
UNIVERSITY OF MINNESOTA

This is to certify that I have examined this copy of a doctoral thesis by

Jiang Hu

and have found that it is complete and satisfactory in all aspects,

and that any and all revisions required by the final

examining committee have been made.

Professor Sachin S. Sapatnekar
———————————————————–

Name of Faculty Advisor

———————————————————–
Signature of Faculty Advisor

———————————————————–

Date

GRADUATE SCHOOL

VLSI Interconnect Performance Optimization
and Planning

A THESIS

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA

BY

JIANG HU

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Sachin S. Sapatnekar, Advisor

JANUARY 2001

c©Jiang Hu 2001

Abstract

Under the sustained progress in VLSI technology, interconnect wires be-

come increasingly important to system performance. This thesis presents

research work on several aspects of VLSI interconnect performance optimiza-

tion, namely, single-net performance driven routing, routing in the presence

of buffer blockages and bays, performance driven multi-net global routing

and interconnect planning.

Single net routing is first targeted to improve the performance of multi-pin

critical nets where both timing and wire resources are stringent. Buffer inser-

tion and driver sizing are combined separately with non-Hanan optimization,

which is a topology optimization technique exploiting Steiner nodes off the

Hanan grid, to minimize cost subject to timing constraints. A higher-order

AWE model is employed to assure solution quality.

In real scenarios, the routing problem must be solved in an environment

that prohibits buffer insertion in certain areas (called blockages), and makes

banks of buffers, called bays, available in others. The second problem de-

termines a route for a multi-pin net to avoid(seek) buffer blockages(bays) as

much as possible without large wiring detours, so that buffers can be inserted

to improve interconnect performance. This problem is solved by iteratively

ripping up a sub-path of an existing routing tree and reconnecting the sub-

trees through maze routing.

The next part of the thesis considers the problem of simultaneous rout-

ing of multiple global nets. Two algorithms are proposed: the first optimizes

congestion and delay based on hierarchical bisection and a network flow al-

gorithm, while the second optimizes these objectives and in addition, the

i

number of bends through probability-based gradual refinement. In both al-

gorithms, routing flexibilities under timing constraints are exploited to reduce

congestion without violating timing constraints.

The final part of the thesis develops a methodology for early wire and

buffer planning. Under modern VLSI technology, optimizing interconnect

only at the routing stage is not sufficient and interconnect and buffer loca-

tions should be considered in early stages of design. A four-stage heuristic is

developed which includes a new wirelength-based optimal buffer site alloca-

tion algorithm. Both wires and buffers are planned such that congestion is

minimized.

ii

Acknowledgment

I must express my deep gratitude to my advisor Professor Sachin Sap-

atnekar who has led me towards becoming a researcher in the VLSI CAD

area. He has provided me with persistent help, encouragement and guidance

on almost all aspects of my research work. His affable personality has also

made working with him a pleasure. I am truly indebted to him for his great

impact on my career and life.

I also thank my committee members, Professor E. Shragowitz, Professor

G. Sobelman and Professor K. Bazargan for their helpful comments.

I am grateful to Dr. Charles Alpert, the mentor of my internship at IBM

Austin Research Lab. He has shown me how to solve realistic problems in an

industrial environment, and I have learned a lot from him on the theoretical

and practical sides of research as well as practical skills. I also thank Steve

Quay at IBM Microelectronics for his help during my internship, and IBM

Austin Research Lab for providing me with the opportunity to work as an

intern.

I owe many thanks to fellow graduate students for making my stay pleas-

ant and fruitful: Naresh Maheshari, Yanbin Jiang, Min Zhao, Kishore V.

Kasamsetty, Kaushik Gala, Jatuchai Pangjun, Mahesh Ketkar, Haihua Su,

Suresh Raman, Arvind Karandikar, Raza ul Mustafa, Haitian Hu, Cheng

Wan and Rupesh Shelar.

I thank National Science Foundation, Semiconductor Research Coopera-

tion for funding parts of my research, and IEEE, ACM and the University

of Minnesota for providing financial support to attend conferences.

Of course, I am grateful to my parents for their encouragement and sup-

port throughout the years, ever since I was a child.

iii

Finally, I would like to express my deep gratitude to my wife Min Zhao for

her help and support, and most of all, for making my life more meaningful.

iv

Contents

1 Introduction 1

1.1 Background and Research Goal 1

1.2 Contributions . 3

2 Preliminaries 6

2.1 Basic Definitions . 6

2.2 Delay Models . 8

2.3 Soft Edges . 9

2.4 Non-Hanan Optimization . 12

3 Performance Driven Single Net Routing 20

3.1 Introduction . 20

3.2 Motivation for Using Fourth Order AWE 23

3.3 The Problem Environment and Problem Formulation for BINO 26

3.4 Problem Formulation and Properties for FAR-DS 30

3.4.1 Problem Formulation for FAR-DS 30

3.4.2 Properties of Solution Regions for FAR-DS 31

v

3.5 Algorithms . 34

3.5.1 Algorithm for BINO 34

3.5.2 Algorithm for FAR-DS 36

3.6 Complexity Analysis . 42

3.7 Experimental Results . 43

3.8 Conclusion . 47

4 Routing for Buffer Blockages and Bays 49

4.1 Introduction . 49

4.2 Problem Formulation . 54

4.3 The Grid Graph Construction 56

4.4 Algorithm Description . 62

4.4.1 Overview . 62

4.4.2 Maze Routing . 63

4.4.3 Complexity Analysis 65

4.5 Improving Efficiency . 66

4.5.1 Sparsified Grid Graph 66

4.5.2 Branch and Bound Maze Routing 67

4.6 Experiments . 69

4.6.1 Additional Routing Cost 69

4.6.2 Delay Comparisons with Buffer Insertion 71

4.6.3 Fixing Slew Problems 73

4.7 Conclusion . 75

vi

5 Performance Driven Multi-net Global Routing 77

5.1 Introduction . 77

5.2 Congestion Metric and Problem Formulation 80

5.3 Routing Flexibilities under Timing Constraints 81

5.3.1 Z-edges . 82

5.3.2 Slideable Steiner Node (SSN) 82

5.3.3 Edge Elongation . 83

5.4 Hierarchical Algorithm . 84

5.4.1 Algorithm Overview 84

5.4.2 Basic Network Formulation 87

5.4.3 Construction of Arcs for Multi-crossing Trees 90

5.4.4 Utilization of Slideable Steiner Nodes (SSN) 92

5.4.5 Network Pruning . 94

5.4.6 Experimental Results 95

5.5 Gradual Refinement Algorithm 97

5.5.1 Approximated Congestion Estimation 97

5.5.2 Algorithm Motivation 100

5.5.3 Algorithm Detail . 102

5.5.4 Experimental Results 107

5.6 Conclusion . 110

vii

6 Integrated Buffer and Wire Planning 111

6.1 Introduction . 111

6.1.1 Buffer Block Planning Methodology 112

6.1.2 Buffer Site Methodology 114

6.1.3 Technical Contribution 115

6.2 Problem Formulation . 116

6.3 Buffer and Wire Planning Heuristic 120

6.3.1 Stage 1: Initial Steiner Tree Construction 121

6.3.2 Stage 2: Wire Congestion Reduction 121

6.3.3 Stage 3: Buffer Allocation 122

6.3.4 Stage 4: Final Post Processing 127

6.4 Experimental Results . 128

6.4.1 General Performance 129

6.4.2 Variations . 131

6.4.3 Comparisons with Buffer Block Planning 134

6.5 Conclusion . 137

7 Conclusions 138

viii

List of Figures

2.1 An example of rectilinear Steiner tree for a two sink net. . . . 7

2.2 Model of a wire segment. 8

2.3 Cascaded drivers and driver model. 9

2.4 Routing with soft edges. 10

2.5 An example of Hanan grid and a minimum RST over the

Hanan grid. 12

2.6 A general situation where node vk is to be connected to an

edge (vi, vj). 13

2.7 Delay violation function vs. Manhattan distance z of connec-

tion point. 15

2.8 The non-Hanan optimization algorithm. 16

3.1 A routing tree on which Elmore delay gives large errors. 23

3.2 An example where using the Elmore delay and a higher order

AWE delay may result in a different connection choice. 25

3.3 Buffer spaces, the territory box and their applications in buffer

insertion. 27

ix

3.4 An example that buffer insertion can reduce wire cost further

in non-Hanan optimization. 29

3.5 BINO, iterative buffer insertion algorithm. 35

3.6 Iterative buffer insertion vs. iterative buffer deletion. 36

3.7 BINO, iterative buffer deletion algorithm. 37

3.8 Solution search scheme for FAR-DS. 38

3.9 FAR-DS, reconnection and driver sizing in valley-guided search. 40

3.10 FAR-DS, reconnection and driver sizing in iterative search. . . 42

4.1 Example of how an alternative Steiner tree can enable buffer

insertion. 51

4.2 An example showing the benefit of not avoiding all blockage. . 52

4.3 Buffer bay example. 52

4.4 An example Steiner tree showing the different node types. . . 55

4.5 An example of the grid graph induced from five x and four y

coordinates. 57

4.6 Examples of using to compute usable tracks. 58

4.7 The Grid graph procedure. 59

4.8 The grid graph for an example 3-pin net and a single rectan-

gular blockage. 60

4.9 Configurations for edges in P in the proof of Theorem 4.1. . . 61

4.10 The Steiner tree construction algorithm. 63

4.11 Algorithm for maze routing connecting two subtrees. 64

x

4.12 An example of grid graph sparsification. 67

4.13 An example of branch-and-bound in maze routing. 69

5.1 An example of a slideable Steiner node (SSN). 82

5.2 An example of bisection. 85

5.3 An assignment result from network flow solution. 86

5.4 Network formulation of the example in Figure 5.2 without con-

sidering SSN. The number on each arc is its capacity. 88

5.5 Relative positions of a boundary and a soft edge. 88

5.6 Network formulation considering SSN. 93

5.7 Examples of primitive demand. 97

5.8 Enumerate routes with number of bends less than 3 to obtain

probabilistic demand. 99

5.9 When an SSN slides along its locus, the bounding boxes of its

incident edges change as well as the primitive demands. 102

5.10 Examples for setting post node for a backbone wire. 103

5.11 The gradual refinement global routing algorithm. 105

6.1 (a) A set of 68 buffer site locations can be tiled and (b) ab-

stracted to a total number of buffer sites lying within each

tile. 117

6.2 Driver with seven sinks, whereby the maximum distance al-

lowed between gates is three. With this interpretation of the

distance rule, the driving gate must drive 11 units of wire-

length. 118

xi

6.3 Example of spanning tree edge overlap removal. 120

6.4 Example of how buffer costs are computed. For a value of

Li = 3, the optimal solution is shown, having total cost 1.5. . . 123

6.5 Single-sink buffer sites allocation algorithm 124

6.6 Execution of the single source algorithm on the example in

Figure 5. The optimal solution has cost 1.5 and the arrows

show how this cost is obtained. 125

6.7 Multi-sink buffer sites allocation algorithm 126

6.8 For a node with two children, a buffer may be used to either

(a) drive both branches, (b) decouple the left branch, or (c)

decouple the right branch. 127

xii

List of Tables

1.1 Overall technology roadmap from NTRS’97. 2

2.1 Comparisons between using and without using Hanan nodes

under fourth order AWE model on .18μm IC technology. . . . 17

2.2 Comparisons between using and without using Hanan nodes

under fourth order AWE model on MCM technology. 18

3.1 A comparison of the Elmore and the 4th order AWE delays

with SPICE. 24

3.2 Experimental results on .18μm IC, h = 1, ρ = 2.5 for SERT,

MVERT and BINO. 45

3.3 Experimental results on MCM, h = 1, ρ = 2.5 for SERT,

MVERT and BINO. 46

3.4 Number of sinks and CPU times. 47

3.5 Comparison of the number of overlaps between buffer spaces

and routing edges with and without using soft edges 48

4.1 Summary of additional routing costs of SMT versus BBB for

the hand crafted test case. 70

xiii

4.2 Summary of additional routing costs of SMT versus BBB for

the macro block test case. 71

4.3 Experimental results on average slack improvements for the

hand crafted test case. 73

4.4 Experimental results on slack improvement for the macro block. 74

4.5 Slew results for SMT and BBB on the microprocessor test case. 75

5.1 Benchmark circuits. 95

5.2 Experimental results on timing-constrained global routing. . . 96

5.3 Description of Test Circuits. 107

5.4 Grid size and the number of backbone wires for each circuit. . 108

5.5 Experimental results, vio is the number of nets with timing

violations and ben is the maximum number of bends on a

backbone wire. 108

6.1 Test circuit statistics and parameters for the first set of exper-

iments. 129

6.2 Stage by stage experimental results for the 6 CBL circuits.

The final results are shown for the last four random circuits. . 132

6.3 Summary of results when the number of available buffer sites

varies. 133

6.4 Experimental results with varying grid sizes for three CBL

benchmarks. 134

6.5 Comparisons of our algorithm to BBP/FR. 136

xiv

Chapter 1

Introduction

1.1 Background and Research Goal

In recent years, Very Large Scale Integrated (VLSI) circuit technology has

undergone dramatic progress as characterized by the exponential scaling of

feature sizes, i.e., the minimum dimension of a transistor. Such scaling fol-

lows Moore’s Law [1] at the rate of 0.7× reduction every three years and is

predicted to lead to over half billion transistors integrated on a single chip

with clock frequency of 2-3 GHz in 2009, according to 1997 National Tech-

nology Roadmap for Semiconductors (NTRS’97) [2], summarized in Table

1.1.

As feature sizes keep shrinking, the transistor switching speeds become

proportionally faster. On the other hand, interconnect wires become thin-

ner and longer, and consequently interconnect delay grows greater with the

increasing wire resistance. Both trends lead interconnect delay to dominate

logic delay and become a significant bottleneck in system performance [3],

so that the majority of the clock period may be spent on the interconnect

1

Table 1.1: Overall technology roadmap from NTRS’97.

Technology (nm) 250 180 150 130 100 70

Year 1997 1999 2001 2003 2006 2009

#transistors (million) 11 21 40 76 200 520

Across chip clock (MHz) 750 1200 1400 1600 2000 2500

Area (mm2) 300 340 385 430 520 620

Wiring levels 6 6-7 7 7 7-8 8-9

wires through which the signals between various parts of the chip are com-

municated. This fact makes interconnect performance optimization to be a

crucial task for delivering desired system performance. This thesis addresses

several issues on interconnect performance optimization including single net

routing, buffer insertion, multi-net global routing and interconnect planning.

A routing net is composed of a source pin from which the signal starts,

and a set of sink pins where the signal is to be delivered. The single net

routing problem is to construct a rectilinear tree representing the wires to

span all the pins for a given net. The objective in the tree construction

is usually to minimize the total wirelength and to ensure that the signal

propagation delay from source to each sink satisfies the required constraint.

The quality of a routing tree according to this objective can be improved

by exploiting a better routing tree topology or properly sized drivers. As

another interconnect optimization technique, buffer insertion is able to reduce

the signal delay along long wires and shield out non-critical load to obtain

smaller delays for critical sinks.

Most traditional works restrict the topology space to only Hanan grid [4],

which is composed by the rectilinear tracks that intersect with at least one of

the given pins. The routing topology space off the Hanan grid is explored in

2

this thesis, in conjunction with driver sizing and buffer insertion for improving

the routing quality for timing critical nets. However, buffer insertion is not

always feasible at a desired location due to the occupation by other cells, and

its effectiveness is consequently hindered. Another part of this work focuses

on routing to avoid buffer blockages in order to enable better buffer insertion

solution.

When multiple nets are considered in routing, the problem is more com-

plicated, as all nets compete for limited routing resources, and wiring con-

gestion needs to be minimized. Minimizing wiring congestion is well known

to be a difficult problem even without considering timing issues. Optimiz-

ing both congestion and timing simultaneously is a more complex issue and

constitutes another effort in this thesis work.

The growing importance of interconnect performance not only affects

the VLSI system performance but also challenges traditional VLSI design

methodology. Traditionally, interconnect is considered only in the late stages

of the entire design flow when routing information is available. Consequently,

the design in the early stages that does not consider interconnect effects oper-

ates in a blindfolded manner. To overcome this, it is important that intercon-

nect should be planned in the early stages of a design to provide credibility

to early performance estimates. Based on this requirement, one part of this

work is targeted to planning both buffer and wire resource allocations.

1.2 Contributions

The major contributions of this thesis are:

3

• To obtain greater performance improvement for interconnect, available

routing flexibilities shoule be exploited and premature commitment of

routing paths should be avoided. According to this requirement, we

propose the concept of a soft edge that captures the routing flexibilities

under timing constraints at the global routing stage. It can help to

improve the quality of single net routing and increase the utilization

of limited buffer spaces. In addition, it plays an important role in

timing-constrained simultaneous global routing of multiple nets.

• For single net routing where both delay constraint and wire resources

are stringent, the utilization of nodes off Hanan grid [4] in the topology

space is integrated with driver sizing and buffer insertion separately to

obtain significant wirelength reduction subject to timing constraints.

The curvature properties for the objective function are found and ex-

ploited to obtain an efficient solution search scheme. This part of work

is introduced in Chapter 3.

• In Chapter 4, a fast heuristic is proposed to make wires to avoid buffer

blockages with small detour through a maze routing on a customized

grid graph in combination with the branch-and-bound technique. This

heuristic can handle the situation with pre-allocated buffer bays as well.

Experiments on industrial designs show that it remarkably improves the

quality of buffer insertion in presence of many buffer blockages.

• In order to optimize both congestion and timing which are often com-

peting objectives in global routing for multiple nets, two novel algo-

rithms are developed and described in Chapter 5. In both algorithms,

routing flexibilities under timing constraints are obtained through de-

ferred decision making and exploited to reduce congestion subject to

4

timing constraints. In the first algorithm, an elaborated network flow

model is constructed so that the delay slack consumption is adaptive

to congestion distribution. The second algorithm is able to optimize

the number of bends on wires in addition.

• To address the importance of considering interconnect effect in early

stages of design, we develop an integrated buffer and wire planning

method in which a four-stage heuristic is designed to minimize both

wire and buffer congestion simultaneously for multi-pin nets. A wirelength-

based dynamic programming algorithm is obtained to allocate buffer

sites optimally at a fast speed. This interconnect planning work is

presented in Chapter 6.

5

Chapter 2

Preliminaries

2.1 Basic Definitions

A given set of nets is represented as N = {N1, N2, ...}, with each net

N i being defined by a source node vi
0 and a set of sink nodes V i

sink =

{vi
1, v

i
2, ...v

i
p}. A routing problem for a net N (we omit the net index for

simplification without loss of generality) is to find a set of Steiner nodes

VSteiner = {vp+1, vp+2, ...vp+q} and a set of edges E = {e1, e2, ...ep+q} to con-

struct a rectilinear Steiner tree (RST) T (V, E), where V = v0∪Vsink∪VSteiner,

such that E spans all of the nodes in V . The traditional definition of VSteiner

includes two types of nodes: (i) internal Steiner nodes of degree three or

four, denoted by the set Vinternal, and (ii) bend nodes of degree two that de-

note a path switch between a horizontal and a vertical direction, denoted by

the set Vbend. For example, a net with two sinks is given in Figure 2.1(a).

An internal Steiner node and a bend node are introduced together with four

edges in Figure 2.1(b) to form a rectilinear Steiner tree as a routing solution.

A bend node is introduced to make the tree conform to the requirement of

6

rectilinear space, and an internal Steiner node is usually employed to reduce

wirelength. The location for a node vj is specified by its coordinates (xj ,

yj), and an edge in E is uniquely identified by the node pair (vj , vk), and

is denoted as ejk or ek interchangeably. The edge length ljk is given by the

Manhattan distance between the two nodes, which is |xj −xk|+ |yj − yk|. In

order to make our presentation clearer, we define the following terms:

sink

sink

sink

sink

source source

(b)(a)

internal Steiner

bend

Figure 2.1: An example of rectilinear Steiner tree for a two sink net.

Definition 2.1 (backbone node) In a routing tree, a backbone node is the

source node, or a sink node, or an internal Steiner node.

Definition 2.2 (backbone wire) In a routing tree T (V, E), a backbone

wire is a set of consecutively adjoined edges {(v, u1), (u1, u2), (u2, u3), ...(um, w)},
where v, w ∈ V are backbone nodes and {u1, u2, ...um} ∈ V are not backbone

nodes.

If the delay at an arbitrary sink va is t(va) and its required arrival time

is RAT (va), then the delay slack s(va) = RAT (va)− t(va). We also use the

term delay violation u(va) = −s(va) in this thesis. The timing slack S(T i)

for a routing tree T i on the net N i is the minimum delay slack among all the

sinks in this net.

7

2.2 Delay Models

l
cl/2cl/2

rl

Figure 2.2: Model of a wire segment.

We use the π RC model for a wire segment of length l, as shown in Figure 2.2,

where r and c are resistance and capacitance per unit length, respectively.

One popular delay model for interconnect is the Elmore model [5]. We express

driver resistance as Rd and let Ci denote the total downstream capacitance

seen from node vi. The Elmore delay from driver to a sink vk is given as:

tk = RdC0 +
∑

eij∈path(v0,vk)

rlij(
clij
2

+ Cj) (2.1)

Note that we assume that vj is the downstream end of eij . The Elmore delay

model has been widely used in many research works due to its simplicity and

high fidelity [6]. Its simplicity not only removes the need for large amount

of computation, but also provides a platform on which many theoretical

properties can be derived and exploited.

As interconnect wires become increasingly thinner and longer, the inter-

connect resistance may overshadow the driver resistance. Consequently, the

downstream capacitance is shielded to the driver resistance by the intercon-

nect resistance. This effect is called resistive shielding [7]. The Elmore delay

does not correctly take the resistive shielding effect into account and tends

to overestimate the delay. This error can be remarkably large, especially for

the stub situation (i.e., when a sink that is close to the source co-exists with

a much longer wire), where the Elmore delay can be several times larger

8

than the actual delay. Hence, we use Elmore model for only the derivation

of qualitative properties and global routing where the number of nets to be

routed could be very large.

For the routing of critical nets whose timing constraint is stringent, we

employ a fourth order AWE model [8]. The fourth order AWE model takes

higher order moment information into consideration and can provide a much

better accuracy, though the computation time becomes longer. The reason

for choosing the fourth order will be explained in more details in Section 3.2.

D
D

C C
D D

R

(a) (b)

0 1
2

h

g d

0

Figure 2.3: Cascaded drivers and driver model.

For driver sizing problem, we consider the situation where the signal net

is driven by a series of cascaded drivers D0, D1, D2....Dh as in Figure 2.3(a).

The driver D0 is minimum sized and will not be changed in driver sizing.

The driver and buffer model that we will use is shown in Figure 2.3(b). We

denote the gate and drain capacitance of D0 as Cg and Cd, respectively. The

interconnect delay among these drivers is typically small and is neglected.

The driver resistance and capacitance are assumed to change linearly with

respect to the size of driver.

2.3 Soft Edges

In the process of routing for one net, multiple options are sometimes available

and it is not obvious which of these is the best. Consider the example in

9

upper−L

lower−L

(a) (b)

v

vv

v

v

v

v

vv

(c) (d)

0

1

v2

v v v

v

0

3

1

2

0

0

1

2

1

23

Figure 2.4: Routing with soft edges.

Figure 2.4, where a source v0 and two sinks v1 and v2 are given, and a

minimum Steiner tree is to be constructed on this node set by adding one

node to the tree at a time. Since a routing tree is built in rectilinear space,

each edge must be either horizontal or vertical. If we begin by connecting v1

to v0, there are two L-shaped connection options, shown by the dotted lines

in Figure 2.4(a); one bend is required for each connection. The delay and

wirelength from v0 to v1 are the same in these two options and it is hard

to see which is better at this stage. Instead of fixing the edge orientation

immediately as in usual approaches, we defer this decision-making to a stage

when the effects of these options can be discriminated. Here, we formalize

this by introducing another type of edge, a soft edge, whose route is not

specified until there is an obvious better choice.

10

Definition 2.3 (soft edge) A soft edge is an edge connecting two nodes

vi, vj ∈ V , such that:

1. xi �= xj and yi �= yj,

2. its edge length lij = |xi − xj |+ |yi − yj|,

3. the precise edge route between vi and vj is not determined.

We will refer to the traditional edges in a rectilinear tree with fixed orien-

tations as solid edges. The soft edge connection between v0 and v1 is shown

in Figure 2.4(b). In order to minimize wirelength, the sink v2 is connected to

the routing tree at the closest connection (CC) point, defined below, between

v2 and edge e01.

Definition 2.4 (CC point) The closest connection (CC) point between a

node vk and an edge eij is defined by its coordinates xCC and yCC such that:

xCC = median(xi, xj , xk) and yCC = median(yi, yj, yk).

Note that in Definition 2.4, the edge eij can be either a soft edge or a

solid edge.

If the CC point does not coincide with either of vi, vj and vk, a Steiner

node is introduced at the CC point. In the example of Figure 2.4, Steiner

node v3 is introduced. After this connection has been made, edge e31 and e32

are solid edges.

At this stage, it can be seen that lower-L is a better choice for connecting

v0 and v1 than upper-L, since it provides a shorter wirelength which is a result

reached through deferred decision making. The advantage of using soft edges

is that they provide a set of flexible connection choices for subsequent routing

11

steps and avoid premature suboptimal decisions. In fact, we do not need to

choose the lower-L when connecting v0 and v1, and we may keep the edge

e03 soft when v2 is joined as indicated in Figure 2.4(c). If the extra delay on

vias can be neglected, a soft edge can take many multi-bend monotone routes

besides L-shaped routes. For a single net, it is again hard to see which of

these routes is better for connecting v0 and v3. By keeping edge e03 soft, we

can maintain these flexibilities until we consider congestion in global routing

with other nets. In Figure 2.4(d), in the presence of another net, a Z-shaped

route for e03 is chosen to reduce congestion. Using deferred decision making,

routing topology flexibility can be therefore traded into congestion avoidance

without hurting the delays. We will show later that the use of soft edges also

has advantages that aid utilizing buffer spaces.

2.4 Non-Hanan Optimization

sink sink

(b)(a)

sink sink

source source

Figure 2.5: An example of Hanan grid and a minimum RST over the Hanan

grid.

Drawing horizontal and vertical lines through all the pins in a given net

results in the Hanan grid [4], illustrated in Figure 2.5(a). The researches on

RST has long been restricted to the Hanan grid, because it is proved that

12

there is always an RST with minimum wirelength embedded in the Hanan

grid as shown in 2.5(b) [4]. If the objective is to minimize a weighted sum of

sink delays, there is always an optimal solution over the Hanan grid too [9].

Recently, the work of [10] showed that using Steiner nodes off the Hanan

grid can yield greater reductions in the wirelength for the objective of min-

imizing wirelength subject to timing constraints for each sink. Based on

this observation, this work proposed a non-Hanan optimization method to

improve the performance of a routing tree.

As defined in [6], a maximal segment is a set of contiguous edges either

all vertical or all horizontal. The work of [6] shows that the Elmore delay

at each sink is a concave function with respect to the location of a Steiner

node when the Steiner is moved along a maximal segment. The concavity

property is exploited in non-Hanan optimization [10]. Although by definition,

the orientation for a soft edge is not fixed, the concavity property continues

to hold for a soft edge, and we can extend the philosophy of non-Hanan

optimization to general edges including both solid and soft edges.

v

v

v

CC

v

0

i

j

k

v’

Figure 2.6: A general situation where node vk is to be connected to an edge

(vi, vj).

