the timing constraints at the end of the pruning procedure.

From the edge annotations, and the original constraints of (3.36), the constraints
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corresponding to the final pruned circuit graph of Figure 3.6(d) can be written as:

d15(X0,Ω) + d57(X0,Ω) ≤ Tspec

d25(X0,Ω) + d57(X0,Ω) ≤ Tspec

d36(X0,Ω) + d67(X0,Ω) ≤ Tspec

d46(X0,Ω) + d67(X0,Ω) ≤ Tspec (3.37)

In the above set of constraints, the pruning method eliminates all nodes, except the

ones corresponding to primary inputs and the primary output. Since all intermediate

arrival time variablesti are pruned, the above formulation does away with the problem

of keeping redundant margins for the constraints at the output pin of each node. It

should be emphasized that the example circuit of Figure 3.4 is an extremely simple case

for which the pruning method can eliminate all intermediatenodes, and arrive at the

path delay constraints of (3.37). Therefore, the problem ofoverestimation of effect of

variation, as described in Section 3.4.3 is completely resolved for this example circuit.

In general, for practical circuits, the graph pruning procedure could determine some

nodes unsuitable for pruning, and some intermediate nodes could still remain in the

final pruned circuit graph. However, due to the removal of many intermediate nodes, the

pessimism in the robust optimization formulation is considerably reduced.

Practical Issues in Using Graph Pruning for the Robust GP Formulation

By removing a node withm fanins andn fanouts from the circuit graph, the change

∆con, in the number of constraints is∆con = 2(mn − (m + n)), and the change∆var,

in the number of variables is∆var = −2, as the variables corresponding to both rise

and fall delays of the pruned node are eliminated. A pruning criterion can thus be

established as some functionfcost(∆con,∆var), of change in the number of variables

and constraint. The pruning procedure operates iteratively, in which the nodes with

the lowest nonpositivefcost are pruned in the first pass. After the first iteration, the
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number of fanins and fanouts of the unpruned nodes are recalculated due to the addition

of new edges in the pruned graph. This iterative method continued until all nodes in the

graph produce a positivefcost. At this point, no more nodes can be removed from the

graph according to the given pruning metric. Typically, thepruning criterion is chosen

as fcost = a.∆con + b.∆var, wherea and b are some normalized weighting factors.

However, due to some practical problems in applying the graph pruning method to our

formulation, we use a slightly modified pruning cost function. The following discussion

explains these practical issues.

From (3.35), the number ofdji terms, corresponding to the posynomial gate delay

models, increase in every constraint during the pruning procedure. This results in the

following problem for our robust GP formulation. Referringback to our robust GP

method described in Section 3.4.2, we modify each delay constraint to include the terms

corresponding to the maximum effect of variations inside the bounded uncertainty el-

lipsoid model. This is achieved by adding to each constraint, new robust variablesr1

andr2, defined in Equation (3.23), and including additional constraints to the formu-

lation, given by (3.25) and (3.26), asψ2φ1
TPφ1r

−2
1 ≤ 1 andψ2φT

2 Pφ2r
−2
2 ≤ 1. For

constraints at each node of circuit graph, the vectorsφ1 andφ2 are typically sparse, as

these vectors consist of entries corresponding to a few parameters, affecting only a sin-

gle gate delay. However, during the graph pruning method, asthe intermediate nodes are

removed, the number ofdji terms increase in every constraint. Thus, the sparsity ofφ1

andφ2 vectors is adversely affected. Moreover, as these vectors become dense, the num-

ber of monomial terms in the quadratic expansion of the constraintsψ2φ1
TPφ1r

−2
1 , and

ψ2φT
2 Pφ2r

−2
2 grow rapidly. As a result many constraints have monomial terms involv-

ing a large number of variables. Consequently, the constraint Jacobian matrix becomes

very dense, which can considerably slow down the gradient computations required by

the convex optimization methods, such as the interior pointalgorithm.

To overcome this issue of potential slow down of the gate sizing procedure, due to

the increase in density of the constraint Jacobian matrix, we modify the pruning cost to
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include a penalty term related to increasing the number of terms in theφ1 andφ2 vectors.

We defineMononum as the maximum number of monomial terms in all the constraints

affected by removing the node under consideration. The costof pruning this node is

then calculated as:

fcost = a∆con + b∆var + cmax(Mononum −Monospec, 0) (3.38)

wherec is a weight factor, andMonospec is a user specified quantity to represent the

maximum number of monomial terms allowed in each constraint. A higher value of

Monospec could result in more pruning, but at the cost of a potential slow down in

obtaining the solution of the GP optimization problem. Thus, by adjusting theMonospec

parameter, the user can choose an engineering tradeoff between the runtime and the

amount of pessimism reduction desired in the gate sizing procedure.

In the next section, we elaborate on another heuristic method to further reduce the

pessimism in our formulation.

3.4.5 Using Variable Size Ellipsoids

The graph pruning procedure of [VC99], explained in Section3.4.4, helps in eliminating

many intermediate arrival time variables, and reduce the problem of variation overesti-

mation in our formulation. However, as described in the previous section, it may not be

possible to remove all intermediate nodes from the graph, and leave only the ones corre-

sponding to the primary inputs and the primary outputs unpruned. The number of fanins

and fanouts of a node increase monotonically during the pruning procedure. Therefore,

for a given pruning cost of Equation (3.38), if a node is unsuitable for pruning in any it-

eration of the pruning method, i.e., it has a positive pruning cost, it will never be pruned

under the same criterion. Due to the presence of the unprunednodes in the circuit graph,

the pessimism in our optimization formulation is not completely eradicated.

We present another method, to be employed after the graph pruning procedure, to

further reduce the excessive margins from the timing constraints formulated at the un-
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pruned nodes of the graph. This method is based on setting variable margins at different

topological levels of the circuit. We use a simple example circuit consisting of just two

inverters to explain this method.

��
��
��
��

�
�
�
�

t1
d1 d2

U1 U2

Figure 3.7: An example circuit to explain the use of variablesize ellipsoids to reduce

the pessimism in the robust GP formulation.

Consider the circuit of Figure 3.7 consisting of two inverter gates. For this simple

circuit, the intermediate node, corresponding to the output pin of the first inverter, can

be easily removed to formulate the path delay constraint. However, for the purposes of

exposition of the method of using variable ellipsoids, we donot employ any pruning and

formulate the constraints for this circuit as:

d1(X0) + max
∀δΩ∈U1

(∇Ω0
d1(X0,Ω)δΩ) ≤ t1 (3.39)

t1 + d2(X0) + max
∀δΩ∈U2

(∇Ω0
d2(X0,Ω)δΩ) ≤ Tspec (3.40)

We use different guard-bands for the constraints (3.39) and(3.40), by employing two

uncertainty ellipsoids,U1 andU2 given by:

U1 = {Ω : (Ω − Ω0)
TP−1(Ω − Ω0) ≤ ψ2

1} (3.41)

U2 = {Ω : (Ω − Ω0)
TP−1(Ω − Ω0) ≤ ψ2

2} (3.42)

whereψ1 < ψ2. As explained in Section 3.3.4, we can use the CDF tables of the χ2
n

distribution to associate probability values,α1 andα2 with the ellipsoidsU1 andU2,

respectively. Asψ1 < ψ2, it follows thatα1 < α2.
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A simple probabilistic analysis to achieve the timing yieldof the circuit of Figure

3.7, provides insights into the idea of using variable ellipsoids. Using the bounded

ellipsoid model for parameter variations, we first define tworandom variablesβ1 andβ2

as:

β1 = max
∀δΩ∈U1

(∇Ω0
d1(X,Ω)δΩ) − (∀δΩd1(X,Ω)) (3.43)

β2 = max
∀δΩ∈U2

(∇Ω0
d2(X,Ω)δΩ) − (∀δΩd2(X,Ω)) (3.44)

The random variables defined in Equations (3.43) and (3.44),relate to the valuesα1 and

α2 as :

α1 ≤ Pr(β1 > 0) (3.45)

α2 ≤ Pr(β2 > 0) (3.46)

By using a smaller ellipsoidU1 to guard-band the timing constraint of (3.39), we as-

sociate a smaller probabilityα1, as a lower bound on the chance that this small design

margin would be sufficient to meet the constraint in the face of variations. However,

even if the design margin is not sufficient to meet this constraint, corresponding to the

case thatβ1 < 0, by employing a larger ellipsoidU2, and the corresponding bigger prob-

ability α2, to pad the timing constraint of (3.40), we have a better chance to compensate

for the violation of constraint (3.39). Mathematically, ifA is the probabilistic event that

constraint (3.39) is not met, andB is the event that the circuit fails to meet the specified

delay, the following relation holds5:

Pr(B/A) = Pr(β1 < 0)Pr(β2 > 0/β1 < 0)Pr((|β1| > |β2|)/β2 > 0, β1 < 0)

+Pr(β2 < 0)Pr(β1 < 0/β2 < 0) (3.47)

The use of a larger ellipsoidU2 with an associated lower bound probabilityα2 ≤
Pr(β2 > 0), ensures that for the cases whenβ1 < 0, the termPr(β2 < 0) and the

5Since the parameters of the two inverters may be correlated,Equation (3.47) con-
tains terms corresponding to conditional probabilities.
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conditional probability termPr((|β1| > |β2|)/β2 > 0, β1 < 0) in Equation (3.47) are

reasonably small. Therefore, the scheme of using a smaller design margin for a lower

topological level, followed by a sufficiently large design margin for higher levels can

still provide the necessary guard-banding to achieve the desired timing yield.

For a general circuit withk topological levels, we employk uncertainty ellipsoids,

U1, U2, · · · , Uk, characterized by the constants,ψ1, ψ2, · · · , ψk, with ψ1 < ψ2 < · · · <
ψk. Since it is extremely difficult to relate the individual ellipsoid sizes with the timing

yield specification, we heuristically choseψk to correspond to the lower bound on the

timing yield αk, and progressively decrease the constantsψk−1, · · · , ψ1. The value of

ψk is determined from the tables of theχ2
n distribution. The margins at logic levels,

1, · · · , k − 1, are determined by setting:

αi = αk − γ.(k − i) i = 1, · · · , k − 1 (3.48)

whereγ is an empirically determined factor. Using smaller timing margins at lower

topological levels, as compared to choosing the same marginat all levels, corresponding

to the lower bound on timing yieldαk, helps in reducing the pessimism in our formula-

tion.

It should be noted that this scheme of using variable sized ellipsoids is employed

for the unpruned nodes, only after the graph pruning step. The graph pruning method

of [VC99], followed by the heuristic scheme of keeping variable guard-bands at differ-

ent topological levels of the final pruned circuit, significantly reduces the problem of

overestimation of variation in our gate sizing procedure.

3.4.6 Incorporating Spatial Correlations

We use the grid based spatial correlation model of [CS03] and[ABZ03] to incorporate

the intra-die correlations between the parameters variations that exhibit spatial depen-

dence, such as the transistorw andLe.
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Figure 3.8: A grid based spatial correlation model. The layout is divided into a3 × 3

grid. The gates in the same grid are assumed to have a perfect correlation. Gates in the

nearby grids are assigned a high correlation factor, and thegates in far away grids are

assigned a low or a zero correlation factor.

Figure 3.8 refers to such a model, where the layout area is partitioned intom = 9

grids. The widths (channel lengths) of the devices located in the same grid are assigned

a perfect correlation factor, device widths (channel lengths) in nearby grids are assigned

a high correlation factor, and the ones in far away grids havea low or zero correlation

factor. As seen in Figure 3.8, gates{1,2} have perfect correlation between their widths

(channel lengths), gates{1,3} and{2,3} have high correlations, where as gates{1,4}
and{2,4} are uncorrelated.

For a random vectorΩ representing the variations inw andLe, and its corresponding

covariance matrixP , the entryPij = σiσjρij denotes the covariance between compo-

nentsi andj of Ω, whereσ is the standard deviation of each random variable, andρij

is the correlation factor between the random variablesi andj. By employing the spa-

tial correlation model of Figure 3.8, the correlation factor between all elements ofΩ

is computed, and stamped out in matrixP . The ellipsoid uncertainty model, described

in Section 3.3.3, then incorporates the impact of correlations in the robust optimization
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formulation.

The following simple example explains how the correlationsare captured by the

uncertainty ellipsoid. Consider a simple constraint involving the transistor widths of

two gates:

tj +
K1w1

w2

≤ ti (3.49)

For simplicity, we assume that the gate widths,w1 andw2, are the only two varying

parameters, and the other parameters are subsumed in the constantK1. Furthermore, we

assume that the gates are placed in the same grid of the spatial correlation model, hence,

the variations in the two gate widths are same, i.e.,δw1 = δw2. If the nominal gate sizes

are also assumed to be identical, i.e.,w10 = w20 , the effect of process variation can-

cels out in the numerator and denominator of (3.49), and no guard-banding is required.

