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Abstract

The evolution of deep submicron technologies has placed a high importance on the fi-
delity of simulation and modeling techniques as compared to the final chip realization. In
addition, ever tightening delay, area, and power constraints together with increasing design
complexities demand that the optimization techniques used in design process be fast and
accurate. The purpose of this thesis is to develop accurate delay models that are amenable
to optimization and to develop efficient yet accurate synthesis and optimization strategies
at logic, circuit, and physical levels of design process. The thesis consists of three parts that
are described below.

A large number of the optimizations that arise in electronic design automation can be
modeled as nonlinear optimization problems, which can be solved more easily if the objective
and constraint functions are convex. Particularly for delay optimization, this is becoming
increasingly problematic since the existing models that possess such properties, such as
the Elmore delay model, have become highly inaccurate in deep submicron technologies.
Therefore, the first part of this thesis involves development of accurate and convex models
for gate delay. The efficacy of the model is shown by its incorporation into various optimizers
and performing area-delay and dynamic power-delay trade-off optimizations.

Another important issue that has arisen in the recent technology generations is that,
gate leakage has become a significant contributor to the total power. The reason for this is
that the subthreshold leakage current of a transistor has an exponential dependence on its
threshold voltage (V;), which no longer scales in proportion to the supply voltage. Hence,
the second part of this thesis targets leakage-delay optimization in contrast to the dynamic
power-delay optimization formulation used in the first problem. A novel enumerative ap-
proach, along with efficient pruning techniques, is proposed for V; assignment to minimize
power under delay constraints. This method is then used in a unified approach employing
simultaneous transistor sizing and threshold voltage assignment to achieve a low leakage
circuit configuration under given area and delay constraints.

The third part of this thesis develops a methodology for efficient timing closure for dat-



apath dominated circuits, and involves logic synthesis guided by structural properties of
the circuit. Datapaths are typically characterized by a high degree of regularity, and it is
beneficial to preserve this regularity during synthesis so that layout synthesis tools can gen-
erate regular, and hence predictable layouts. However, the rigid preservation of regularity
is likely to result in circuit configurations with high delay values. The approach proposed
involves controlled destruction of regularity during the synthesis process, thus leading to

delay-optimized, yet highly regular, circuits.

ii



Acknowledgement

First, I would like to thank my advisor, Prof. Sachin Sapatnekar, for his guidance and
support throughout my doctoral studies. He provided very valuable help whenever I needed
assistance of any kind. His emphasis on reasoning out everything, on clarity in presentation
of ideas, and on looking at the holistic picture of a problem always guided me in the right
direction, and will continue to guide me throughout my career.

I would like to thank Prof. Bazargan, Prof. Sobelman, and Prof. Du, for reviewing this
thesis and for providing valuable suggestions. I would like to thank Dr. Priyadarsan Patra
from Intel Corporation, for his valuable guidance throughout my doctoral work.

I would also like to thank members of the VEDA Lab - Brent, Cheng, Haihua, Haitian,
Rupesh, Suresh, Tianpei, and Venkat - with whom I have had several meaningful discussions.
I would like to thank Dr. Jiang Hu and Dr. Min Zhao for their help during early period of
my doctoral studies, and to Arvind Karandikar for his help in various aspects of software
development. I would like to thank Kishore Kasamsetty for his contributions in the project
on gate delay modeling.

In four years I met a lot of interesting people who made my stay in Minneapolis a very
enjoyable experience, and to that effect, I would like to thank Girish, Parag, Ameeta, Sirisha,
Rupa, Kedar, and Cristi. Special thanks are due to Shantanu Rane, a great roommate and
a close friend, for his support, and for various stimulating conversations.

Finally, I would like to thank my parents for their continuous support and encouragement
during this work, and for their teachings throughout my life. This thesis would not have

taken place without them.

iii



Contents

1 Introduction
1.1 Imtroduction. . . .. ... ....

1.2 Thesis organization . . . . . . ..

2 Preliminaries

2.1 Circuit parameters . . . . . . . . .. oL Lo e e e e
211 Area . . ..
2.1.2 Delay . . . . . e
213 Power . . . . .

2.2 Elmore delay model . . . . ... ... ... ...

2.3 Tramsistor sizing problem . . . . ... ... oo o Lo

2.4 Nonlinear optimization . . . . . . . . . .. ... ... .. ... .. ...,

2.5 Geometric optimization . . . .. ... ... Lo oo
2.5.1 Posynomial functions. . . . . ... ... oL
2.5.2 Geometric programming . . . . . . . ... .. L e e e e

2.6 Convex optimization . . . . . . . . . ... L0 L e
2.6.1 Convex sets and convex functions . . . . . ... .. ... ...
2.6.2 Convex programming problem . . . . .. ... ... ... ...