For a general form of a routing tree, shown in Figure 2.6, let us consider

13

the process of obtaining an optimal connection between node vk and edge

(vi, vj) such that wirelength is minimized subject to timing constraints. Note

that vi, vj and vk can either be a sink, or an internal Steiner node. The dashed

lines are other nodes and edges of this routing tree, and CC represents the

closest connection point between vk and (vi, vj). It can be easily seen that

any connection that is downstream of CC cannot give an optimal solution

[6]. More specifically, we wish to search for an optimal connection point

within the bounding box defined by vi and CC. Suppose we connect vk to

(vi, vj) at point v′(x′, y′). Let z be the Manhattan distance from v′ to vi, i.e.,

z = |x′ − xi| + |y′ − yi|. For convenience, we overload CC as its Manhattan

distance to vi.

Similar to the work of [6], a delay violation function model with respect

to connection location for soft edges under the Elmore delay is derived as

follows.

If a node is not downstream of node vi, its Elmore delay from source v0

is as follows:

f1 = Rd(Ct − cz) + λ0 + λ1(lik − z), (2.2)

where λ0 and λ1 are constants. Recall that Ct is the total load capacitance

seen from the last stage of driver if vk is connected to vi.

The Elmore delay from vi to v′ is given by:

f ′ = rcz(
z

2
+ lij − z + lik − z) + rz(Cj + Ck). (2.3)

From v′ to any node in Tj, which is the subtree rooted at vj , the delay

can be obtained as:

f2 = r(lij − z)(
c(lij − z)

2
+ Cj) + λ2. (2.4)

14

Similarly, the delay from v′ to any node in Tk is:

f3 = r(lik − z)(
c(lik − z)

2
+ Ck) + λ3. (2.5)

Both λ2 and λ3 are constants. If a sink is in Tj, its Elmore delay is formed

by the sum of f1, f ′ and f2. When a sink is in Tk, its Elmore delay is the sum

of f1, f ′ and f3. If a sink is not downstream of ni, its Elmore delay is simply

f1. In all these cases, the delay is either a linear or a quadratic function of

z with non-positive coefficient for the second order term. Therefore, we can

obtain the conclusion that delay or delay violation function for any sink is a

concave function with respect to z, which is concluded as follows.

Theorem 2.1 Under the Elmore delay model, the delay violation at any sink

in the routing tree T (V, E) is a concave function with respect to z, which is

the Manhattan distance from the upstream end vi of edge (vi, vj) ∈ E to the

connection point between a node vk ∈ V and (vi, vj).

0

Delay violation

z
CCz*

sink 2

sink 1

Figure 2.7: Delay violation function vs. Manhattan distance z of connection

point.

Corollary 2.1 Under the Elmore delay model, for any interval [zl, zr] ⊆
[0, CC], if the delay violation at a sink is positive when the connection point

15

is either at zl or zr, then the delay violation at this sink is positive when the

connection point is at any location in this interval.

In Figure 2.7, the delay violation functions of a two-sink net are depicted.

If the objective is to minimize wire cost subject to timing constraints, the

optimal connection (Steiner) point here is a point with a non-positive delay

violation, lying as close to CC as possible; for this particular example, this

corresponds to z∗. As in this example, the optimal connection point is, in

general, likely to be a non-Hanan point.

Algorithm: Non-Hanan Optimization(T)

Input: Routing tree T (V, E)

Output: Optimized routing tree T ′

1. T ′ = T

2. Sort all the nodes in descending order of distance to source

3. For each vk ∈ V, k �= 0

4. Disjoin vk and its subtree Tk from T

5. For each edge (vi, vj) ∈ T\Tk

6. Reconnect vk to (vi, vj) at optimal location

7. If ∃ improvement compared to T ′

8. T ′ = T

Figure 2.8: The non-Hanan optimization algorithm.

The work of [10] showed this advantage of using non-Hanan points and

proposed the MVERT (Maximum delay Violation Elmore Routing Tree) al-

gorithm to perform the non-Hanan optimization globally for an interconnect

routing tree. Based on properties similar to Corollary 2.1, MVERT finds the

16

optimal connection point through a quasi-binary-search and obtains signifi-

cant wire cost reductions. In fact, non-Hanan optimization can also help the

net to meet timing constraints besides affecting wire cost reductions. In the

example of Figure 2.7, it is probable that only non-Hanan points can satisfy

the timing constraints for both sinks.

Table 2.1: Comparisons between using and without using Hanan nodes under

fourth order AWE model on .18μm IC technology.
SART Hanan NonHanan

n umax W umax W umax W

5 38.4 226 17.4 258 -9.4 226

5 10.1 204 -1.0 209 -24.9 188

5 42.9 288 -29.2 290 -6.2 279

10 17.3 388 7.3 381 -3.5 354

10 36.9 417 12.4 383 -3.1 396

10 52.4 502 7.5 526 -7.7 491

15 27.1 570 -5.2 539 -4.7 488

15 81.5 583 -3.1 508 -7.1 456

20 97.7 604 -5.0 612 -25.4 555

20 7.1 671 -2.8 666 -1.4 616

Ave 41.1 445 -0.2 437 -9.3 405

The algorithm of MVERT starts with SERT [6], then, all of the sinks

are sorted in the descending order of Manhattan distance from source. Then

each node vk and its downstream subtree Tk are disconnected and reconnected

back to the routing tree. The routing tree without Tk is represented by T\Tk.

In the search for the best reconnection point, vk and Tk are connected to each

edge in T\Tk tentatively at the local optimal point. The connection point

is selected to be the choice that gives the largest improvement according to

the objective. For two routing trees T1 and T2 on the same signal net, if T1

cannot meet timing constraints and T2 can provide a smaller maximum delay

17

violation among all sinks, this implies an improvement from T1 to T2 in spite

of any cost increase. If T1 can satisfy all the timing constraints, T2 provides

improvement only when it reduces cost and satisfies the timing constraints.

For reference, the outline of the non-Hanan optimization algorithm is shown

in Figure 2.8 [10].

Table 2.2: Comparisons between using and without using Hanan nodes under

fourth order AWE model on MCM technology.
SART Hanan NonHanan

n umax W umax W umax W

5 20.0 585 -17.9 543 -9.8 502

5 68.9 428 -2.3 532 -1.6 490

5 13.7 499 6.7 480 -19.5 472

10 93.0 803 14.3 760 -8.3 784

10 25.1 819 21.2 782 -1.6 662

10 18.2 845 -2.1 924 -2.3 806

15 42.4 1258 -4.0 1221 -14.2 1192

15 48.3 1110 -54.5 1119 -35.8 1004

20 64.8 1518 11.2 1469 -11.2 1410

20 268.1 1473 -0.5 1445 -12.0 1286

Ave 66.2 934 -2.8 927 -11.6 861

In fact, the conclusion from [11] on non-Hanan optimization is also valid

under a higher order AWE model according to the experimental results shown

in Table 2.1 and 2.2. The leftmost column in each table lists the number of

sinks in each net. The technology parameters are same as those in [12]. The

experiment starts by constructing routing trees for each net through SART,

which is same as SERT [6] except that the Elmore delay model is replaced

by a fourth order AWE model. The experimental results from this step are

provided in column 2 and 3 in Table 2.1 and 2.2. The total wirelength is

denoted as W in unit of 100μm and the maximum delay violation for each

18

net is represented as umax in ps. Then, the optimization scheme in Figure

2.8 are performed on the SART trees also under a fourth order AWE model.

We restrict the connection point in line 6 of Figure 2.8 to be only Hanan

point in one variant of this optimization whose results are shown in column

4 and 5 in both tables. The results from original non-Hanan optimization are

in the rightmost two columns. We can see that routing solution using only

Hanan points sometimes results in positive delay violations, and these delay

violations may be eliminated through using non-Hanan points. Moreover,

using non-Hanan points can yield more wirelength reductions.

19

Chapter 3

Performance Driven Single Net

Routing

3.1 Introduction

As the VLSI technology develops into the deep sub-micron era, the intercon-

nect resistance is no longer negligible and its performance plays a critical role

to the whole circuit. As the result, many efforts [6, 10, 11, 13–27] have been

carried out in recent years to improve the interconnect performance. Accord-

ing to the classification in [13], these works have evolved along three major

aspects: the delay model, the objective formulation and the solution space.

The progress on each of these aspects will be briefly reviewed as follows.

When the interconnect resistance was not significant, it could be sim-

ply modeled as a lumped capacitance that is proportional to the wire length.

Therefore, in early research, the interconnect performance criterion was purely

geometric and focused on wire length based objectives such as reducing the

routing radius and the total wire length. As wires have become longer and

20

thinner, this geometric evaluation no longer suffices to reduce interconnect

delay as resistive effects become significant. A more elaborate delay model is

necessary to augment wire length considerations in performance evaluation.

The Elmore delay [5] model has been widely used due to its simplicity and

high fidelity [6]. Its simplicity not only removes the need for large amount of

computation, but also provides a platform on which many theoretical prop-

erties can be derived and exploited. One major Elmore delay based routing

method, SERT [6], grows the routing tree in a greedy fashion to minimize

the source-sink delay. Another Elmore delay application, the P-Tree algo-

rithm [14], first searches for a good permutation of the sinks and then limits

the solution space to the topologies induced by this permutation. In later

work, the drawbacks of Elmore model have been addressed and second [16]

and third order [17] models have been applied. Most recently, the work in [13]

suggested a table lookup method to remedy the deficiencies of the Elmore

delay model.

With regard to the objective formulation, the total wirelength (area) and

delay are usually the major targets. Minimizing total wirelength can reduce

fabrication cost, power consumption and improve the routability. All of

these advantages lead to the use of wirelength minimization as a common

baseline for objective formulations. For delay reduction, there are many

forms in which the objective may be stated, including minimizing either a

weighted sum of sink delays, or the maximum delay, or the critical sink

delay. As a more appropriate formulation, the research in [10,16,20] focuses

on satisfying the timing specification in an effort to trade off the unnecessary

delay reduction into area minimization.

The solution space of nodes in the routing tree has long been restricted

to the Hanan grid since it simplifies the problem, and it can be proven that

21

optimal solutions lie only on Hanan grid points if the unconstrained objective

is to minimize the wirelength or a weighted sum of sink delays [9]. However, if

we formulate the objective so as to satisfy the timing constraints, the optimal

Steiner points are very likely to lie at non-Hanan grid points, as indicated

in [10, 11]. The work of [10, 11] developed the MVERT algorithm, which

exploits the piecewise concavity of delay violation functions to search for the

optimal Steiner points. Its experimental results showed that expanding the

solution space to non-Hanan points can significantly reduce the wire cost.

In this work, we continue the effort of non-Hanan optimization to deal

with the condition where both timing and wire resources are stringent. We in-

tegrate buffer insertion and driver sizing with non-Hanan optimization in sep-

arate formulations to further improve the interconnect performance. These

two approaches resemble each other in term of their algorithmic skeleton,

although the nature of the problems is different.

Buffer insertion is a promising technique [21–26] that is essential for large

nets. Most of the methods in [21–26] are implemented through dynamic pro-

gramming in a bottom-up fashion. However, all of these methods have been

restricted to only Hanan grid routing. Moreover, each of these approaches

neglects the effects of restrictions to the buffer locations, i.e., it is assumed

that buffers can be inserted in any arbitrary position as long as they can

improve the interconnect performance. In real situations, this is not always

permissible because the optimal buffer location may already have been oc-

cupied by other cells and it is undesirable to disturb the placement. Most

recently, the work of [27] takes the restrictions to buffer locations into con-

sideration and suggests an exact algorithm for two-pin nets. The problem

environment we consider here is a limited set of buffer spaces where buffers

are to be inserted into the interconnect after the placement stage. The con-

22

cept of soft edge is employed to increase the possibility that a buffer space is

exploited. We guide each move in the optimization in a greedy fashion and

conduct buffer insertion and non-Hanan optimization (BINO) simultaneously

and iteratively until no further improvements are possible.

Another effort in our work is simultaneous driver sizing and non-Hanan

optimization (FAR-DS). We have investigated the curvature properties of

the delay as a function of the connection location and driver stage ratio in a

two-dimensional space under the Elmore delay model. Though the Elmore

model may be poor for specific points, it still provides a valid prediction

of qualitative properties [6]. According to the solution region properties,

we suggest two search schemes to find the optimal solution in the objective

that can minimize a weighted sum of the wire cost and the driver cost, while

satisfying the timing constraints. In both FAR-DS and BINO, we use a fourth

order AWE delay model [8] to assure the integrity of the optimization.

3.2 Motivation for Using Fourth Order AWE

(0, 0)

(-500, 400)
(70, 300)

(400, -200)

(800, 300)

(5000, 7000)

Figure 3.1: A routing tree on which Elmore delay gives large errors.

As interconnect wires become increasingly thinner and longer, the intercon-

nect resistance may overshadow the driver resistance. Consequently, the

23

downstream capacitance is shielded to the driver resistance by the intercon-

nect resistance. This effect is called resistive shielding [7]. The Elmore delay

does not correctly take the resistive shielding effect into account and tends

to overestimate the delay. This error can be remarkably large, especially for

the stub situation (i.e., when a sink that is close to the source co-exists with

a much longer wire), where the Elmore delay can be several times larger than

the actual delay.

Table 3.1: A comparison of the Elmore and the 4th order AWE delays with

SPICE.
Dist. SPICE Elmore Error 4th AWE Error

370 13.6 52.5 286% 12.8 -6%

600 9.5 39.8 319% 8.9 -6%

900 10.7 40.5 279% 10.5 -2%

1100 26.2 77.4 195% 25.5 -3%

12000 283.2 257.5 -9% 282.4 -0.3%

Table 3.1 shows an example of a net with five sinks to illustrate the

inaccuracy of the Elmore delay. The routing topology of this net is illustrated

in Figure 3.1. The load capacitance is the same for each sink. The delays at

all sinks are computed using the Elmore formula, fourth order AWE and a

SPICE transmission line model, and the percentage errors relative to SPICE

are calculated. The Manhattan distance from each sink to the source are

also listed for reference. We can see that the error of Elmore delay can be

over 300% and the delay from fourth AWE is clearly superior. In fact, as the

minimum feature size shrinks, this trend will become more and more severe.

To see how this will affect non-Hanan routing, consider the graph in

Figure 3.2. The graph plots the delay violation function against the location

of the connection point, z, as pictured in Figure 2.7. The dotted curve

24

0

Delay violation

z
CCz*

AWE

Elmore

Figure 3.2: An example where using the Elmore delay and a higher order

AWE delay may result in a different connection choice.

indicates the Elmore delay while the solid curve represents the fourth order

AWE result. The solution corresponds to the point closest to CC where the

delay violation function is negative or zero. For the Elmore delay, which

overestimates the delay near the source, no solution is found, whereas an

actual solution exists and corresponds to z∗.

On the other hand, we have observed that the Elmore model tends to

under-estimate delay at sinks far from the source1. This may lead to the

opposite error, as can be seen in the last row of Table 3.1. This under-

estimation may result in over-reduction of cost while the timing constraints

have not been satisfied yet. On the whole, a higher order model is greatly

superior to the Elmore model in handling non-Hanan points.

In the computation of fourth order AWE delay, we first use the RICE

algorithm [30] to obtain the moments. We solve the denominator of Padé

approximation result, which is a fourth order polynomial, using a closed-

1The Elmore delay is theoretically proven to be an upper bound on the delay of an RC

network in [28]. However, in practice, greater accuracies are obtainable by multiplying the

Elmore delay formula of [29] by a factor of ln 2, and we refer this quantity as the Elmore

delay in our discussion, and this may be either optimistic or pessimistic.

25

form formula to obtain the poles. After an inverse Laplace transformation,

the time-domain exponential functions are expanded about the Elmore delay

to fourth order Taylor series polynomials. A closed-form solution to a fourth

order polynomial exists and may be used to calculate the delay value. Since

the Elmore delay may be far off from the correct value, sometimes the expan-

sion about Elmore delay may still cause significant errors, though it is much

smaller than the error from the Elmore delay. We restrict such errors by an-

other iteration with expansion about the result from the first iteration. This

process is iterated until convergence, and we found that we always converged

within three iterations. This method is related to the Newton-Raphson root-

finding method: the Newton-Raphson method uses a first order Taylor series

in each iteration, and our method uses a fourth order expansion instead.

The reason that we choose fourth order instead of a second or third order

model is that a second order yields less accuracy and for many examples that

we tried, and we found that the third order model induces positive poles more

often. The computation overhead for models with orders greater than four is

large, since there is no closed form solution for equations with order beyond

four. The additional computation cost of fourth order AWE as compared to

a second order model is minor.

3.3 The Problem Environment and Problem

Formulation for BINO

The BINO algorithm is applied in a post-placement scenario where buffer

insertion is possible, but it is preferable to do so in regions that are left

unoccupied by any cells, so as not to disturb the placement. This method is

26

also applicable to MCM technology, where a buffer location is desired to be

within a chip and close to its chip bond pads, because it is not cost-effective

to insert a buffer either on the substrate between chips or within a chip but

far from any bond pad. The input to BINO then includes a set of pre-defined

available buffer spaces scattered in the routing region. These buffer spaces

are represented by small squares, as demonstrated by the dark grey areas b1

and b2 in Figure 3.3 (a). It is assumed that only one buffer can be inserted

in each space and the center of the buffer must lie within the square. Larger

buffer spaces can easily be expressed as a union of small spaces.

v

v

v

(d)(c)

(a) (b)

v

v

v

v v

v

vv

v v

v

v
v

2 2

3

3
3

1

1

00

1

2

1

b

2

b

1

2

0

5v

4v

1b
2

0

b

5v

4v

3

Figure 3.3: Buffer spaces, the territory box and their applications in buffer

insertion.

Intuitively, a buffer space is considered for buffer insertion only when a

routing path passes through it, since no extra wire cost is incurred under this

27

condition. However, even if no path passes through a buffer space, it may

be worthwhile for the wire to make small detour to increase the possibility

of exploiting a buffer space. Based on this idea, we define a territory box for

an edge as follows:

Definition 3.1 (territory box) For an edge (vi, vj), its territory box is a

rectangle specified by lower-left corner point (xmin, ymin) and upper-right cor-

ner point (xmax, ymax), such that:

xmin = min(xi, xj)− φ,

ymin = min(yi, yj)− φ,

xmax = max(xi, xj) + φ,

ymax = max(yi, yj) + φ,

where φ is a small amount of offset.

The idea of a territory box is demonstrated by the light grey regions in

Figure 3.3(b). Note that the territory box for the soft edge (v0, v3) is larger

than for any solid edges between v0 and v3. The rule that we will follow is as

follows: a buffer space is considered for buffer insertion in an edge only when

there is an overlap between this buffer space and the territory box of this edge.

In the example of Figure 3.3, buffer space b1 overlaps with the territory box

of edge (v0, v3) and b2 overlaps with the territory box of (v3, v2); therefore,

we can insert buffers v4 and v5 as in Figure 3.3(c). After the non-Hanan

optimization following the buffer insertion, the wire slack in Figure 3.3(c)

may be removed and the tree shown in Figure 3.3(d) may be obtained.

This example shows that the use of soft edges can greatly increase the pos-

sibility of overlaps as compared to using predetermined L-shaped connection

composed of two solid edges.

28

We consider both inverting and non-inverting type buffers in our work.

The inverting type buffer is simply an inverter and the non-inverting type

buffer is composed of a pair of cascaded inverters. The inverter model is the

same as the driver model in Chapter 2 and has a medium driver size.

v v

v v

v v

(a) (b)

v* v*

0 0

1 1

2 2

Figure 3.4: An example that buffer insertion can reduce wire cost further in

non-Hanan optimization.

The motivation for combining buffer insertion with non-Hanan optimiza-

tion can be illustrated by the example in Figure 3.4. In order to reduce wire

cost, it is desired to move the connection point as close to CC as possible,

i.e., to maximize z. However, the value of z may be capped by the constraint

of non-positive delay violation as illustrated in Figure 3.4(a). The utility of

buffer insertion is to relax this timing constraint, if possible, so as to achieve

further wire cost reduction as in Figure 3.4(b).

We use ui to represent the delay violation at sink vi. The gate and

drain capacitance of an inverting buffer are denoted as Cgb and Cdb. The

total wirelength is represented as W and γ is the weighting factor for the

wire cost. The simultaneous buffer insertion and non-Hanan optimization

problem is to minimize a weighted sum of buffer and wire cost subject to

timing constraints. This is formulated as follows.

29

Problem 3.1 Given a source v0, a set of sinks Vsink = {v1, v2...vn}, timing

specifications Q = {q1, q2, ..., qn} for all sinks and a set of available buffer

spaces P = {p1, p2, ..., pm}, construct a Steiner routing tree and choose a

subset Biv ⊆ P and Bni ⊆ P on which inverting and non-inverting buffers

are inserted, respectively, such that the following is solved:

minimize γcW + (1− γ)(Cgb + Cdb)(|Biv|+ 2|Bni|)
subject to: maxvi∈Vsink

(ui) ≤ 0

for a specific γ 0 ≤ γ ≤ 1

(3.1)

The purpose of including c (wire capacitance per unit length), Cgb and

Cdb in the objective function is to normalize the wire and the buffer cost into

comparable quantities.

3.4 Problem Formulation and Properties for

FAR-DS

3.4.1 Problem Formulation for FAR-DS

The driver sizing problem is to choose optimal number of driver stages h and

the proper size for each driver. We choose the ratio of driver size at one stage

to its previous stage to be uniform and refer to it as the stage ratio ρ.

The objective of FAR-DS is to minimize the cost of the routing tree,

subject to a timing constraint at each sink. In contrast to [10], we extend

the cost here to include both wire cost and driver cost, i.e., we perform

topology optimization and driver sizing simultaneously. The rationale behind

this is to permit the driver to share the task of delay optimization with the

30

interconnect by sizing it, thereby obtaining a better result than optimizing

the driver size and interconnect topology separately.

We formally state the problem formulation as follows:

Problem 3.2 Given a source v0, a set of sinks Vsink = {v1, v2...vn}, timing

specifications Q = {q1, q2, ...qn} for all sinks, and stage ratio bound ρmax,

construct a Steiner routing tree and find ρ, h such that:

minimize γcW + (1− γ)(Cg + Cd)
∑h

j=1 ρj

subject to: maxvi∈Vsink
(ui) ≤ 0

and 1 ≤ ρ ≤ ρmax.

(3.2)

The second term in the objective function represents the total driver

capacitance. The objective function can be interpreted as a minimization

of the total wirelength and total driver capacitance. The parameter γ is a

user-specified weighting factor.

3.4.2 Properties of Solution Regions for FAR-DS

For a general connection of a node and its downstream subtree to a partial

tree, as illustrated in Figure 2.6, where a node vk is to be connected to an

edge (vi, vj), we investigate the properties of the delay violation function with

respect to z and ρ in a two dimensional space. If the number of stages is

h, the delay from the first stage to the last stage of the cascaded drivers is

given by:

TD = hR0(Cd + ρCg) (3.3)

Through a few algebra steps, we can combine the interconnect delay dis-

cussed in Section 2.4 with TD to obtain a general form of the delay violation

31

of any sink ui as a function of the connection position z and ρ, under the

Elmore model as:

ui = f(z, ρ) = −a2rcz
2 +

R0(Ct − cz)

ρh
+ a1z + R0Cghρ + a0 (3.4)

where

a2 = 0 or 1, 0 ≤ z ≤ CC < Ct

c
, 1 ≤ ρ ≤ ρmax, (3.5)

with a0 and a1 being constants. The parameter Ct is the total load capaci-

tance seen by the driver in the last stage when vk is connected to vi directly.

When ρ is fixed, ui = f(z) is a quadratic function of z and the coeffi-

cient of the second order term is non-positive. Therefore we can obtain the

following result:

Property 3.1 ui = f(z, ρ) is a concave function for a constant value of ρ.

If we keep z constant, there are also properties that will help the search

for the optimal solution. These properties can be found by investigating the

partial derivatives of ui with respect to ρ as follows:

∂ui

∂ρ
= −R0(Ct − cz)hρ−h−1 + R0Cgh (3.6)

∂2ui

∂2ρ
= R0(Ct − cz)h(h + 1)ρ−h−2 (3.7)

Since Ct > cz, ∂2ui

∂2ρ
> 0 is always true, thus we have the following prop-

erty:

32

Property 3.2 ui = f(z, ρ) is convex function for a constant value of z.

If we let ∂ui

∂ρ
= 0, we can obtain a curve defined as follows:

ρ = h+1

√
Ct − cz

Cg
(3.8)

Property 3.3 f(z, ρ) has minimum value along the curve defined by equa-

tion (3.8).

This property is especially useful in solution search, since it predicts the

bottom of the valley shaped delay violation function surface in the two-

dimensional space of z and ρ. One observation is that the curve in equation

(3.8) is independent of which sink is considered, i.e., equation (3.8) defines

the bottom of valley for the delay violation functions of all the sinks. We

call the curve defined by equation (3.8) the valley curve for delay violations.

In equation (3.8), when z is at CC, the numerator reaches the minimum

and becomes the total load capacitance seen by the driver in the last stage

when vk is connected to CC. Obviously, this total load capacitance is al-

ways greater than the minimum gate capacitance, Cg, of a driver. This fact

provides the following property:

Property 3.4 If 0 ≤ z ≤ CC, then ρ = h+1

√
Ct−cz

Cg
> 1.

If we substitute equation (3.8) into equation (3.4), we can obtain another

important conclusion:

Property 3.5 ui = f(z, ρ) is a concave function of z along the curve defined

by equation (3.8).

33

This valley curve also sets a border for different monotone properties with

respect to ρ as follows:

Property 3.6 For a specific z, f(z, ρ) is a monotone decreasing function of

ρ when ρ ≤ h+1

√
Ct−cz

Cg
.

These properties are derived from Elmore delays. Though the Elmore

delay may have large errors for specific points, its qualitative fidelity is still

true [6] and can serve as a good strategic guide. Our experimental results

also support this assertion.

3.5 Algorithms

Both BINO and FAR-DS consist of two phases. Phase I is the routing tree

construction process, which is the same for BINO and FAR-DS. This proce-

dure is called SART (Steiner AWE Routing Tree), and is similar to SERT [6]

except that the Elmore model is replaced by a fourth order AWE model and

soft edges are employed.

In SART, starting with a single source, a partial routing tree is grown

in a greedy fashion. In each growing step, a previously unconnected sink is

selected and connected to an edge in the partial tree such that the maximum

delay is minimized.

Phase II of BINO and FAR-DS are different, but share a similarity in the

non-Hanan optimization framework described in Section 2.4.

3.5.1 Algorithm for BINO

34

Algorithm: BINO IterativeBufferInsertion

Input: SART T (V, E), a set of buffer spaces P

Output: Buffered and non-Hanan optimized routing tree T

1. While P �= ∅ and ∃ improvement

2. For each p ∈ P

3. For each edge (vi, vj) ∈ E

4. If p overlaps with the territory box of (vi, vj)

5. Insert a buffer into (vi, vj) at p tentatively

6. Assign inverting/non-inverting type ∀ buffers ∈ T

7. Perform non-Hanan optimization for T (Figure 2.8)

8. Insert buffer at pbest, which gives the largest improvement

9. P ← P − pbest

Figure 3.5: BINO, iterative buffer insertion algorithm.