To verify that the ellipsoid uncertainty correctly incorporates this perfect correlation

scenario, we apply our robust optimization procedure to theconstraint of (3.49). Gen-

erating a first order Taylor series expansion of the constraint around the nominal values

(w10 , w20), and applying the ellipsoid uncertainty yields:

tj +
K1w10

w20

+ max
∀u|‖u‖2≤ψ

(
K1(P

1/2
u)1

w20

− K1w10(P
1/2

u)2

w2
20

) ≤ ti (3.50)

However, since we have perfect correlation betweenw1 andw2, the correlation factor,

ρ12 = ρ21 = 1. Therefore, the correlation matrixP is given by:

P =





σ2
1 σ1σ2

σ1σ2 σ2
2





Furthermore, since the variations inw1 andw2, and the mean values are same, we must

haveσ1 = σ2. It then follows that for all vectorsu = [u1, u2], which characterize the

uncertainty ellipsoid, we have(P 1/2u)1 = σ2
1u1+σ1σ2u2 = (P 1/2u)2 = σ2

2u2+σ1σ2u1,

and the variational term in (3.49) is:

K1(P
1/2

u)1

w20

− K1w10(P
1/2

u)2

w2
20

= 0
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Thus, the ellipsoid uncertainty model easily captures the effects of correlations between

random variables, and incorporates the same in the optimization procedure. Incorpo-

rating the correlations in gate sizing optimization procedure reduces the pessimism in-

volved with a worst-casing scheme, and provides opportunities for saving expensive

design resources.

3.4.7 The Complete Sizing Procedure

The complete gate sizing procedure can be recapitulated by the following steps:

1. Generate the initial non-robust timing constraints by anSTA procedure.

2. On the original circuit graph, employ the graph pruning method of [VC99], de-

scribed in Section 3.4.4, to remove as many intermediate nodes as possible ac-

cording to the pruning cost function of Equation (3.38).

3. For the final pruned graph, generate new timing constraints using the edge anno-

tations in the final pruned graph.

4. Generate a first order Taylor series expression for each constraint at the nominal

values of the parameters.

5. Employing the uncertainty ellipsoid model, transform each constraint to a set of

robust constraints as described in Section 3.4.2. For this step, use variable size

ellipsoids at each topological level of the circuit, as explained in Section 3.4.5.

6. Solve the resulting GP by using convex optimization tools.

The solution of the convex optimization problem provides the gate sizes for the circuit

that minimize the area objective, subject to the specified timing yield constraints.
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3.5 Experimental Results

The proposed robust gate sizing procedure was implemented in C++, and an optimiza-

tion software [Mos] was used to solve the final GP. All experiments were performed on

P-4 Linux machines with a clock speed of 3.2GHz, and 2GB of memory. The robust gate

sizing technique was applied to the ISCAS 85 benchmark circuits. The cell library se-

lected comprised inverters, and two and three input NAND andNOR gates. We assume

capacitive loading for the gates. For simplicity we consider the variations in the tran-

sistor width, and the effective channel length as the only sources of variation. However,

our approach can be easily extended to incorporate various other parameters of variation

for the gate and interconnect delays. We use a simple Elmore delay model to generate

posynomial gate delay models. Our approach can work just as well for any other posyn-

omial based delay models, such as the ones based on generalized posynomials proposed

in [KKS98].

We use the spatial correlation model of [ABZ03] and [CS03] togenerate the el-

ements of the covariance matrixP . To use these spatial correlation models, we first

place the circuits using the placement tool Capo [CKM], and then divide the chip area

into different number of grids, depending on the circuit size, so that each grid size is

no greater than 50µ × 50 µ. The standard deviations of thew andLe parameters are

chosen from [Nas00] for a100 nm technology node. The objective function chosen for

the optimization is to minimizeArea =
∑

i aiwi0 , whereai is the number of transistors

in gatei. For each circuit, the value ofTspec is chosen to be the point of 15% slack,

i.e.,Tspec = Dmin + 0.15(Dmax − Dmin), whereDmin andDmax are, respectively, the

minimum and the maximum possible delays of the circuit, found by setting all gates to

the minimum and the maximum size, respectively.

We implement the graph pruning technique of [VC99] to address the problem of

overestimation of variation. As described in Section 3.4.4, we set the pruning cost of a

node asfcost = a∆con+b∆var+cmax(Mononum−Monospec, 0). For this cost function,
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we choosea = 1.5, b = 1, c = 1. We choose different values for the termMonospec,

that determines the maximum number of monomial terms allowed in each constraint.

As described in Section 3.4.5, we employ smaller sized uncertainty ellipsoids at lower

topological levels of the circuit, and progressively increase the ellipsoid size at higher

logic levels. The size of the largest ellipsoid employed at the highest logic levelk,

characterized byψk, is chosen to correspond to the lower bound on the timing yield

specification,αk. The value ofψk is determined from the tables of theχ2
n distribution.

The margins at logic levels,1, · · · , k − 1, are determined by using Equation(3.48) and

choosing the factorγ to be in the interval of[0.05, 0.10], which corresponds to a 5%-

10% decrement from the value ofαk, that specifies the lower bound on the timing yield.

The value of eachψi, corresponding to theαi in Equation (3.48), is determined from the

CDF tables of the Chi-square distribution.

In the first set of experiments, we compare the gate sizing solution obtained by our

method with a deterministic gate sizing solution. The deterministic gate sizing is also

formulated as a GP, using the formulation of 3.4, but it does not take into account the

effect of parameter variations. For our robust optimization procedure, we set the lower

bound on timing yield,αk = 85%, and choose the value ofMonospec = 35. To simulate

the effect of parameter variations, we perform Monte Carlo analysis. We refer to the

set of gate sizes obtained from the deterministic, and the robust optimization asX0det

andX0rob
, respectively. Using these sizes, we generate10, 000 samples each, from two

multivariate normal distributions,N1(X0det
, P ) andN2(X0rob

, P ). Next, we perform

an STA for each of these samples, and record the number of times the circuit meets the

specified target delay. The timing yield of the two optimizations are then determined as

yielddet = ndet × 100/M , andyieldrob = nrob × 100/M , wherendet is the number of

samples drawn from theN1(X0det
, P ) distribution that meet the timing requirements,

andnrob is the number of samples drawn from theN2(X0rob
, P ) distribution that meet

the specified target delay. The total number of Monte Carlo samples is given byM =

10000. Table 3.1 contains the relevant data for this comparison.
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Deterministic Design Robust Design
Ckt

Gates Area Y ielddet% Runtime (sec) Area Y ieldrob% Runtime (sec)

C432 616 1.00 22.31% 3 1.12 99.91% 15

C499 1262 1.00 30.34% 2 1.18 99.94% 23

C880 854 1.00 28.46% 8 1.10 99.92% 18

C1355 1202 1.00 32.34% 12 1.15 98.89% 31

C1908 1636 1.00 35.14% 18 1.14 99.56% 159

C2670 2072 1.00 39.91% 30 1.17 99.83% 189

C3540 2882 1.00 33.31% 25 1.08 98.82% 212

C5315 4514 1.00 38.46% 43 1.12 98.76% 579

C6288 5548 1.00 37.45% 58 1.14 99.22% 742

C7552 6524 1.00 34.78% 90 1.17 99.13% 845

Table 3.1: A timing yield comparison of deterministic and robust gate sizing solutions.

The first column in Table 3.1 lists the benchmark circuit, andthe number of gates

in each circuit is shown in column two. The timing yield of thedeterministically sized

circuits,Y ielddet, is listed in column four of the table. Since the non-robust gate sizing

method does not take into account the effect of variations, the timing yield, as expected,

is quite low for these circuits. Our robust sizing method, eliminates these timing viola-

tions by keeping adequate design margins. Column seven listthe timing yield,Y ieldrob,

of the robustly sized circuits. It should be noted that a value ofαk = 85%, as a lower

bound on the timing yield, is sufficient to provide an actual yield of about 99% for all

benchmark circuits. The area overhead that the robust circuits have to employ to safe-

guard against the parameter variations is shown in sixth column of Table 3.1. At the cost

of an area increase of about 8% to 18%, the robustly sized circuits are able to eliminate

almost all timing violations. The runtimes of the deterministically, and robustly sized

circuits are listed, respectively, in columns five and eightof the table. As seen in the

table, the robust methods is much slower than the deterministic sizing procedure. The
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steps of employing graph pruning, and the increased problemsize of the robust gate

sizing procedure due to the presence of robust variables andconstraints lead to this rela-

tively higher runtimes. However, the overall runtimes of the gate sizing method are very

reasonable.

Timing Yield for the Same Area Worst-Case (WC) and Robust (Rob) Designs

αk = 0.55 αk = 0.65 αk = 0.75 αk = 0.85
Ckt

WC Rob Area WC Rob Area WC Rob Area WC Rob Area

C432 45.63% 68.65% 1.05 86.78% 97.03% 1.08 91.62% 98.14% 1.10 93.12% 99.91% 1.12

C499 51.45% 63.45% 1.08 67.12% 74.28% 1.11 85.12% 97.01% 1.14 94.20% 99.94% 1.18

C880 52.36% 67.52% 1.03 77.38% 88.50% 1.06 88.42% 97.34% 1.08 92.38% 99.92% 1.10

C1355 55.78% 75.21% 1.08 66.17% 84.89% 1.11 82.66% 98.11% 1.13 91.43% 98.89% 1.15

C1908 50.67% 72.76% 1.06 70.69% 87.14% 1.10 84.53% 96.67% 1.12 93.89% 99.56% 1.14

C2670 56.32% 73.68% 1.08 72.86% 88.21% 1.11 89.23% 95.33% 1.14 92.34% 99.83% 1.17

C3540 60.22% 78.14% 1.02 76.15% 89.12% 1.04 89.32% 95.56% 1.06 94.14% 98.82% 1.08

C5315 55.81% 74.98% 1.05 75.50% 87.67% 1.08 90.56% 96.89% 1.10 93.45% 98.76% 1.12

C6288 55.39% 77.16% 1.07 69.79% 88.12% 1.10 85.78% 95.78% 1.12 91.91% 99.22% 1.14

C7552 49.08% 70.48% 1.08 66.21% 85.56% 1.12 83.89% 94.54% 1.15 90.11% 99.13% 1.17

Table 3.2: A comparison of the robust and worst case gate sizing designs using the same

area.

We perform another series of experiments to compare our approach with a gate siz-

ing methodology employing a conventional worst-case design approach. The worst-case

designs are obtained by iteratively solving the standard GP, but for delay specifications

tighter than the original required target delay, until the area of the worst-case design is

the same as that of the robust design. These circuits are thusdesigned using an in-built

guard-band, determined by the difference of the original target delay and the tighter de-

lay specification. Furthermore, to explore the area-robustness tradeoff we vary the size

of the largest uncertainty ellipsoid used, by choosing different values of the factorαk,

that determines the lower bound on the timing yield of the robustly sized circuits. For

these experiments, as before, we set the values ofMonospec = 35, to define the pruning

cost function of Equation (3.38). Having sized these circuits, we perform Monte Carlo

simulations to determine the timing yield of the worst-caseand the robust circuits.

Table 3.2 lists the results of these experiments. As seen from the table, the num-
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ber of timing violations reduces with increase in area, for both the worst-case and the

robust circuits. However, in all cases, our robust design has a better timing yield than

the worst-case design having the same area. On an average, the robust design has about

12% greater timing yield than the worst-case design having the same area. The bet-

ter performance of our robust sizing solution is not surprising because of the fact that

the spatial correlation information, stored in theP matrix, is used by the optimization

scheme. The worst-case circuit is expected to have a large overhead, since designing

by setting tighter delay specifications results in rendering critical some of the earlier

non-critical paths. Therefore, the optimizer now has to aggressively size the gates on

these paths, which results in greater transistor area than actually required. Since, the

runtimes for our robust gate sizing solutions are not prohibitively high, the user can run

the optimization for different values ofαk, to select the amount of robustness required

against the process uncertainties, at the cost of additional chip area.

In the next set of experiments, we investigate the usefulness of the graph pruning

method, and employing different sized ellipsoids, in reducing the pessimism in our ro-

bust formulation. We first employ graph pruning, and use variable sized ellipsoids to

optimize the benchmark circuits. At the highest topological circuit level, we use the

largest ellipsoid corresponding to a value ofαk = 0.65. At the lower topological levels,

we progressive decrease the ellipsoid size by choosing a lowerα, as given by Equation

(3.48). We use a value ofMonospec = 35 to set the pruning cost according to Equation

(3.38). These circuits are referred to asRob1 designs. Next, we optimize the benchmark

circuits without any pruning, and using the same sized ellipsoids at all nodes, deter-

mined by the values ofαk = 0.65. These optimized circuits are referred to asRob2

designs.

Table 3.3 contains the results of these experiments. The yields of the two designs,

Y ieldrob1 andY ieldrob2 , are listed, respectively, in columns seven and ten of the table.