2.7 Mixed integer nonlinear programs

3 Convex Delay Modeling

v

ENEEEN S SR = -~

10
10
11
11
11
12
12
13
14

16



3.1 Introduction. . . . . . . . . . . . e e e e e e e e e 16

3.2 Existing delay modeling approaches . . . . .. ... ... ... ... 16
3.3 Generalized posynomials . . . . . . .. ... oL Lo 18
3.3.1 Definitions . . . . . . ... 18
3.3.2 Proofof convexity . ... ... ... ... o 19
3.4 Delay modeling using generalized posynomials . . . . . .. ... .. ... .. 22
3.4.1 Characterization of a set of primitives . . . . . . . ... ... .. .. 24
3.5 Modeling Results . . . . . . . .. . o 30
3.6 Conversion of generalized posynomials to posynomials . . . . ... ... .. 32
3.7 Circuit optimization incorporating the new delay model . . . . ... .. .. 34
3.7.1 Proof of convexity of path delays . . . . . ... .. ... ...... 35
3.7.2  Area — delay trade-off optimization . . . . . .. .. ... ... L. 37
3.7.3 Dynamic power — delay trade-off optimization . . . . . . ... .. .. 38
3.7.4 Introduction of intermediate variables . . . .. ... ... ... ... 40
3.8 Conclusion . . . . . . . .. e e 42
Leakage — Delay Trade-off Optimization 43
4.1 Imtroduction. . . . . . . . . . o Lo 43
4.2 Previouswork . . . . .. L. e 44
4.3 Problem formulation . . . . ... ... o 47
4.4 Leakage and delay estimation . . . . . .. .. ... ... ... .. ... 49
4.4.1 Leakage estimation . . . . . . .. ... .. L Lo 49
4.4.2 Delay estimation . . . . . .. ..o 50
4.5 Dual Vyassignment . . . . . . . . ... 51
4.5.1 Algorithm . . . . . . . ... 52
4.5.2 Pruning techniques . . . . . . . . . ... Lo Lo 55
4.6 Sizing and Vyassignment. . . . . .. ... oL Lo o oo 58
4.6.1 Theoretical development . . . . . . . . .. ... L. 58



4.6.2 Algorithm . . . . . . .. .. L 60

4.6.3 Postprocessing . . . . . . .. ..o 61

4.7 Implementation and results . . . . . . ... . ... .. oo 0oL, 61
4.8 Conclusion . . . . . .. ... 65

5 Synthesis of Datapath-Dominated Circuits 66
5.1 Imtroduction. . . . . . . . . . .. 66

5.2 Motivation . . . . . .. L 69
5.3 Circuit regularity . . . . . . . . ... 71
5.3.1 Regularity modeling . . . .. ... ... ... ..o oL 71

5.3.2 Regularity extraction. . . . . . .. ... L L oo Lo 73

5.4 Synthesis approach . . . . . . ... oo Lo L 76
54.1 Slice synthesis . . . . . . . . . . L 76

5.4.2 Controlled regularity destruction . . . . . ... .. ... ... .... 7

5.5 Implementation and results . . . .. . ... ... Lo 81
5.6 Conclusion . . . . . . . e e 82

6 Conclusion and future research directions 83

vi



List of Figures

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

4.1
4.2
4.3
4.4
4.5
4.6

5.1
9.2

Elmore delay model . . . . .. . .. ... 9
Convex set and convex function . . . . . . .. .. ... ..., 13
Inverter circuit . . . . . . . . ..o 22
Inaccurate mapping of a NAND gate . . . . . .. ... .. ... .. ..... 25
Two-input primitives for fall transition . . . . . . .. ... ... ....... 26
Three-input primitives . . . . . . . .. ... L Lo 27
Examples of AOI Primitives . . . . . . . . . .. . ... . oo 28
Sequential Element and Primitive . . . . . . . . . . ... .. ... ... ... 29
Primitive validation . . . . ... ... ... . o oo 30
Validation of a 2-input NAND gate . . . . . . .. ... .. .. ... ..... 32
An example circuit . . . . . .. L L L L L L e e e e e e 40
Transistor-level versus gate-level V; assignment for C2670 . . . ... .. .. 44
Pseudocode for V; assignment . . . . . ... ..o L oL 53
Enumeration for V; assignment . . . . ... ... .. L oL 0oL 54
Input dominance . . . . . . . . . . L 58
Delay-area curve of C499 demonstrating the knee region . . . . . . . .. .. 59
Comparison of V; assignment at transistor-level, stack-level, and gate-level . 64
Trading off circuit regularity for delay reduction . . .. ... ... ... .. 68
Layout of synthesized adders . . . . . ... ... ... .. .......... 71