In BINO, the non-Hanan optimization framework is embedded in a greedy

buffer insertion scheme illustrated by Figure 3.5. On each buffer space, we

insert a buffer tentatively and conduct non-Hanan optimization. After all of

the buffer spaces have been tested, the solution that can provide the largest

improvement is chosen as the final decision. This process is repeated itera-

tively until there is no improvement or no buffer space is left. The optimal

solution of assigning inverting or non-inverting type to each buffer (line 6 in

Figure 3.5) can be achieved through dynamic programming.

Since we only insert one buffer in each iteration, the ability to obtain

an optimal buffer insertion solution is hindered, as shown by the single-sink

example in Figure 3.6. It is well known that optimal buffer locations often

distribute evenly along an interconnect path [24]. Therefore, for the net in

Figure 3.6, the optimal solution may be as shown in Figure 3.6 (d). If we

insert only one buffer in an iteration, the first iteration is likely to result

in the scenario shown in Figure 3.6 (b) and the optimal solution cannot be

35

reached.

(c)

(a) (b)

(d)

Figure 3.6: Iterative buffer insertion vs. iterative buffer deletion.

In order to alleviate the above difficulty, we supplement the method with

an iterative buffer deletion procedure using a method similar to [18], that is

described in Figure 3.7. In this scheme, we first insert buffers at all spaces

that overlap with any edges. Then we delete one buffer in each iteration in

a greedy fashion similar to iterative buffer insertion. Since this proceeds in

the opposite direction as compared to the iterative buffer insertion, it plays

a complementary role. For the example in Figure 3.6, the iterative buffer

deletion starts with (c) and can naturally result in the optimal solution in

(d). On the other hand, if the optimal solution is (b), iterative buffer deletion

is worse than iterative buffer insertion.

In our work, we perform both iterative buffer insertion and iterative buffer

deletion independently for a net and choose the better of the two results.

3.5.2 Algorithm for FAR-DS

In Phase II of FAR-DS, a two-dimensional search replaces the role of the

quasi-binary-search in MVERT, which is line 6 in Figure 2.8, to find an

optimal connection point and driver size simultaneously.

When we reconnect a node vk to an edge (vi, vj), we look for a 3-tuple

36

Algorithm: BINO IterativeBufferDeletion

Input: SART T (V, E), a set of buffer spaces P

Output: Buffered and non-Hanan optimized routing tree T

1. B ← ∅
2. For each p ∈ P

3. For each edge (vi, vj) ∈ E

4. If p overlaps with the territory box of (vi, vj)

5. Insert buffer b into (vi, vj) at p

6. B ← B ∪ b

7. Assign inverting/non-inverting type ∀b ∈ B

8. While B �= ∅ and ∃ improvement.

9. For each buffer b ∈ B

10. Remove b from T tentatively

11. Assign inverting/non-inverting type ∀b ∈ B

12. Perform non-Hanan optimization for T (Figure 2.8)

13. Remove buffer bbest, which gives the largest improvement

14. B ← B − bbest

Figure 3.7: BINO, iterative buffer deletion algorithm.

(z, ρ, h) such that the objective function of Problem 3.2 is minimized while

the delay violations for all sinks are non-positive. We vary h between 1 and

hmax and search an optimal (z, ρ) pair in a two dimensional plane for a fixed

h value.

For this case, cW = Ct − cz and the objective in Problem 3.2 can be

translated to:

minimize g = −γcz + (1− γ)(Cg + Cd)
∑h

j=1 ρj

subject to: maxvi∈V (ui) ≤ 0

and 0 ≤ z ≤ CC, 1 ≤ ρ ≤ ρmax.

(3.9)

37

(1+)/2

S

S S

S

0 0

1

0

0 0

ρ

1

z

ρ

ρρ

1

0 CC

valley curve
a

b

ρ

1

0 CC

a

b

ρ

g

max

maxρmax

ρ

objective objective

maxρ

CC

(a)

(d)(c)

(b)

valley curve

ρ

1

0 CC

a

bρ

g a
objectivevalley curve valley curve

b

g
ρ

1

0

g objective

g

S

z

z
z

S

z

0

0

1

0

0

1

z

z

0 0

0

1

0

Figure 3.8: Solution search scheme for FAR-DS.

For a specific value of g, the objective function above corresponds to a

curve in the (z, ρ) plane, as the objective curves shown in Figure 3.8. The

objective (3.9) can be interpreted as to find a point in (z, ρ) plane such

that the constraints in (3.9) are satisfied at this point and the point is on a

objective curve as low as possible.

We will illustrate the optimal solution search scheme through Figure 3.8.

The solution search can be restricted within the rectangle bounded by 0 ≤
z ≤ CC and 1 ≤ ρ ≤ ρmax. Consider the valley curve defined by equation

(3.8). This curve is always above ρ = 1 in the interval 0 ≤ z ≤ CC, according

to Property 3.4 . One common scenario is that this valley curve intersects

with upper border of the rectangle at a point a and with the right border

at b, as in Figure 3.8(a). From Property 3.3 and Property 3.6, we can say

38

that in the rectangle defined above, ui reaches its minimum on the segment

ρ = ρmax to the left of a, and on valley curve specified by equation (3.8) to

the right of a. These two segments can be integrated into a single function:

ρ = min(ρmax,
h+1

√
Ct − cz

Cg
), 0 ≤ z ≤ CC (3.10)

which is the thickened line in Figure 3.8 (a). Note that equation (3.10) is

valid even when the valley curve does not intersect the rectangle, or if the

set of points on the segment to the left of point a is empty. This function

provides us with a convenient way to check for the existence of a solution

within the rectangle. From Property 3.3 and Property 3.6, if no solution

that satisfies all constraints exists on the curve defined by equation (3.10),

then we can say that no solution exists within the rectangle. According to

Property 3.1 and Property 3.5, ui is a concave function on the curve (3.10),

both to the left and to the right of point a. Thus, we can apply the quasi-

binary-search technique in [10,11] to search for the rightmost solution on this

curve that satisfies all constraints. If such a solution exists, we call it the

zero order solution, designated as S0(z0, ρ0) in Figure 3.8(a).

After the zero order solution has been found, the region can be further

refined to search for the optimal solution. This is demonstrated in the shaded

region in Figure 3.8 (a). The region z > z0 can be excluded, since no feasible

point exists on the valley curve in this region. An objective function curve

is drawn through S0, which satisfies:

g0 = −γcz0 + (1− γ)(Cg + Cd)
h∑

j=1

ρj
0 (3.11)

We can eliminate the region that lies above this curve, because the value

of g at all points above this line exceeds g0, and hence inferior to the currently

39

minimum value g0. The remainder of the search space is the sector confined

by the objective function curve defined by (3.11), by z = z0 and by ρ = 1,

which is indicated by the shaded region in Figure 3.8(a).

Algorithm: FAR-DS ReconnectVSearch

Input: Routing tree T \Tk, subtree Tk, node vk, edge eij

Output: Optimal connection between vk and (vi, vj), ρ and h

1. For h = 1; h ≤ hmax; h++;

2. Search solution along valley curve defined by equation(3.10)

3. If no solution found, return

4. S0(z0, ρ0)← rightmost solution

5. SearchSector(S0, 1)

Function: SearchSector(Stop, ρbase)

F1. Obtain curve gtop = −γcztop + (1− γ)(Cg + Cd)
∑h

j=1 ρj
top

F2. ρmid = (ρtop + ρbase)/2

F3. Smid(zmid, ρmid)← intersection between curve gtop and ρ = ρmid

F4. Search solution along ρ = ρmid between zmid and ztop by quasi-binary-search

F5. If no solution found

F6. If ρmid − ρbase < resolution, return no solution

F7. Return SearchSector(Stop, ρmid) and SearchSector(Smid, ρbase)

F8. Else

F9. If ρmid − ρbase < resolution, return rightmost solution

F10. Smid(zmid, ρmid)← rightmost solution

F11. Obtain curve gmid = −γczmid + (1− γ)(Cg + Cd)
∑h

j=1 ρj
mid

F12. Stop(ztop, ρtop)← intersection between curve gmid and z = ztop

F13. Return SearchSector(Stop, ρmid) and SearchSector(Smid, ρbase)

Figure 3.9: FAR-DS, reconnection and driver sizing in valley-guided search.

The search within this sector also proceeds in a binary search fashion, by

starting from the middle segment defined by ρ1 = (1 + ρ0)/2, which is the

thickened segment in Figure 3.8 (b). On this segment, Property 3.1 holds and

40

a quasi-binary-search can again be applied to obtain the rightmost solution

on it, namely, S1(z1, ρ1); we refer to this as the first order solution. After

the first order solution has been found, the previously described solution

refinement technique can be used to obtain two new smaller sectors shown

by the shaded regions in Figure 3.8 (c) where the optimal solution will be

searched. Even if there is no solution on this segment, the search region can

be refined to the two sectors like in (d). We call this solution search scheme

as valley-guided search (V-search), and describe it in Figure 3.9.

The above is the method to search optimal (z, ρ) for a specific h. The

optimal h is found by a sweep from h = 1 to h = hmax and the above search

is carried out for each h value. The value of hmax is given by [31]:

hmax =

⌈
ln(Ct/Cg)

ln ρ∗

⌉
, (3.12)

ln ρ∗ = 1 +
Cd

Cgρ∗ . (3.13)

Since the use of valley curve increases the dependency of the solution on

the Elmore delay model, and we use a higher order AWE model to evaluate

the delays for every sink in our algorithm, it is possible that the discrepancy

between Elmore model prediction and the actual AWE evaluation may give

rise to a suboptimal solution.

We suggest an alternative search method called the iterative search (I-

search) scheme that does not depend on Elmore model quantitatively and

illustrate it in Figure 3.10. In this method, we begin with an initial ρ and

perform non-Hanan optimization to obtain an optimal z for this value of ρ.

Next, this z is fixed and an optimal ρ is searched and so on. This process is

repeated until there is no further improvement. From Property 3.2, we know

41

that the delay violation function ui is a convex function along ρ direction,

thus, we cannot apply the quasi-binary-search suggested by [10] along ρ di-

rection. We perform the search in a manner between binary search and linear

search. If the maximum delay violation is non-positive for a specific value of

ρ, we continue to search a better solution at a smaller ρ value, otherwise, we

must search at both larger and smaller values.

Algorithm: FAR-DS ReconnectISearch

Input: Routing tree T\Tk, subtree Tk, node vk, edge (vi, vj)

Output: Optimal connection between vk and (vi, vj), ρ and h

1. For h = 1; h ≤ hmax; h++

2. ρ← initial guess

3. While ∃ improvement

4. Search zbest which gives best improvement while ρ is fixed

5. z ← zbest

6. Search ρbest which gives best improvement while z is fixed

7. ρ← ρbest

Figure 3.10: FAR-DS, reconnection and driver sizing in iterative search.

3.6 Complexity Analysis

From [11], the computation cost for MVERT is O(n4 + n4 · L
ε
). The first

term corresponds to the Phase I in MVERT, which is a variation of SERT.

The parameter L is the maximum length over all edges and ε represents the

resolution for the quasi-binary-search in the Phase II of MVERT. Since the

quasi-binary-search may fall into a linear search in the worst case, there is

42

no logarithmic term here.

Although we use the fourth order AWE instead of Elmore in BINO, as

the number of iterations is fixed, the complexity for each delay calculation

remains O(n). Thus the cost for Phase I (SART) in BINO is O(n4). In

Phase II of BINO, there are two layers of iterations outside of each non-

Hanan optimization, each of which is upper-bounded by the number of buffer

spaces. The combination of the total cost is O(m2 · n4 · L
ε
). This conclusion

is true for both iterative buffer insertion and iterative deletion.

The complexity of FAR-DS is same as MVERT in the outer loops. The

difference is in the computation cost of reconnection part (line 6 of Fig. 9),

where FAR-DS performs a search in the entire (z, ρ) space. The computation

factor from searching along the ρ direction is bounded by (ρmax−1)/τ , where

τ is the resolution on ρ. Since the h value is swept from 1 to hmax, the

complexity of FAR-DS is O(hmax · n4 · L
ε
· ρmax

τ
).

The above results only provide a loose bound, because the worst case for

the quasi-binary-search along the z direction is almost impossible in practice.

Therefore, the computation cost in average case is one order lower than the

above theoretic results.

3.7 Experimental Results

The experiments are emphasized to test the improvement from our algo-

rithms in terms of both timing and cost objectives defined in the problem

formulation. Each signal net is randomly generated and tested for BINO and

two FAR-DS algorithms, as well as SERT and MEVRT for comparison. In

order to obtain a more general conclusion, we include both IC and MCM

43

technology in the experiments and the number of sinks ranges from 5 to

20. To form a common base for comparisons with FAR-DS, we use cascaded

drivers also in SERT, MVERT and BINO, and choose h = 1 and ρ = 2.5,

which can provide a middle level of driving ability. For all of the timing

results, driver and wire delays are calculated from RC and a fourth order

AWE model, respectively.

The experimental results are shown in Table 3.2 and Table 3.3 for IC and

MCM technology, respectively. The parameters for MCM are from [6]. The

IC parameters correspond to 0.18 μm technology and are scaled from the

data in [6]. The buffer space locations for BINO are generated randomly.

The area of each buffer space is chosen to be 100μm × 100μm for IC and

200μm× 200μm for MCM. According to our experiments, the variations of

delay from the change of a buffer position within a buffer space is small and

can be neglected. The offset φ for the territory box of an edge is set to be

half of the buffer space size. In the experiment for FAR-DS, the value of ρmax

was chosen as 4 for both IC and MCM technology. Since we consider the

situation where the interconnect resources are more stringent, the weighting

factor for wire cost is chosen to be 0.7 for both BINO and FAR-DS.

The parameter W is the total wirelength and the umax is the maximum

delay violation according to the fourth order AWE model results. The column

labeled m corresponds to the number of input buffer spaces, and to its left

is the number of buffers, |B|, finally inserted. The last row provides the

percentage change of total wirelength compared to the result of SERT. The

number of sinks for each test is given in column 3 of Table 3.4. The CPU

time in seconds for BINO and FAR-DS are also listed in Table 3.4.

Since the timing constraints are quite stringent, most of the maximum

delay violations, umax, from the results of SERT are positive. Sometimes

44

Table 3.2: Experimental results on .18μm IC, h = 1, ρ = 2.5 for SERT,

MVERT and BINO.
SERT MVERT BINO FAR-DS: I-search/V-search

net W umax W umax W umax |B|/m W umax ρ h

I1 226 4.51 243 -1.19 189 -9.48 3/6 187/187 0/0 2.9/2.9 3/3

I2 219 -1.26 166 1.31 153 -2.78 1/7 155/155 -1.70/-0.02 4.0/2.5 1/1

I3 292 -2.83 280 -1.03 231 -5.31 1/8 235/235 -0.01/-0.07 2.6/2.7 3/3

I4 374 -0.82 341 -0.54 280 -1.69 2/8 295/282 -0.07/-0.41 1.8/1.9 3/3

I5 310 -0.45 257 1.48 249 -2.87 1/7 252/252 -0.02/-0.33 2.9/3.1 1/1

I6 401 1.92 381 0.91 348 -4.32 1/8 349/349 -1.85/-0.02 4.0/3.1 1/1

I7 462 7.57 383 5.94 367 -2.28 2/9 370/370 -0.21/-0.72 1.7/1.8 3/3

I8 626 4.37 555 -0.25 470 -0.27 2/10 494/494 0/-0.09 2.1/3.6 5/3

I9 595 10.84 537 8.26 469 -0.02 3/10 488/495 -0.01/-0.43 3.4/1.9 3/3

I10 564 9.05 481 4.88 433 -1.60 2/11 452/452 -0.06/-0.47 1.9/1.9 3/3

Ave ΔW (%) −10 −22 −20/ − 20

MVERT even results in a worse delay violation than SERT, due to errors from

the Elmore delay model. In other cases, the improvements from MVERT on

both delay and wire cost are limited and the timing constraints are often

unsatisfied, because the specification is unachievable without driver sizing or

buffer insertion. This hinders the ability of pure non-Hanan optimization

to reduce the cost further and BINO or FAR-DS becomes a necessary step.

Both BINO and FAR-DS can also satisfy the timing constraints that are

impossible for SERT and MVERT.

Besides timing improvement, we can see that BINO and FAR-DS can

reduce significantly more cost than MVERT under these somewhat harsh

conditions. Sometimes MVERT may even increase the wirelength to meet

the timing constraint which can be seen from the result of the first net in IC

technology. The results from the two different variants of FAR-DS have no

significant differences.

Comparing the experimental results from BINO and FAR-DS, we can see

that BINO can provide more wire cost reduction than FAR-DS in most cases,

45

Table 3.3: Experimental results on MCM, h = 1, ρ = 2.5 for SERT, MVERT

and BINO.
SERT MVERT BINO FAR-DS: I-search/V-search

net W umax W umax W umax |B|/m W umax ρ h

M1 444 1.82 427 0.37 332 0 1/6 340/347 0/-0.14 1.7/1.8 3/3

M2 429 1.21 410 1.17 332 -0.71 1/7 376/357 -0.02/-0.07 1.8/4.0 3/1

M3 478 -0.57 454 0.17 381 -4.91 1/6 412/405 0/0 2.2/2.5 3/3

M4 617 4.14 539 3.59 480 -2.10 1/10 506/506 -0.04/-0.11 1.9/3.3 3/1

M5 624 -0.55 505 1.08 465 -0.96 2/7 482/482 -0.14/-0.01 4.0/3.8 1/1

M6 618 0.99 519 -0.07 486 -2.84 1/8 480/480 -2.01/-0.61 4.0/2.7 1/1

M7 810 3.80 755 2.43 652 -0.64 2/10 706/698 -0.04/0 4.0/3.4 1/1

M8 797 -0.99 695 0.37 656 -0.45 1/9 660/660 -0.01/-0.01 3.7/3.9 1/1

M9 1253 4.69 1149 4.06 900 -0.30 2/12 962/979 -0.12/-0.36 1.9/2.1 3/3

M10 1025 3.65 883 3.13 791 -1.91 2/8 826/862 -0.03/-0.10 3.7/2.7 1/3

Ave ΔW (%) −10 −23 −19/ − 19

and the larger timing slacks from BINO also indicate its potential on dealing

with even more stringent timing constraints. Although FAR-DS is not so

powerful as BINO, it shows an adaptive nature that can often trade off the

timing slack into less driver cost. This is especially true for the V-search

scheme of FAR-DS, whose most timing slacks are close to zero.

These experiments were carried out on a SUN Ultra-10 station. The

computation time of FAR-DS mostly depends on the size of signal nets while

the CPU time of BINO is more irregular because it also depends on the

number of buffer spaces overlapping with the routing tree. In most cases,

the CPU time is within one minute. In the worst case for a net of 20 sinks,

the run time is less than four minutes for both FAR-DS and BINO. On the

whole, the computational cost of our algorithm is reasonable, since these

optimizations are carried out only for global timing-critical nets.

We also perform experiments to check the effect from using soft edges on

the same set of nets and the result is shown in Table 3.5. This result confirms

the conclusion that using soft edges can greatly increase the possibility that

46

Table 3.4: Number of sinks and CPU times.
CPU

tech net n BINO FAR-DS:I FAR-DS:V

IC I1 5 9 2 2

I2 5 6 2 3

I3 5 3 3 3

I4 10 24 13 19

I5 10 14 19 25

I6 10 33 14 19

I7 15 61 35 49

I8 15 86 64 86

I9 20 204 119 166

I10 20 88 79 104

MCM M1 5 12 3 4

M2 5 5 3 5

M3 5 3 3 5

M4 10 38 16 19

M5 10 9 17 24

M6 10 34 14 18

M7 15 81 43 63

M8 15 78 42 53

M9 20 204 121 153

M10 20 105 84 124

buffer spaces overlaps with routing edges.

3.8 Conclusion

When we extend the non-Hanan optimization to improve the performance

of critical nets where both timing and wire resources are stringent, buffer

insertion is shown to be a strong augmentation to the timing optimization

toolkit, even with location restrictions. A combination of driver sizing and

non-Hanan optimization can provide a continuous two-dimensional space. A

search for the optimum in this space may be guided by properties derived

47

Table 3.5: Comparison of the number of overlaps between buffer spaces and

routing edges with and without using soft edges

nets # overlaps w/o soft edge # overlaps w soft edge

20 34 71

from the Elmore delay model, which may have large quantitative errors but

good qualitative fidelity. These properties are used to direct heuristics that

use a fourth order AWE model for wire delay calculation. For drivers, a more

accurate model can be applied in place of an RC switch model in a similar

fashion. Experimental results show that both BINO and FAR-DS can bring

both timing and wire cost improvements significantly.

48

Chapter 4

Routing for Buffer Blockages

and Bays

4.1 Introduction

Buffer insertion has become a necessary step in modern VLSI design (see

Cong et al. [32] for a survey), especially for interconnect performance opti-

mization. To the first order, interconnect delay is proportional to the square

of the length of the wire. Buffer insertion effectively divides the wire into

smaller segments, which makes the delay almost linear in terms of wire length.

Additional advantages of buffer insertion, such as noise avoidance [33], will

make this optimization even more pervasive as the ratio of device to inter-

connect delay continues to decrease.

Several works have studied the delay-driven buffer insertion problem.

Closed form solutions have been proposed in [24, 34–36]. Van Ginneken’s

algorithm [21] is perhaps the best known work on buffer insertion. His dy-

namic programming algorithm finds the optimal buffer placement under the

49

Elmore delay model. Several extensions to this work have been proposed

(e.g., [22,25,33,37–39]). All of these works (except for [22,25]) assume that a

Steiner tree is given and that buffers must be placed along the Steiner wires.

The works of [22,25] also perform routing of the tree during buffer insertion

but do not consider blockages.

When attempting to insert buffers into a floorplanned design (especially

a hierarchical one), buffers may not be placed on top of pre-existing macros

or blocks; we refer to these regions as blockages. If the existing Steiner tree

has been routed almost entirely over blockages, then any buffer insertion

algorithm that uses the routing topology will fail to find a solution. Figure

4.1(a) shows an example 2-pin net whose route runs over a large blockage,

thereby making buffer insertion infeasible. However, buffers may be necessary

not only to improve timing, but also to meet target slew and capacitance

constraints. If one re-routes the tree as in Figure 4.1(b), then buffers can be

judiciously inserted, albeit for an additional wire length cost.

In this methodology, the Steiner tree serves as a guide for buffer insertion,

but does not represent the final route. The actual routing from the original

pins to the buffers is performed after buffer insertion by the global router.

Figure 4.1(c) shows how the global router may re-route the newly created nets

while considering delay, noise, congestion, etc. Without this final step, the

regions of the chip without blockages would become unnecessarily congested

with interconnect.

Sometimes, the best Steiner tree construction will avoid some, but not

all, of the the blockages. Figure 4.2 illustrates such an example. In (a), the

existing route is completely blocked for buffering, while in (b), the re-routed

tree avoids all blockage, allowing buffers to be inserted. However, the most

efficient solution is shown in (c) which avoids only some of the blockage.

50

(a) (c)(b)

Figure 4.1: Example of how an alternative Steiner tree can enable buffer

insertion. A tree routed exclusively over blockage (a) can be re-routed around

the blockage (b), which enables buffer insertion. The newly created nets can

then be globally routed over blockage (c).

The problem of buffer insertion in the presence of blockage constraints has

been recently addressed in [27, 40]. The method in [40] optimizes the rout-

ing tree topology and inserts buffers simultaneously. While it obeys blockage

constraints, the method makes no effort to construct routes that avoid block-

age. Zhou et al. [27] present a clever approach which allows routing over some

blockages while avoiding others. Their algorithm uses maze routing and dy-

namic programming techniques to find the buffered path with minimum delay

(while obeying blockage constraints). However, the algorithm is limited to

2-pin nets.

In some design methodologies, it may be suitable to pre-allocate space for

buffers during floorplanning, rather than trying to squeeze buffers between

large blocks during physical design, which can cause both logical and wiring

congestion. We call these pre-allocated regions buffer bays. For this method-

ology, the buffer insertion tool can view the entire layout area as blockage

except for the buffer bays. Figure 4.3(a) shows an example of a two-pin net

that does not cross any buffer bays and is thus totally blocked from buffer

insertion. By re-routing the tree through a buffer bay (b), buffers can be

suitably inserted (c).

This work makes the following contributions:

51

(c)(a) (b)

Figure 4.2: An example showing the benefit of not avoiding all blockage.

A net routed totally over blockage (a) prevents any buffer insertion, while

totally avoiding blockage (b) requires three buffers to be inserted. However,

the best solution (c) avoids only some blockage which still permits two buffers

to be inserted.

• We propose a general Steiner tree problem formulation for the applica-

tion of buffer insertion with either blockage or bay constraints.

• We present a new Steiner tree construction that derives a heuristic

solution to this problem. The algorithm iteratively rips up a sub-path

of an existing Steiner tree and re-connects the two remaining sub-trees.

Maze routing is used to achieve the lowest possible cost for this re-

(a) (b) (c)

Figure 4.3: Buffer bay example. A tree which does not cross any buffer bays

(a) can be re-routed through a buffer bay (b) which enables buffer insertion

(c).

52

connection.

• Several speed-up techniques have been developed. These include the

use of a customized grid graph that is appropriately sparsified, and

the application of branch-and-bound methods that greatly improve the

computational efficiency, without significantly altering the quality of

the results.

• We show that for industry designs, our Steiner tree heuristic, when

used with an effective buffer insertion algorithm, results in more use-

ful solutions than a Steiner tree heuristic that does not account for

blockages.

In contrast to the works of [25,27,40], which simultaneously insert buffers

during routing, our methodology first constructs the Steiner tree, and then

inserts buffers. The simultaneous approach is arguably superior considering

that one cannot design the best tree until buffer locations are known. How-

ever, the simultaneous operations of tree construction and buffer insertion

necessitate that the buffering component to be somewhat simplistic. The

buffer insertion tool that we adopt has a wide user base and has several

sophisticated features. It can

• handle a library of inverting and non-inverting buffers [39],

• simultaneously fix noise, slew and capacitance violations [33],

• run with higher-order gate and interconnect delay computations [37],

• trade off the number of buffers inserted with solution quality [39],

• simultaneously perform wire sizing,

53

• and insert buffers to conform with the net’s hierarchical structure.

It is neither prudent nor necessarily feasible to integrate a simultaneous

Steiner tree construction while maintaining both the features and perfor-

mance of the tool as it currently exists.

4.2 Problem Formulation

Given a unique source v0 and a set of sinks Vsink = {v1, v2, ..., vp}, a rectilinear

Steiner tree (RST) T (V, E) is a spanning tree in the rectilinear plane that

connects every node in V = {v0} ∪ Vsink ∪ VSteiner, where VSteiner is a set of

additional Steiner nodes. The traditional definition of VSteiner includes two

types of nodes: (i) internal Steiner nodes of degree three or four, denoted by

the set Vinternal, and (ii) bend Steiner nodes of degree two that denote a path

switch between a horizontal and a vertical direction, denoted by the set Vbend.

For the purposes of our discussion, we add a third type of node to VSteiner:

a node is a boundary node, belonging to the set Vby, if it has degree two, one

incident edge lies over blockage, and the other incident lies in a blockage-free

region. For example, the RST in Figure 4.4 shows a Steiner tree with source

V0 = s and sinks Vsink = {d, i, k}. All the other nodes are in VSteiner with

b ∈ Vinternal, g, j ∈ Vbend, and a, c, e, f, h ∈ Vby.