The area employed by theRob1 andRob2 designs are shown, respectively, in columns

six and nine of the table. As seen from this data in Table 3.3, the designs employing
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Deterministic Design Rob1 Design Rob2 Design
Ckt

Gates Area Y ielddet% Runtime (sec) Area Y ieldrob1
% Runtime (sec) Area Y ieldrob2

% Runtime (sec)

C432 616 1.00 22.31% 3 1.08 97.03% 15 1.15 98.32% 14

C499 1262 1.00 30.34% 2 1.11 74.28% 23 1.17 76.78% 21

C880 854 1.00 28.46% 8 1.06 88.50% 18 1.14 90.23% 16

C1355 1202 1.00 32.34% 12 1.11 84.89% 31 1.20 85.34% 27

C1908 1636 1.00 35.14% 18 1.10 87.14% 159 1.22 89.12% 123

C2670 2072 1.00 39.91% 30 1.11 88.21% 189 1.24 89.03% 158

C3540 2882 1.00 33.31% 25 1.04 89.12% 212 1.17 90.32% 181

C5315 4514 1.00 38.46% 43 1.08 87.67% 579 1.23 89.32% 398

C6288 5548 1.00 37.45% 58 1.10 88.12% 742 1.24 90.45% 587

C7552 6524 1.00 34.78% 90 1.12 85.56% 845 1.27 87.29% 693

Table 3.3: A comparison of robust gate sizing solutions, with and without using graph

pruning and variable size ellipsoids.

the heuristic techniques of graph pruning, and using variable size ellipsoids use about

7% to 15% lesser circuit area compared to the design without any pruning, and using

a constant size ellipsoid. The timing yields ofRob2 designs are only slightly better,

< 2% for all circuits, compared to the timing yields ofRob1 design. This indicates that

employing the graph pruning method, and the strategy of keeping variable guard-bands

for the timing constraints, leads to considerable pessimism reduction in our optimization

formulation, without a significant loss in the timing yield of the circuit. The runtimes

for theRob2 designs are smaller compared toRob1 designs. This is due to the fact the

robust constraints of (3.25) and (3.26) have fewer monomialterms for the procedure

not employing any pruning compared to the one that prunes some intermediate nodes.

As a result, the constraint functions are sparser for the former method, which helps in

speeding up the optimization. The absence of the graph pruning step also makes the

procedure forRob2 design run faster.

In the last set of experiments, we explore the tradeoff obtained by tuning the pruning

cost function by changing the value of theMonospec term, which regulates the maximum

number of monomials allowed in a constraint. This term in thepruning cost of Equation

(3.38) helps in preventing the constraint Jacobian matrix from becoming immoderately

dense. Table 3.4 contains the results of these experiments.As seen in the table, as the
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Monospec = 20 Monospec = 35 Monospec = 50
Ckt

Area Y ield Runtime (sec) Area Y ield Runtime (sec) Area Y ield Runtime (sec)

C432 1.09 97.58% 15 1.08 97.03% 15 1.07 96.89% 17

C499 1.11 74.89% 22 1.11 74.28% 23 1.10 74.10% 25

C880 1.07 88.91% 18 1.06 88.50% 18 1.05 87.78% 20

C1355 1.12 85.12% 29 1.11 84.89% 31 1.10 83.67% 33

C1908 1.10 87.89% 147 1.10 87.14% 159 1.09 86.57% 172

C2670 1.13 88.95% 176 1.11 88.21% 189 1.10 87.34% 231

C3540 1.06 90.05% 200 1.04 89.12% 212 1.04 88.78% 294

C5315 1.09 88.34% 504 1.08 87.67% 579 1.07 86.89% 681

C6288 1.13 89.57% 657 1.10 88.12% 742 1.08 87.34% 920

C7552 1.14 86.78% 784 1.12 85.56% 845 1.10 84.12% 1027

Table 3.4: A comparison of the robust gate sizing designs obtained by changing the

pruning cost function of Equation (3.38).

value ofMonospec term is increases, the runtime of the procedure increases. For the

larger benchmark circuits, the slow down of the optimizer issignificant, e.g., for C6288

circuit, the runtime increases by almost 40% by increasing the value of theMonospec

term from 20 to 50. This is due to the fact that for larger circuits, with thousands

of constraints, the sparsity of the large constraint matrixhas a greater impact on the

speed of the convex optimization tool. Although, the runtime of the robust optimization

method increases, for higher values ofMonospec term, there is also a greater reduction of

pessimism in the formulation, due to more aggressive pruning. This results in lesser use

of the circuit area for a higher valuer ofMonospec term. For example, for C6288 circuit,

there is a 5% reduction in area by increasing the value ofMonospec from 20 to 50. The

timing yield is not significantly impacted by changing the value of theMonospec term.

Based on this runtime and reduction in circuit area tradeoff, the user can appropriately

set the value ofMonospec term to be employed in the pruning cost function of Equation

(3.38).
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3.6 Conclusion

In this chapter of the thesis, we have presented an optimization method to perform gate

sizing, as a technique to reduce the impact of uncontrollable process variations. Our

procedure is a worst-casing methodology that tries to keep smart design margins to

safeguard against the effect of variations. To enable efficient optimization, we employ

various reasonable and realistic assumptions. Assuming a multivariate normal distribu-

tion for the process-driven parameter variations, an uncertainty ellipsoid set is employed

as a bounded model for these variations. This uncertainty ellipsoid, defined by the ap-

propriate covariance matrix of the varying parameters, incorporates the effect of spatial

correlations in the optimization set up. The multivariate Gaussian assumption for pa-

rameter distributions allows the use of Chi-square CDF tables to specify a lower bound

on the timing yield of the circuit. Using posynomial delay models, the optimization for-

mulation for the gate sizing procedure is relaxed to a geometric program, that is solved

using convex optimization tools. We use first order Taylor series expansions of these

posynomial delay functions, to generate the variational terms of the timing constraints.

In the optimization procedure, we use the results of well-known Cauchy Schwartz

inequality to add guard-bands to protect against the worst-case effect of variations. To

reduce the pessimism associated with the node-based formulation, we employ the tech-

niques of graph pruning and heuristically choosing variable sized ellipsoids at different

topological levels of the circuit. We use Monte Carlo analysis to verify the results of

our optimized designs. Experimental results show that for the same transistor area, the

circuits sized by of our robust optimization approach have,on an average, 12% fewer

timing violations as compared to the gate sizing solutions obtained via the traditional,

deterministically based guard-banding method.
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Chapter 4

Statistical Timing Analysis Incorporating

Correlated Non-Gaussian Parameters

In Chapter 3, we presented an optimization method in the presence of process-driven

uncontrollable variations. In this chapter, we present a statistical timing method, to

determine the timing characteristics of a circuit, in the presence of process parameter

variations. The proposed method can predict the timing yield of the circuit by eval-

uating the circuit delay probability distribution functions, and may be used inside an

optimization engine to achieve the desired timing yield.

4.1 Introduction to SSTA

As transistor and interconnect geometries shrink, the reduced level of control over the

chip fabrication process results in significant levels of variation in process parameters

such as the effective channel length, gate width, gate oxidethickness, dopant concentra-

tion, and interlayer dielectric thickness. These variations create randomness in the be-

havior of circuit-level electrical parameters, such as gate and interconnect capacitances,

transistor on-resistances, threshold voltages and via resistances. The prediction of chip

timing characteristics in the face of these process-drivenrandom parameter uncertainties

remains a challenging problem.

Traditionally, to safeguard against this variability, a static timing analysis (STA) pro-

cedure is employed at different process corners, and margins are introduced in the design

based on the STA results. This worst case design, corresponding to the process corners,

where the gate and wire delays are at their extreme levels, ensures that the design would

work for any other values of gate and interconnect delays. However, with increasing

levels of variations, the corner-based method becomes impractical and computationally
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expensive. The number of process corners that must be considered grows exponentially

as the number of uncertain parameters increase. Moreover, the corner-based method

does not utilize any statistical information about the variations of parameters, such as

the correlations between the process variables arising from the spatial proximity of the

manufactured transistors on chip, or from the structural properties of the circuit such as

path reconvergences, and hence can result in overly pessimistic and suboptimal designs.

The results of variation-aware timing are eventually required to be used for a circuit op-

timization tool. Since, the multi-corner-based methodology produces overly pessimistic

estimates of a circuit timing characteristics, any optimization tool using these results

could lead to a design employing much more resources than actually required. This

would adversely impact the other performance measures of the circuit, such as the cir-

cuit power.

Monte Carlo simulation provides an alternative means to measure the probability

distributions of the delay of a circuit. This method is basedon a sampling and simu-

lation framework. In an iterative process, a sample of the uncertain process variables

is drawn from the underlying distributions of the variables, and an STA is performed.

For each sample, the result of the STA is recorded, and the probability distributions of

the timing characteristic is inferred by binning each delayvalue into discrete bins, cor-

responding to some delay ranges. However, for sufficient accuracy, the Monte Carlo

methods require thousands of samples. Since each delay value, corresponding to one

sample, has an expensive cost of one STA method, the overall Monte Carlo simula-

tion technique becomes extremely prohibitive for even medium-size circuits comprising

thousands of gates.

As a result, the field of statistical static timing analysis (SSTA) has recently become

an active area of research. An SSTA procedure aims at efficiently predicting the prob-

ability distribution function (PDF) and the cumulative distribution function (CDF) of

the delay. In other words, SSTA evaluates the statistical distributions of the delay from

the statistical information of sources of variation. A computationally efficient SSTA
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algorithm facilitates the easy prediction of timing yield,and can be used within an opti-

mization engine to robustly optimize the circuit in the presence of parameter variations.

In the next section, we review some previous SSTA methods, and in the other sec-

tions of this chapter, we explain our proposed extension to the statistical timing algo-

rithms to efficiently incorporate non-Gaussian parametersof variation. An early version

of this work was published in [SS06a].

4.2 Previous Work

Existing SSTA algorithms have many flavors: they may be path-based or block-based;

they may assume Gaussian or non-Gaussian distributions; they may be parameterized in

expressing all delay variables in terms of underlying parameters or not; they may incor-

porate spatial correlations due to physical proximity or not; and so on. In [DK03], the

authors provide a non-parameterized method to perform SSTAin a block-based manner.

This method is based on performing statistical operations of the assumed independent

arrival time and random variables, by piecewise-linear modeling of CDF of variables.

The authors of [OB04] present another non-parameterized SSTA procedure to estimate

the bounds on the circuit delay PDF and CDF. In contrast, parameterized methods for

SSTA provide a convenient framework for analyzing the relationship between the sta-

tistical information of the sources of variation to that of the circuit delay distributions,

and are more useful in practice. A parameterized model also enables efficient com-

putation of the statistical sensitivities of the circuit delay with respect to the varying

parameters [LLCP05,ZSSN05,XZVV06].

Practical parameterized SSTA algorithms are block-based in nature, i.e., they prop-

agate the distributions of the delay from the primary inputsto the primary outputs of a

circuit using a PERT-like (Program Evaluation and Review Technique) [KC66] traver-

sal of the circuit graph. One of the exceptions is a path-based SSTA method proposed

in [AMK +05]. In this work, the authors provide a simple procedure to perform statistical

134



timing analysis using a path-based scheme, as a post-processing step, after identifying

a sufficiently large number of critical paths by a deterministic STA. The parameterized

block-based SSTA algorithms [CS03, VRK+04, LLP04, ZSLP05, ZCH+05] provide ef-

ficient methods for performing statistical timing analysis, under the assumption of nor-

mality of parameter distributions. In [CS03], a novel SSTA procedure is proposed by

approximating all delay and arrival time random variables as linear functions of cor-

related parameters. By assuming that the random vector, comprising of the parame-

ters of variations, has all its components following a Gaussian distribution, a principal

component analysis (PCA) transformation techniques is employed to generate another

random vector comprising of components which are statistically independent Gaussian

random variables. A similar work [VRK+04] assumes Gaussian modeling of parame-

ters and linear delay representation to perform efficient SSTA. Both these works, [CS03]

and [VRK+04], use Clark’s closed-form formulae [Cla61] to approximate the maximum

of two Gaussian random variables as another Gaussian randomvariable. The authors

of [LLP04] also propose a linear Gaussian SSTA procedure by simplifying the com-

putations involving a set of correlated normal variables, using the PCA method. The

algorithms presented in [ZSLP05] and [ZCH+05] provide techniques for performing

SSTA using quadratic delay models of Gaussian parameters.

For all of the abovementioned Gaussian SSTA algorithms, theassumption of normal-

ity of process variations lends itself rather well for generating closed-form expressions

for the delay and arrival time PDFs. Although correlation and statistical dependence

between random variables tends to increase the complexity of SSTA, recent work has

presented efficient techniques for handling such correlations under Gaussian distribu-

tions, using PCA to perform a simple variable transformation. This transformation en-

ables efficient SSTA, representing delays and arrival timesas functions of a new set of

orthogonal, statistically independent Gaussian random variables.

However, the normality assumption is not always valid [DDK05], and it is well

known that some process parameters deviate significantly from a Gaussian distribution.
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For example, via resistances exhibit an asymmetric probability distribution [CZNV05],

and the dopant concentration density is also observed to be well modeled by a Poisson

distribution: a normality assumption may lead to significant sources of errors in SSTA.

Some recent works [CZNV05,KS05] propose SSTA methods that do away with the as-

sumptions of normality for the parameter distributions, but to the best of our knowledge,

no prior approach is scalable to handle large number of non-Gaussian parameters, or

has presented an efficient SSTA solution under correlated non-Gaussian parameter dis-

tributions. In [CZNV05], the solution to tackle uncorrelated non-Gaussian parameters

employs a numerical integration technique. However, the method of numerical integra-

tion in higher dimensions has an exponential computationalcomplexity with respect to

the number of non-Gaussian parameters. Thus, the method canefficiently handle only

a few non-Gaussian sources of variation, and the runtime does not scale well with the

number of such sources. The SSTA framework of [KS05] is general enough to consider

both Gaussian and non-Gaussian parameters of variations, as long as the non-Gaussian

parameters are uncorrelated. However, the technique relies on a regression strategy that

requires a Monte Carlo simulation in the inner loop of the SSTA procedure. Such a tech-

nique is unlikely to scale well for large circuits with numerous sources of variations.