vii



9.3
5.4
9.5
5.6
9.7

Circuit regularity . . . . . . . . . .. e 72

Regularity signature . . . . . . . . .. L. L 74
Regularity extraction . . . . . . . . .. ... L 76
Collapsing nodes from adjacent slices . . . . . .. ... ... ... ...... 78
Node selection for resynthesis . . . . . ... ... ... ... ......... 80

viii



List of Tables

3.1
3.2
3.3
3.4
3.5

4.1
4.2

5.1

Primitive Validation . . . . .. . ... . ... L o oo 30
Gate Validation . . . . . . . . . . .. oL e 31
Comparison of Model Delay for C17 with SPICE . . . . . ... ... .. .. 33
Results of area-delay tradeoff optimization . . . . . . ... ... ... .... 38
Results of power-delay tradeoff optimization . . . . . . .. ... ... .. .. 41
Dual V; assignment using PB algorithm [1] and the proposed algorithm . . 62

Optimization results, comparing the performance of SBA [2] and MinSATVA. 63

Comparison of synthesis results. . . . . . . . . .. ... .. ... ... 81

ix



Chapter 1

Introduction

1.1 Introduction

For the past four decades, the semiconductor industry has distinguished itself by the
rapid pace of improvements in its products. The propelling force behind this magnificent
journey has been an ambition to adhere to Moore’s Law [3], which originally stated that
the number of devices on a chip would double every year (the time frame was later modified
to every two years, and subsequently averaged to every eighteen months).

Thus each new generation of chips has more and more devices and hence interconnects as
compared to previous generations. At the same time, market competition and widespread
use of mobile devices, has resulted in ever tightening delay, area, and power constraints.
These together have led to a drastic increase in design complexity, which means that the
automatic synthesis tools must do a better job of optimization; specifically, the tools should
realize good circuit configurations in as little time as possible. This requirement translates
down to various issues in development of CAD tools, and some of these are mentioned

below.

e It dictates that the CAD tools should be scalable to handle larger and more complex

designs as compared to previous generations.

e It warrants better fidelity of area, delay, and power models to actual silicon realiza-



tions, and that the models should be amenable to optimization so that accurate global

solutions can be found.

e The advances in process technology typically come with a host of new design variables
and hence a new set of challenges for the designers. One example of this is the
increased relative importance of newer design considerations such as leakage power as
compared to previous generations. CAD tools are required to handle such new design

parameters.

e It prompts the exploration of radical shifts in design methodologies to minimize syn-

thesis times and to obtain good solutions.

The research in this thesis tries to address timing optimization of VLSI circuits in light of
some of the issues mentioned above. The three problems solved in this thesis are listed below,

and their relation to the issues mentioned above is examined following the enumeration.

e Development of convex and accurate models for the gate delay. The models are

incorporated into optimization engines to solve area-delay and power-delay tradeoffs.

e Optimization of standby leakage power under area and delay constraints utilizing

transistor sizing and dual threshold voltage assignment.
e Regularity-driven synthesis of datapath dominated circuits.

The underlying theme in the choice of the problems solved is delay optimization. The
first problem is targeted towards development of delay models that will lead to fast and
accurate solution of a transistor sizing problem. The problem tries to address the issue of
modeling mentioned above, and at the same time has repercussions on scalability, because
the existence of optimization-amenable models can enable fast and accurate optimizations
with proper choice of optimization engine. The second problem provides an algorithm for
the optimization of leakage-delay trade-offs and thus addresses an important emerging issue.
The third part presents a methodology that improves upon the traditional synthesis flow in

that it uses physical information to drive the logic synthesis process.



The material presented below provides an introductory treatment of these problems and
gives an insight into the choice of these particular problems in the arena of timing opti-
mization. It also provides numerical figures to highlight the contributions of this thesis.

Before embarking on the introduction of individual problems it is in order to see where
these problems fit in a typical design flow, which consists of various stages [4]. Such a flow
ranges from behavioral and architectural synthesis at the topmost level, which determines
an assignment of circuit functions to various operators, their interconnection, and execution
timing, to layout synthesis at the bottommost level, which converts a netlist of transistors
into a geometric representation to be realized in silicon. This thesis concentrates on circuit
synthesis problems arising at lower levels of abstraction, namely, the logic, circuit, and
physical levels.