Definition 4.1 (2-path) A 2-path of a tree T (V, E) is a path p(u, v) ∈ T ,

{(u, v1), (v1, v2), . . . , (vm, v)} such that {v1, . . . , vm} ⊆ Vby ∪ Vbend and u, v ∈
{v0} ∪ Vsink ∪ Vinternal.

Every tree T can be uniquely decomposed into a set of 2-paths. For

example, the tree in Figure 4.4 can be decomposed into four 2-paths:

p(s, b), p(b, d), p(b, i) and p(i, k).

54

a b

c

d

e f g

h

i j

k

s

Figure 4.4: An example Steiner tree showing the different node types.

Unlike traditional maze routing [41,42], we permit the routes to intersect

blockages, although it is preferable to avoid them. Hence, our cost function

imposes a higher penalty on tree edges that intersect blockages.

A rectangle r has a unique bounding box (x1, y1), (x2, y2), whereby x1 ≤ x2

and y1 ≤ y2. Given a set of rectangles B (i.e., the blockage map) , we define

an edge e ∈ E to be inside B (denoted by e ∈ B) if there exists a rectangle

r ∈ B such that both endpoints of e lie inside the bounding box of r. Let le

denote the length of edge e. Our problem formulation is as follows:

Problem 4.1 (dual region rectilinear Steiner tree problem) Given a

parameter α, a source v0, a set of sinks Vsink, and a set of rectangular block-

ages B, construct a Steiner tree T (V, E) such that {v0} ∪ Vsink ⊆ V and

cost(T (V, E)) =
∑
e∈E

le + α
∑
e∈B

le (4.1)

is minimized.

The parameter α represents the degree of the penalty for routing over

blockage. This problem is NP-Complete by the obvious reduction to the

Rectilinear Minimal Steiner tree problem from setting α = 0. Observe that

we can also write cost(T (V, E)) as the sum of the costs of all 2-paths in T ,

55

where the cost of a 2-path is given by:

cost(p(u, v)) = lp(u,v) + α
∑

e∈B∩p(u,v)

le where lp(u,v) =
∑

e∈p(u,v)

le (4.2)

For example, if α = 1, then edges that intersect blockage have twice

the cost of the other edges. Recall the re-route in Figure 4.1. If the wire

length more than doubles when changing the route from (a) to (b), then

(a) is the lower cost solution. The appropriate value for α depends on the

technology and the user requirements. Doubling the wire length might have

allowed buffering, but might not have reduced delay due to the additional

interconnect resistance and capacitance introduced by the longer route.

An advantage of this cost function is that it can be used to handle buffer

bays just as easily as blockages. If B is instead a set of buffer bays, then

routing over rectangles in B should actually reduce the cost function. If one

chooses α to lie between −1 and 0, this effect is achieved. For example, if

α = −1
2
, then the cost of routing over blockage is twice that of routing inside

a buffer bay.

Of course, Equation (4.1) is only one possible objective function. One

could also incorporate, e.g., the maximum length over all sub-paths that

intersect blockage, the sum of the squared lengths of these sub-paths (scaled),

or actual path delays into the objective. More sophisticated objectives may

be better suited for buffer insertion, but more difficult to incorporate into an

optimization.

4.3 The Grid Graph Construction

Our Steiner tree heuristic is based on maze routing, which has an appealing

flexibility for handling multiple cost functions. Maze routing approaches have

56

been used elsewhere in recent research, e.g., [27, 43, 44]. Maze routing can

be inefficient as it is liable to perform its search over numerous locations, a

large number of which do not lead to worthwhile solutions.

x2 x3 x4x1 x5

y4

y1

y2

y3

Figure 4.5: An example of the grid graph induced from five x and four y

coordinates. Edges of the grid graph are solid lines while the dashed lines

show the boundaries for the corresponding tiles.

A fundamental notion in maze routing is the concept of a grid graph,

G(VG, EG). A grid graph can be viewed as a tessellation of rectangular tiles

with VG being the set of tile centers and EG being edges that connect tile

centers, as illustrated in Figure 4.5. A grid graph can be uniquely induced

by the sets X = {x1, . . . , xn} and Y = {y1, . . . , ym} of sorted non-duplicate

coordinates. The induced grid graph G(VG, EG) from X and Y has vertices

VG = {(x, y) | x ∈ X, y ∈ Y }, and edges EG = {((xi, y), (xi+1, y)) | 1 ≤ i <

|X|, y ∈ Y } ∪ {((x, yi), (x, yi+1)) | 1 ≤ i < |Y |, x ∈ X}.

Most maze routing algorithms utilize a uniform grid graph, which forces

a routing algorithm to spend an equal amount of time searching each part of

the routing area. This can be wasteful due to the non-uniform distributions

of sinks and blockages. Uniformity also adds the dilemma of choosing the

appropriate tile size: too refined a tiling causes excessive computation time,

57

while too coarse a tiling can overlook good solutions. Our proposed grid

graph is non-uniform, allowing high density channels in difficult routing areas

and low density channels elsewhere.

We assume that some low-cost RC tree T has already been computed

over {v0} ∪ Vsink. In particular, our methodology begins with such a tree

constructed by a wire length-based heuristic and modifies it to become suit-

able for buffer insertion.

M

(a) (b) (c)

M

B

A

Figure 4.6: Examples of using M to compute usable tracks (a) around block-

ages, (b) inside buffer bays and (c) with overlapping blockages. Dashed lines

indicate tracks that are infeasible for buffer insertion.

Our grid graph is a superset of the Hanan grid [4] for T . We require

that no buffer can be placed within a distance of less than M units from a

blockage, where the value of M is half the width (or height if greater than

width) of the largest buffer. Therefore, we add routes that surround each

blockage by this prescribed offset parameter M . Similarly for buffer bays,

the offsets are added internally to each region, allowing sufficient room for

buffers. See Figure 4.6 for examples.

We construct a grid graph according to the procedure shown in Figure 4.7.

Step 1 initializes sets X and Y to be empty, and Step 2 adds the coordinates

58

Procedure Grid graph(T, B)

Input: Steiner tree T (V, E), a set of rectangles B

Output: Grid graph G(VG, EG)

1. Set X = ∅, Y = ∅.
2. For each v ∈ V with coordinates (x, y),

X ← x ∪X , Y ← y ∪ Y .

3. For each rectangle r ∈ B with bounding box (x1, y1), (x2, y2)

If r is a blockage

X ← (x1 −M) ∪ (x2 + M) ∪X ,

Y ← (y1 −M) ∪ (y2 + M) ∪ Y .

If r is a buffer bay

X ← (x1 + M) ∪ (x2 −M) ∪X ,

Y ← (y1 + M) ∪ (y2 −M) ∪ Y .

4. Sort the coordinates in X and Y

5. Generate the induced grid graph G(VG, EG) from X and Y .

6. For each edge e ∈ EG

Compute the value for the the blocked(e) property.

Figure 4.7: The Grid graph procedure.

of each tree node into X and Y . Step 3 adds the coordinates of the blockages,

and Steps 4-5 construct the grid graph induced by X and Y . Finally, Step

6 sets the attribute blocked(e) for each edge e in G. If e overlaps with a

blockage in B or does not overlap with a buffer bay in B, then the attribute

is set to true; otherwise, it is set to false. We refer to this grid graph as

the Extended Hanan Grid (EHG). An example grid graph constructed from

a 3-pin net and a single blockage is shown in Figure 4.8.

Since the EHG may be very sparse in some regions, a natural question to

ask is whether any loss in optimality is incurred by considering only tracks

on the EHG and neglecting the large spaces off the EHG. This question can

59

y4

x1 x2 x3 x4 x5
y1

y2

y3

M

Figure 4.8: The grid graph for an example 3-pin net and a single rectangular

blockage.

be answered by the following theorem.

Theorem 4.1 Given two disjoint subtrees Ts and Tt embedded on the EHG,

there exists a minimum cost 2-path p(u0, um) such that u0 ∈ Ts, um ∈ Tt and

each edge in p(u0, um) lies on the EHG.

Proof: We begin by emphasizing that the cost function here is not the wire

length, but the function in Equation (4.2).

Suppose P = pmin(u0, um) = {(u0, u1), (u1, u2), ..., (um−1, um)} is a mini-

mum cost 2-path with u0 ∈ Ts and um ∈ Tt. For 0 < j ≤ m, let ej represent

edge (uj−1, uj) ∈ P . For any edge ej not on EHG, we will show that ej can

be moved onto EHG without affecting cost(P).

For 1 < j < m, the configuration of the three contiguous edges ej−1, ej

and ej+1 may either be U-shaped or Z-shaped as shown by the solid lines in

Figure 4.9 (a)-(d). The dashed lines in Figure 4.9 correspond to the EHG,

and g1 and g2 are two closest edges to ej on the EHG, that are parallel to ej .

For any U-shaped sub-path, there always exists an EHG edge such that if

ej is moved toward it, the 2-path cost will be reduced; in Figure 4.9(a), this

60

2

j-1

j+1

j

j-1

j

j+1

j-1

j

j

j-1

j+1

0 0

1

j+1

1

1

uu

g1

g1 g2 g1 g2 g1 g2

e e e

e e

e e e

(a) (b) (c)

e

e

(d)

e

e

g2 g1 g2 g1 g2

e

e

(e) (f)

e

u

Figure 4.9: Configurations for edges in P in the proof of Theorem 4.1.

edge overlaps with g1. A reduction in path cost contradicts the assumption

that P is a minimum cost path. Hence, ej−1, ej and ej+1 cannot be in a

U-shaped configuration unless ej already lies on the EHG.

For a Z-shaped configuration, if one end point of ej is within a buffer

blockage and the other is not, as in Figure 4.9(b), the 2-path cost can also

be reduced by moving ej towards a neighboring EHG edge. Therefore, if ej

does not lie on the EHG, any corresponding Z-shape must have either both

ends overlapping blockage or both ends outside blockage. These cases are

shown in Figure 4.9(c-d). For these cases, ej may be moved onto either g1 or

61

g2 without affecting the 2-path cost.

If e1 does not lie on the EHG, the possible configurations for e1 are shown

in Figure 4.9(e-f), with Ts and Tt shown in bold. Similarly to the previous

analysis, e1 can be moved to an EHG edge in Figure 4.9(e) to reduce the

cost, which makes this configuration impossible. In Figure 4.9(f), e1 can be

moved onto an EHG ege without increasing the cost. The exact analysis can

also be applied to em.

In conclusion, edges in P can be moved so that each edge in P lies on the

EHG and so that the cost of P does not increase. �

Since the initial routing tree is assumed to be on the EHG, according to

the above observation, it is reasonable to restrict the solution search to the

EHG.

4.4 Algorithm Description

4.4.1 Overview

Our algorithm first decomposes the existing Steiner tree into disjoint 2-paths,

then computes the cost for each 2-path. The algorithm then iteratively

chooses a poorly routed 2-path, removes it, and then re-routes it. The 2-path

with highest cost is not necessarily the most poorly routed path, as the high-

est cost path may simply be a very long path completely out of any blockage.

We choose the 2-path p(u, v) with the highest value of cost(p(u, v))/lp(u,v) to

re-route. This 2-path has the highest ratio of wire length routed over block-

age to total wire length. When this ratio is high, it is likely that the route of

the 2-path can be improved significantly. The algorithm proceeds iteratively

by ripping up and re-routing 2-paths in this manner.

62

Steiner Tree Algorithm (T, B)

Input: T (V, E), a Steiner routing tree

A set of rectangles B representing buffer blockages or bays

Output: Re-routed Steiner tree T

1. G(VG, EG) = Grid graph(T, B) (see Figure 4.7).

2. Compute the set P of disjoint 2-paths in T .

Compute the cost of each 2-path in P from Equation (4.2).

3. While P �= ∅
4. Choose p(u, v) ∈ P such that cost(p(u, v))/lp(u,v) is maximized.

5. Remove p(u, v) from T and P , thereby creating two sub-trees.

Label corresponding sub-tree embedded in EG that contains

v0 as Ts and the other as Tt.

6. Find 2-path p(q, w) = Maze routing(G, Ts, Tt).

7. Add the edges in the 2-path p(q, w) to T .

Figure 4.10: The Steiner tree construction algorithm.

A complete description of the algorithm is given in Figure 4.10. Step 1

computes the underlying grid graph for T and B. Step 2 finds the set of all

2-paths, and Steps 3 and 4 iterate through these 2-paths, each time picking

the one with the highest overlap cost. The 2-path with highest cost length

ratio is removed in step 5, which induces two subtrees Ts and Tt. Step 6

performs the maze routing which returns a minimum cost 2-path between Ts

and Tt, and Step 7 re-connects the tree using this 2-path. We now explain

how the minimum cost 2-path between subtrees is computed in Step 6.

4.4.2 Maze Routing

The minimum cost path joining two subtrees is found by maze routing.

The original maze routing algorithm [42] is designed for point-to-point con-

63

Maze routing(G, Ts, Tt) Algorithm

Input: Underlying grid graph G(VG, EG).

Two disjoint Steiner trees Ts and Tt embedded in G.

Output: 2-path p(q, w) with q ∈ Ts, w ∈ Tt

1. For each grid node v ∈ VG, set label(v) =∞,

visited(v) = false, and parent(v) = ∅ .

2. For each node v ∈ Ts

Set label(v) = 0 and set Q = Q ∪ {v}.
3. While Q �= ∅
4. Let v ∈ Q be the grid node with minimum label(v). Delete v from Q.

Set visited(v) = true.

5. For each node u, such that (u, v) ∈ EG and u �= parent(v)

newLabel = label(v) + l(u,v).

If blocked(u, v) then newLabel = newLabel + αl(u,v)

6. If newLabel < label(u) then

label(u) = newLabel, Set parent(u) = v.

7. If visited(u) = false and u /∈ Tt, insert u into Q.

8. Find node w ∈ Tt such that label(w) is minimum.

9. Find the path p(q, w) from w to a node q ∈ Ts by tracing back parent.

Return p(q, w).

Figure 4.11: Algorithm for maze routing connecting two subtrees.

nections. It runs on a grid graph, and grid edges are the only legal candidates

for any routing path. Each grid edge is assigned a cost, commonly the edge

length (and blocked edges have infinite cost). Maze routing is equivalent

to Dijkstra’s shortest path algorithm [45] applied on the grid graph. The

source node is initially assigned zero cost, and then wave expansion proceeds

out from the source, labeling all intermediate nodes until the target node is

reached. The grid node labels reflect the cost from the source. For a linear

cost function, maze routing guarantees the least cost path for connecting two

64

points. One primary difference between our algorithm and traditional maze

routing is that all nodes in the source tree are assigned zero cost and that

the target node is any node in the target tree.

The complete procedure is shown in Figure 4.11. Step 1 initializes three

arrays, label, visited, and parent for each node in the grid graph. The

label(v) value is the cost of the best path from a node in Ts to v, the visited(v)

value indicates whether v has been explored in the maze routing search, and

parent(v) is used to store the best path to v. Step 2 initializes the labels of

all nodes in Ts to zero and puts them into a node set Q. Implementing Q as

a priority queue gives the most efficient runtimes.

Steps 3-7 search the grid graph by iteratively deleting the node v with

smallest label from Q and exploring that node. Each neighbor node u of v is

explored in Steps 5-6, and the label for u is updated according to length of

edge (u, v) and whether edge (u, v) is blocked. If the new label, corresponding

to a path to u through v, is less than the previous label for u, the label is

updated and v becomes the parent for u. Steps 8-9 find the node with the

smallest label in the target tree, and uncover the path back to the source

tree by following the parent array. This path is then returned to the calling

procedure.

4.4.3 Complexity Analysis

Given a tree T (V, E) and a set of blockages B, let n = |V | and k = |B|.
The number of nodes and edges in the grid graph constructed is O((n +

k)2). If one implements Q as a priority queue in Figure 4.11, then procedure

Maze routing has complexity O((n + k)2 log(n + k)). The number of times

this procedure is called by the Steiner Tree procedure is the same as the

65

number of 2-paths in T , which is bounded by O(n). The complexity for the

entire algorithm is thus O(n(n + k)2 log(n + k)). We present speedups in

Section 4.5 that are able to achieve fast CPU times despite the high worst

case complexity.

4.5 Improving Efficiency

The high time complexity of the algorithm suggests that one can speed up the

algorithm significantly without necessarily sacrificing solution quality. We

have incorporated two techniques, a sparsified grid graph construction and

branch-and-bound maze routing, that together improve runtimes by more

than a factor of ten.

4.5.1 Sparsified Grid Graph

When |B| is large, the induced grid graph can be very dense. Blockages

that do not perfectly line up can cause several edges in the grid graph to be

extremely close together. A routing tree construction could choose any of

these edges and result in essentially the same tree. A track is a set of edges

all with the same x or y coordinate. Given a step size, such as 0.1 mm, two

parallel tracks are called redundant if they are closer than the step size and

if at least one of them does not intersect a net pin (source or sink). Given

two redundant tracks a and b, if track a intersects a net pin while b does

not, then track b is removed. If neither a nor b intersects a net pin, then one

track is arbitrarily chosen for removal.

Figure 4.12 shows an example of a grid graph (a) before and (b) after

sparsification. The pairs of tracks given by coordinates x1 and x2 and by y3

66

and y4 are redundant. Since x1 intersects the source, x2 is removed. Neither

y3 or y4 intersect a net pin, so y4 is randomly removed.

(b)
x1 x2 x3 x4 x5 x6 x7 x8

y1

y2

y3
y4
y5

y6

y7
y8

(a)
x1 x2 x3 x4 x5 x6 x7 x8

y1

y2

y3
y4
y5

y6

y7

A A
BB

C C

y8

Figure 4.12: The original grid graph (a) has (shown in bold) two pairs of

redundant tracks and a severable track. The sparsified grid graph (b) has no

redundant nor severable tracks.

The second sparsification technique refrains from having some tracks span

the entire grid graph. For example, in Figure 4.12(a), the track y7 is induced

by the upper border of the rectangle representing blockage A; thus, a routing

path that uses track y7 results from avoiding blockage A. When the path

hits B it can either overlap or circumvent B. If the routing cost according

to Equation (4.2) of circumventing B is less than the cost of overlapping B,

then we say the corresponding track is severable. The bold part of track y7

(a) that firsts hits the blockage B can be removed (b).

From Figure 4.12, the application of the above sparsification techniques

reduces the number of grid nodes from (a) 64 to (b) 46.

4.5.2 Branch and Bound Maze Routing

When expanding the grid node with the smallest cost label in the wavefront,

maze routing cannot distinguish between good and bad global directions.

67

The expansion may proceed in a direction completely opposite the target

sub-tree. Much computation time can be wasted exploring regions of the

grid graph that are nowhere near the target.

Branch and bound techniques can prevent some unnecessary expansions.

Recall Steps 3-7 of Figure 4.10 which iteratively delete and then reconstruct

2-paths. The 2-path p(u, v) removed in Step 4 has cost(p(u, v)) which is also

an upper bound for the cost of the new 2-path (since the cost should never

increase). Let upCost denote this value.

After Step 4 of Figure 4.11, one can compare label(v) to upCost to de-

termine if node v is worth expanding. If label(v) > upCost then the cost of

the path from Ts to v is already higher than the cost of the original 2-path,

which makes it wasteful to expand v. Whenever a grid node v in the target

subtree Tt is reached by the wave expansion, the value for upCost can be

replaced by label(v) if this value is less than upCost.

The bound can be made even tighter by using a lower bound on the

cost of the remaining routing to be done from v to Tt. Let dist(v, Tt) be

the Manhattan distance from v to the bounding box of Tt (which can be

computed in constant time).1 Now the test becomes whether label(v) +

dist(v, Tt) > upCost holds. If so, node v is not worth further exploration

and and Step 7 of Figure 4.11 is skipped.

An example of this branch and bound scheme is illustrated in Figure 4.13,

where α is set to 2. In (a), the original 2-path p(u, w) is removed and upCost

is set to 18. For node v in Figure 4.13(b), the sum of its cost label (10) and

the estimated lower bound on the cost of its connection to the target subtree

(12) is 22, which is greater than upCost, which makes further exploration of v

1If α < 0, then (1 + α)dist(v, Tt) is the lower bound.

68

(c)

Ts

Tt

(b)

10

12

v
Ts

Tt

v’7

9

u

w

q

(a)

upCost = 18 14
upCost
updated

Figure 4.13: An example of branch-and-bound in maze routing.

unnecessary. A different scenario is illustrated in Figure 4.13(c). When node

q in the target sub-tree is reached by the maze router, the value of upCost is

updated to 14, the cost label of q. If node q is reached prior to node v′, then

v′ will not be expanded, because the sum of its label (7) and estimated lower

cost bound to target subtree (9) is greater than the new value for upCost.

4.6 Experiments

We performed experiments on the following three designs: (1) a small hand

crafted test, (2) a large macro block, and (3) a hierarchical microprocessor

design. The comparisons that follow are made between two algorithms, SMT,

a Steiner minimal tree algorithm that is used for net analysis within an

industrial physical design tool suite, and BBB, our proposed algorithm. All

run times are reported in seconds for an IBM RS6000/595 processor with

512MB of RAM.

4.6.1 Additional Routing Cost

Our first set of experiments measures the additional wire length caused by

BBB compared to SMT. Since BBB is aware of blockage constraints while

69

SMT is not, BBB should naturally increase the total wire length, but decrease

the wire length running through blockages. Tables 4.1 and 4.2 present these

results for the hand crafted and large macro block test cases respectively. All

the CPU times given the experimental results are in seconds.

Avg. wire length Avg. blocked wire length

mode #net #pins #rects SMT BBB %imprv. SMT BBB %imprv. Ave CPU

blckg 23 2-8 2-7 21.3 21.7 -1.8% 15.9 5.8 63.5% 0.2

bays 30 2-8 4-7 22.7 22.2 -2.2% 22.2 10.4 52.7% 0.1

Table 4.1: Summary of additional routing costs of SMT versus BBB for the

hand crafted test case.

For the hand crafted test case, SMT and BBB were on 23 nets with 7

random blockages inserted. Both algorithms were also run on 30 different

nets with 7 random buffer bays inserted. The #rects column indicates the

number of blockages actually used by the BBB grid graph. The results were

averaged over all nets and are summarized in Table 4.1. Observe that the

average wire length increased by only 1.8% for blockages and by only 2.2%

for buffer bays. This result indicates that BBB is almost as good as SMT

for computing a low wire length Steiner tree. However, the total wire length

in blocked regions was reduced by 63.5% for blockages and 52.7% for buffer

bays by BBB.

For the macro block, we chose 16 high capacitance nets that had differen-

tiating characteristics (number of pins, pin locations, wire length topology,

etc.) and ran both SMT and BBB with the 54 blockages that were present

in the design. The results for each net is presented in Table 4.2. Overall, we

observe similar behavior to the hand crafted case, namely, a 2.5% increase in

total wire length and a 33.3% reduction in blocked wire length. The results

70

Wire length Blocked wire length

net #pins #rects SMT BBB %imprv. SMT BBB %imprv. CPU

N1 2 26 10.7 12.2 -13.9% 9.3 2.0 78.6% 0.5

N2 2 36 9.0 9.0 0.0% 5.2 0.4 92.9% 0.8

N3 9 30 14.6 15.1 -3.8% 12.7 4.9 61.4% 1.3

N4 9 31 14.6 15.2 -4.6% 12.8 7.1 44.4% 1.3

N5 9 47 18.4 18.7 -1.7% 18.2 14.0 23.2% 2.2

N6 11 47 17.1 17.6 -2.8% 17.1 2.6 84.9% 2.7

N7 17 53 24.1 24.1 -0.1% 22.4 21.9 2.3% 5.8

N8 19 47 19.7 20.7 -5.0% 19.7 16.6 16.0% 5.2

N9 19 47 20.2 20.8 -3.2% 20.2 17.7 12.3% 5.6

N10 25 47 22.2 22.3 -0.3% 22.0 20.9 4.9% 4.7

N11 25 47 22.6 22.7 -0.4% 22.4 21.3 4.9% 4.8

N12 25 47 23.6 24.1 -2.1% 23.5 14.6 37.8% 5.9

N13 29 33 23.3 23.9 -2.8% 15.7 10.9 30.3% 5.4

N14 29 33 24.9 25.1 -0.6% 18.4 14.2 22.6% 4.9

N15 29 53 30.5 31.4 -3.0% 23.3 11.2 51.8% 9.8

N16 29 53 29.0 30.4 -5.0% 19.9 8.6 56.7% 14.0

Ave. 18 42 20.3 20.8 -2.5% 17.7 11.8 33.3% 4.7

Table 4.2: Summary of additional routing costs of SMT versus BBB for the

macro block test case.

vary widely for different nets. For example, the reductions on in-blockage

length for net7, net10 and net11 are very limited because the majority of the

pins themselves actually lie within blockage. Despite the inclusion of these

difficult cases, BBB achieves substantial reduction of wire length contained

in blockages with a trivial additional wire length penalty.

4.6.2 Delay Comparisons with Buffer Insertion

To assess the utility of BBB versus SMT trees, buffer insertion must be

performed after routing. The next set of experiments were performed on a

net by net basis with the following methodology:

71

1. Compute the SMT tree for the net.

2. Compute the delays to each sink, then compute the slack to the most

critical sink based on the required arrival times supplied by the static

timing analyzer.

3. Run BBB re-routing.

4. Perform buffer insertion using the algorithm discussed in Section 1.

This algorithm attempts to find the best possible solution for each

possible number of buffers.

5. Re-compute the slack to the most critical sink. Let Δslack denote the

difference between this slack and the slack computed in Step 2.

Skipping Step 3 of this methodology yields buffer insertion with the SMT

algorithm while including Step 3 yields results for the BBB algorithm.

Average results for the hand-crafted test case are presented in Table 4.3.

The values for Δslack are presented in picoseconds. The quoted Δslack

values are for the best buffer insertion solutions generated for both the SMT

and BBB algorithms. Observe that BBB utilized more buffers than SMT (2.9

versus 2.2 for blockage and 2.3 versus 1.9 for bays) since the BBB routing

offered more candidate buffer locations that did not overlap with blockage.

BBB trees also resulted in an additional 337 (768) ps of slack increase versus

SMT trees for blockage (bay) mode.

We also ran the same experiments for the 16 nets chosen from the macro

block test case. The results for each net are presented in Table 4.4. For

the net by net comparisons, we first took the SMT solution which yielded

the best value for Δslack, then compared it against the BBB solution with

the same number of buffers as the SMT solution. Thus, each row in Table

72

SMT + Buffering BBB + Buffering

mode #net Ave. Δslack Ave. #bufs Ave. Δslack Ave. #bufs Ave. CPU

blockage 23 2064 2.2 2401 2.9 4.0

bays 30 2494 1.9 3262 2.3 4.3

Table 4.3: Experimental results on average slack improvements for the hand

crafted test case.

4.4 uses the same number of inserted buffers. The runtimes reported are

for the combination of BBB plus the buffer insertion step. By comparing

these runtimes to those reported for BBB alone in Table 4.2, we see that the

runtimes of BBB do not dominate the buffer insertion runtimes.

Observe from Table 4.4 that SMT trees resulted in an average slack im-

provement of 519.4 ps for the critical path as compared to 694.6 ps for BBB.

This 175.2 ps difference would actually increase by an additional 16 ps if

the Δslack values were chosen by the best number of buffers inserted for

BBB trees as opposed to SMT trees. However, the average number of buffers

would also increase from 2.6 to 3.4.