From the discussion of the existing SSTA methods in this section, the procedures

can be broadly classified into the following four categories:

1. Linear, Gaussian SSTA:These methods employ a linear delay representation and

assume normality of parameter distributions. Some examples of the techniques

that offer an efficient and an accurate solution within this class of SSTA algorithms

are [CS03,VRK+04,LLP04,AMK+05].

2. Nonlinear, Gaussian SSTA:These SSTA algorithms use a nonlinear delay model,

in particular, a quadratic representation of all gate delayand arrival time variables,

but still assume that all parameters as Gaussians. The worksof [ZSLP05] and

[ZCH+05] fall into this category of SSTA methods.
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3. Linear, non-Gaussian SSTA:This class of SSTA procedures consists of techniques

that do away with the Gaussian assumption for all parameters, but still employ a

first order delay model. Our SSTA method, presented in this paper, is the only

efficient and scalable known work for this class of algorithms.

4. Nonlinear, non-Gaussian SSTA:These SSTA methods are a superset of the other

three classes, and cover the most general case for performing statistical timing

analysis. Such SSTA procedures not only use a general nonlinear delay model,

they also allow the parameters to be non-normally distributed. The methods of

[CZNV05] and [KS05] are two such examples of these general SSTA algorithms.

However, as mentioned before, these works rely on computationally expensive

techniques, and are not scalable to a large number of variables. In fact, even the

application of these methods to a simpler case of linear representation (the subset

of class 3 SSTA methods, as described above) is just as inefficient. Thus, the

quest for an efficient SSTA technique for a nonlinear delay form that includes

non-Gaussian parameters of distribution, remains an unsolved research problem.

Most SSTA methods focus only on evaluating the delay and arrival time distribu-

tions, and do not usually include input signal transition time information in their proce-

dures. However, in general, it is possible to extend these algorithms to incorporate slew

distributions, as suggested in [CS05].

4.3 Outline of the SSTA Procedure

The main steps in our SSTA algorithm are:

1. Preprocessing to obtain an independent set of basis variables: We employ a

technique known as independent component analysis (ICA) [Bel, HO99, HO00,

MP99] as apreprocessing step, with the goal of transforming the random vector

of correlated non-Gaussian components to a random vector whose components
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are statistically independent. We then compute moments of the independent com-

ponents from the moments of the non-Gaussian parameters. Weorthogonalize the

Gaussian parameters separately, performing PCA as in [CS03]. Together, we refer

to this set of independent variables as thebasis set.

2. Moment matching-based PDF evaluation:Next, we represent the gate delays

as a linear canonical function of the basis set. From the moments of the basis

set, we compute the moments of the gate delay variables. Finally, we translate

the moments into an approximating PDF for the delay variables, using a Padé

approximation-based moment matching scheme, as proposed in [LLGP04].

3. Correlation-preserving statistical operations:We process the circuit in a block-

based manner, in topological order, computing the statistical sum and max oper-

ations at every step to compute the extracted PDFs of the arrival time variables.

These variables are stored in terms of the linear canonical form through a moment-

matching procedure.

To the best of our knowledge, this is the only work that can handle a large number of

Gaussian and non-Gaussian process parameters with correlations. The correlations are

described using a grid structure, similar to that used in [CS03], which handles Gaussian

distributions only. For a circuit with|G| gates and a layout withg spatial correlation

grids, the complexity of our approach isO(g|G|), similar to the Gaussian case in [CS03].

In our implementation, we consider the effective channel length,Le, the transistor

widthW , and the dopant concentration,Nd as the sources of variation. The parameters

Le andW are modeled as correlated sources of variations, and the dopant concentration,

Nd, is modeled as an independent source of variation. The same framework can be easily

extended to include other parameters of variations.
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Interval i

([lb, ub) nm) Pr(L̂e =
Le−µLe

σLe

) ∈ i)

[-4.0.-3.0) 0.000

[-3.0,-2.6) 0.000

[-2.6,-2.3) 0.006

[-2.3,-1.9) 0.022

[-1.9,-1.5) 0.072

[-1.5,-1.2) 0.092

[-1.2,-0.8) 0.128

[-0.8,-0.4) 0.106

[-0.4,-0.1) 0.120

[-0.1,0.3) 0.108

[0.3,0.7) 0.122

[0.7,1.1) 0.110

[1.1,1.4) 0.070

[1.4,1.8) 0.036

[1.8,2.2) 0.002

[2.2,2.5) 0.002

[2.5,2.9) 0.004

[2.9,3.3) 0.000

[3.3,3.6) 0.000

[3.6,4.0) 0.000

Table 4.1: A cumulative frequency table

for 500 randomly generated values ofLe

with µLe = 65 nm andσLe = 5.2 nm.
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Figure 4.1: A frequency histogram of the

L̂e values listed in Table 4.1.

4.4 Generating Moments from Process Data

It is important to note that our algorithm requires minimal input information: rather than

relying on closed-form distribution of variational parameters, the knowledge of their

moments is sufficient for our scheme to generate the circuit delay distribution. This is

a desirable property for an SSTA method, as it is typically difficult to extract precise

distributions from process data, and it is more realistic toobtain the moments of the

parameter variations from a process engineer. For instance, given the measurements of
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a particular parameterX acrossN chips1, kth moment ofX, denoted bymk(x), where

x represents a sample point, can be easily computed asmk(x) =
∑

x x
kPr(X = x).

The probabilityPr(X = x) can be calculated by binning2 all the measured values of

X in some small discrete intervals[lb, ub), and then dividing the frequency of values in

each bin by the total number of samplesN . This process is much easier than trying to fit

an accurate closed-form PDF expression for the measured values of parameterX across

all N sample points, given by the value ofX in each of theN chips.

k mk(L̂e)

1 0.0000

2 1.0000

3 0.0384

4 2.2733

5 0.6174

6 7.9839

7 6.2385

8 39.3220

9 56.2410

10 245.0898

11 485.8118

12 1.7515 × 103

13 4.1178 × 103

14 1.3447 × 104

15 3.4592 × 104

16 1.0711 × 105

17 2.8938 × 105

18 8.7014 × 105

19 2.4167 × 106

20 7.1479 × 106

Table 4.2: A table showing the first twenty

moments ofL̂e values listed in Table 4.1.
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Figure 4.2: PDF ofL̂e values

listed in Table 4.1.
1For simplicity, we ignore the intra-die variation for parameterX in this discussion.
2Binning sample points in intervals simplifies the computation by reducing the di-

mensionality of total number of sample points. Alternatively, it is also possible to
use the raw process data to compute the moments by assigning adiscrete probability,
Pr(X = x), to each sample point.
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To understand the moment generation process, consider values of the effective chan-

nel length (Le) as shown in Table 4.1. The table contains 500 randomly generated values

of Le with a mean of65 nm, and a standard deviation of5.2 nm. TheseLe values can

be thought of as measurements acrossN = 500 chips, similar to the ones expected to

be extracted from the real wafer data. Table 4.1 is the cumulative frequency table for

the zero-mean, unit-variance variableL̂e values, derived by subtracting fromLe values,

the sample mean (µLe), and scaling the result by the reciprocal of the sample standard

deviation (σLe). The probabilities of occurrence of the random variableL̂e in each dis-

crete interval or bin in the range[−4, 4], shown in column one of Table 4.1, is computed

by simply dividing the frequency of̂Le in the particular bin by the total number of mea-

sured points, in this caseN = 500. Figure 4.1, depicts the frequency histogram of the

L̂e values listed in Table 4.1. The solid dark line in Figure 4.1,corresponds to the PDF3

of L̂e. As seen in the figure, it is extremely difficult to fit a closed-form expression that

would closely match this PDF.

However, the moments of thêLe values can be easily computed by using the relation,

mk(l̂e) =
∑

l̂e
l̂e
k
Pr(L̂e = l̂e), where the values ofPr(L̂e = l̂e) are shown in the second

column of Table 4.1. The first twenty such moments are listed in Table 4.4. The only

inputs required by our SSTA procedure are these moments of the varying parameters.

As will be explained in Section 4.9, using the moments as input, the moment matching-

based PDF evaluation method can generate closed-form PDF expressions. Figure 4.2

shows the actual PDF of̂Le, the PDF corresponding to fitting a Gaussian distribution

to the data of Table 4.1, and the PDF obtained by using the moment matching-based

PDF evaluation scheme. As seen from the figure, using the moments information, it is

possible to derive the PDF of̂Le that matches closely with the actual PDF.

3It is trivial to derive the PDF ofLe from the PDF ofL̂e, as will be discussed in
Section 4.9.
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4.5 Non-Gaussianity in SSTA

The circuit delay distribution depends on a number of parameters such as the effective

channel length, transistor width, metal thickness, interlayer dielectric thickness, dopant

density, and the oxide thickness. As pointed out in Section 4.1, not all parameters of

variations can be accurately modeled by a normally distributed random variable. More-

over, these non-Gaussian parameters may be correlated to each other due to the effect of

spatial proximity. As a result, the approximation of parameters as normal distributions,

followed by performing a Gaussian SSTA, may lead to significant inaccuracies in the

PDF and CDF of the circuit delay.

1 2

Figure 4.3: A simple circuit example to illustrate the effect of non-Gaussian parameters

on the PDF of the circuit delay.

To illustrate the effect of such non-Gaussian parameters onthe delay distribution,

we use a toy circuit, shown in Figure 4.3. We assumeWi andLei
for each inverteri to

be the random parameters of variation. Using a first order Taylor series approximation,

the delay of this circuit can be written as:

D = µ+ a1.W1 + a2.W2 + b1.Le1 + b2.Le2 (4.1)

wherea1, a2, b1, andb2 are the sensitivities of the delay with respect to the zero-mean

randomly varying parametersW1, W2, Le1 , andLe2 , respectively, andµ is the nominal

delay of the circuit. Next, we perform a simple Monte Carlo simulation to evaluate the

PDF of the circuit by considering the following four scenarios:

Case 1: {W1,W2} are modeled as uniformly distributed random variables in[−
√

3σW ,
√

3σW ],

and{Le1 , Le2} are assumed to be Gaussian random variables with a normal distribution
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N(0, σLe). Furthermore, all parameters are assumed to be statistically independent with

respect to each other. Figure 4.4(a) illustrates the PDF of the circuit delay for this case.

Case 2: Employing the same model for the distributions ofW andLe parameters as

above (Case 1), but assuming thatW1 is perfectly correlated withW2, andLe1 is per-

fectly correlated withLe2 . The circuit delay PDF for this case is shown in Figure 4.4(b).

Case 3: {Le1 , Le2} are modeled as uniformly distributed random variables in

[−
√

3σLe ,
√

3σLe ], and{W1,W2} are assumed to be Gaussian random variables with a

normal distributionN(0, σW ). Furthermore, all parameters are assumed to be statisti-

cally independent with respect to each other. Figure 4.5(a)shows the PDF of the circuit

delay for this case.

Case 4: Employing the same model for the distributions ofW andLe parameters as

above (Case 3), but assuming thatW1 is perfectly correlated withW2, andLe1 is per-

fectly correlated withLe2 . The circuit delay PDF for this case is illustrated in Figure

4.5(b).

The dashed curve in Figures 4.4 and 4.5, show the actual PDF ofthe circuit delay ob-

tained by performing a Monte Carlo simulation, and correctly modelingW (for Cases 1

and 2) andLe (for Cases 3 and 4) parameters, as uniformly distributed random variables,

while the solid curve is the PDF obtained if the non-Gaussianvariables were also mod-

eled as Gaussian variables with the same mean and standard deviation as the uniformly

distributed variables. Figures 4.4(a) and 4.5(a) show the PDFs for the cases where all of

the parameters are considered to be statistically independent with respect to each other,

while Figures 4.4(b) and 4.5(b) show the PDFs whenW1 is considered to perfectly cor-

related withW2, andLe1 is assumed to be perfectly correlated withLe2 . In each case,

it is seen that the circuit delay PDF deviates from a Gaussiandistribution due to the

presence of the non-Gaussian random variables. However, the deviation from a normal

distribution is most significant in Figure 4.5(b). The following two reasons explain this

significant non-Gaussian behavior of the circuit delay PDF:
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Figure 4.4: PDF of the delay of the example circuit of Figure 4.3, when{W1,W2} are

modeled as uniformly distributed, and{Le1 , Le2} are modeled as normally distributed

random variables for (a) uncorrelated and (b) correlatedW andLe process variables.

1. The delay model used for the circuit of Figure 4.5 in these experiments, given by

Equation (4.1), contains termsb1 andb2, corresponding to the sensitivities ofLe1

andLe2 , that outweigh the termsa1 anda2, corresponding to the sensitivities of

W1 andW2. In particular,|b1| = 5.2|a1|, and|b2| = 9.8|a2|. Therefore, for the

experiments for Cases 1 and 2, corresponding to the PDF curves of Figures 4.4(a)

and 4.4(b), the effect of the Gaussian parameters{Le1 , Le2} dominates the effect

of the non-Gaussian parameters{W1,W2}, and the circuit delay PDF does not

significantly aberrate from a normal distribution.