Let us consider the motivation for the first problem. A large number of the optimiza-
tions that arise at the circuit and physical levels can be modeled as nonlinear optimization
problems, which can be solved more easily if the objective and constraint functions have the
property of convexity, which is defined precisely in Section 2.6.1, and numerous optimiza-
tions have been facilitated by the fact that the Elmore delay model [5] can be proved to be
a convex function in some design variables. Unfortunately, the value of this property has
been diminished as the Elmore has become highly inaccurate in deep submicron technolo-
gies. Therefore, the first issue addressed in this thesis involves the development of accurate
and convex models for gate delay. A new class of convex functions called generalized posyn-
omials is proposed and subsequently used to accurately model the gate delay. Experimental
results showed that the delay values obtained using the proposed models were within 5% of
SPICE [6] on average, and within 2% of SPICE for most of the gates. The efficacy of the
model is shown by incorporating it into various optimizers and performing area-delay and
dynamic power-delay trade-off optimizations.

It is well known that in the past, trends in performance, density and power have followed
the scaling theory. For these trends to continue, two important issues that need special

attention are power delivery and power dissipation [7]. Typically, each generation of chips



has shown about 30% reduction in gate delay and about the same or greater reduction
in energy dissipation per transition. The total power dissipation can be scaled down by
reducing either the supply voltage, frequency or die size, each of which results in reduced
performance. Therefore, the problem of optimization for low power to meet the stringent
performance constraints continues to be a very important problem.

Recognizing this, power-delay trade-off optimizations are addressed in two of the problems
solved in this thesis. The power dissipation of a gate results from three sources, namely,
dynamic power, leakage power, and short circuit power, described in detail in Section 2.1.3.
Power optimization is addressed in part in the first problem, by incorporating the new delay
model into an optimization engine to solve the problem of trading-off dynamic power with
delay.

In recent generations, however, the gate leakage has become a significant contributor to
the total power. The reason for this is that the subthreshold leakage current of a transistor
has an exponential dependence on its threshold voltage (V;), which no longer scales in
proportion to the supply voltage from one generation to the next. Hence, the second
problem targets the trade-off optimization between leakage power and delay, in contrast
to the dynamic power-delay optimization formulation used in the first problem. A novel
enumerative approach, along with efficient pruning techniques, is proposed for V; assignment
to minimize power under delay constraints. This method is then incorporated into an unified
approach employing simultaneous transistor sizing and threshold voltage assignment to
achieve a low leakage circuit configuration under given area and delay constraints. Results
show that the V; assignment algorithm on average results in 50% reduction in leakage power
at fixed transistor sizes as compared to an existing approach [1]. The unified approach
resulted in 9% lower leakage on average, and barring two small ISCAS 85 benchmark circuits,
performed about 1.4x faster as compared to an existing unified optimization approach [2].

The third part of this thesis is related to the interaction between logic synthesis and
layout. It develops a methodology for efficient timing closure of datapath-dominated cir-

cuits, and involves logic synthesis guided by structural properties of the circuit. Datapaths



are characterized by regularity (explained in Section 5.2). It is beneficial to preserve this
regularity during synthesis so that layout synthesis tools can generate regular and hence
predictable layouts. However, the rigid preservation of regularity typically results in circuit
configurations with high delay values. The approach proposed involves controlled destruc-
tion of regularity during the synthesis process, thus leading to delay-optimized, yet highly
regular circuits. The experimental results show that the proposed methodology realizes
circuits with about the same delays and much higher regularity, as compared to the circuits

obtained by traditional synthesis.

1.2 Thesis organization

The organization of this thesis is as follows. Chapter 2 presents background material
relevant to this thesis, including a brief treatment of mathematical optimization. Chapter 3
describes a solution to the first problem, introducing a new class of convex functions and
demonstrating its use in gate delay modeling. The delay model is incorporated into var-
ious optimization engines and the results of area-delay and dynamic power-delay tradeoff
optimizations are provided. Next, an algorithm for leakage power optimization via transis-
tor sizing and V; assignment is presented in Chapter 4, corresponding to a solution to the
second problem in the thesis. The third problem is tackled in Chapter 5 which develops a
method for regularity-driven synthesis of datapath-dominated circuits. Finally, Chapter 6

provides concluding remarks and future research directions.