4.6.3 Fixing Slew Problems

Finally, we considered the problem of using buffers not to necessarily reduce

delay to the most critical sink, but to fix slew problems. In high performance

design, it is common for each gate to have a requirement for the maximum

permissible slew rate on the input signal to the gate. Too slow a slew rate

will cause a long gate delay and poor circuit performance. A signal with a

sharp slew rate at the driver will degrade significantly while traversing a long

interconnect to cause a slew violation at the input to the sink. Buffers can be

73

net #pins SMT Δslack BBB Δslack #bufs BBB CPU

N1 2 1032 1118 2 1.2

N2 2 1034 1036 1 1.2

N3 9 109 239 2 2.1

N4 9 109 236 2 2.2

N5 9 190 452 1 2.9

N6 11 7 71 1 4.0

N7 17 850 1181 2 7.8

N8 19 578 1089 2 7.3

N9 19 605 880 2 7.8

N10 25 277 299 2 7.6

N11 25 295 323 2 7.4

N12 25 205 228 2 9.0

N13 29 223 308 5 24.4

N14 29 371 375 4 25.2

N15 29 1049 1605 7 35.3

N16 29 1376 1674 5 36.6

Ave. 18 519.4 694.6 2.6 11.4

Table 4.4: Experimental results on slack improvement for the macro block.

used to fix such problems by repowering a degrading signal and sharpening

the slew rate.

For the microprocessor test case, designers identified 29 non-critical nets

that had slew violations. We attempted to fix these violations using the

routes provided by both SMT and BBB in conjunction with buffer inser-

tion. The designers also identified several buffer bays for placing buffers; the

remaining regions were considered completely blocked.

Of the 29 nets, 5 of them had pins nowhere near the designated buffer bays

74

Algorithm #nets #nets fixed #nets improved #nets failed

SMT 24 7 6 11

BBB 24 17 4 3

Table 4.5: Slew results for SMT and BBB on the microprocessor test case.

and so neither the SMT nor the BBB approach could fix the slew violations.

The results for the remaining 24 nets are shown in Table 5. Of the remaining

24 nets, BBB was able to successfully re-route and fix 17 of the nets while

SMT was only able to fix 7 nets. Of the 7 nets for which BBB failed, BBB

was able to improve the slew (but not quite fix it) for 4 nets, while it did not

insert any buffers for 3 of the nets. SMT could not insert buffers on 11 nets

since they did not intersect buffer bays, but it was able to improve, but not

fix, the slew on 6 of the nets.

Overall, BBB showed that it is better suited for fixing slew violations

than a routing algorithm that ignores blockage. A less stringent sprinkling

of buffer bays in the design would no doubt have helped BBB succeed in

fixing more of the slew violations.

4.7 Conclusion

We have proposed a new Steiner tree routing heuristic for making nets more

amenable to buffer insertion in the presence of blockage constraints. The

problem is formulated to handle either buffer blockages or buffer bay floor-

planning methodology. Our heuristic iteratively deletes and re-routes sub-

paths of an existing Steiner tree and can handle complex buffer blockage and

bay distributions. Several speedup techniques have been incorporated so that

75

the empirical run times are practical, even though the theoretical time com-

plexity of the algorithm is high. Experimental results show that our method

achieves the objective of avoiding buffer blockages (seeking buffer bays) and

can provide significant improvements in terms of delay and slew when used

in conjunction with an industrial buffer insertion tool.

76

Chapter 5

Performance Driven Multi-net

Global Routing

5.1 Introduction

Global routing is an important stage in VLSI physical design, in which a

given set of global nets is routed coarsely, in an area that is conceptually

divided into small regions called routing cells. For each net, a routing tree is

specified only in terms of the cells through which it passes. In this chapter,

we propose new approaches to enhance the quality of global routing.

For a boundary between two neighboring cells, the number of available

routing tracks across it, called supply, is limited. One fundamental goal of

global routing is to minimize the congestion so that the number of nets across

each boundary does not exceed its supply, i.e., no overflow occurs. Since min-

imizing congestion is very hard to achieve and is essential for global routing,

it has long been a focus of research [18,46–56] in global routing. Most of these

works belong to one or a combination of the following genres: the sequential

77

approach, hierarchical methods, linear programming or multicommodity flow

based algorithms, and rip-up-and-reroute techniques.

In the sequential approach, the nets are routed one after another. In [46],

for each net, a minimum weighted Steiner tree spanning the grid graph is

sought to minimize the congestion, with the weights being proportional to

the density of wires in each routing cell. The sequential approach requires the

nets to be routed in some order, on which the quality of the solution depends.

As a solution to avoid this ordering problem, the hierarchical method [47–49]

recursively splits the routing region into successively smaller parts. At each

hierarchical level, all of the nets are routed simultaneously (often through

linear programming) and refined in the next hierarchical level until the lowest

level of the hierarchy is reached. Sometimes the whole global routing is

formulated and solved through linear programming followed by a randomized

rounding [50]. Another method is the application of multicommodity flow

model [51–53], in which the fractional solutions are rounded to obtain the

routing solutions. For global routing on standard cell designs, the work of [18]

proposed an iterative deletion technique to avoid the net ordering problem.

The works of [54–56] first route each net independently, then rip up the

wires in congested areas and reroute them to spread out the routing density.

The rip-up-and-reroute technique is very practical and popular in industrial

applications.

When interconnect becomes a performance bottleneck in deep submi-

cron technology, merely minimizing congestion is not enough. In later works

[57–59], interconnect delays are explicitly considered during global routing.

In [57], each net is initially routed in SERT-C [6], after which the congested

area is ripped up and rerouted by applying a multicommodity flow algorithm

locally. In [58], the delay issues are considered more strictly. Beginning with

78

a set of routing trees satisfying timing constraints for each net, a multicom-

modity flow method is applied to choose a single routing tree for each net,

such that the congestion is minimized. At places where overflow occurs, the

wires are ripped up and rerouted through a maze routing procedure in which

the timing objective is combined with wirelength and congestion. Both works

combine the application of rip-up-and-reroute and the multicommodity flow.

In global routing, congestion and delay are often competing objectives.

In order to avoid congestion, some wires must make detours, and the signal

delay may consequently suffer. We propose a new approach to global routing

such that both congestion and timing objectives can be optimized at the

same time. One key observation is that there are several routing topology

flexibilities that can be traded into congestion reduction while ensuring that

timing constraints are satisfied. These flexibilities are expressed through the

concepts of a soft edge and a slideable Steiner node. Our strategy is to obtain

desired timing performance for each net independently and then trade the

flexibilities into congestion reduction without hurting delay.

Based on this strategy, we developed two global routing algorithms. In

the first algorithm, the crucial part is routing through hierarchical bisection

and assignment as in [60, 61]. However, due to interdependence on timing

slack consumption and the presence of slideable Steiner nodes, the assignment

is not straightforward as in [60, 61]. We construct a network flow model so

that the timing slack consumptions are adaptive to the congestion distribu-

tions. Finally, a timing-constrained rip-up-and-reroute process is performed

to overcome any inabilities of the hierarchical approach in satisfying con-

gestion constraints. Since the timing performance of initial routing solution

can be preserved, our methods provides a general framework that can ac-

commodate any single-net routing scheme and can be applied on any delay

79

model.

Besides congestion and timing, the number of bends for each wire needs to

be limited. A wire bend usually implies a switching of layers, which involves

a via resistance that adds to the delay and reduce reliability. Moreover, vias

will consume more wiring space because of their larger pitch requirement.

Particularly for MCM and PCB designs, the via resource is stringent and the

number of bends on wires need to be optimized. In work of [49], a hierarchical

global routing algorithm is proposed to control the number of vias for each

wire. There are many other works in routing to minimize the number of vias,

such as V4R [62]. The second algorithm we propose handles this objective

together with timing and congestion through a probability-based gradual

refinement approach.

5.2 Congestion Metric and Problem Formu-

lation

As in conventional global routing, we tessellate the entire routing region for

a set of nets N into an array of uniform rectangular cells. We represent

this tessellation as a graph called the grid graph G(VG, EG), where VG =

{g1, g2, ...} corresponds to the set of grid cells, and a grid edge bij = (gi, gj) ∈
EG corresponds to the boundary between two adjacent grid cells gi, gj ∈ VG.

There are a limited number of routing tracks across any grid edge, b, called

the supply of the grid edge and expressed as s(b). During the routing, the

number of tracks occupied by wires across a grid edge b is designated as the

80

demand, d(b). The overflow fov(b) at grid edge b is defined by:

fov(b) =

⎧⎪⎨
⎪⎩

d(b)− s(b), d(b) > s(b)

0, otherwise
(5.1)

The demand density for a grid edge b is defined as D(b) = d(b)
s(b)

. We use

the maximum demand density Dmax = maxb∈EG
{D(b)} and total overflow

Fov =
∑

∀b∈EG
fov(b) to evaluate the congestions in the final results.

For a given set of nets N and a grid graph G over the area of N , our

objective is to construct routing trees T i for every N i ∈ N , such that timing

slack (the minimum delay slack among all sinks) S(T i) =≥ 0 and the con-

gestion is minimized in terms of Dmax and Fov. In the second algorithm, an

additional objective is to bound the number of bends on each backbone wire

to be no greater than 5.

5.3 Routing Flexibilities under Timing Con-

straints

In this section, we will explore the routing flexibilities under timing con-

straints. Usually there are many routing tree topologies that can satisfy

the required arrival time (RAT) for each sink in a net, if the RAT are

in a reasonable range. For example, both P-Tree [14] and RATS-tree [16]

can generate a set of routing topologies satisfying timing constraints. Such

timing-constrained routing flexibilities are exploited in the global routing

work in [58]. In this work, we will use some other types of routing flexibili-

ties including: soft edges, Z-edges, slideable Steiner nodes and edge elonga-

tion. The concept of a soft edge is described in Section 2.3. Others will be

summarized as follows.

81

5.3.1 Z-edges

When the number of bends along a route connecting two nodes is restricted

to be no greater than two and its path length to be the Manhattan distance

between the two nodes, this route can only be straight, L-shaped or Z-shaped.

A Z-edge is an edge that can take only such a route. Even though the routing

flexibility from a Z-edge is less than that of a soft edge, this flexibility can

preserve timing performance with bounded number of bends.

5.3.2 Slideable Steiner Node (SSN)

v

v

v

CC

v

0

i

j

k

v’

Figure 5.1: An example of a slideable Steiner node (SSN).

We will use the example in Figure 5.1 to describe another timing-constrained

routing flexibility. In this example, we consider to join node vk to edge eij

such that the total wirelength is minimized while the timing constraint at

each sink is satisfied. It has been shown in Section 2.4 that the optimal

connection point can be off the Hanan grid, such as node v′ in Figure 5.1.

This point is specified by the Manhattan distance from the upstream end

vi of eij to v′. There are often many points with the same distance. The

set of locations for a distance form a segment of locus as illustrated by the

thickened segment in Figure 5.1. When we slide the Steiner node v′ along

82

this locus, the length of its incident edges are preserved and so does the delay

at each sink. Similar to the rationale for soft edges, we only specify this locus

instead of a point for this Steiner node and call it as slideable Steiner node

(SSN). The concept of a slideable Steiner node provides extra flexibility for

the routes of its incident edges and can again be used to reduce the congestion

in global routing without degrading timing performance or area.

5.3.3 Edge Elongation

After performance-driven routing for a net, it is possible that the timing

slack of the routing tree is still positive. This positive slack can be consumed

through edge elongation to provide more routing flexibilities under timing

constraints. Note that either a soft edge or a solid edge may be elongated

under timing constraint.

The maximum allowed elongation Δlij for routing edge eij = (vi, vj) can

be computed under the Elmore delay model. We assume vi is the upstream

end of this edge. The length of a routing path from source v0 to a node

vi ∈ V is denoted as pi, and the shared path length for two nodes vi, vj ∈ V

from the source is expressed as pij. For any sink vk ∈ V , we can compute the

maximum Δlij such that the delay slack s(vk) is non-negative. If vk /∈ Ti,

i.e., vk is not in downstream of vi,

Δlij =
s(vk)

(Rd + rpik)c
(5.2)

where Rd is the driver resistance and r and c are the wire resistance and

capacitance per unit length. If vk ∈ Ti, Δlij satisfies the following equation:

s(vk) = f(Δlij) = (Rd + rpi)c(Δlij) +
1

2
rc(2lij(Δlij) + (Δlij)

2) + r(Δlij)Cj,

(5.3)

83

where Cj is the total downstream capacitance from vj. This equation can

be solved to obtain the Δlij . In the case of double roots for this equation,

we choose the one where the slope of function f(Δlij) is positive, since the

delay slack should be monotonically increasing with respect to the allowed

elongation. We compute Δlij for all the sinks in the routing tree and choose

the minimum value as a safe value. Note that different edges may have

different values of maximum allowed elongations.

5.4 Hierarchical Algorithm

5.4.1 Algorithm Overview

This algorithm includes three phases: (1) performance driven routing for

each net, (2) HBA: hierarchical bisecting of routing regions and assigning

soft edges to boundaries along the bisector, and (3) TRR: timing-constrained

rip-up-and-reroute.

In phase 1, each net is routed to meet its timing constraints without

considering congestion. Any single-net performance driven routing method,

e.g., P-Tree [14], RATS-tree [16] or MVERT [11], can be applied here. Besides

satisfying timing constraints, each routing tree should be soft, i.e., should

not contain any bend node. This can be achieved through utilizing soft

edges during routing as in the example of Figure 2.4 or replacing L-shaped

connections in the results with soft edges. Thus, at the end of phase 1, timing-

constrained routing trees are generated along with topology flexibilities to be

exploited in the subsequent phases.

In phase 2, a routing region is recursively bisected into subregions in a top-

down manner. At the topmost level, the whole routing region is bisected into

84

3’

1

T2

T3
T4

1

2
3

1

2

1

0

3

1

0

0

0

0

sink

T5

3"

4
T1

Steiner node

source

b2

b3

b1

Figure 5.2: An example of bisection.

left(upper) and right(lower) halves with the same or similar size by a bisector

line which is formed by a column(row) of consecutive vertical(horizontal) grid

cell boundaries. For example, in Figure 5.2, the thickened bisector line is

composed of three boundaries, b1, b2 and b3. Each soft edge that intersects

this bisector is assigned to a boundary. After the assignment, a pseudo-

pin is inserted into the soft edge at the assigned boundary, and therefore

this soft edge is split into two new soft edges that belong to two separate

subregions. One assignment for the example in Figure 5.2 is shown in Figure

5.3. In the next hierarchical level, bisections and assignments are applied on

the left(upper) and right(lower) half region along an orthogonal orientation.

This process is repeated until the subregion is a single grid cell or a pair of

neighboring grid cells. Thus, at the end of this process, the route for each

soft edge is specified to the detailed level of grid cells it goes through.

The crucial part is to determine how to assign the soft edges to the

boundaries on the bisector line. The basic goal is to assign all of the soft

edges without exceeding any boundary supply and without causing any delay

violations. The absence of delay violation implies that the delay slack for each

net is non-negative. In order to make the assignment feasible, sometimes it is

85

sink

3

T3
T4

1

2

4

0

1

2

1

1

0
0

0

0

3

T5
T1

Steiner node

source
1

T2

Figure 5.3: An assignment result from network flow solution.

necessary to allow some wires to detour, which inevitably increases delay, i.e.,

some timing slack is consumed to reduce congestion. In addition to ensuring

absence of delay violations, it is naturally desirable that the consumption of

the timing slack is minimized, since the timing slack may be needed in the

subsequent levels of bisection and assignment. These objectives are achieved

through a min-cost network flow formulation. Because of the involvement of

timing issues, this formulation is not as straightforward as that in [60,61]. We

run a min-cost max-flow algorithm [63] to solve this network flow problem.

It is well known that there are polynomial time optimal algorithms for the

min-cost max-flow problem.

The hierarchical bisection and assignment in phase 2 is a method of

divide-and-conquer that has the advantage of simplifying the problem na-

ture. In this global routing approach, it reduces a two-dimensional problem

into one dimension. The price that this simplification inevitably pays is on

congestion reduction, since a decision at a higher hierarchical level may over-

look the needs at a lower level. In phase 2, any soft edge that could not be

assigned in the network solution is temporarily assigned to a boundary such

that the maximum demand density is minimized and no delay violation is

86

incurred. These residual overflows will be cleaned in phase 3.

The third phase is a timing-constrained rip-up-and-reroute process. It

is similar to traditional rip-up-and-reroute except that a constraint on edge

length is imposed to ensure no timing violation. It rips up the edges on a set

of most congested boundaries and reroutes them through maze routing. The

cost in maze routing is defined as the summation of demand densities over all

boundaries that a path passes through, and these densities are dynamically

updated. The edge length can be elongated to the extent that no delay

violation is incurred.

5.4.2 Basic Network Formulation

After one bisection, the assignment problem is formulated as:

Problem 5.1 Given a bisector line B composed of a set of consecutive bound-

aries {b1, b2, ...}, and a set of soft edges EX = {ei
jl|ei

jl intersects B}, assign

each soft edge to a boundary bk ∈ B such that there is no overflow on any

boundary bk ∈ B or no delay violation on any routing tree T i which has at

least one soft edge ei
jl ∈ EX, and the timing slack consumption is minimized.

We solve this problem through a formulation of the network flow problem

and applying a min-cost max-flow algorithm on it. The network GF (VF , AF)

is a directed graph consisting of a set of vertices VF and arcs AF . The vertex

set VF includes all boundaries in B and soft edges in EX , plus a source s

and target t. For the bisection in Figure 5.2, its corresponding network is

illustrated in Figure 5.4. We do not use SSN at this moment for simplicity

and only e3
03 in T 3 is included in the network. The usage of SSN will be

introduced in section 5.4.4. There are three types of arcs: (1) from source s

87

1

1

1

1

1

1

11

2

1

1

1

2

2

1

1

41e

2
01

4

e

1

23

b3

s

01

e

03
3e

e

b2

b1

1

t

Figure 5.4: Network formulation of the example in Figure 5.2 without con-

sidering SSN. The number on each arc is its capacity.

to every boundary vertex, (2) from some boundary vertices to some soft edge

vertices, (3) from every soft edge vertex to the target t. Each arc has a cost

and a capacity associated with it. For each type 1 arc, its cost is 0 and its

capacity is the corresponding boundary supply. In this example, we assume

that each boundary has a supply of 2. For each type 2 arc, its capacity is 1

and its cost will be defined later. For each type 3 arc, its capacity is 1 and

its cost is 0.

(a) (b) (c)

Figure 5.5: Relative positions of a boundary and a soft edge.

An arc from a boundary vertex to a soft edge vertex implies a candidate

assignment between them. Not every pair of boundary and soft edge vertices

88

is automatically qualified for constructing a type 2 arc between them. For

any boundary and any soft edge, there are three relative positions between

them as shown in Figure 5.5. In Figure 5.5(a), the boundary lies entirely

within (the bounding box of) the soft edge. If we choose an assignment of

the soft edge to this boundary, there will be no change in the length of the

soft edge, and two vias are induced. If a boundary lies partially within the

bounding box of a soft edge, as in Figure 5.5(b), we have an L-intersection

between the boundary and the soft edge, where no change in the soft edge

length is required and one via is induced. In either of these two cases, i.e.,

if a boundary is within or has an L-intersection with a soft edge, we can

always set up an arc between them without affecting the delay. These arcs

are called basic arcs, and they are the solid type 2 arcs in Figure 5.4. The

third situation is shown in Figure 5.5 (c), where the soft edge does not

intersect with the boundary. In this case, an assignment on this pair will

require a wire detour, and we need to check whether or not this may cause

any delay violation. An arc can be constructed for such a pair only if the

assignment on this pair will not cause any delay violation. For the example in

Figure 5.2, if the timing slack of T 2 remains non-negative when the soft edge

e2
01 goes through boundary b3, then an arc (a dashed line) between them is

constructed in Figure 5.4. We call such a construction as an edge expansion

and each expansion implies a timing slack consumption.

We categorize the trees across the bisector line B into single-crossing trees

and multi-crossing trees, which are the trees that cross B only once (such as

T 2 in Figure 5.2) and more than once (such as T 1 in Figure 5.2), respectively.

Initially, we construct all the basic arcs for all the soft edges in EX and

perform an expansion for all the soft edges that belong to single-crossing

trees. The expansions of edges in multi-crossing trees will be discussed in

89

the next section.

The cost of a type 2 arc is defined according to the timing slack of its

corresponding tree, since one major objective is to minimize timing slack

consumption. If the timing slack of tree T i is Sold(T
i) before the assignment,

and is Snew(T i) if its soft edge ei
jl is assigned to boundary bk, then we define

the arc cost as:

cost(bk, e
i
jl) =

Sold(T
i)

Snew(T i)
. (5.4)

It can be seen that if an edge intersects with a boundary entirely or

partially, its corresponding type 2 arc has a cost of unity. As a secondary

objective, we hope to reduce the number of vias in the wiring. Therefore,

for the situation in Figure 5.5(b), we reduce its cost by a small user-specified

offset ε, 0 < ε < 1.

5.4.3 Construction of Arcs for Multi-crossing Trees

Generally speaking, adding a type 2 arc between a boundary vertex and a

soft edge vertex may increase the likelihood of obtaining a feasible network

flow solution. Hence, an edge expansion is usually desired as long as no delay

violation is incurred. One issue that was not discussed in the last section is

the procedure for those soft edges that belong to multi-crossing trees, such as

T 1 in Figure 5.2. The difficulty here is that the timing slack computations for

the soft edges are correlated. For some specified timing constraints, whether

an edge can be expanded, or how far it can be expanded, depends on whether

other crossing edges in the same tree are expanded, and how far they have

been expanded. For example, in Figure 5.2, the expansion of e1
41 depends

on whether e1
23 has been expanded and how far, i.e., to b2 or to b1. In fact,

90

these edges compete with each other on a common timing slack resource,

which must be allocated properly. A uniform allocation may overlook local

congestion distribution, and result in some unnecessary expansions while

some necessary expansion is not performed.

We solve this difficulty by identifying the necessary expansions through

the min-cut method. It is well known that the max-flow equals the forward

capacity of the s−t min-cut in a network flow problem [63]. In the beginning,

we run a max-flow algorithm on the partially constructed network to obtain

an s − t min-cut (X, X̄), s ∈ X, t ∈ X̄. The forward capacity of this cut is

denoted by Umin(X, X̄). If Umin(X, X̄) ≥ |EX |, then it is guaranteed that

every edge can be assigned to a boundary without any overflow, and thus,

no more expansion is necessary. Otherwise, the maximum feasible flow is

less than the number of edges to be assigned, thus we need to increase the

capacity of the min-cut through additional edge expansions. In the example

for Figure 5.2, before the expansion for multi-crossing trees, the min-cut is

indicated in the dashed curve in Figure 5.4, where the vertices in X are in

the shaded region and vertices in X̄ are unshaded. We can see that the

forward capacity Umin(X, X̄) = 4 while there are 5 edges that need to be

assigned, thus, we need to expand some edge(s) from the multi-crossing tree

T 1 if possible.

The min-cut result shows us not only whether more expansions are nec-

essary but also the congestion distribution information or where to make the

expansion. Every forward arc in the min-cut must be saturated [63], e.g.,

(s, b3), (e
1
41, t) and (e2

01, t) are saturated. If a soft edge vertex ei
jl is in X, its

downstream arc must be saturated and therefore, it can always be assigned

to a boundary without inducing overflow, i.e., it is not in a congested area.

On the other hand, if a boundary vertex bk is in X̄ (and not all of its down-

91

stream arcs are saturated), its upstream arc must be saturated and the soft

edges corresponding to its downstream vertices are located in a congested

area. Adding an arc from a boundary vertex bk ∈ X to a soft edge vertex

ei
jl ∈ X̄ matches a soft edge in a congested area to an uncongested boundary.

Lemma 5.1 The necessary and sufficient condition to increase the max-flow

fmax of a network is to add a forward arc between X and X̄ for every min-cut

(X, X̄) with Umin(X, X̄) = fmax.

We make a sweep among all the soft edges in multi-crossing trees and

pick at most one soft edge from each tree to expand in order to increase the

capacity of min-cut. More precisely speaking, for each multi-crossing tree

T i, from all the bk ∈ X and ei
jl ∈ X̄ pairs, we choose one with minimum

cost to add an arc between them if no delay violation is induced. After

one iteration of expansions, we run the max-flow min-cut algorithm again

to repeat this process until Umin(X, X̄) ≥ |EX | or no more feasible arc can

be found. Note that the timing slack computation in a later iteration of

expansions should account for any wire detour in other soft edges of the same

tree in previous expansions. In the example in Figure 5.4, We can make an

expansion between b2 ∈ X and e1
23 ∈ X̄ if no delay violation is induced,

and then the network problem becomes feasible. The iterative min-cut and

expansion technique makes the allocation of timing slack in multi-crossing

trees adaptive to the congestion distribution, and expansions are made only

when necessary, without waste.

5.4.4 Utilization of Slideable Steiner Nodes (SSN)

In phase 1, if we use the MVERT algorithm together with soft edges, we

can have a slideable Steiner node that provides extra flexibility in routing.

92

The appealing feature of SSN is that when we slide it along its locus, the

timing performance is preserved, i.e., no timing slack is consumed. Again,

we integrate this flexibility into the formulation of the network flow problem

so that it can be exploited in a unified network flow solution.

capacity/gain

s tp

e

e

e

e

e

b

b

1

3

1

2

3

4

1

41

01

01

23

03

e3’2
3

e3’1
3

2b 1/0.5 1/1

1/0.5

1/1

Figure 5.6: Network formulation considering SSN.

The positions of a SSN within a grid cell do not affect wire congestion

distributions, hence we can consider one arbitrary position for a SSN within

a grid cell. For each SSN whose locus intersects with B, we consider only two

candidate positions, each on a different side of the bisector line B, such as v3
3

and v3
3′ in Figure 5.2. We need to consider candidate positions on both sides

of B, since they result in remarkably different intersections between their in-

cident soft edges and the bisector line B. On each side of B, we only consider

the grid cell that has a boundary in B such that this boundary intersects

the locus of the SSN, since the SSN position in this grid cell can provide the

maximum overlap between its incident soft edge(s) and B. For example, in

Figure 5.2, e3
3′2 intersects with two boundaries b2 and b3, while e3

3′′2 would

intersect only with b2. It is evident that a larger overlap implies a larger num-

ber of basic arcs which are preferred as they will not consume timing slacks.

For v3
3 and v3

3′ , all three associated soft edges e3
3′1, e3

3′2 and e3
03 are included in

93

the vertices in the network as shown in Figure 5.6. Obviously, e3
03 cannot be

assigned simultaneously with e3
3′1 or e3

3′2. This exclusiveness constraint can

be instantiated through adding a pseudo-vertex p and applying generalized

network flow algorithm [63]. In a generalized network flow problem, each arc

has a gain factor associated with it. For example, the amount of flow will

reduce 50% after passing through an arc with gain factor of 0.5. We solve

this generalized network flow problem through Wayne’s algorithm [64].

After the assignment, only one of the candidate SSN positions is selected.

The locus of the SSN is truncated at the intersection with B, and the part

where the selected position located would be retained, as shown in Figure

5.3.