For the experiment for Case 4, corresponding to the PDF curvein Figure 4.5(b),

{Le1 , Le2} are modeled as uniformly distributed variables, thereforein this case,

the non-Gaussian parameters dominate the normally distributed{W1,W2} param-

eters, and the circuit delay PDF shows significant divergence from a Gaussian one.

2. For both Cases 3 and 4,{Le1, Le2} are modeled as non-Gaussian variables. How-
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Figure 4.5: PDF of the delay of the example circuit of Figure 4.3, when{Le1 , Le2} are

modeled as uniformly distributed, and{W1,W2} are modeled as normally distributed

random variables for (a) uncorrelated and (b) correlatedW andLe process variables.

ever the Monte Carlo PDF for Case 3, shown in Figure 4.5(a), assumes statistical

independence of parameters. This PDF has a much closer matchto a Gaussian

distribution, compared to the one shown in Figure 4.5(b), that assumes perfect

correlation betweenW1 [Le1 ] andW2 [Le2 ] parameters. The intuition for the sig-

nificant change from a normal PDF, for the correlated case, can be arrived at by

appealing to the Central Limit Theorem, according to which the addition of in-

dependent variables makes them “more Gaussian,” but this isnot necessarily true

for correlated random variables.

For real circuits, where many parameters are correlated dueto the presence of the in-

herent spatial and structural correlations, the presence of non-Gaussian parameters, the

sensitivities of which could potentially outweigh the Gaussian ones, implies that the

circuit delay may deviate significantly from a normal distribution.
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4.6 Delay Representation

To incorporate the effects of both Gaussian and non-Gaussian parameters of distribution

in our SSTA framework, we represent all delay and arrival times in a linear form as:

D = µ+
n

∑

i=1

bi.xi +
m

∑

j=1

cj .yj + e.z = µ+ B
T
X + C

T
Y + e.z (4.2)

whereD is the random variable corresponding to a gate delay or an arrival time at the

input port of a gate,xi is a non-Gaussian random variable corresponding to a physi-

cal parameter variation,bi is the first order sensitivity of the delay with respect to the

ith non-Gaussian parameter,yj is a parameter variation modeled as a Gaussian random

variable,cj is the linear sensitivity with respect to thejth Gaussian parameter,z is the

uncorrelated parameter which may be a Gaussian or a non-Gaussian random variable,

e is the sensitivity with respect the uncorrelated variable,n is the number of corre-

lated non-Gaussian variables, andm is the number of correlated Gaussian variables. In

the vector form,B andC are the sensitivity vectors forX, the random vector of non-

Gaussian parameter variations, andY, the random vector of Gaussian random variables,

respectively. Note that we assume statistical independence between the Gaussian and

non-Gaussian parameters: this is a reasonable assumption as parameters with dissimilar

distributions are likely to represent different types of variables, and are unlikely to be

correlated.

The value of the mean delayµ is adjusted so that the random vectorsX andY are

centered, i.e., each componentxi andyi is a zero-mean random variable. The uncor-

related random variablez is also centered. Note that in the representation of Equation

(4.2), the random variablesxi are correlated with each other and may be of any un-

derlying non-Gaussian distribution. Unlike the delay models of [VRK+04, CS03], we

do not constraint the parameter distributions to be Gaussian. The canonical model of

equation (4.2) is similar to the model of [CZNV05] without the nonlinear terms. The

slight difference is that the uncorrelated parameterz is not constrained to be a Gaussian
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variable.

4.7 Independent Component Analysis

For reasons of computational and conceptual simplicity, itis useful to work with a set of

statistically independent random variables in the SSTA framework. If the components

of random vectorX were correlated Gaussian random variables with a covariance ma-

trix
∑

, a PCA transformationR = PxX would yield a random vectorR comprising

of Gaussian uncorrelated random variables [CS03]. Since for a Gaussian distribution,

uncorrelatedness implies statistical independence4, the components ofR are also statis-

tically independent.

However, such a property does not hold for general non-Gaussian distributions. In

Equation (4.2), the random vectorX consists of correlated non-Gaussian random vari-

ables, and a PCA transformation,S = PxX, would not guarantee statistical indepen-

dence for the components of the transformed vectorS. Since the PCA technique focuses

only on second order statistics, it can only ensure uncorrelatedness, and not the much

stronger requirement of statistical independence.

Independent component analysis [Bel, HO99, HO00, MP99] is amathematical tech-

nique that precisely accomplishes the desired goal of transforming a set of non-Gaussian

correlated random variables to a set of random variables that are statistically as indepen-

dent as possible, via a linear transformation. ICA has been an active area of research in

the area of signal processing, feature extraction and neural networks due to its ability to

capture the essential structure of data in many applications.

4Two random variablesX andY are uncorrelated ifE[XY ] = E[X]E[Y ], while
they are independent ifE[f(X)g(Y )] = E[f(X)]E[g(Y )] for any functionsf andg.
For instance, ifX andY are independent, thenE[X iY j] = E[X i]E[Y j]. For Gaussian
distributions, uncorrelatedness is identical to independence. For a general non-Gaussian
distribution, independence implies uncorrelatedness, but not vice versa.
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Figure 4.6: The cocktail party problem to illustrate the independent component analysis

set up.

4.7.1 The Cocktail Party Problem

The ICA principle can be explained by thecocktail party problemexample illustrated in

Figure 4.6. The set up shown in the figure, consists ofn speakers, who can be regarded

as independent sources, andn receivers, represented by the ears in Figure 4.6. The

speakers or the independent sources emit independent speech signals, but their simul-

taneous speech results in interferences of the independentsignals. As shown in Figure

4.6, due to the interference or mixing of the independent speech signals, the signals

observed by the receivers are no longer independent. The amount of mixing of the in-

dependent speech signals may be derived form elements of a mixing matrixA, which

could depend on metrics such as the distance of each speaker from the receiver. Map-

ping the cocktail party problem set up back to the ICA problem, the ICA set up consists

of having a vectorS consisting ofn statistically independent components,s1, · · · , sn,

and observations ofn linear mixtures,x1, · · · , xn, of then independent components.
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The observed components can be thought of as the correlated non-Gaussian random

variablesX in Equation (4.2), produced by a linear mixing of the elements of a vector

Sof independent random variables, as follows:

X = AS (4.3)

whereA is then× n mixing matrix.

The problem of ICA is to estimate the elements of the unknown mixing matrixA,

and the samples of statistically independent componentss1, · · · , sn, as accurately as

possible, given only the samples of the observed vectorX. Equation (4.3) can be alter-

natively written as:

S = WX where

si = W
T
i X =

∑n
j=1wijxi ∀i = 1, · · · , n (4.4)

In the above equation,W is the inverse of the unknown mixing matrixA. Algorithms for

ICA estimate the vectorsWi that maximize the non-Gaussianity ofW
T
i X by solving

a nonlinear optimization problem. Typical measures of non-Gaussianity are kurtosis,

negentropy, and mutual information; for a comprehensive reference on ICA, see [Bel,

HO99,HO00,MP99].

For our SSTA algorithm, we use ICA as a preprocessing step to transform the corre-

lated set of non-Gaussian random variablesxi, · · · , xn to a set of statistically indepen-

dent variablessi, · · · , sn, by the relationS = WX of Equation (4.4). In practice, ICA

estimates the mixing matrixA and its inverse matrixW , which yield the components,

si, · · · , sn, which are statistically as independent as possible. For the purposes of appli-

cation of ICA transformation in our SSTA algorithm, we will consider the vectorS to

consist of truly statistically independent components. Experimental results, presented

in Section 4.12, validate this assumption.

Like principal components, the independent components of vectorS are mathemat-

ical abstractions that cannot be directly observed. Similar to the PCA procedure, which
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requires normalization of N(µ, σ) variables to N(0,1) variables, the ICA methods also

require centering and whitening of the components of vectorX, i.e., prescaling the vari-

ables to have zero mean and unit variance [HO00]. For a specific grid, the independent

components of the non-Gaussian random variables must be computed just once, and

this can be carried out as a precharacterization step. In other words, ICA need not be

recomputed for different circuits or different placementsof a circuit. Thus, the ICA

preprocessing step does not impact the runtime of the SSTA procedure.

One of the requirements of the ICA technique is that all of theoriginal source of

independent sources,s1, · · · , sn, should be non-Gaussian. Therefore, in the delay model

of Equation (4.2), we must treat the correlated non-Gaussian random variablesX, and

the correlated Gaussian random variablesY, separately. The ICA technique is applied to

non-Gaussian parametersX, and a PCA transformation is applied to Gaussian variables

Y, to obtain a set of statistically independent non-GaussianvariablesS, and a set of

independent Gaussian variablesR. We then substitute the respective transformation

matricesA andPy in Equation (4.2) to arrive at the followingcanonical delay model:

D = µ+ B
′T

S + C
′T

R + e.z

= µ+

n
∑

i=1

b′i.si +

m
∑

j=1

c′j .rj + e.z (4.5)

whereB
′T = B

TA, [C′T = C
TP−1

y ] is the new sensitivity vector with respect to

the statistically independent non-Gaussian components,s1, · · · , sn [Gaussian principal

componentsr1, · · · , rm].

4.7.2 Generating Samples of Correlated Non-Gaussian Variables

The ICA method requires, as inputs, the samples of the correlated non-Gaussian

parameters. If these samples are readily available from theprocess data, they can be

directly provided to the ICA module to generate the estimates of the mixing matrixA,

and the samples of the independent components,s1, · · · , sn. However, if instead of the
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Algorithm 2 Generate Correlated Non-Gaussian Samples
1: /*Inputs: Correlation matrixQ (n×n), mean vectorµX (n×1), CDF ofxj parameter

Fj(xj), ∀j = 1, · · · , n*/

2: /*Output: MatrixCorr(NUM SAMPLES × n) as samples of correlated non-

Gaussian variables*/

3: /*Step1 : Generate samples of multivariate normal distributionN(µ,Q)*/

4: i=1;

5: while (i < NUM SAMPLES) do

6: Z(i)=mvnrnd (µ,Q);

7: i=i+1;

8: end while

9: /*Step2: Map the multivariate normal samples to a multivariate uniform samples in

[0,1]*/

10: U=normcdf(Z);

11: /*Step3: Apply inverse CDF transformation to samples ineach column ofU*/

12: j=1;

13: while (j < n) do

14: Corr(j)=F
−1
j (U);

15: j=j+1;

16: end while
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samples of correlated parameters, the closed-form PDFs of the non-Gaussian sources

of variation are provided, we must first generate samples of the parameters from the

given PDF expressions5. To model the correlation between the non-normal parameters,

x1, · · · , xn, the chip area is first tiled into a grid, as in [CS03], and the correlation matrix,

Q, associated withX is determined. The matrixQ and the mean vectorµX is used to

generate the samples of the correlated non-Gaussian variables by employing the method

of normal copulas [Sim]. Algorithm 2 shows the pseudo-code of this method, which is

based on performing a series of correlation preserving transforms on a set of random

numbers.

The procedure consists of three main steps. In the first step,spanning lines 4–8, sam-

ples from a multivariate normal distribution,N(µX, Q), are generated. As will become

clear in the next steps, these set of Gaussian random numbersare used to generate the

required non-normal numbers having a mean vectorµx, and the correlation matrixQ.

The function callmvnrnd generates these samples. In the next step, shown on line 10,

the normal samples are mapped to a multivariate uniform distribution in the range [0,1].

The transformation functionnormcdf is simply the CDF of the standard normal distri-

bution. The following relations prove that for a single standard normal random variable

y, with a CDF denoted byFy(y), a transformationu = Fy(y) results in a uniformly

distributed variableu in the range [0,1].

Fu(u0) = Pr(u ≤ u0) = Pr(Fy(y) ≤ uo) = Pr(y ≤ F−1
y (u0)) = Fy(F

−1
y (u0)) = u0(4.6)

Thus, the CDF of u isFu(u0) = u0, which is same as the CDF of a uniformly dis-

tributed random variable in the range [0,1]. In our case,Z comprises of samples of mul-

tivariate normal distribution. Thus, each component of random vector associated with

Z, has a marginal distribution of a standard normal. Therefore, the function mapping

U = normcdf(Z), maps each normally distributed component of the random vector

5As will be explained in Section 4.12, we use the method of generating correlated
non-Gaussian random numbers, described in this section, for our experimental set up
that assumes, as inputs, well-known closed-form PDFs for parametersx1, · · · , xn.
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associated withZ, into a uniformly distributed variable in the range [0,1]. The statis-

tical dependence between the generated samples still remains after the transformation.

The subroutines for generating samples of multivariate normal distribution (mvnrnd(

)), and the CDF of normal distribution (normcdf( )) are commonly available in standard

mathematical software packages, such as [MRM] and [MRG].