5.4.5 Network Pruning

Since the computational complexity of the min-cost max-flow algorithm de-

pends on the number of arcs and vertices in the network, it is always desirable

to reduce the number of arcs and vertices without affecting the quality of so-

lution. One simple observation is that if a soft edge vertex has only one

upstream incident arc and this arc is a basic arc, we can assign it to its

upstream boundary vertex immediately and remove it and its incident arcs

from the network. For a boundary vertex bk, if the number of its downstream

arcs is no larger than the capacity of its upstream arc, then all of its down-

stream soft edge vertices can be assigned to it without inducing overflow,

i.e., this boundary is not congested. Then, for each of its downstream soft

edge vertex ei
jl we can remove its upstream arcs whose cost is larger than

cost(bk, e
i
jl), since we can always assign ei

jl to bk with less cost and without

inducing overflow.

94

5.4.6 Experimental Results

The experiments aim to test the effect of the proposed algorithm on both

timing and congestion. Traditional rip-up-and-reroute(RR) and timing-

constrained rip-up-and-reroute(TRR) methods are tested together with our

algorithm(HBA+TRR) on the same set of circuits. The circuits that we

tested belong to the CBL/NCSU benchmark suite whose statistics are shown

in Table 5.1. For some circuits, more than one set of netlists are obtained

through different placements. We have implemented these methods in C++

and conducted experiments on a SUN Ultra-10 workstation. The initial rout-

ing trees are obtained through MVERT [11] algorithm so that they must

satisfy timing constraints. The results are listed in Table 5.2.

Table 5.1: Benchmark circuits.
Circuit # modules # nets # pins

apte 9 45 162

ami33 33 85 480

ami49 49 390 913

xerox 10 203 696

The congestion results are expressed in terms of total overflow Fov and

the maximum demand density Dmax(both are defined in section 5.2). The

congestion results from rip-up-and-reroute(RR) are generally good. When

we look at the congestion results from TRR, we can see that they are much

worse than RR, because the algorithm may get stuck in a deadlock and fail

to find a solution under timing constraints. A naive combination of timing

constraints with rip-up-and-reroute does not work, and a crafted approach is

necessary to optimize these two competing objectives simultaneously. Table

5.2 also shows the congestion results from HBA for reference. Even though

95

they are usually better than TRR, they are not ideal yet and not comparable

with those of RR, and should be considered as intermediate results. When we

combine TRR with HBA, the congestion results are found to be good and are

mostly better than even RR, which does not satisfy the timing constraints.

Since hierarchical approach is better at a global planning level while rip-up-

and-reroute is specialized to find local and more detailed routes, it is natural

that a combination of these two complementary approaches can yield a good

result on congestion reductions. When we compare the timing results, it is

not surprising that only RR causes delay violations while there is no delay

violation in the results from TRR or our algorithm. The percentage of nets

with delay violations from RR are listed in column 6, and ranges from 6−32%.

Table 5.2: Experimental results on timing-constrained global routing.
Rip-up-and-reroute TRR HBA HBA+TRR

Circuit Grid |E| Fov Dmax DV % Fov Dmax Fov Dmax Fov Dmax CPU

apte 45 × 55 145 1 1.00 9 56 1.50 19 1.83 0 1.00 7.1

ami33.1 19 × 31 489 0 1.00 21 15 1.29 10 1.57 0 1.00 30.3

ami33.2 19 × 27 497 0 1.00 12 19 1.25 0 1.00 0 1.00 26.6

ami49.1 43 × 45 594 2 1.09 17 11 1.18 16 1.36 1 1.09 19.6

ami49.2 44 × 44 594 0 1.00 12 61 1.56 0 0.94 0 0.94 12.2

xerox.1 24 × 24 583 2 1.06 6 41 1.38 1 1.06 0 1.00 12.8

xerox.2 28 × 32 569 0 1.00 11 17 1.22 1 1.05 0 1.00 16.3

xerox.3 41 × 34 569 3 1.11 32 43 1.33 0 1.00 0 1.00 23.8

The total CPU time for three phases of our algorithm on each circuit are

listed in the rightmost column in seconds. Since each circuit has different

number of nets and the number of pins on one net may be between two and

several dozens, it would be more interesting to evaluate the average CPU

time on each 2-pin net as a normalized comparison. The third column, |E|
gives the total number of soft edges from the initial routing trees in each

circuit. It is conceivable that the formulation of soft edges is equivalent to a

decomposition to 2-pin nets. Based on this data, the average CPU time is

96

found to be 0.06 second/2-pin-net in the worst case.

5.5 Gradual Refinement Algorithm

5.5.1 Approximated Congestion Estimation

In addition to the traditional congestion metrics, we use a couple of other

approximate estimation methods during different phases of the second global

routing algorithm we proposed, all of which will be introduced in details as

follows.

y1

y2

y3

y4

x1 x2

(a) (b)

x3 x4 x5

Figure 5.7: Examples of primitive demand. (a) each grid edge corresponds

to a horizontal(vertical) thickened boundary segment has primitive demand

of 1
4
(1

3
). (b) each grid edge corresponds to a thickened boundary segment has

primitive demand of 1.

The demand defined in section 5.2 is based on the the wire routes in solid

edges. However, we arrive at a rough estimation of the congestion from soft

edges. We use the concept of primitive demand to indicate the possibility of

wires crossing a grid edge. This is demonstrated in the example in Figure 5.7,

97

in which the dashed segments represent the tessellation by the grid graph, G.

The bounding box for a soft edge eij is obtained as the dotted rectangles and

denoted as Bij. In Figure 5.7(a), there are three vertical boundary segments

at x = x2 overlapping with Bij and only one of them is crossed by eij in

the final route. Therefore, we define the primitive demand incurred by eij

over the grid edge corresponding to each of these three boundary segments

as 1
3
. Similarly, each grid edge for a thickened horizontal (vertical) boundary

segment in Figure 5.7(a) has a primitive demand of 1
4
(1

3
). We refer to the

demand, as defined in section 5.2, as the determined demand, which actually

is a special case of the primitive demand. A primitive demand for a soft egde

is equivalent to its determined demand when its value aggregates to 1, as in

Figure 5.7(b). If we denote the primitive demand incurred by routing edge

eij over grid edge b as dprim(b, eij), then:

dprim(b) =
∑

∀eijintersecting b

dprim(b, eij) (5.5)

Definition 5.1 (primitive demand) If the bounding box Bij of an edge

eij passes through m rows and n columns in the grid graph G, the primitive

demand dprim(b, eij) from eij on each grid edge b corresponding to a verti-

cal(horizontal) boundary overlap with Bij is 1
m

(1
n
).

A Z-edge has less routing flexibility than a soft edge and its possible routes

are easier to enumerate. In this scenario, we adopt a probabilistic estimation

which is similar to [65, 66] and will be illustrated in the example in Figure

5.8. Without loss of generality, we can arbitrarily specify one end of the soft

edge as source node vs and the other end as target node vt, and denote the

grid cell in which they are located as (rs, cs) and (rt, ct), respectively. We use

98

vt

vs

c0 c1 c2 c3 c4

r2

r3

r1

r0

Figure 5.8: Enumerate routes with number of bends less than 3 to obtain

probabilistic demand.

r and c to represent row and column indices. Through simple enumeration,

we can conclude that:

Lemma 5.2 There are Z = |rt−rs|+ |ct−cs| monotone routes with number

of bends no greater than 2 between two grid cell (rs, cs) and (rt, ct) in a grid

graph.

For example, there are seven possible route for the Z-edge in Figure 5.8.

In our congestion estimation, we assume a uniform probability distribution

for these routes, i.e., every route has the same chance to be chosen in later

stages. Then, we can obtain the probability that a grid edge is crossed by

the soft edge, again through simple enumeration. To simplify the description,

we initially consider only those routes that leave source node vs horizontally

toward the target node. Obviously, there are |ct − cs| such routes which are

depicted in Figure 5.8. For each horizontal grid edge above the grid cells

{(ri, ci)|rs ≤ ri < rt, cs < ci ≤ ct}, there is one route across it. Thus, in

the example of Figure 5.8, the probability that the soft edge runs across the

99

horizontal grid edge above cell (r1, c2) is 1/7. For each vertical grid edge to

the right of grid cell (rs, cj), cs ≤ cj < ct, the probability is |ct − cj |/Z. For

example, the probability that the wire run across the vertical grid edge to

right of grid cell (r0, c1) is 3/7. The probability at other grid edge can be

counted similarly. Based on these probabilities, we define the probabilistic

demand as follows:

Definition 5.2 (probabilistic demand) The probabilistic demand from a

Z-edge eij to a grid edge b is the probability that Z-edge run across this grid

edge, and is denoted as dprob(b, eij).

In this definition, we restrict the number of bends for each soft edge to

be no greater than 2. We can also relax the number of bends to be a specific

number greater than 2, and then the probability estimation can be obtained

by using the recursive technique described in [67].

5.5.2 Algorithm Motivation

It is well-known that even minimizing only congestion for only 2-pin nets is an

NP-complete problem, and considering timing constraints and the number of

bends makes the problem even harder. The objectives of congestion, timing

constraints and number of bends often compete with each other in global

routing.

Our strategy is to obtain the required timing performance first and then

concentrate on optimizing the congestion and the number of bends while

preserving the timing performance obtained. Therefore, we initially route

each net individually through timing driven algorithms without considering

congestion or the number of bends. We use soft edges and slideable Steiner

100

nodes in this phase so that the routing result is composed of only backbone

nodes and every backbone wire is a single edge.

In the second phase, we will try to specify the details for the slideable

Steiner nodes and backbone wires in an effort to minimize congestion and

control the number of bends on each backbone wire. The strategy here is

to refine the route gradually according to available congestion information,

even this information is not accurate.

We can compare the underlying mechanism with the sequential and rip-

up-and-reroute approach. In the sequential approach, the earlier routing

steps are performed without any knowledge of the locations of the subse-

quent nets, and are therefore somewhat blindfolded. The routing of nets

that are considered later is based on the routes of previous nets, which may

be suboptimally placed, due to this false feedback. Similarly, rip-up-and-

reroute, which proceeds according to the locations of other nets, may also

be suboptimal. Due to its iterative nature, rip-up-and-reroute method has

the ability to correct the false feedback gradually and may become successful

in reducing congestion after many iterations. However, the efficacy of rip-

up-and-reroute may be hindered if constraints on timing and the number of

bends are imposed.

Fortunately, our method can obtain some rough congestion estimation

based on the locations of soft edges after phase one. This estimation is by

no means completely accurate, but it is better than no feedback or incorrect

feedback. Since we know that this estimation is not entirely accurate, we

will not fix the route completely in one step. Instead, we will settle a part of

the route to obtain a better congestion estimation and complete the routes

gradually to avoid blindfolded or incorrect decision.

101

5.5.3 Algorithm Detail

Our algorithm includes two phases:

(I) Timing-driven routing for each net individually without considering con-

gestion or number of bends.

(II) Specifying the route for each backbone wire obtained in phase I so that

congestion is minimized subject to timing constraints and bends constraints.

In phase I, we route each net through the MVERT [11] algorithm using

soft edges and slideable Steiner nodes so that the timing constraints can be

satisfied and the resulting routing tree consists of only backbone nodes and

each backbone wire is either a solid edge or a soft edge.

v

v

j

(a) (b)

k

j

kv

v

iviv

v’

B

B

iB
B

Bk

j

i

k

j

B
v’

Figure 5.9: When an SSN slides along its locus, the bounding boxes of its

incident edges change as well as the primitive demands.

After phase I, we can obtain a rough estimation of congestions through the

concept of primitive demand defined in section 5.5.1. The first step in phase

II is to fix the position of each SSN (Slideable Steiner Node) to minimize the

peak primitive demand density. Recall that when an SSN slides along a locus

of points, the lengths of its incident edges are not changed, and nor is the

delay at any sink. An example of a sliding Steiner node is illustrated in Figure

102

5.9, and it can be seen that the bounding boxes of the incident edges, denoted

by Bi, Bj and Bk, are changed after the sliding of the SSN. In Figure 5.9, when

the Steiner node v′ is slid toward northwest from (a) to (b), the bounding box

Bi becomes thinner and taller and the vertical (horizontal) primitive demand

incurred by (vi, v
′) on each horizontal (vertical) cell boundary overlaps with

Bi may be larger (smaller). The effect of this move on Bj and Bk is the

opposite. Based on this observation, we can tune the position of the SSN

on its locus in a way such that the maximum demand density among the

grid edges involved is minimized. This objective is achieved through a linear

search for all the grid cells that the SSN intersects, and fixing the location

in a grid cell such that the maximum demand density is minimized.

(a)

e

2

backbone wire route

1

e2

e1

e

(b)

backbone node

post node

backbone wire

Figure 5.10: Examples for setting post node for a backbone wire.

After fixing the SSN, we will make two sweeps of all the backbone wires in

a fixed order to specify their routes. Instead of specifying the complete route

immediately in one step, we first only specify one grid cell that the backbone

wire has to pass through. Note that neither of the end nodes of this backbone

wire can be within this grid cell. We insert a pseudo node, which we call the

post node in the backbone wire within this selected grid cell. For example,

in Figure 5.10(a), a post node represented by a small circle is inserted into

the backbone wire represented by a dotted curve. Before choosing the grid

103

cell for the post node, we need to choose the candidate grid cells that will be

considered. The routing flexibility from edge elongation is utilized here. For

a backbone wire eij with edge length lij , we calculate the maximum allowed

elongation Δlij under timing constraints as in section 5.3.3. If we insert a

post node vk into eij , the location of vk must satisfy lik + lkj ≤ lij + Δlij . In

Figure 5.10(a), the candidate grid cells are shaded.

Similarly, a formerly solid edge can also be elongated to reduce conges-

tion. Thus, we see that a “solid” edge is not exactly solid any more, and can

have some routing flexibility as well. Note that the maximum allowed elon-

gation for each backbone wire is calculated dynamically, since the allowed

elongations for backbone wires in a same routing tree depend on each other.

After the post node is inserted, the former backbone wire is split into

two subedges. We specify that each subedge can take only a Z-edge. By

setting the post node and restricting to Z-edges, we can bound the number

of bends for each backbone wire to be no greater than five. Moreover, we

can obtain a better estimation of the congestion by using the probabilistic

demand defined in section 5.5.1. We choose the post node so as to minimize

the congestion cost for the two sub-edges. Before setting the post node for a

backbone wire ei, we need to remove the primitive demand generated from

the soft edge of ei. Then, the congestion cost of a subedge ej is defined as:

cost(ej) =
∑

∀bintersecting ej

D(b)2 × dprob(b, ej). (5.6)

104

Algorithm: ZigPuzzle(N , G)

Input: A set of nets N , grid graph G(VG, EG)

Output: T i for each N i min congestion

s.t. timing constraints, ≤ 5 bends per backbone wire

1. For each N i ∈ N
2. T i ← MVERT(N i)

3. Generate primitive demand for each backbone wire

4. Fix all of the SSNs, min peak demand density

5. For each tree T i

6. For each backbone wire ei
jk ∈ T i

7. Remove its primitive demand

8. Compute max elongation Δljk without timing violation

9. Find candidate grid cells for post node

10. Find a post node, min congestion cost

11. Generate probabilistic demand from two Z-edges

12. For each tree T i

13. For each backbone wire ei
jk ∈ T i

14. Recompute its post node

15. Remove its probabilistic demand

16. Fix routes for two Z-edges, min congestion cost

17. Generate determined demands from two Z-edges

Figure 5.11: The gradual refinement global routing algorithm.

Recall thatD(b) = d(b)
s(b)

is the demand density at boundary b and dprob(b, ej)

is the probability that the Z-edge ej runs across boundary b. In the example

in Figure 5.10(b), the cost of edge e1 is the summation of the estimated costs

from thickened grid edges.

After setting the post node, we generate the probabilistic demands from

the two new Z-edges. The process of setting the post node is performed for

each backbone wire in every routing tree, which is the first sweep. During

105

this sweep, the backbone wires that have been processed are Z-edges while

those have not been processed are still soft edges. Thus, in the congestion

cost computation, both primitive and probabilistic demand may co-exist at

the same time. Therefore, we multiply the primitive demand by a penalty

coefficient of less than one to make its contribution weaker than that of the

probabilistic demand.

After post nodes have been selected for all of the backbone wires, all of the

demands become probabilistic demands. Based on this improved congestion

estimation, we start the second sweep for all backbone wires to specify their

routes in the same order as in previous sweep. For each backbone wire,

we recompute its post node before fixing the routes of its two Z-edges. A

backbone wire appears early in the order list may have a poor post node

location in the previous sweep, since this location is chosen according to

mostly primitive demands. In this second sweep, this backbone wire has

a chance to adjust its post node location from a more accurate congestion

information. The procedure of replacing the post node is the same as in

previous sweep. Then, we choose the route for the Z-edge ej to minimize

congestion in term of a cost defined as:

cost(ej) =
∑

∀bintersecting ej

D(b)2. (5.7)

The minimum cost route can be found through simple enumeration in

a manner similar to calculating the probabilistic demand in section 5.5.1.

After fixing the routes for each backbone wire, its probabilistic demand is

replaced by determined demand. The complete algorithm is summarized in

Figure 5.11.

106

5.5.4 Experimental Results

We have implemented ZigPuzzle global routing in C++ and conducted ex-

periments on a SUN Ultra-10 workstation. The circuits that we tested in-

cludes benchmark suite ami33, ami49 and xerox and three sets of randomly

generated nets, whose statistics are shown in Table 5.1 and 5.3. Similar to

section 5.4.6, each result is measured in terms of two congestion metrics:

total overflow Fov and maximum demand density Dmax.

Table 5.3: Description of Test Circuits.

Circuit # nets # pins

test1 1109 2464

test2 2100 4576

test3 3107 6817

For comparisons, we also implemented three variations of rip-up-and-

reroute (RR) global routing algorithm. In the base version of RR, we ini-

tially route each net separately in MVERT same as in phase I of ZigPuzzle

but using solid edges. Then, we rip up every backbone wire in the region

with wire overflow, and reroute them through maze routing to minimize con-

gestion cost which is the same as Equation 5.7 except that the demand is

determined. Three variations are: RR+B (RR with bends control), RR+T

(timing-constrained RR) and RR+B+T (timing-constrained RR with bends

control). In order to control the number of bends in RR, we replace the cost

in maze routing with a weighted sum of congestion and number of bends.

We run the RR+B with several different values of weight and choose the

result that provides the best congestion, while assuring that the number of

bends for each backbone wire is no greater than five, which is the same as in

ZigPuzzle. In RR+T, the timing constraints are imposed on the wirelength

107

for each backbone wire. Both of these methods are combined in obtaining

the results for the RR+B+T case. We did not compare with the hierarchical

method in section 5.4, because of the difference on objective.

Table 5.4: Grid size and the number of backbone wires for each circuit.
Circuit Grid size |E|

ami33.1 22 × 36 489

xerox.1 54 × 55 587

xerox.2 54 × 61 571

ami49.1 40 × 41 594

ami49.2 52 × 53 593

test1 52 × 52 1468

test2 53 × 53 2648

test3 52 × 52 3992

Table 5.5: Experimental results, vio is the number of nets with timing vio-

lations and ben is the maximum number of bends on a backbone wire.
RR+B RR+T RR+B+T ZigPuzzle

Circuit Fov Dmax vio Fov Dmax ben Fov Dmax Fov Dmax CPU

ami33.1 0 1.00 5 1 1.20 12 1 1.20 0 1.00 15.8

xerox.1 0 1.00 6 5 1.14 14 5 1.14 0 0.86 16.1

xerox.2 0 1.00 6 2 1.06 12 2 1.06 2 1.06 23.3

ami49.1 1 1.10 34 0 1.00 18 5 1.10 0 1.00 29.8

ami49.2 0 1.00 38 0 1.00 14 51 1.80 2 1.10 25.9

test1 4 1.29 34 0 1.00 17 58 1.21 1 1.07 207

test2 5 1.13 28 0 1.00 17 107 1.12 0 1.00 562

test3 4 1.16 35 0 1.00 20 63 1.14 0 1.00 1013

Average 1.8 1.09 23 1 1.05 16 36.5 1.22 0.6 1.01 237

Comp 3× 1.05× 1.67× 1.03× 3.2× 61× 1.20×

The experimental results are shown in Table 5.5 and 5.4. In Table 5.5,

Column 2 to 4 are results from RR+B, whose number of bends is bounded

to be no more than five for each backbone wire. Its congestion results are

108

generally good with limited wire overflows in large circuits. However, it does

not have the capability to satisfy timing constraints and there are always a

number of nets that have timing violations as indicated in column 4. The

results from RR+T is given in column 5 to 7, where the congestion is good

subject to timing constraints, but the maximal number of bends per backbone

wire can be very large (in a range of 12− 20) as listed in column 7 of Table

5.5. When we impose both timing and bends constraints directly on RR,

the results in column 8 and 9 show that the congestion can be very poor

especially in large circuits. On the other hand, our ZigPuzzle can optimize

congestion subject to timing and bend constraints, and works well in both

small and large circuits. In the last row of Table 5.5, the results from RR

are compared with that of ZigPuzzle.

The rightmost column lists the CPU time in seconds. Since a circuit may

include many multi-pin nets, it would be more interesting to evaluate the

CPU time for each 2-pin net as a normalized comparison. Column 3 in Table

5.4 lists the number of backbone wires in each circuits. It is easy to regard

these backbone edges as a decomposition into 2-pin nets. Therefore, we can

get the average CPU time for a 2-pin net is 0.2 seconds.

In our approach, we use primitive demand to estimate the congestions

from soft edges. Instead of this, we can use a probabilistic estimation similar

to that in section 5.5.1 for soft edges by using the technique described in [67],

and it may initially seem that this would provide a more accurate estimate

of congestion. We have also performed experiments using this approach.

However, we find that this approach takes a longer CPU time and often

produces worse results. This increased CPU is not unexpected, since the

computation related to probabilistic estimation will be more computationally

intensive than primitive demand calculations, especially when the allowed

109

number of bends is large. In addition, a backbone wire could be elongated at a

later stage, and therefore, the increased accuracy obtained from probabilistic

estimation at current stage may become meaningless later. The spirit of

primitive demand is to catch a rough estimation in a quick operation and our

experiments have demonstrated that it is better than a more sophisticated

measure at the early stage of global routing.

5.6 Conclusion

We have proposed two novel algorithms to timing-constrained global rout-

ing. We have formalized the routing tree topology flexibilities under timing

constraints through the concepts of a soft edge and a slideable Steiner node,

and have traded these flexibilities into congestion reduction while the tim-

ing constraints are satisfied. Experimental results show that the traditional

rip-up-and-reroute method may cause significant delay violations and is poor

on congestion when timing constraints are imposed directly. Our algorithm

can achieve good congestion results while satisfying timing constraints. In

addition to exploiting timing constrained routing flexibilities, we have ap-

plied a simple gradual refinement method based on probabilistic congestion

estimation, which leads to simultaneous optimization on congestion, timing

and the number of bends.

110

Chapter 6

Integrated Buffer and Wire

Planning

6.1 Introduction

Early planning of buffers and wires is vitally important to achieve ambi-

tious performance goals. It is generally accepted that buffer insertion has

become a critical step in deep submicron design as interconnect now plays a

dominating role in determining system performance. Current designs easily

require thousands of nets to be buffered, and Cong [3] speculates that close

to 800,000 buffers will be required for designs in 50 nanometer technology.

Achieving timing closure becomes more difficult when buffer insertion is de-

ferred to the back end of the design process, and the buffers must be squeezed

into whatever left over space remains. The problem is particularly acute for

custom designs, where large IP core macros and custom data flow structures

are present, blocking out significant areas from buffering possibilities. ASIC

designs can also run into similar headaches if they are dense, or have locally

111

dense hot spots. To manage the large number of buffers and also achieve

high performance on the critical global nets, buffers must be planned for

early in the design, so that the rest of the design flow is aware of the required

buffering resources. In addition, design routability has also become a critical

problem; one must make sure that an achievable routing solution exists dur-

ing the physical floorplanning stage. Thus, global wiring must be planned

early to minimize routing congestion, hot spots, and crosstalk problems later

on in the flow.

6.1.1 Buffer Block Planning Methodology

In response to the need for an interconnect-centric design methodology, a

new body of research on buffer block planning has recently established itself

in the literature [66,68–71]. These works focus on physical-level interconnect

planning, as described in [72]. The works of [66,68,71] all propose the creation

of additional buffer blocks to be inserted into an existing floorplan. These

buffer blocks are essentially top-level macro blocks containing only buffers.

Cong et al. [68] proposed to construct these blocks using feasible regions. A

feasible region is the largest polygon in which a buffer can be inserted for

a particular net such that the net’s timing constraint is satisfied. Sarkar et

al. [66] added a notion of independence to the feasible regions in [68] while also

trying to relieve routing congestion during optimization. Tang and Wong [71]

proposed an optimal buffer block planning algorithm in terms of maximizing

the number of inserted buffers (assuming that one buffer is sufficient for

each net). Finally, Dragan et al. [69] presented a multi-commodity flow-

based approach to buffering 2-pin nets assuming that a buffer block plan

had already been created. This approach was extended to multi-pin nets

in [70]. In the buffer block planning methodology, buffers are essentially

112

packed between larger existing floorplanned blocks. We argue there are two

fundamental problems with the buffer block planning approach:

1. Since buffers are used to connect global wires, there will be consid-

erable contention for routing resources in the regions between macro

blocks. The design may not be routable due to heavy congestion be-

tween blocks.

2. Buffers must be placed in poor locations since better locations are

blocked. Some blocks may even be so large that routing over the block

is infeasible, even if buffers are inserted immediately before and after

the block. For example, signal integrity could degrade beyond the point

of recovery or wire delay may simply be too high. One may be able to

alleviate the problem by using wider wires on thick metal, powering up

to very large buffers, etc., but these solutions exacerbate the congestion

problem.

The flaws are not with buffer block planning per se; rather, it is cer-

tainly a reasonable method for pre-planning buffers within current design

flows. However, buffer block planning is really an interconnect-centric idea

being applied to a device/logic-centric flow. Ultimately this methodology

will not be sustainable as design complexity continues to increase. A differ-

ent methodology is required. Ideally, buffers should be dispersed with some

regularity throughout the design. Clumping buffers together, e.g., in buffer

blocks, or between abutting macros invites routing headaches. A more uni-

form distribution of buffers will also naturally spread out global wires. There

must be a way to allow buffers to be inserted inside blocks.

113

6.1.2 Buffer Site Methodology

We propose an alternative methodology. Macro block designers must allow

global buffer and wiring resources to be interspersed within their designs

wherever possible. This resource allocation need not be uniform; a block

with a lower performance requirement and complexity may be able to afford

to allocate a higher percentage of its resources. A cache or blocks within a

datapath may not be able to allocate any resources. Ideally, as this hole in

a macro methodology becomes widespread, even future IP blocks will have

some of their area devoted to buffering resources.

To set aside a buffer resource within a block, the designer can insert

what we call a buffer site, i.e., physical area which can denote either a buffer,

inverter (with a range of power levels), or even a decoupling capacitor. When

a buffer site gets assigned to a net, a logical gate from the technology is

actually specified. Until this assignment takes place, buffer sites are not

connected to any nets. Allocating a percentage of a macro block for buffer

sites may be viewed as wasteful; however, if the sites are not used for buffering

there are other ways to utilize them. For example, they can be populated

with spare circuits to facilitate metal-only engineering changes late in the

design cycle. Or, the sites can be populated with decoupling capacitors to

enhance local power supply and signal stability. Thus, one can actually afford

to allocate many more buffer sites than will ever be used. Buffer sites can

also be a powerful tool for semi-custom designs. For example, in a data

flow there are typically regular signal buses routed across collections of data

flow elements. These routes are generally expected to be implemented with

straight wires if possible. If buffering for some or all of the strands of a data

bus are required, it is important to have buffer locations available within

the data path itself. If buffer sites are designed into the original data path

114

layout, it is possible to add buffers late in the design cycle while maintaining

straight wiring of the buses. Buffer sites can also be used for a flat design

style, e.g., a sea of buffer sites can be sprinkled throughout the placement.