The last step in Algorithm 2, shown in lines 12–16, consists of transforming the

multivariate uniform samples inU to the individual non-Gaussian marginal distribu-

tions. The transformation function isF−1
j , which is the inverse of the CDF of thejth

non-Gaussian random variable. For example, if thejth non-Gaussian parameterxj is

uniformly distributed in the range[lb, ub], F−1
j (x) = lb+ (ub− lb)x. It is easy to prove

that mapping uniformly distributed random numbers on interval [0,1], by a function

which is an inverse CDFF−1(x) of a particular distribution, produces random numbers

which have a distribution as given by CDFF (x) [DS02]. Since samples in each column

of the matrixU , are mapped by the required inverse CDF functionF−1
j , the correlation

structure between the columns ofU is preserved after the transformation. The output of

the algorithm produces a matrixCorr, with NUM SAMPLES rows andn columns.

Each column of this matrix contains samples of a non-Gaussian parameter drawn from

the required distribution. The columns are correlated witheach other according to the

original linear correlation matrixQ, and their sample mean is the same as the original

mean vectorµX.

Following the steps described in Algorithm 2, we generate samples of correlated

non-Gaussian parameters. These samples are required as input to the ICA methods,

which generate the ICA transformation matrixA in Equation (4.3).
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4.8 Preprocessing to Evaluate the Moments of the Inde-

pendent Components

The inputs required for our SSTA technique correspond to themoments of parameters

of variation. Consider a process parameter represented by arandom variablexi: let us

denote itskth moment bymk(xi) = E[xki ]. We consider three possible cases:

Case I: If the closed-form of the distribution ofxi is available, and it is of a standard

form (e.g., Poisson or uniform), thenmk(xi) ∀ k can be derived from the standard

mathematical tables of these distributions.

Case II: If the distribution is not in a standard form, thenmk(xi) ∀ k may be derived

from the moment generating function (MGF), if a continuous closed-form PDF of the

parameter is known. If the PDF ofxi is the functionfxi
(xi), then its moment generating

functionM(t) is given by

M(t) = E[etxi ] =

∫ ∞

−∞

etxifxi
(xi)dxi (4.7)

Thekth moment ofxi can then be calculated as thekth order derivative ofM(t) with

respect tot, evaluated att = 0. Thus,mk(xi) = dkM(t)
dtk

at t = 0.

Case III: If a continuous closed-form PDF cannot be determined for a parameter, the

moments can still be evaluated from the process data files as:

mk(xi) =
∑

x

xkPr(Xi = x) (4.8)

wherePr(xi = x) is the probability that the parameterxi assumes a valuex. This

moment generation process is explained in Section 4.4.

Given the underlying process variables and their moments, the next step after per-

forming ICA is to determine the moments of the independent components,si, · · · , sn,

from the moments of the correlated non-Gaussian parametersxi, · · · , xn. The moments

of the parameters,E[xki ], are the inputs to the SSTA algorithm.

154



We now refer back to the ICA transformation of Equation (4.3), X = AS and rewrite

the relationship by taking the expectation of both sides as:

E[xk1 ] = E[(a11s1 + a12s2 + · · ·a1nsn)
k]

E[xk2 ] = E[(a21s1 + a22s2 + · · ·a2nsn)
k]

...
...

E[xkn] = E[(an1s1 + an2s2 + · · ·annsn)k] (4.9)

whereaij is an element of the mixing matrixA obtained via ICA. In the above equation,

the left hand side, which is thekth moment of each component ofX, is known. The

right hand side can be simplified by performing an efficient multinomial expansion us-

ing the idea of binomial moment evaluation presented in [LLGP04]. The moments are

computed successively, starting from the first to the secondto the third, and so on. For

example, after all of the first moments have been computed, the second moment of each

si can be computing by rewriting Equation (4.9) usingk = 2 as

E[x2
1] =

n
∑

i=1

a2
1iE[s2

i ] + 2

n
∑

i=1

n
∑

j=i+1

a1ia1jE[si]E[sj ]

E[x2
2] =

n
∑

i=1

a2
2iE[s2

i ] + 2
n

∑

i=1

n
∑

j=i+1

a2ia2jE[si]E[sj ]

...
...

E[x2
n] =

n
∑

i=1

a2
niE[s2

i ] + 2
n

∑

i=1

n
∑

j=i+1

anianjE[si]E[sj] (4.10)

The only unknowns in the above equation are the second moments,E[s2
i ], of eachsi,

and these can be calculated easily.

In general, while solving for thekth moment ofsi using Equation (4.9), all of the(k−
1) moments are known from previous computations. Moreover, since the components of

S are independent, we can perform the operationE[sai s
b
j] = E[sai ]E[sbj ], and efficiently

apply the binomial moment evaluation scheme. As indicated by Equation (4.10), the

computation of thekth moment of the independent components,si, · · · , sn, requires the
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solution of ann × n system of linear equations. Thus, to compute2M moments of the

independent components, we must solve2M systems of linear equations corresponding

to (4.9) fork = 1, · · · , 2M . However, since this is a part of the preprocessing phase,

it may be carried out off-line for a specific technology, and it does not contribute to the

complexity of the SSTA algorithm.

Note that while ICA does provide theW matrix, it is not easily possible to use

S = WX to find the moments of thesi variables. This is because the binomial mo-

ment evaluation procedure requires the random variables tobe statistically independent,

which is true for thesi variables but not thexi variables.

4.9 Moment-Matching-based PDF Extraction

To compute the PDF/CDF of the delay or arrival time random variable we adapt the

probability extraction scheme,APEX, proposed in [LLGP04]. Given2M moments of

a random variable as inputs to theAPEXalgorithm, the scheme employs an asymptotic

waveform evaluate (AWE) technique to match the2M moments in order to generate an

M th order linear time invariant (LTI) system. The scheme then approximates the PDF

[CDF] of a random variable by an impulse responseh(t) [step responses(t)] of theM th

order LTI system. The details of theAPEXalgorithm can be found in [LLGP04].

We return to the example of Figure 4.3 to explain moment matching-based PDF eval-

uation method. To compute the delay PDF for the example, we must first calculate2M

moments ofD from Equation (4.1). Assuming (W1,W2) to be perfectly correlated iden-

tical Gaussian random variables, and (L1, L2) to be perfectly correlated, and uniformly

distributed identical random variables (Case 4 of Section??), we have:

D̂ = a.W + b.Le (4.11)

whereD̂ = D − µ, a = a1 + a2 andb = b1 + b2. AssumingW andLe as statistically

independent variables, thekth moment ofD̂ can be computed by using the binomial
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expansion formula as:

mk[D̂] =
k

∑

i=0

(

k

i

)

aibk−imi(W )mk−i(Le) (4.12)

where all of thek moments ofW andLe are known from the underlying normal and

uniform distributions. Since the normal and uniform distributions used in this example

are both well-studied, their moments can be obtained from mathematical tables. Having

computed2M moments ofD̂ from Equation (4.12), we can now employ the AWE-based

PDF evaluation scheme to approximate the PDF and CDF ofD̂ by an impulse response

as:

fD̂(d̂) =







∑M
i=1 r̂i.e

p̂i.d̂ d̂ ≥ 0

0 d̂ < 0
(4.13)

FD̂(d̂) =







∑M
i=1

r̂i
p̂i

(ep̂i.d̂ − 1) d̂ ≥ 0

0 d̂ < 0
(4.14)

wherer̂ [p̂] are the residues [poles] of the LTI approximation.

6 7 8 9 10 11
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Delay (ps)

P
ro

ba
bi

lit
y 

D
en

si
ty

 F
un

ct
io

n

Evaluated PDF by
moment matching

Actual MC PDF 

Gaussian
modeling PDF

PDF by Gaussian
modeling of
parameters

Evaluated 
PDF

by moment
 matchingMonte

Carlo PDF

(a) PDF

6 7 8 9 10 11
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Delay (ps)

C
um

ul
at

iv
e 

D
en

si
ty

 F
un

ct
io

n

Evaluated CDF by
moment matching

Actual MC CDF

Gaussian modeling CDF

CDF by Gaussian modeling 
of parameters

 Evaluated CDF
 by moment 

matching

Monte Carlo 
CDF

(b) CDF

Figure 4.7: Extracted PDF and CDF for the delay of the examplecircuit.

Figure 4.7 shows the evaluated delay PDF (fD(d) = fD̂(d+µ)) and CDF (FD(d) =
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FD̂(d + µ)) of the circuit of Figure 4.3 usingM = 10 moments. The evaluated PDF

matches closely with the Monte Carlo simulation; the match for the CDF is even better.

We can generalize the PDF evaluation idea, illustrated in the above example, to

compute the PDF (CDF) of any random delay variable expressedin the canonical form

of Equation (4.5). For such a delay variable withl = m + n + 2 terms, the binomial

moment evaluation procedure can be employed to calculate the2M moments, as long as

all l variables in the delay expression are statistically independent. The canonical form

expression of Equation (4.5) satisfies this independence requirement by construction.

We have enhanced the PDF evaluation algorithm in [LLGP04] for better numerical

accuracy and stability. Instead of evaluating the PDF of a random variableD directly,

we first prescale it by defining a new random variableD̂ = D−µD

σD
, and evaluate the

PDF of D̂. Without the prescaling step, the higher order moments ofD can become

extremely large (or extremely small) and affect the numerical accuracy of the moment

computation. We compute the flipped PDF of(−D̂), and reconstruct the final PDF from

the flipped and the original PDF to avoid numerical errors dueto the final value theorem,

as in [LLGP04]. The PDF and CDF ofD is retrieved from the PDF of̂D by using the

relationship:

fD(d) =
1

σD
fD̂

(

d− µD
σD

)

FD(d) = FD̂

(

d− µD
σD

)

(4.15)

In general, given the moments of the independent components, precharacterized as in

Section 4.8, we can compute the moments of the delay and arrival time random variables

from Equation (4.5). The moments of anN(0, 1) Gaussian distribution corresponding

to each principal component,r1, · · · , rm, are well known as:

mk(ri) =



















1 k = 0

0 k = 1, 3, 5, · · ·
1 · 3 · 5 · · · (k − 1) k = 2, 4, 6, · · ·

(4.16)
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The moments of the uncorrelated process parameterz can be easily computed using the

techniques in Section 4.8. As we will see in Section 4.10, during the SSTA propagation,

the role ofz in the canonical form is to serve as a place holder for the moments of

the uncorrelated part, and these moments will be propagatedfurther. For each gate,

given the moments of all random variabless1, · · · , sn, r1, · · · , rm, andz, which are all

statistically independent with respect to each other, we may use the binomial evaluation

method to compute the2M moments of the gate delay; a similar procedure will be used

to compute the arrival times in the canonical form in Section4.10.

4.10 SSTA Procedure

From the theory explained in the previous sections, we now have the ability to evaluate

the PDF and the CDF of the delay and the arrival time random variables, expressed in

the linear canonical form, as a function of Gaussian and non-Gaussian parameters of

variation. In this section, we describe our SSTA framework.It is well known that the

arrival time propagation procedure, operating in topological order on the circuit graph,

involves the atomic operations of “sum” and “max.” We will show how these atomic

operations can be performed to produce a result that can be represented in the canonical

form of Equation (4.5).

4.10.1 The “sum” Operation

The sum operation to add two arrival time or delay random variables, expressed in the

linear canonical form of Equation (4.5), is mostly straightforward. Consider two random

variables,D1 andD2 expressed as:

D1 = µ1 +
n

∑

i=1

b′i1 .si +
m

∑

j=1

c′j1.rj + e1.z1

D2 = µ2 +

n
∑

i=1

b′i2 .si +

m
∑

j=1

c′j2.rj + e2.z2 (4.17)
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The sumD3 = D1 +D2 can be expressed in the same canonical form as:

D3 = µ3 +
n

∑

i=1

b′i3 .si +
m

∑

j=1

c′j3.rj + e3.z3 (4.18)

whereµ3 = µ1 + µ2, b′i3 = b′i1 + b′i2 , andc′i3 = c′i1 + b′i2 .

The one difference here, as compared to the Gaussian case (e.g., in [CS03]), relates

to the computation of the uncorrelated non-Gaussian parameter, e3.z3. The random

variablee3.z3 = e1.z1 + e2.z2, serves as a place holder to store the moments of(e1.z1 +

e2.z2). In other words, rather than propagating an uncorrelated componentz in the

canonical form, we propagate its2M moments.

4.10.2 The “max” Operation

The PDF of the maximum of the twoindependentrandom variablesU andV , given by

T = max(U, V ), can be simply computed as:

fT (t) = FU(t)fV (t) + FV (t)fu(t) (4.19)

wheref represents the PDF of each random variable, andF its CDF. If U , V are not

only independent, but can also be expressed in the canonicalform of Equation (4.5),

then the PDF and CDF ofT can be easily computed using the PDF evaluation technique

described in Section 4.10, in a closed-form using Equation (4.19).

However, in general, two arrival time random variablesA1 andA2, expressed in the

canonical form of Equation (4.5),do notsatisfy the independence requirement above,

as they may both have nonzero coefficients associated with ansi and/or anri variable.