For hierarchical designs, one can view the buffer sites as flat to derive a similar

sprinkling, but their distribution will likely be less uniform. Some regions

could have, say, 5-10% of the area devoted to buffer sites, while a region

containing the cache will have none. No matter which design style is used,

a resource allocation algorithm can view buffer sites as flat, which enables it

to make assignments to global routes based on buffer site distribution.

6.1.3 Technical Contribution

We propose a new buffer and wire resource allocation formulation. Assuming

that locations for buffer sites have already been chosen, the problem is to

assign buffers to global nets such that each buffer corresponds to an existing

buffer site. We model the problem with a tile graph to manage the complexity

of thousands of buffer sites and to integrate wire congestion into the problem

statement. We propose the following four stage heuristic:

1. Construct low-cost, low-radius Steiner trees for each net.

2. Rip-up and re-route nets to reduce wire congestion.

3. Insert buffers on all nets which require them. This stage is based on a

Van Ginneken [21] style dynamic programming algorithm, yet we can

find the optimal solution for a given net more efficiently than [21].

4. Rip-up, re-route, and re-insert buffers on nets to reduce both wire and

buffer congestion.

115

Unlike the approaches in [68,69,66,71] , our algorithm is designed to handle

nets with multiple sinks (as is [70]).

6.2 Problem Formulation

There are two fundamental characteristics of buffer and wire planning which

drive our formulation.

1. Finding the absolute optimal locations for a buffer is not particularly

important. Cong et al. [68] showed that one may be able to move a

buffer a considerable distance from its ideal location while incurring a

fairly small delay penalty. Their concept of feasible regions for buffer

insertion is based on the principle that there is a wide range of reason-

ably good buffer locations.

2. At the interconnect-centric floorplanning stage, timing constraints are

generally not available since macro block designs are incomplete and

global routing and extraction have not been performed. Potentially

crude timing analysis could be performed, but the results are often

grossly pessimistic because interconnect synthesis has not taken place.

At this stage, one needs to globally insert buffers while tracking wire

congestion before the floorplan can even be evaluated. For example, in

a design with a desired 5 ns clock period, say that one floorplan has a

worst slack of -40 ns while a different floorplan has a worst slack of -43

ns. The designer cannot determine which floorplan is better because

the slacks for both are so absurdly far from their targets. Buffer and

wire planning must be efficiently performed first, then the design can

be timed to provide a meaningful worst slack timing that the designer

116

can use for evaluation. We envision performing buffer and wire plan-

ning each time the designer wants to evaluate a floorplan. The first

characteristic suggests that one does not need to worry about exactly

where buffer sites are placed. The block designers should have the free-

dom to sprinkle buffer sites into their designs so that performance is

not compromised; there just needs to be a sufficient number of buffer

sites somewhere.

0 0 6 4 1 2

2 2 4 3 3 6

2 8 2 0 5 0

2 2 3 3 2 0

0 1 0 0 1

0 0 2 1 0

0

1

(a) (b)

Figure 6.1: (a) A set of 68 buffer site locations can be tiled and (b) abstracted

to a total number of buffer sites lying within each tile.

The optimization algorithm can view the thousands of buffer sites within

a tile graph. Figure 6.1(a) shows 68 buffer sites lying within the region of the

chip. A tiling over the chip’s area can be used to abstract each individual

buffer site to a set of buffer sites lying at the center of each tile (Figure 6.1(b)).

The tile graph offers both a complexity reduction advantage (especially when

there are thousands of buffer sites) and also the ability to manage routing

congestion across tile boundaries. The granularity of the tiling depends on

the desired accuracy/runtime trade-off and on the current stage in the design

flow.

117

The second characteristic suggests that timing constraints are not reliable

in the early floorplanning stage. Our formulation relies on a global rule of

thumb for the maximum distance between consecutive buffers. This rule of

thumb was also used for buffer planning by Dragan et al. [69]. They note that

for a high-end microprocessor design in 0.25μm CMOS technology, repeaters

are required at intervals of at most 4500μm. Such a rule is necessary to

ensure that the slew rate is sufficiently sharp at the input to all gates.

We represent a tiling by a graph G(VG, EG) where VG = {g1, g2, ...} is the

set of tiles and edge êij is in EG if gi and gj are neighboring tiles. Given a tile

g, let s(g) be the number of buffer sites within the tile. Let N = {N1, N2, ...}
be the set of global nets and let s(êij) be the maximum permissible number

of wires that can cross between gi and gj without causing overflow. If d(g)

denotes the number of buffers assigned in g ∈ VG, the buffer congestion for g

is given by d(g)/s(g). Similarly, given a global routing of N , if d(êij) denotes

the number of wires which cross between tiles gi and gj , the wire congestion

for edge êij is given by d(êij)/s(êij).

Figure 6.2: Driver with seven sinks, whereby the maximum distance allowed

between gates is three. With this interpretation of the distance rule, the

driving gate must drive 11 units of wirelength.

118

For net N i, let Li be the maximum wirelength, in units of tiles, that

can be driven by either the driver of N i or a buffer inserted on N i. This

interpretation of maximum distance avoids the scenario that could occur in

Figure 6.2. The figure shows a driver with seven sinks whereby the distance

between the driver and each sink is three tile units. Using this interpretation

of the distance constraint results in a legal solution where the source gate

drives 11 tile units of wirelength without requiring any buffers. For a slew-

based distance rule, the extra interconnect (and sink load) will likely cause

weak signals at the sinks. Thus, our distance rule requires that the total

amount of interconnect that can be driven by any gate is no more than Li.

Problem 6.1 Given a tiling of the chip area G(VG, EG), netsN = {N1, N2, ...},
the number of buffer sites s(g), g ∈ VG, and tile length constraints Li, assign

buffers to nets such that

• d(g) ≤ s(g)∀g ∈ VG, where d(g) is the number of buffers assigned to

tile g.

• Each net N i ∈ N satisfies its tile length constraint, Li.

• There exists a routing after buffering such that for all ê ∈ EG, the

number of wires crossing from gi to gj is less than or equal to s(êij).

A solution to this problem means that constraints are satisfied, though

secondary objectives can also be optimized, such as total wirelength, maxi-

mum and average wire congestion, maximum and average buffer congestion,

and net delays. Our heuristic seeks to find a solution which satisfies the prob-

lem formulation while also trying to minimize these secondary objectives.

Note that the purpose of our formulation should not be used to find the

final buffering and routing of the design. Rather, it can be used to estimate

119

needed buffering and routing resources or as a precursor to timing analysis

for more accurate floorplan evaluation. Once deeper into the physical design

flows, nets which generate suboptimal performance or are in timing-critical

paths should be re-optimized using more accurate values of timing constraints

and wiring capacitances.

6.3 Buffer and Wire Planning Heuristic

The purpose of our proposed heuristic is to show how buffer and wire planning

can be integrated into a tile-based global routing methodology. We follow

a traditional rip-up and re-route type of strategy. Our heuristic proceeds in

four stages: (i) initial Steiner tree construction, (ii) wire congestion reduction,

(iii) buffer allocation, and (iv) final post processing. The primary innovations

are within stages 3 and 4 which handle buffer site assignment. Stages 1 and 2

deliver an initial congestion-aware global routing solution as a starting point.

One could alternatively begin with the solution from any global router, e.g.,

the multi-commodity flow-based approach of [53].

Figure 6.3: Example of spanning tree edge overlap removal.

120

6.3.1 Stage 1: Initial Steiner Tree Construction

At this stage, we want an initial routing of each net so that congested regions

can be evaluated and reduced in each stage. As opposed to a pure mini-

mum length construction, the tree construction needs to be timing-driven,

yet timing constraints are not necessarily available. Hence, we adopt the

Prim-Dijkstra construction [73] which generates a hybrid between a mini-

mum spanning tree and shortest path tree. The result is a spanning tree

which trades off between radius and wirelength. The spanning tree is then

converted to a Steiner tree via a greedy overlap removal algorithm. The

algorithm iteratively searches for the two tree edges with the largest poten-

tial wirelength overlap. A Steiner point is introduced to remove the overlap

as shown in Figure 6.3. The algorithm terminates when no further overlap

removal is possible.

6.3.2 Stage 2: Wire Congestion Reduction

The next step is to rip-up-and-reroute to reduce wire congestion. The tile

graph G(VG, EG) is constructed from the existing Steiner routes, and the

congestion of each edge in EG is computed. Instead of ripping up nets in

congested regions, we rip-up and re-route every net, similar in spirit to Nair’s

method [55]. This approach is less likely to become trapped in a local minima.

The net ordering is first fixed (we sort in order of smallest to largest delays),

and each net is processed in turn according to the ordering. The advantage is

that even nets which do not violate congestion constraints can be improved to

further reduce congestion so that other nets can be successfully re-routed in

subsequent iterations. The algorithm terminates after either three complete

iterations or d(ê)/s(ê) ≤ 1 for all ê ∈ EG. From experience, only nominal

121

potential improvement exists after the third iteration.

To re-route the net, the entire net is deleted and then re-routed using an

approach similar to [46], as opposed to re-routing one edge. The new tree

is constructed on the tile graph using the same Prim-Dijkstra cost function

in Stage 1, except that the cost for each edge is not its Manhattan distance.

The routing occurs across the tile graph using the following congestion-based

cost function:

cost(ê) =

⎧⎪⎨
⎪⎩

d(ê)+1
s(ê)−d(ê)

: d(ê) < s(ê)

∞ : d(ê) ≥ s(ê)
(6.1)

The cost is the number of wires that will be crossing divided by the

number of wires still available. The purpose of this cost is to have the penalty

become increasingly high as the edge comes closer to full capacity. The

procedure performs a wave-front expansion from the tile which contains the

source, updating to the lowest tile cost with each expansion. When each sink

in the net is reached, the algorithm terminates, and the tree is recovered by

tracing back the edges to the source from each sink.

6.3.3 Stage 3: Buffer Allocation

Once a low congestion routing exists, the next step assigns buffer sites to each

net. We perform this allocation iteratively in order of net delay, starting with

the net with highest delay. Before buffers are allocated, we first estimate the

probability of a net occupying a buffer site in a tile. For a net N i passing

through tile g, the probability of a buffer from g being inserted onto N i is

defined as 1/Li. Let p(g) be the sum of these probabilities for tile g over all

unprocessed nets. Recall that s(g) is the number of buffer sites in and d(g)

122

is the current number of used buffer sites. We define the cost q(g) for using

a particular buffer site as

cost(g) =

⎧⎪⎨
⎪⎩

d(g)+p(g)+1
s(g)−d(g)

: d(g) < s(g)

∞ : d(g) ≥ s(g)
(6.2)

Observe the similarity between Equations 6.2 and 6.1. Both significantly

increase the penalty as resources become more contentious.

q(g)

3

8

d(g)

p(g)

0

s(g) 8 5 12 3 5 0

3 4 2 0

2.5 3.6 2 0.8 4 5

8.6 0.5 1.01.3 8

Figure 6.4: Example of how buffer costs are computed. For a value of Li = 3,

the optimal solution is shown, having total cost 1.5.

Figure 6.4 shows an example of how the buffer cost is computed. Note

that the p(g) values do not include the currently processed net. The cost

q(g) is computed for each tile, and q(g) is included in the cost for a net if a

buffer is inserted at g. In the example, if Li = 3, the minimum cost solution

has buffers in the third and fifth tiles, with cost 0.5 + 1.0 = 1.5.

An optimal solution can be found in linear time in terms of the number

of tiles spanned by the net (assuming that L is constant). The approach uses

a Van Ginneken [21] style dynamic programming algorithm, but has lower

time complexity because the number of candidates for each node is at most

L.

123

We begin with the simple case, a net N with a single source v0 and sink

vt. Let π(g) be the parent tile of tile g in the routing path, and assume that

q(g) has been computed for all tiles on the path between v0 and vt. At each

tile g, the array Ag stores the cost of the solutions from g to vt. The index

of the array determines the distance downstream from g to the last buffer

inserted. Thus, the array is indexed from 0 to L − 1, since g cannot be at

distance more than L from the last available buffer. The full algorithm is

shown in Figure 6.5.

Single-Sink Buffer Sites Allocation

1. g ← tile where sink vt locates in

Set Ag[i] = 0 for 0 ≤ i < L

2. While v0 not in g

For i = 1 to L− 1

Aπ(g)[i]← Ag[i− 1]

Aπ(g)[0]← q(π(g)) + min{Ag[j]|0 ≤ j < L}
g ← π(g)

3. Let g be such that v0 locates in π(g)

Return min{Ag[j]|0 ≤ j < L}

Figure 6.5: Single-sink buffer sites allocation algorithm

The first step is to initialize the cost array Ag to zero for the tile g

where sink vt locates in. The algorithm then traverses up towards the source,

iteratively setting the values for the cost array. Step 2 computes the values

for π(g) given the values for g. The value of Aπ(g)[i] for i > 0 is simply

Ag[i − 1] since no buffer is being inserted at π(g) for this case. If a buffer

is to be inserted at π(g), then the cost Aπ(g)[0] is computed by adding the

124

current cost for insertion, q(π(g)), to the lowest cost seen at g. One can

recover the solution by storing at π(g) the index in Ag which was used to

generate the solution.

0A[2]

A[1]

q(g)

2.8

9.6

1.5

1.3 8.6

9.6

1.5

0.5

1.0

1.0

1.0

0

0

0

8 0

0

1.5 1.0
8 8

8

8

8 8
8A[0]

Figure 6.6: Execution of the single source algorithm on the example in Figure

5. The optimal solution has cost 1.5 and the arrows show how this cost is

obtained.

Figure 6.6 shows how the cost array is computed for the 2-pin example in

Figure 6.4 (with L = 3), and the arrows show how to trace back the solution.

Observe from the table that costs are shifted down and to the left as one

moves from right to left, with the exception of entries with index zero.

The algorithm is optimal since each possible solution is preserved during

the execution. One can take advantage of the fact that the number of possible

candidates at each node is no more than L to give a space and time complexity

of O(nL), where n is the number of tiles spanned by the net. This is a

significant advantage over similar dynamic programming approaches [21, 27,

44] which have at least O(n2) time complexity.

Extending the algorithm to multi-sink routing trees is fairly straightfor-

ward. One still keeps a cost array at each node, but updating the cost

becomes a bit trickier when a node in a routing tree has two children. Let

125

l(g) and r(g) denote the two children of g in the routing tree. If g has only

one child, let it be l(g). When considering buffer insertion at a node with

two children, there are three cases as shown in Figure 6.8. A buffer may be

used to either (a) drive both branches, (b) decouple the left branch, or (c)

decouple the right branch.

Multi-Sink Buffer Sites Allocation

1. v ← an unvisited node whose descendents have been visited

g ← tile v locate

While no visited node in g

2. If a leaf node v in g, Ag[i]← 0 for 0 ≤ i < L

3. If g has one child l(g) in routing tree

For i = 1 to L− 1

Ag[i]← Al(g)[i− 1]

Ag[0]← q(g) + min{Al(g)[j]|0 ≤ j < L}
4. If g has two children l(g) and r(g)

4.1 For i = 2 to to L− 1

Ag[i]← min{Al(g)[il] + Ar(g)[ir]|il + ir + 2 = i}
4.2 Ag[0]← q(g) + min{Al(g)[il] + Ar(g)[ir]|il + ir + 2 ≤ L}
4.3 Ag[1]←∞
4.4 For i = 1 to L− 1

Ag[i]← min{Ag[i], q(g) + Al(g)[i− 1], q(g) + Ar(g)[i− 1]}
5. Mark v as visited, g ← π(g)

6. Let g be tile that v0 locates in, return min{Ag[j]|0 ≤ j < L}

Figure 6.7: Multi-sink buffer sites allocation algorithm

The complete algorithm is shown in Figure 6.7. The algorithm flows from

the sinks to the source in the same manner as the single-sink algorithm in

Figure 6.5, except for the inclusion of Step 4. Step 4.1 handles the case

where no buffer is inserted at the branch node g. A distance of one is driven

126

for both the left and right branches, hence no buffer implies that the cost

array is updated only for indices 2 and above. Step 4.2 handles the case

where a buffer is driving both children, taking the combined minimum cost

left and right branches. Step 4.3 initializes the cost array for index 1 since

it has not yet been set. Finally, Step 4.4 updates the cost array with a

better solution from potentially decoupling either of the two branches. The

multi-sink variation has O(nL2) time complexity due to step 4.2.

(b) (c)(a)

Figure 6.8: For a node with two children, a buffer may be used to either (a)

drive both branches, (b) decouple the left branch, or (c) decouple the right

branch.

6.3.4 Stage 4: Final Post Processing

The final stage of our algorithm attempts to reduce buffer congestion, wire

congestion, and the number of nets which, up until now, have failed to meet

their length constraint. Using the same flow as in stage 2, each net is ripped

up and re-routed, and the buffers for the net are removed as well. However,

for multi-pin nets, the net is ripped up one two-path at a time, where a two-

path is a path in the tree which begins and ends at either a Steiner node,

source, or sink and contains only vertices of degree two. The two ends of the

127

two-path are then reconnected via the path that minimizes the sum of wire

and buffer congestion costs (Equations 6.1 and 6.2).

The minimum cost two-path is computed as follows. Call the endpoint

of the original two-path that is in the same sub-tree as the source the head

and the other endpoint the tail. The algorithm works in bottom-up fashion

in a manner similar to the single-sink buffer insertion algorithm (and also

the buffer insertion, maze-routing algorithms of [27, 44]). Starting from the

tail, the algorithm visits the neighbors of the current minimum cost tile

and updates the cost array. For each element in the cost array, a pointer

is maintained back to the tile which was used to generate that cost. The

algorithm iteratively expands the tile with lowest cost and updates the costs

of neighboring tiles during wavefront expansion. The cost for the new tile also

includes the wire congestion cost of crossing the tile boundary. Finally, when

the head of the 2-path is reached, the minimum cost solution is recovered by

tracing back out the path to the tail; the buffers used to derive this solution

are also inserted during the trace.

6.4 Experimental Results

We implemented our heuristic in C++ on an RS6000/595 machine with 1 Gb

of memory. We tested our code on ten benchmarks which we obtained from

the authors of [68]. The first six are from the Collaborative Benchmarking

Laboratory (CBL) and the other four are randomly generated. We also

embed the designs in the same 0.18μm technology used in [68]. The statistics

of the benchmarks are summarized in the first five columns of Table 6.1. The

nets and sinks columns present slightly smaller values than in [68] to reflect

the nets that Cong et al. did not optimize since they did not require buffers.

128

Table 6.1: Test circuit statistics and parameters for the first set of experi-

ments.
circuit # mod # nets # pads # sinks grid Li # buf sites %Abuf Atile

apte 9 87 73 154 30 × 33 6 1200 0.13 0.38

xerox 10 178 2 375 30 × 30 5 3000 0.39 0.35

hp 11 70 45 189 30 × 30 6 2350 0.22 0.48

ami33 33 118 43 344 33 × 30 5 2750 0.24 0.46

ami49 49 351 22 466 30 × 30 5 11450 0.75 0.67

playout 62 1517 192 1970 33 × 30 5 27550 1.52 0.73

ac3 27 209 75 407 30 × 30 8 3550 0.32 0.49

xc5 50 857 2 1801 30 × 30 6 13550 1.11 0.53

hc7 77 359 51 1171 30 × 30 6 7780 0.33 1.04

a9c3 147 1138 22 1518 30 × 30 6 12780 0.52 1.08

6.4.1 General Performance

Our first set of experiments studies the performance of each of the four stages

of our heuristic. The grid size and number of buffer sites used are presented

in Table 6.1. We chose the grid size to have 30 tiles on the shorter side of

the chip, then derived the number of tiles for the longest side, so that each

tile was roughly square. The total number of buffer sites for each circuit

were also chosen arbitrarily. The number was chosen to be large enough to

so that buffer congestion is low, but small enough so that the percent of

the total chip area occupied by buffer sites is less than 2% of the total chip

area. The total buffer site area Abuf in percentage of chip area is given in

column 9, we can observe that the percentage of the chip area is less than 1%

for all but two cases. The tile area Atile in mm2 is shown in the rightmost

column. Except for the last two random circuits, no tile is more than one

millimeter long on a side. For each benchmark, a random nine by nine set of

tiles were prohibited from having any inserted buffer sites to correspond to

a large cache-like object. The buffer sites were randomly distributed among

129

the remaining tiles.

The floorplans were generated using the buffer block planning code sup-

plied by the authors of [68]. The results for each stage and each CBL bench-

mark are summarized in Table 6.2. The statistics presented are:

• the maximum and average wire congestion over all edges in the tile

graph,

• the sum of the wiring overflows Fov, i.e., the sum over all ê ∈ EG of

d(ê)− s(ê), for whenever d(ê) > s(ê),

• the maximum and average buffer congestion,

• the number of buffers inserted,

• the number of nets for which the tile length constraint was not satisfied,

• total wirelength W in millimeters,

• maximum and average delays in picoseconds to each sink,

• and CPU time in seconds.

Note that no timing constraints are used, so we use average and maximum

source-to-sink delays to give an indication for the quality of timing. We make

several observations:

• The wire congestion constraint is always satisfied. If one ignores wire

congestion, as is done in Stage 1, then the maximum wire congestion is

typically a factor of two to three above capacity and there are several

hundred overflows.

130

• The algorithm never violates the buffer site constraint, but typically

utilizes at least one tile to full buffer capacity. As seen from the small

buffer site area percentages in Table 1, the total number of buffer sites

chosen is actually quite small relative to total area.

• The number of buffers, failures, and wirelength all decline from Stage 3

to Stage 4 (except for the wirelength for ami33), which shows that our

final post-processing step is quite effective. The number of nets which

fail to meet the length constraint is typically small, but not zero. This

is caused almost exclusively by the existence of the large 9 by 9 tiled

region with no buffer sites that was inserted into each design.

• Net delays increase significantly from Stage 1 to Stage 2 during re-

routing to avoid congestion, but the insertion of buffers in Stage 3,

reduces delay significantly even though the buffer insertion algorithm

is delay ignorant. The maximum and average delay always is less after

Stage 4 than Stage 1, with the exception of the maximum delay for

playout.

• The CPU time is almost exclusively dominated by the two re-routing

stages, 2 and 4. Thus, our buffer insertion algorithm in Stage 3 is

indeed efficient in practice.

6.4.2 Variations

Our next experiments examines the behavior of our algorithm when the num-

ber of available buffer sites varies. We ran our algorithm on each of the six

CBL circuits three times using small, medium, and large number of buffer

sites that are randomly distributed (with the blocked 9 by 9 region). The

131

Table 6.2: Stage by stage experimental results for the 6 CBL circuits. The

final results are shown for the last four random circuits.
Wire Cngst Buf Cngst sink delay

circuit stage max ave Fov max ave #bufs #fails W max ave CPU

apte 1 2.75 0.16 531 0.00 0.00 0 87 1519 5946 1687 0

2 1.00 0.21 0 0.00 0.00 0 87 2036 7032 2462 12

3 1.00 0.21 0 1.00 0.37 436 6 2036 5383 1079 0

4 1.00 0.20 0 1.00 0.36 406 4 1974 2330 879 30

xerox 1 3.20 0.20 705 0.00 0.00 0 178 3101 4234 1600 1

2 0.73 0.25 0 0.00 0.00 0 178 3875 5193 1920 41

3 0.73 0.25 0 1.00 0.39 1140 17 3875 3492 1175 1

4 0.73 0.23 0 1.00 0.35 967 9 3729 2564 859 61

hp 1 3.00 0.32 474 0.00 0.00 0 70 1563 8462 2869 0

2 1.00 0.43 0 0.00 0.00 0 70 2133 9020 3570 8

3 1.00 0.43 0 1.00 0.19 497 9 2133 4300 1035 0

4 1.00 0.40 0 1.00 0.16 379 9 1992 3893 1026 29

ami33 1 3.33 0.34 532 0.00 0.00 0 118 2657 11179 5178 0

2 0.83 0.41 0 0.00 0.00 0 118 3268 15476 6437 32

3 0.83 0.41 0 1.00 0.31 865 7 3268 6031 1332 1

4 1.00 0.40 0 1.00 0.31 765 3 3313 2906 1286 35

ami49 1 2.73 0.42 1236 0.00 0.00 0 351 6625 7644 2085 1

2 1.00 0.58 0 0.00 0.00 0 351 9366 30614 3567 44

3 1.00 0.58 0 0.55 0.17 1991 18 9366 12381 1300 0

4 1.00 0.49 0 0.88 0.14 1475 13 7876 3007 981 81

playout 1 1.60 0.15 1032 0.00 0.00 0 1517 30323 8637 2395 0

2 0.93 0.20 0 0.00 0.00 0 1517 39903 24117 3477 268

3 0.93 0.20 0 0.83 0.28 7631 172 39903 18608 1399 4

4 0.93 0.18 0 1.00 0.24 6378 73 36100 3144 1064 363

ac3 1-4 0.75 0.31 0 1.00 0.19 632 26 4726 6109 1005 103

xc5 1-4 0.87 0.41 0 1.00 0.24 3021 36 17997 5681 1214 331

hc7 1-4 1.00 0.57 0 1.00 0.27 2006 65 15885 8520 1477 209

a9c3 1-4 1.00 0.59 0 1.00 0.31 3796 48 31287 14911 1374 401

other parameters are the same as in the previous set of experiments. Results

are summarized in Table 6.3. The three lines for each circuit correspond to

small, medium, and large numbers of buffer sites.

Observe that when the number of buffer sites is small, several nets fail

to meet their length constraint. Also, sometimes wire congestion constraints

cannot be met, e.g., for ami33. Most notably, as the number of buffer sites

increases, the maximum and average net delays decrease significantly. Having

no more than one in every five buffer sites occupied is necessary to obtain

good solutions.

132

Table 6.3: Summary of results when the number of available buffer sites

varies.
Wire Cngst Buf Cngst sink delay

circuit buf sites max ave Fov max ave #bufs #fails W max ave CPU

apte 280 1.00 0.21 0 1.00 0.79 218 36 2018 5544 1620 51

700 1.00 0.21 0 1.00 0.57 379 9 2155 5876 1308 59

3200 1.00 0.20 0 1.00 0.13 405 6 1923 1899 832 67

xerox 600 0.93 0.25 0 1.00 0.89 530 95 3997 8346 1509 132

1300 0.87 0.25 0 1.00 0.77 962 25 4094 4551 1257 228

3000 0.73 0.23 0 1.00 0.35 967 9 3729 2564 859 163

hp 300 1.00 0.44 0 1.00 0.73 214 27 2192 7849 2373 35

600 1.00 0.43 0 1.00 0.60 346 13 2137 6007 1561 66

2350 1.00 0.40 0 1.00 0.16 379 9 1992 3893 1026 58

ami33 500 1.50 0.41 4 1.00 0.78 385 50 3303 15327 6029 92

850 1.17 0.43 1 1.00 0.74 613 24 3441 9782 3143 91

2750 1.00 0.40 0 1.00 0.31 765 3 3313 2906 1286 107

ami49 850 1.27 0.48 42 1.00 0.78 656 221 7892 6519 1589 174

1650 1.18 0.53 12 1.00 0.80 1279 128 8572 5302 1278 190

11450 1.00 0.49 0 0.88 0.14 1475 13 7876 3007 981 195

playout 3250 0.93 0.18 0 1.00 0.93 2994 1093 37141 13191 1770 854

6250 0.94 0.19 0 1.00 0.85 5253 612 39349 13191 1434 876

27550 0.93 0.18 0 1.00 0.24 6378 73 36100 3144 1064 998

In our next set of experiments, we keep the number of buffer sites con-

stant, but vary the size of the grid. The results are summarized in Table

6.4 for a sampling of the CBL circuits. Observe that the maximum wire

congestion increases with the tile size. A finer-grained tiling implies a tighter

wire congestion, e.g., dividing a tile into four equal sized tiles increases the

number of congestion constraints by a factor of three. The increased wire

congestion may cause an increase in the maximum delay because of long

detours, though the average congestion can stay the same.

The finer-grained tile sizes give better insight into the quality of the floor-

plan. A coarser tiling can indicate that the design is fairly easily routable,

but a finer tiling can better highlight areas of potential congestion. Thus, if

one wants to use our algorithm to evaluate the quality of a particular floor-

plan, a finer-grained tiling is likely more useful for wire congestion evaluation.

Finally, we observe that the CPU times roughly increase at a rate slightly

133

higher than linear with the number of tiles.

Table 6.4: Experimental results with varying grid sizes for three CBL bench-

marks.
Wire Cngst Buf Cngst sink delay

circuit grid max ave max ave #bufs #fails W max ave CPU

apte 10 × 11 0.44 0.19 1.00 0.25 283 4 1859 2219 933 4

20 × 22 0.62 0.18 1.00 0.35 372 9 1918 2385 876 18

30 × 33 0.89 0.18 1.00 0.45 493 17 2055 3050 881 40

40 × 44 1.00 0.15 1.00 0.39 445 18 1951 2771 912 71

50 × 55 1.00 0.19 1.00 0.39 450 25 1930 4265 1011 121

ami49 10 × 10 0.75 0.39 0.18 0.07 843 1 7610 3477 1113 11

20 × 20 0.90 0.39 0.71 0.10 1124 3 7767 3185 1039 53

30 × 30 0.92 0.40 1.00 0.13 1451 4 7801 2644 972 126

40 × 40 1.00 0.39 1.00 0.14 1431 3 7741 3375 1024 250

50 × 50 1.00 0.39 1.00 0.14 1464 7 7791 3309 973 457

playout 11 × 10 0.31 0.12 0.31 0.13 3704 5 34983 5369 1200 54

22 × 20 0.48 0.13 0.63 0.18 4969 11 36551 3653 1136 256

33 × 30 0.70 0.13 1.00 0.23 6387 69 36614 4529 1128 624

44 × 40 0.77 0.13 1.00 0.23 6178 103 35257 3289 1045 1244

55 × 50 0.96 0.13 0.88 0.24 6304 44 36080 11150 1140 2197

6.4.3 Comparisons with Buffer Block Planning

Our final experiments attempt to compare with previous work on buffer block

planning, yet we are not using buffer blocks. Hence, it is not feasible to sim-

ply compare with previously published results. We need to run the code

ourselves and implement routines to gather statistics from the data. For this

comparison, Cong et al. [68] supplied us with the source code to their algo-

rithm BBP/FR. Although other buffer block planning results exists (e.g., the

work of [66] creates more buffer blocks to reduce wire congestion), we believe

this comparison is sufficient to show that our proposed methodology can de-

liver timing solutions that are competitive with the buffer block planning

methodology while better managing buffer and wire congestion.

134

As in [68], but unlike the previous experiments, we decomposed multi-

pin net into several 2-pin nets. Our results were generated using randomly

distributed buffer sites that altogether occupy less than 2% of the total chip

area. Cong et al. [68] report timing results by measuring the number of nets

which fail to meet their delay constraints. The timing constraint was chosen

to be between 1.05 and 1.20 of the optimum achievable delay. We believe

this constraint generation to be unrealistic because real timing constraints

are path-based, and this implies that all constraints are tight, yet potentially

satisfiable. In a practical situation, some of the 1.05 × −1.20× timing con-

straints will be so tight that buffer insertion is insufficient to satisfy timing.

For these cases, feasible regions are not well defined. Also, other constraints

are so loose that no buffer insertion is required or many detours can be taken

to still meet delay constraints. Both our approach and BBP/FR insert buffers

on all nets which require them, so we use maximum and average sink delay

to quantify timing performance.

In addition to the previous statistics, we also measured MTP (maximum

tile area percentage) and minimum wirelength. A percentage of the area of

each tile is occupied by buffers; MTP denotes the maximum such percentage

over all tiles. We used the same tiling for our algorithm (see Table 6.1) to

measure the MTP for BBP/FR. The minimum wirelength is the sum of the

minimum possible wirelength routing of all the nets. This enables one to see

how much additional wirelength above the minimum was actually required.

Table 6.5 presents the comparisons with BBP/FR. Observe that some-

times the reported wirelength for BBP/FR is significantly higher than the

minimum wirelength (11% on average), e.g., for xerox it is 5623 as opposed

to a minimum of 4497. We believe that BBP/FR is not performing properly

in these cases. Nevertheless, some differences between the approaches are

135

Table 6.5: Comparisons of our algorithm to BBP/FR.
Wire Cngst sink delay

circuit algo. max ave Fov #bufs MTP Wmin W max ave CPU

apte BBP 2.00 0.15 73 224 2.0 2014 2259 4407 820 0

Ours 0.92 0.14 0 525 0.3 2278 1817 697 49

xerox BBP 1.50 0.14 20 565 5.1 4497 5623 3545 853 0

Ours 0.72 0.12 0 1389 0.7 4878 1465 611 78

hp BBP 2.33 0.20 92 274 1.6 2749 2869 2372 886 0

Ours 0.75 0.21 0 631 0.2 3106 1613 791 40

ami33 BBP 1.28 0.14 62 723 4.4 5501 5867 6103 928 0

Ours 0.69 0.14 0 1452 0.4 5978 1918 832 78

ami49 BBP 4.36 0.40 1067 987 4.3 7564 7967 7230 906 0

Ours 0.93 0.41 0 1720 0.5 8500 2544 881 93

playout BBP 1.27 0.18 192 4452 13.4 35275 35944 2864 972 0

Ours 0.94 0.19 0 7367 1.1 37747 2868 928 515

ac3 BBP 1.81 0.19 152 757 3.7 5757 6187 3970 800 0

Ours 0.58 0.19 0 1232 0.5 6243 1735 734 92

xc5 BBP 4.40 0.48 3880 3403 18.2 23684 30413 5188 973 0

Ours 0.82 0.39 0 4763 1.1 25430 2087 680 325

hc7 BBP 3.50 0.49 1708 3051 5.7 20744 24614 18559 1259 0

Ours 0.86 0.45 0 2810 0.4 22750 3023 1037 265

a9c3 BBP 2.67 0.34 1829 4335 5.6 31001 31882 14726 1110 1

Ours 0.63 0.34 0 4118 0.4 32915 2687 1162 342

readily seen:

• Our algorithm is always able to meet the congestion criteria while

BBP/FR does not. The results presented here even include a post-

processing step which tries to minimize congestion for the current

buffering solution without increasing wirelength.

• Our algorithm inserts significantly more buffers, due to a tight length

constraint.

• Because our methodology invites spreading, the MTP is significantly

less. In the worse case, BBP/FR has one tile with 18.2% of its area

136

devoted to buffers. This percentage climbs to at most 1.1% for our

approach.

• The CPU time for BBP/FR is negligible. Stages 2 and 4 of our algo-

rithm cause much greater runtimes, but they are clearly not prohibitive.

• The delays for our approach are less, though the gap is likely larger

than it would be if BBP/FR was performing properly. Ultimately, we

believe that our delay results will still prove competitive even though

our objective function is length based.

6.5 Conclusion

We have proposed an alternative methodology for buffer and wire planning

that uses pre-allocated buffer sites that are distributed throughout the design.

This methodology enables one to model this planning problem via a tile graph

and simultaneously plan both wires and buffers. Our four stage heuristic

includes an efficient algorithm for length-based buffer insertion and also a

technique for simultaneous optimization of buffer and wire congestion. Our

experimental results assert that this approach can generate effective solutions

in a reasonable amount of time.

137

Chapter 7

Conclusions

This thesis has developed novel methods for building high-performance inter-

connects. We have used the high-fidelity Elmore delay to predict the proper-

ties of the problem, and have then performed an optimization using accurate

AWE-based timing metrics to guarantee the timing correctness of the routed

net. We have developed a framework for global routing, starting with con-

sidering routing problems for a single net, and culminating in simultaneous

routing of many global nets under constraints on the routing congestion and

timing. A methodology for early interconnect and buffer planning has also

been suggested.

We have integrated buffer insertion and driver sizing separately with the

routing problem for a single net. We have departed from the traditional

Hanan grid based optimization, and have proposed three algorithms: (1)

BINO: We have considered the realistic situation where buffer locations are

restricted to a limited set of spaces and simultaneously optimize the net

topology and the buffer locations to meet timing constraints. (2) FAR-DS:

We have used the convexity/concavity property of the sink delay to search

138

for the optimal net topology and driver size. (3) BBB: We have developed

techniques to route a multi-pin net to avoid buffer blockages and seek buffer

bays without large wiring detours. Experiments on FAR-DS and BINO have

shown about 20% cost reductions compared to competing approaches, while

guaranteeing that the net satisfies timing constraints. BBB, when applied

on industry designs, reduces the average in-blockage wirelength by 33% with

only 3% increase on total wirelength, allowing solutions with significantly

improved timing and slew performance.

Two novel approach to simultaneous routing for a large number of global

nets have been proposed to optimize both congestion and delay. Starting

with an initial solution using the above methods, we have exploited routing

flexibilities to improve the solution. The first algorithm, which is hierarchical

and network flow based, successfully achieves timing-constrained congestion

reduction and shows results that are superior to the traditional rip-up-and-

reroute method. The second algorithm controls the number of bends on

wires through probability-based gradual refinement in addition to meeting

the congestion and delay constraints.

Finally, an integrated buffer and wire planning scheme has been devel-

oped. It provides an alternative approach to buffer sites planning to fit a

more realistic design environment than buffer block method. A four-stage

heuristic has been designed to minimize both wire and buffer congestion for

multi-pin nets directly so that the quality of a floorplan can be evaluated

according to interconnect effects. Experiments on both benchmark and ran-

domly generated circuits validate the effectiveness of this method.

139

Publications

• H. Hou, J. Hu and S. S. Sapatnekar, “Non-Hanan routing,” IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Sys-

tems, Vol. 18, N o. 4, pp. 436-444, April, 1999.

• J. Hu and S. S. Sapatnekar, “Simultaneous buffer insertion and non-

Hanan optimization for VLSI interconnect under a higher order AWE

model.” Proceedings of the ACM International Symposium on Physical

Design, pp. 133-138, 1999.

• J. Hu and S. S. Sapatnekar, “FAR-DS: Full-plane AWE routing with

driver sizing,” Proceedings of the ACM/IEEE Design Automation Con-

ference, pp. 84- 89, 1999.

• J. Hu and S. S. Sapatnekar, “Algorithms for non-Hanan-based opti-

mization for VLSI interconnect under a higher order AWE model,”

IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, Vol. 19, No. 4, pp. 446-458, April 2000.

• C. J. Alpert, G. Gandham, J. Hu, J. L. Neves, S. T. Quay and S. S.

Sapatnekar, “A Steiner tree construction for buffers, blockages, and

bays,” accepted by the IEEE Transactions on Computer-Aided Design

of Integrated Circuits and System.

• J. Hu and S. S. Sapatnekar, “A timing-constrained algorithm for simul-

taneous global routing of multiple nets,” Proceedings of the IEEE/ACM

International Conference on Computer-Aided Design, pp. 99-103, 2000.

• J. Hu and S. S. Sapatnekar, “Performance driven global routing through

gradual refinement,” submitted to ACM/IEEE Design Automation Con-

ference, 2001.

140

• C. J. Alpert, J. Hu, S. S. Sapatnekar and P. G. Villarrubia, “A practical

methodology for early buffer and wire resource allocation,” submitted

to ACM/IEEE Design Automation Conference, 2001.

141

Bibliography

[1] G. E. Moore, “Cramming more components onto integrated circuits,”

Electronic Magazine, vol. 38, pp. 114–117, Apr. 1965.

[2] “National technology roadmap for semiconductors.” Semiconductor In-

dustry Association, 1997.

[3] J. Cong, “Challenges and opportunities for design innovations in

nanometer technologies.” SRC Design Sciences Concept Paper, 1997.

[4] M. Hanan, “On Steiner’s problem with rectilinear distance,” SIAM Jour-

nal on Applied Mathematics, vol. 14, no. 2, pp. 255–265, 1966.

[5] W. C. Elmore, “The transient response of damped linear networks with

particular regard to wideband amplifiers,” Journal of Applied Physics,

vol. 19, pp. 55–63, Jan. 1948.

[6] K. D. Boese, A. B. Kahng, B. A. McCoy, and G. Robins, “Near-

optimal critical sink routing tree constructions,” IEEE Transactions on

Computer-Aided Design, vol. 14, pp. 1417–36, Dec. 1995.

[7] J. Qian, S. Pullela, and L. T. Pillage, “Modeling the effective capaci-

tance for the RC interconnect of CMOS gates,” IEEE Transactions on

Computer-Aided Design, vol. 13, pp. 1526–1535, Dec. 1994.

142

[8] L. T. Pillage and R. A. Rohrer, “Asymptotic waveform evaluation for

timing analysis,” IEEE Transactions on Computer-Aided Design, vol. 9,

pp. 352–366, Apr. 1990.

[9] A. B. Kahng and G. Robins, On optimal interconnections for VLSI.

Boston, MA: Kluwer Academic Publishers, 1995.

[10] H. Hou and S. S. Sapatnekar, “Routing tree topology construction to

meet interconnect timing constraints,” in Proceedings of the ACM In-

ternational Symposium on Physical Design, pp. 205–210, 1998.

[11] H. Hou, J. Hu, and S. S. Sapatnekar, “Non-Hanan routing,” IEEE

Transactions on Computer-Aided Design, vol. 18, pp. 436–444, Apr.

1999.

[12] J. Hu and S. S. Sapatnekar, “Algorithms for non-Hanan-based optimiza-

tion for VLSI interconnect under a higher order AWE model,” IEEE

Transactions on Computer-Aided Design, vol. 19, pp. 446–458, Apr.

2000.

[13] J. Lillis and P. Buch, “Table-lookup methods for improved performance-

driven routing,” in Proceedings of the ACM/IEEE Design Automation

Conference, pp. 368–373, 1998.

[14] J. Lillis, C. K. Cheng, T. T. Lin, and C. Y. Ho, “New performance

driven routing techniques with explicit area/delay tradeoff and simulta-

neous wire sizing,” in Proceedings of the ACM/IEEE Design Automation

Conference, pp. 395–400, 1996.

[15] A. Vittal and M. Marek-Sadowska, “Minimum delay interconnect de-

sign using alphabetic trees,” in Proceedings of the ACM/IEEE Design

Automation Conference, pp. 392–396, 1994.

143

[16] J. Cong and C. K. Koh, “Interconnect layout optimization under higher-

order RLC model,” in Proceedings of the IEEE/ACM International Con-

ference on Computer-Aided Design, pp. 713–720, 1997.

[17] F. J. Liu, J. Lillis, and C. K. Cheng, “Design and implementation of

a global router based on a new layout-driven timing model with three

poles,” in Proceedings of the IEEE International Symposium on Circuits

and Systems, pp. 1548–51, 1997.

[18] J. Cong and B. Preas, “A new algorithm for standard cell global rout-

ing,” Integration: the VLSI Journal, vol. 14, no. 1, pp. 49–65, 1992.

[19] J. Cong and C. K. Koh, “Simultaneous driver and wire sizing for perfor-

mance and power optimization,” IEEE Transactions on VLSI Systems,

vol. 2, pp. 408–425, Dec. 1994.

[20] S. S. Sapatnekar, “RC interconnect optimization under the Elmore delay

model,” in Proceedings of the ACM/IEEE Design Automation Confer-

ence, pp. 392–396, 1994.

[21] L. P. P. P. V. Ginneken, “Buffer placement in distributed RC-tree net-

works for minimal elmore delay,” in Proceedings of the IEEE Interna-

tional Symposium on Circuits and Systems, pp. 865–868, 1990.

[22] J. Lillis, C. K. Cheng, and T. Y. Lin, “Simultaneous routing and buffer

insertion for high performance interconnect,” in Proceedings of the Great

Lake Symposium on VLSI, pp. 148–153, 1996.

[23] J. C. Shah and S. S. Sapatnekar, “Wiresizing with buffer placement

and sizing for power-delay tradeoffs,” in Proceedings of the International

Conference on VLSI Design, pp. 346–351, 1996.

144

[24] C. C. N. Chu and D. F. Wong, “Closed form solution to simultane-

ous buffer insertion/sizing and wire sizing,” in Proceedings of the ACM

International Symposium on Physical Design, pp. 192–197, 1997.

[25] T. Okamoto and J. Cong, “Buffered Steiner tree construction with

wire sizing for interconnect layout optimization,” in Proceedings of

the IEEE/ACM International Conference on Computer-Aided Design,

pp. 44–49, 1996.

[26] A. Salek, J. Lou, and M. Pedram, “A simultaneous routing tree

construction and fanout optimization algorithm,” in Proceedings of

the IEEE/ACM International Conference on Computer-Aided Design,

pp. 625–630, 1998.

[27] H. Zhou, D. F. Wong, I.-M. Liu, and A. Aziz, “Simultaneous routing

and buffer insertion with restrictions on buffer locations,” in Proceedings

of the ACM/IEEE Design Automation Conference, pp. 96–99, 1999.

[28] R. Gupta, B. Krauter, B. Tutuianu, J. Willis, and L. T. Pileggi, “The

Elmore delay as a bound for RC trees with generalized input signals,” in

Proceedings of the ACM/IEEE Design Automation Conference, pp. 364–

369, 1995.

[29] J. Rubinstein, P. Penfield, and M. A. Horowitz, “Signal delay in RC tree

networks,” IEEE Transactions on Computer-Aided Design, vol. CAD-2,

pp. 202–211, July 1983.

[30] C. L. Ratzlaff, N. Gopal, and L. T. Pillage, “RICE: Rapid interconnect

circuit evaluator,” in Proceedings of the ACM/IEEE Design Automation

Conference, pp. 555–560, 1994.

145

[31] N. H. E. Weste and K. Eshraghian, Principles of CMOS VLSI design: a

system perspective. Reading, MA: Addison-Wesley Publishing Company,

1993.

[32] J. Cong, L. He, C.-K. Koh, and P. H. Madden, “Performance opti-

mization of VLSI interconnect layout,” Integration: the VLSI Journal,

vol. 21, pp. 1–94, 1996.

[33] C. J. Alpert, A. Devgan, and S. T. Quay, “Buffer insertion for noise and

delay optimization,” in Proceedings of the ACM/IEEE Design Automa-

tion Conference, pp. 362–367, 1998.

[34] C. J. Alpert and A. Devgan, “Wire segmenting for improved buffer inser-

tion,” in Proceedings of the ACM/IEEE Design Automation Conference,

pp. 588–593, 1997.

[35] C. C. N. Chu and D. F. Wong, “A new approach to simultaneous buffer

insertion and wire sizing,” in Proceedings of the IEEE/ACM Interna-

tional Conference on Computer-Aided Design, pp. 614–621, 1997.

[36] S. Dhar and M. A. Franklin, “Optimum buffer circuits for driving long

uniform lines,” IEEE Journal of Solid-State Circuits, vol. 26, pp. 32–38,

Jan. 1991.

[37] C. J. Alpert, A. Devgan, and S. T. Quay, “Buffer insertion with ac-

curate gate and interconnect delay computation,” in Proceedings of the

ACM/IEEE Design Automation Conference, pp. 479–484, 1999.

[38] J. Lillis, “Timing optimization for multi-source nets: characterization

and optimal repeater insertion,” in Proceedings of the ACM/IEEE De-

sign Automation Conference, pp. 214–219, 1997.

146

[39] J. Lillis, C. K. Cheng, and T. Y. Lin, “Optimal wire sizing and buffer

insertion for low and a generalized delay model,” IEEE Journal of Solid-

State Circuits, vol. 31, pp. 437–447, Mar. 1996.

[40] J. Hu and S. S. Sapatnekar, “Simultaneous buffer insertion and non-

Hanan optimization for VLSI interconnect under a higher order AWE

model,” in Proceedings of the ACM International Symposium on Physi-

cal Design, pp. 133–138, 1999.

[41] D. W. Hightower, “A solution to line routing problems on the continuous

plane,” in The Sixth Design Automation Workshop, pp. 1–24, 1969.

[42] C. Y. Lee, “An algorithm for path connection and its applications,” IRE

Transactions on Electronic Computers, vol. EC-10, no. 3, pp. 346–365,

1961.

[43] J. Cong, J. Fang, and K.-Y. Khoo, “Via design rule consideration in

multi-layer maze routing algorithms,” in Proceedings of the ACM Inter-

national Symposium on Physical Design, pp. 214–220, 1999.

[44] S.-W. Hur, A. Jagannathan, and J. Lillis, “Timing driven maze routing,”

in Proceedings of the ACM International Symposium on Physical Design,

pp. 208–213, 1999.

[45] E. W. Dijkstra, “A note on two problems in connection with graphs,”

Numerische Mathematik, vol. 1, pp. 269–271, 1959.

[46] C. Chiang and M. Sarrafzadeh, “Global routing based on Steiner min-

max trees,” IEEE Transactions on Computer-Aided Design, vol. 9,

pp. 1318–25, Dec. 1990.

147

[47] M. Burstein and R. Pelavin, “Hierarchical wire routing,” IEEE Transac-

tions on Computer-Aided Design, vol. CAD-2, pp. 223–234, Oct. 1983.

[48] M. Marek-Sadowska, “Global router for gate array,” in Proceedings of

the IEEE International Conference on Computer Design, pp. 332–337,

1984.

[49] J. D. Cho and M. Sarrafzadeh, “Four-bend top-down global routing,”

IEEE Transactions on Computer-Aided Design, vol. 17, pp. 793–802,

Sept. 1998.

[50] P. Raghavan and C. D. Thompson, “Multiterminal global routing: a

deterministic approximation scheme,” Algorithmica, vol. 6, pp. 73–82,

1991.

[51] E. Shragowitz and S. Keel, “A global router based on a multicommodity

flow model,” Integration: the VLSI Journal, vol. 5, pp. 3–16, Mar. 1987.

[52] R. C. Carden, J. Li, and C.-K. Cheng, “A global router with a theoretical

bound on the optimal solution,” IEEE Transactions on Computer-Aided

Design, vol. 15, pp. 208–216, Feb. 1996.

[53] C. Albrecht, “Provably good global routing by a new approximation

algorithm for multicommodity flow,” in Proceedings of the ACM Inter-

national Symposium on Physical Design, pp. 19–25, 2000.

[54] B. S. Ting and B. N. Tien, “Routing techniques for gate array,” IEEE

Transactions on Computer-Aided Design, vol. CAD-2, pp. 301–312, Oct.

1983.

148

[55] R. Nair, “A simple yet effective technique for global wiring,” IEEE

Transactions on Computer-Aided Design, vol. CAD-6, pp. 165–172, Oct.

1987.

[56] K. W. Lee and C. Sechen, “A global router for sea-of-gate circuits,” in

Proceedings of the European Design Automation Conference, pp. 242–

247, 1991.

[57] D. Wang and E. S. Kuh, “Performance-driven interconnect global rout-

ing,” in Proceedings of the Great Lake Symposium on VLSI, pp. 132–136,

1996.

[58] J. Huang, X.-L. Hong, C.-K. Cheng, and E. S. Kuh, “An efficient timing-

driven global routing algorithm,” in Proceedings of the ACM/IEEE De-

sign Automation Conference, pp. 596–600, 1993.

[59] J. Hu and S. S. Sapatnekar, “A timing-constrained algorithm for simulta-

neous global routing of multiple nets,” in Proceedings of the IEEE/ACM

International Conference on Computer-Aided Design, pp. 99–103, 2000.

[60] M. Marek-Sadowska, “Route planner for custom chip design,” in Pro-

ceedings of the IEEE/ACM International Conference on Computer-

Aided Design, pp. 246–249, 1986.

[61] K. Zhu, Y.-W. Chang, and D. F. Wong, “Timing-driven routing for

symmetrical-array-based FPGAs,” in Proceedings of the IEEE Interna-

tional Conference on Computer Design, pp. 628–633, 1998.

[62] K.-Y. Khoo and J. Cong, “An efficient multilayer MCM router based

on four-via routing,” IEEE Transactions on Computer-Aided Design,

vol. 14, pp. 1277–1290, Oct. 1995.

149

[63] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network flows: theory,

algorithms, and applications. Upper Saddle River, NJ: Prentice Hall,

1993.

[64] K. D. Wayne and L. Feischer, “Fast and simple approximation schemes

for generalized flow,” in Proceedings of Symposium on Discrete Algo-

rithm, pp. 981–982, 1999.

[65] H.-M. Chen, H. Zhou, F. Y. Yang, H. H. Yang, and N. Sherwani, “In-

tegrated floorplanning and interconnect planning,” in Proceedings of

the IEEE/ACM International Conference on Computer-Aided Design,

pp. 354–357, 1999.

[66] P. Sarkar, V. Sundararaman, and C.-K. Koh, “Routability-driven re-

peater block planning for interconnect-centric floorplanning,” in Pro-

ceedings of the ACM International Symposium on Physical Design,

pp. 186–191, 2000.

[67] Kusnadi and J. D. Carothers, “A method of measuring nets routability

for mcm’s general area routing problems,” in Proceedings of the ACM

International Symposium on Physical Design, pp. 186–192, 1999.

[68] J. Cong, T. Kong, and D. Z. Pan, “Buffer block planning for

interconnect-driven floorplanning,” in Proceedings of the IEEE/ACM

International Conference on Computer-Aided Design, pp. 358–363, 1999.

[69] F. F. Dragan, A. B. Kahng, I. Mandoiu, and S. Muddu, “Provably good

global buffering using an available buffer block plan,” in Proceedings of

the IEEE/ACM International Conference on Computer-Aided Design,

pp. 104–109, 2000.

150

[70] F. F. Dragan, A. B. Kahng, I. Mandoiu, and S. Muddu, “Provably good

global buffering by multiterminal multicommodity flow approximation.”

to appear in Asia and South Pacific Design Automation Conference,

2001.

[71] X. Tang and D. F. Wong, “Planning buffer locations by network flows,”

in Proceedings of the ACM International Symposium on Physical Design,

pp. 180–185, 2000.

[72] J. Cong, “An interconnect-centric design flow for nanometer technolo-

gies,” in Proceedings of International Symposium on VLSI Technology,

Systems, and Applications, pp. 54–57, 1999.

[73] C. J. Alpert, T. C. Hu, J. H. Huang, A. B. Kahng, and D. Karger, “Prim-

dijkstra tradeoffs for improved performance-driven routing tree design,”

IEEE Transactions on Computer-Aided Design, vol. 14, pp. 890–896,

July 1995.

151