Fortunately, it is possible to work around this by using a simple technique that permits

the application of Equation (4.19) to compute the PDF of random variableAmax =
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max(A1, A2). Let us begin with the canonical expressions forA1 andA2:

A1 = µ1 +

n
∑

i=1

b′i1 .si +

m
∑

j=1

c′j1.rj + e1.z1

A2 = µ2 +
n

∑

i=1

b′i2 .si +
m

∑

j=1

c′j2.rj + e2.z2 (4.20)

The operationAmax = max(A1, A2) can be now simplified as:

Amax = W + max(U, V ) (4.21)

where

W = b′12
.s1 + c′12

.r1 +
n

∑

i=2

b′i1 .si +
m

∑

j=2

c′j1.rj (4.22)

U = µ1 + (b′11
− b′12

).s1 + (c′11
− c′12

).r1 + e1.z1

V = µ2 +
n

∑

i=2

(b′i2 − b′i1).si +
m

∑

j=2

(c′i2 − c′i1).ri + e2.z2

The above representation of the max operation ensures that the random variablesU and

V involved in the max operation,max(U, V ), are statistically independent as they do

not share any variables6.

Therefore, from Equations (4.19) and (4.21), we can writeAmax = W +T . Clearly,

from Equation (4.22),W is available in the canonical form, and our next task is to

expressT in the form of Equation (4.5) as well, since this would permitus to write

Amax in the canonical form.

To achieve this, we employ the idea of tightness probability[VRK+04], to express

T = max(U, V ) as:

T = µT +

n
∑

i=1

b′iT .si +

m
∑

j=1

c′jT .rj + eT zT (4.23)

6Note that this is a sufficient condition for independence since all variables in the
expressions ofU andV , obtained from the ICA and the PCA transforms are statistically
independent.
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Our discussions in the previous sections provide us with allof the machinery re-

quired to efficiently compute the tightness probability,pU>V = Pr(U > V ). We define

a random variablêQ = V − U , and use the sum operation defined in Section 4.10.1 to

express the random variablêQ in the canonical form. Next, employing the technique de-

scribed in Section 4.9, we compute the2M moments of random variablêQ, and evaluate

the CDF,FQ̂(q̂), as a step response of the approximated LTI system using the following

relationship:

FQ̂(q̂) =
M

∑

i=1

r̂i
p̂i

(ep̂i.q̂ − 1) (q̂ ≥ 0) (4.24)

= 0 (q̂ < 0)

wherer̂ and p̂ are the residues and poles of the approximatedM th order LTI system.

The tightness probabilitypU>V is simply given by the CDF of̂Q evaluated at̂q = 0,

sincePr(U > V ) = Pr(Q̂ ≤ 0) = FQ̂(0).

Unlike [CZNV05], this method does not require the computationally expensive tech-

nique of numerical integration in high dimensions for non-Gaussian parameters. The

ability to compute the tightness probabilitypU>V analytically, from the evaluated CDF

of (Q̂ = V − U), makes the SSTA procedure very efficient and allows us to process a

large number non-Gaussian variables.

Having computed the tightness probability,pU>V , the sensitivitiesb′iT , c′iT , andzT of

T = max(U, V ) in Equation (4.23) can be written in terms of the sensitivities ofU and

V . Specifically:

b′iT = pU>V .b
′
iU

+ (1 − pU>V ).b′iU ∀i = 1, · · · , n

c′jT = pU>V .c
′
jV

+ (1 − pU>V ).c′jV ∀j = 1, · · · , m (4.25)

Recall that the uncorrelated parameter term in Equation (4.23) is a place holder for the

moments of the uncorrelated parameter: the moments ofzT can also be computed using

the tightness probability:zT assigned the moments of the random variable(pU>V .eU .zU+
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(1 − pU>V ).eV .zV ). The adjustment of the sensitivity termeT will be explained later in

this section.

The use of tightness probabilities is only a heuristic and suffers from problems of

accuracy. Therefore, to reduce the error in the heuristic, we compute the meanµT in

Equation (4.23) and the variance ofT , σ2
T , exactly from the PDF ofT . In order to

achieve this, we use Equation (4.19): note that this is applicable sinceU andV are

independent by construction. Using the closed-form PDF,fT (t), we can computeµT

from the first principles asµT = E[max(U, V )] =
∫ ∞

−∞
tfT (t)dt.

The last term left to compute iseT , the coefficient term of the uncorrelated random

variablezT . We compute this term so that we match the variance of the closed-form

PDF of T , fT (t), alluded to above, with the variance of canonical representation of

Equation (4.23). The variance can be computed fromfT (t) as:

σ2
T =

∫ ∞

−∞

t2fT (t)dt− (E[max(U, V )])2 (4.26)

Having matched the variance term in Equation (4.26) to the variance in the expression

Equation (4.23), all of the terms required to representT = max(U, V ) back to the

canonical form are known. As a final step, referring back to Equation (4.21), we perform

the sum operation betweenW andT = max(U, V ) to complete the computation of

Amax = max(A1, A2).

4.11 Time Complexity Analysis

The steps to generate the ICA mixing matrixA, the PCA transform, and the moments

of the independent componentssi, · · · , sn do not affect the online runtime of the pro-

cedure. These preprocessing steps have a one time precharacterization cost. Hence, the

computational cost of the main steps in the SSTA procedure iscomprised of the circuit

graph traversal, and the sum and max operations.

The sum operation has a time complexity ofO(n + m), wheren is the number
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of non-Gaussian independent components andm is the number of Gaussian principal

components.

The main steps in the max operation consists of computing moments of the delay

variables, PDF evaluation by the AWE-based method, and calculating the mean and the

variance terms to express the result of max operation back toa canonical form. The

cost of computing2M moments using the binomial moment evaluation procedure is

O(M(n + m)). The PDF evaluation involves the solution of a linearM ×M system

of linear equations, described by a Hankel matrix, isO(M3); in practice,M is upper-

bounded by a small constant, and excellent solution are obtained forM ≤ 10. The mean

and the variance terms are computed by one dimensional numerical integration and can

be calculated in constant time. Thus, the complexity of the max operation isO(m+ n).

For a layout withg spatial correlation grids,m + n = O(g). Therefore, both the sum

and the max operation have a complexity ofO(g).

In the PERT-like traversal of the circuit graph, for each gate we must change the

delay representation of Equation (4.2) to that of Equation (4.5). In particular, we require

the new sensitivity vectorsB′T = B
TA, [C′T = C

TP−1
y ]. The dimensions of the

ICA transformation matrixA is n×n, and the PCA transformation matrixPy ism×m.

However, the original sensitivity vectorsBT andC
T are typically sparse because a gate,

in a particular grid, would fanout to other gates in not more thank different grids7, with

k << Min(m,n). Therefore, the cost of computing the new sensitivity vectors, B′T

andC′T by the multiplication of a sparse vector and a dense matrix isO(m+n) = O(g).

For a circuit graph withV nodes andE edges, the overall time complexity of the

SSTA procedure isO(g(V + E)). Therefore, the time complexity for our SSTA proce-

dure, incorporating both Gaussian and non-Gaussian parameters, is the same as that of

SSTA techniques considering only Gaussian variables [CS03, VRK+04]. However, the

complexity constant for our procedure is higher due to the steps of moments evaluation

7In the case of a gate driving a global wire which spans many grids, it is highly likely
that the global wire would be buffered.
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and PDF extraction, and this is not surprising since [CS03,VRK+04] can be reduced to

special cases of our solution.

4.12 Experimental Results

The proposed SSTA algorithm was implemented in C++, using the MinSSTAcode

[CS03], and tested on edge-triggered ISCAS89 benchmark circuits. All experiments

were performed on Pentium-4 Linux machines with a clock speed of 3.2GHz and 2GB

of memory. TheFastICApackage [Hyv05] and theIcassosoftware [HH03], were used

to obtain the ICA transform of Equation (4.3). To generate samples of correlated non-

Gaussian parameters, required as inputs to theFastICA code, we use the method of

normal copula[Sim], as described in Section 4.7.2. For all the experiments, we gener-

ate 5000 samples of each non-Gaussian parameter to feed to the ICA module. We use

the Elmore delay model and the first order Taylor series termsto represent the canonical

delay model of Equation (4.2). However, clearly this is not arestriction, as our canoni-

cal form is similar in form to that in [CS03, VRK+04], and any analytical or numerical

delay model may be used, as long as the sensitivities of the delay with respect to the

varying parameters can be computed.

We consider the effective channel length,Le, the transistor widthW , and the dopant

concentration,Nd as the sources of variation. The parametersLe andW are modeled

as correlated sources of variations, and the dopant concentration,Nd, is modeled as an

independent source of variation. The same framework can be easily extended to include

other parameters of variations. For simplicity, our current implementation ignores the

effect of the input signal transition time on the delay at theoutput port of the gate.

However, according to the technique described in [CS05], our SSTA procedure can also

be extended to incorporate and propagate the distributionsof the signal transition times.

As described in [CS05], it is possible to express slope at theoutput pin of the gate as a

probability weighted sum of distributions of the slope fromall input pins to the output
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pin of the gate. In our SSTA framework, we can efficiently compute these weights as

closed-form probabilities, using the AWE-based PDF extraction scheme.

We use the grid-based model of [CS03] to generate the spatialcorrelations for the

W andLe parameters. Due to the lack of access to any real wafer data and process data

files, we do not have the required information to realistically model the parameter dis-

tributions. We consider the following two cases for modeling theW andLe parameters:

Case 1: W of gates in each grid are modeled as non-Gaussian parameters, andLe are

modeled as Gaussian variables. Section 4.12.1 discusses the SSTA results for this case.

Case 2: Le of gates in each grid are modeled as non-Gaussian parameters, andW are

assumed to be normally distributed variables. Section 4.12.2 discusses the SSTA results

for this case.

For both cases, the independent parameterNd is assumed to follow a Poisson dis-

tribution. Theµ and σ values of the parameters are based on the predictions from

[Nas00]. For90nm technology, we useµW = 150nm, µLe = 60nm, σW = 7.5nm

andσLe = 4nm. For the independent parameterNd modeled as a Poisson random

variable, we useµNd
= 10 × 1017cm−3 for both nmos and pmos. We test our SSTA

procedure by comparing our results for each benchmark with 10,000 Monte Carlo (MC)

simulations based on the same grid model. The samples of correlated non-Gaussian

parameters for Monte Carlo simulations are also generated using the method of normal

copula, as described in Section 4.7.2.

4.12.1 SSTA results for Case 1

For these experiments, we modelW of gates in each grid as non-Gaussian parameters,

andLe of gates in each grid as Gaussian parameters. For the correlated non-Gaussian

W parameters, we randomly assign toW in each grid either a uniform distribution in

[µW−
√

3.σW , µW+
√

3.σW ], or a symmetric triangular distribution in[µW−k.σW , µW+
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k.σW ], given by:

fW (w) =
2(w − a)

(b− a)(c− a)
a ≤ w ≤ c

fW (w) =
2(b− w)

(b− a)(b− c)
c < w ≤ b (4.27)

wherea = µw − k.σw, c = µw, andb = µw + k.σw. The numberk is chosen so that

the variance of the symmetric triangular distribution described in Equation (4.27) is the

same asσ2
w.

Benchmark Error (SSTA−MC
MC

%) Error (MCGauss−MC

MC
%)

Name # Cells # Grids µ σ 95% Pt 5% Pt µ σ 95% Pt 5% Pt

s27 13 4 0.13% 0.22% 0.13% 0.57% 0.26% 0.54% 0.24% 0.81%

s1196 547 16 0.29% 0.59% 0.97% 0.83% 0.66% 1.22% 1.57% 1.35%

s5378 2958 64 -0.53% -1.32% -1.34% -1.56% 0.93% 2.03% 1.93% 2.05%

s9234 5825 64 0.91% 1.81% 1.29% -1.31% 0.87% 1.95% 2.59% 2.61%

s13207 8260 256 1.77% 2.24% 2.39% 3.03% 2.26% 3.35% 3.55% 3.11%

s15850 10369 256 1.98% 2.51% 3.14% 3.79% 2.89% 3.82% 3.51% 3.09%

s35932 17793 256 1.15% 2.82% 3.78% 3.67% 1.56% 2.56% 4.12% 4.26%

s38584 20705 256 1.71% 3.29% 3.59% 3.87% 2.09% 3.89% 4.22% 4.17%

s38417 23815 256 1.51% 3.68% 3.50% 3.61% 2.05% 4.35% 4.93% 4.88%

Avg Abs Err - - 1.11% 2.05% 2.24% 2.47% 1.51% 2.63% 2.96% 2.93%

Table 4.3: A comparison of results of the proposed SSTA method with Monte Carlo

simulation .W parameters are modeled as non-Gaussian variables, andLe parameters

are modeled as Gaussian variables.

Table 4.3 shows a comparison of the results of the Monte Carlo(MC) simulations

with our SSTA procedure for each benchmark circuit. We compare the mean (µ), the

standard deviation (σ), the 95% and the 5% quantile points of the delay distribution

obtained from our SSTA scheme with those generated from the Monte Carlo simula-

tions, as the metrics of accuracy. As seen in Table 4.3, the results of the proposed SSTA

scheme are quite close to that of Monte Carlo analysis. The average of the absolute

errors, across the nine benchmark circuits, shown in the last row of Table 4.3, is 1.11%

for µ, 2.05 % forσ, 2.24% for the 95% point, and 2.47% for the 5% quantile point.
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We also compare the actual Monte Carlo results with the ones obtained by incorrectly

modeling the non-normalW parameters as Gaussian variables, and then performing a

Monte Carlo analysis, termed asMCGauss. Columns eight to eleven of Table 4.4 report

the errors for comparison between the actual Monte Carlo results, and the ones obtained

by Gaussian modeling of all parameters. As seen in the table,the errors for assuming

an incorrect Gaussian distribution forW parameters,does notresult in significant er-

rors, implying that the circuit delay PDF does not significantly deviate from a Gaussian

distribution. It should be noted that for our gate delay models, the coefficients of the

Le terms are greater than the coefficients of theW terms by a factor of about5× to

12×. Since the sensitivities of the GaussianLe terms outweigh the sensitivities of the

non-GaussianW terms, the circuit delay PDF is dominated by the normal parameters,

and does not significantly diverge a normal distribution.

4.12.2 SSTA results for Case 2

For these experiments, we modelLe of gates in each grid as non-Gaussian parameters,

andW of gates in each grid as Gaussian parameters. For the correlated non-Gaussian

Le parameters, we randomly assign toLe in each grid either a uniform distribution in

[µLe −
√

3.σLe , µLe +
√

3.σLe ], or a symmetric triangular distribution, similar to the one

described by Equation (4.27), but replacingW byLe.

Table 4.4 shows a comparison of the results of the Monte Carlosimulations with

our SSTA procedure for each benchmark circuit. As seen in Table 4.4, the results of the

proposed SSTA scheme are quite close to that of Monte Carlo analysis. The average of

the absolute errors, across the nine benchmark circuits, is0.99% forµ, 2.05 % forσ,

2.33% for the 95% point, and 2.36% for the 5% quantile point. These errors are reason-

ably small as compared to the accuracy penalty paid by assuming the incorrect normal

distribution modeling ofLe parameters. Columns eight to eleven of Table 4.4 show the

error incurred when modeling the non-GaussianLe parameters as normally distributed
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Benchmark Error (SSTA−MC
MC

%) Error (MCGauss−MC

MC
%)

Name # Cells # Grids µ σ 95% Pt 5% Pt µ σ 95% Pt 5% Pt

s27 13 4 -0.09% -0.34% -0.75% 0.79% 0.56% 3.23% 8.56% 2.04%

s1196 547 16 -0.23% -0.67% -0.87% -0.53% 0.84% 8.82% 11.27% 2.21%

s5378 2958 64 0.31% 1.12% 1.21% 1.28% 0.98% 10.23% 10.91% 1.21%

s9234 5825 64 0.82% 1.78% 1.32% -1.48% 1.88% 15.32% 15.28% -1.83%

s13207 8260 256 1.58% 2.34% -2.54% 2.89% 2.96% 28.13% 18.34% -2.13%

s15850 10369 256 1.85% -2.12% 3.36% 3.61% 2.63% 22.12% 17.62% 3.16%

s35932 17793 256 -1.07% 2.78% 4.01% 3.57% 2.34% 26.71% 19.17% 3.31%

s38584 20705 256 1.65% -3.56% 3.89% 3.91% 2.21% 25.67% 18.28% 2.95%

s38417 23815 256 1.34% 3.78% 3.37% 3.22% 2.81% 34.62% 21.63% 2.51%

Avg Abs Err - - 0.99% 2.05% 2.33% 2.36% 1.91% 19.42% 15.67% 2.37%

Table 4.4: A comparison of results of the proposed SSTA method with Monte Carlo

simulation .Le parameters are modeled as non-Gaussian variables, andW parameters

are modeled as Gaussian variables.

random variables and performing Monte Carlo simulations, termed asMCGauss, for

each benchmark circuit. For instance, for the largest benchmark circuit s38417, when

assuming that the non-GaussianLe parameters follow Gaussian distributions, the error

observed is 2.81% forµ, 34.62% forσ, 21.63 % for the 95% point and 2.51% for the 5%

point. Unlike, the results in Section 4.12.1, modeling the non-GaussianLe parameters as

normally distributed ones, leads to significant inaccuracyin the circuit delay PDF. Due

to the fact that the sensitivities of the non-GaussianLe terms outweigh the sensitivities

of the GaussianW terms, the correlated non-Gaussian parameters have a dominating

effect on the circuit delay distribution, causing it to significantly aberrate from a normal

distribution.

Table 4.5 compares the runtime performance of our proposed SSTA algorithm with

that of a Gaussian SSTA procedure [CS03], and the Monte Carlosimulations. As ex-

pected, our SSTA procedure is considerably faster than the Monte Carlo simulations, but

has a higher runtime cost as compared to a Gaussian SSTA [CS03], due to the additional

feature of handling non-Gaussian variables. On an average our procedure is33× faster
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Benchmark CPU Time (sec)

Name # Cells # Grids SSTAGauss [CS03] SSTA MC

s27 13 4 0.0 1.1 6.0

s1196 547 16 1.2 8.3 634.2

s5378 2958 64 17.1 41.6 3214.4

s9234 5825 64 20.3 137.9 4756.6

s13207 8260 256 108.6 303.6 8532.1

s15850 10369 256 110.8 410.8 9587.8

s35932 17793 256 315.2 761.4 10156.5

s38584 20705 256 322.4 910.6 18903.3

s38417 23815 256 377.3 1235.6 22398.5

Table 4.5: A runtime comparison the proposed SSTA with Gaussian SSTA and Monte

Carlo simulation.

than Monte Carlo method, but about3× slower than the Gaussian SSTA algorithm. Our

approach can handle a large number of correlated and independent non-Gaussian pa-

rameters. The number of grids chosen for each benchmark circuit, shown in the third

column of Table 4.5, is equal to the number of correlated Gaussian and non-Gaussian

variables. The number of independent non-Gaussian variables is the same as the number

of cells in a circuit. For instance, the SSTA procedure for the circuit s13207 processes

256 correlated Gaussian variables, 256 correlated non-Gaussian variables, and 8260

independent non-Gaussian variables in about 5 mins of online runtime. Thus, our pro-

cedure scales well with the number of non-Gaussian parameters. The runtime reported

in Table 4.5 does not include the time spent for the preprocessing steps of Sections 4.7

and 4.8, which are carried out only once for a process and a given discretization. For the

largest benchmark s38417, the preprocessing time taken to generate the ICA matrixA,

and to compute the moments of the independent components is 3.5 hours.
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Figure 4.8: A comparison of SSTA and Monte Carlo distribution for circuit s13207.

In Figures 4.8 and 4.9, the PDF and CDF plots for the benchmarkcircuits s13207

and s38417 are provided. As seen in the figures, the PDF and theCDF as predicted

by the proposed SSTA scheme matches well with the Monte CarloPDF and CDF. The

dashed curves in Figures 4.8 and 4.9, represent the case whentheLe parameters are

incorrectly modeled as Gaussian variables with the sameµLe andσLe as the original

non-Gaussian parameters. The plots in these figures show that in the presence of corre-

lated non-Gaussian parameters, the real circuit delay distribution deviates significantly

from the one obtained by assuming normality for parameters.The distribution functions

evaluated by SSTA approach are able to match, within reasonably small errors, the real

distribution functions.

4.13 Conclusion

In this chapter of the thesis, we have presented a statistical timing analysis method as

a variation-aware timing analysis technique. Our novel andefficient SSTA algorithm

incorporates correlated parameters, both Gaussian and non-Gaussian. Our approach is
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Figure 4.9: A comparison of the results of SSTA and Monte Carlo for circuit s38417.

based on PDF evaluation by matching the moments of the delay variables. We have

used the independent component analysis technique in our SSTA framework to handle

correlations between the non-Gaussian parameters. A time complexity analysis of our

procedure shows that it is linear in the number of grids and the number of gates in the cir-

cuit. Hence, our scheme provides a scalable solution to the problem of performing SSTA

in the presence of many correlated non-Gaussian parameters. Experimental results val-

idate our hypothesis that performing a Gaussian SSTA, in thepresence of dominating

strongly non-Gaussian parameters of variation, could result in significant inaccuracies

in estimating the PDF and CDF of the circuit delay. Our proposed SSTA procedure is

able to match the real PDF and CDF of the delay much more closely, and produces the

delay distributions with reasonably small errors comparedto the Monte Carlo distribu-

tions, and is much faster than the Monte Carlo analysis. Applying our SSTA method to

the nine benchmark circuits, the average of the absolute errors is 0.99% forµ, 2.05 %

for σ, 2.33% for the 95% point, and 2.36% for the 5% quantile point.
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Chapter 5

Summary

The certainty of uncertainties, in the operating environment and the fabrication process

of VLSI circuits, poses enormous challenges in front of the circuit design community

to continue the desired growth of the semiconductor industry. To enable the circuit

designers to combat this beast of environmental and manufacturing process fluctuations,

the electronic design automation tools must be variation-aware.

In this thesis, we have presented such uncertainty-aware computer-aided design tech-

niques focusing on three important issues in circuit design: power grid design, gate siz-

ing, and timing analysis. The summary of our research efforts and contributions for each

of these problems are as follows:

• We have presented two topology optimization power grid design schemes to re-

duce the voltage drop variations in the P/G network of wires.Our schemes opti-

mize a special locally regular, globally irregular structure of the power grid, that

we have proposed. Experimental results show that such a power grid structure of-

fers considerable savings in the wire area utilized, compared to other commonly

used grid topologies. Moreover, this piecewise-uniform structure is relatively eas-

ier to optimize, and is expected to aid signal net routing, asminimal amount of

book-keeping is required to account for the locations and the widths of the P/G

wires. Although, the grids designed using our first power grid design procedure,

show considerable saving of expensive wiring resources, the procedure itself is

not very efficient. As a much more efficient alternative, we have proposed a sec-

ond, considerably fast algorithm to design the power grid. This method is able

to design power grids comprising millions of nodes, and thousands of wires is a

reasonably small amount of time. The wire area used by the power grids designed

using the second method is not significantly greater than theones designed by the
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first technique. Using these power grid design procedures, the user can design a

high-performance power grid that meets the reliability constraints of IR drop and

EM.

• We have proposed a novel worst-casing methodology to perform gate sizing in

the presence of process variations. Our method is based on using the statisti-

cal information of the varying parameters to keep sufficient, but not excessive,

margins in the timing constraints that can guard-band against the worst-case vari-

ation effects. We formulate the uncertainty-aware gate sizing problem as a GP,

and solve it efficiently using convex optimization tools. Byincorporating the ef-

fect of spatial correlations in the optimization framework, we are able to mitigate

some of the pessimism involved in a worst-casing methodology. We use various

heuristic techniques to reduce the conservatism in our method. Experimental re-

sults demonstrate that, compared to our proposed method, a naive worst-casing

scheme, based on keeping a deterministically-based guard-band, produces sub-

stantially more expensive designs, employing extra resources.

• We have presented an efficient and an accurate statistical timing analysis proce-

dure that incorporates correlated parameters, both Gaussian and non-Gaussian.

Prior to this work, there were no known SSTA methods that could efficiently han-

dle a large number of non-Gaussian variables. The time complexity of our SSTA

procedure isO(n ∗ NG), wheren is the number of grids the chip layout is di-

vided into, andNG is the number of gates in the circuit, which is the same linear

complexity as of the Gaussian SSTA algorithms. Thus, the procedure is scalable

to process a large number of non-Gaussian parameters. In ourmethod, we use

independent component analysis to handle the correlated non-normal variables,

and employs moment matching-based technique to predict theprobability distri-

bution of the circuit delay. We demonstrate the accuracy of our SSTA procedure

by verifying it against Monte Carlo simulations. The errorsfor our method are
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reasonably small compared to Monte Carlo analysis.

Future extensions of the research work presented in this thesis may consist of:

• In addition to the static voltage drop variations on the power grid wires, the

transient voltage droop problem on these wires also causes serious reliability is-

sues. Efforts to develop efficient simultaneous decouplingcapacitor placement

and topology optimization algorithms, to control this transient voltage noise would

be well spent.

• The leakage power of a circuit is extremely sensitive to the process variations.

Therefore, the profitability of a chip is affected by both thetiming yield and the

power yield of a circuit. Performing circuit optimization under probabilistic con-

straints for both timing and power, could lead to interesting opportunities.

• The linear delay model used in the proposed SSTA algorithm may prove to be in-

accurate in future, with the amount of variations increasing significantly in future

technologies. Extending the current non-Gaussian SSTA methods to nonlinear

models remains an open problem, and requires further investigation.

• One of the ways to perform circuit optimization, in the presence of variations,

is to use an SSTA engine to generate some notion of a probabilistic critical set of

paths. The designers can then spend the extra design resources to make these paths

less sensitive to variations. Developing an automation tool for such an analysis

remains a challenging, but an important problem to solve.

• There are a number of factor that could lead to a statistical circuit optimization

methods win over the deterministic-based guard-banding approaches. These fac-

tors could be, e.g., amount of path correlations, logic dominated or interconnect

dominated circuit structure, power-delay tradeoff nonlinearities, systematic or

random variations, etc. Understanding these factors clearly, would be extremely
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helpful for the designers to adjust their deterministic margins to incorporate the

appropriate statistical attributes, and reduce the conservatism in their designs.

Studies for such an analysis are exciting problems to explore.

In conclusion, the variations in VLSI circuit design are here to stay. This thesis

attempts to provide CAD methods to either directly reduce these uncertainties or to

control their effect on the circuit performance. It is hopedthat work presented in this

thesis, provides a platform to propel further research in this domain, that culminates into

producing industry standard electronic design automationtools.
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