Chapter 2

Preliminaries

Two of the problems tackled in this thesis involve optimization of design variables, and
hence it is in order to begin by presenting some introductory material on mathematical
optimization. Most of the circuit optimization problems pertain to one specific category of
optimization problems: nonlinear optimization. Transistor sizing, a problem from circuit
synthesis, is used repeatedly in this thesis, and is also used as a running example throughout
explanation of optimization categories. To give an idea of the transistor sizing problem,
various circuit parameters are first introduced in Section 2.1. The explanation also serves
the purpose of introducing the models used in this thesis. In particular, the Elmore model
is explained in detail in Section 2.2, and following that the transistor sizing problem is
introduced in Section 2.3. Nonlinear optimization is then introduced in Section 2.4, while
three special types of nonlinear optimization problems, namely, geometric programs, convex
programs, and mixed integer nonlinear programs, are introduced in Sections 2.5, 2.6, and

2.7, respectively.

2.1 Circuit parameters

An integrated circuit can be represented at various levels of abstractions such as the
circuit level, the logic level, or the architectural level. At each level of abstraction, circuit

parameters are estimated using different models, and the accuracy of these models typically



decreases as one moves to a higher level of abstraction. The first two problems tackled in
this thesis involve circuit-level optimizations, and this section provides the models used at

this level.

2.1.1 Area

The area of a transistor netlist is typically measured as summation of transistor widths:
n
Area = sz (2.1)
i=1

where 7 is the number of transistors in the circuit, and z; represents the size of the i
transistor in the circuit. This area model does not consider the routing area, but this
is acceptable in case of transistor sizing, which makes but little perturbations to circuit
placement, and in case of threshold voltage (V;) assignment, which does not necessitate any

alterations in placement.

2.1.2 Delay

The delay characteristics of the output waveform at a gate may be represented by two
numbers:

(1) the delay, i.e., the difference in the time when the output waveform crosses 50% of its
final value, and the corresponding time for the input waveform.

(2) the output transition time, i.e., the time required for the waveform to go from 10% to
90% of its final value.

The Elmore delay model, described in the next section, models the gate delay.

2.1.3 Power

The power dissipated in a gate consists of three components.

(1) Dynamic power: This refers to the power dissipated in a gate when it switches from

one logic state to another. This component of power dissipation is due to the charging and



discharging of the output capacitance, and is given by

1
~ - Vg® - C;-TD; (2.2)

‘Zjisu):2

where P;_ is the average switching power dissipation, Vyq is power supply voltage, C; is
the output capacitance, and T'D; (explained later in Section 3.7.3) is the transition density,
all corresponding to gate n;.

(2) Leakage power: This component corresponds to the power dissipated by the current

that flows through a transistor that is nominally off and is caused by two mechanisms. The
first is the subthreshold leakage, which forms the dominant source of leakage power, and
the second part is due to the tunneling current through the gate oxide. The BSIM [8] model
for the subthreshold leakage current for a single transistor is listed below.

Ileak — Ioe(vgs_vt)/nvtherm(l _ e_Vds/‘/therm),

where I, = NOCow(W/L)V;theerel'S (2.3)

Here p19 is the zero bias electron mobility, n is the subthreshold slope coefficient, Vs and
Vg4s are the gate-to-source voltage and the drain-to-source voltage, respectively, Vinerm is
the thermal voltage, and W and L are the transistor width and length, respectively.

(3) Short circuit power: When the output of a gate switches, a low resistance path exists

between V;; and ground during the period of the input transition, and this leads to short
circuit power dissipation. Short circuit power forms a very small component of the total
power provided the transition times are all controlled, and hence is not considered as an
optimization parameter in this thesis. Interested reader can find further treatment of short

circuit power in [9].

2.2 Elmore delay model

An RC network is a collection of resistances and capacitances. Elmore [5] proposed that

the delay of an RC network under a step input can be reasonably estimated as the time



coordinate of the center-of-area of the impulse response curve. To use this model to estimate
the delay of a gate, the gate is converted into a network of resistances and capacitances, as
shown in Figure 2.1. Figure 2.1(a) shows a switching gate with transistors of sizes z1, zo

and z3, and its equivalent Elmore model is shown in Figure 2.1(b).

R
R1

(a) (b)

Figure 2.1: Elmore delay model

The delay of the gate is then evaluated as the Elmore time constant of this RC network,
given as

(R1 + Ry)Cy + (R1 + Re + R3)Cs (2.4)

Each R; is inversely proportional to the transistor width z;, and each C; is directly

proportional to transistor width z;. Hence Equation (2.4) can be rewritten as
(A/.’L‘l + A/.’L‘Q)(B.’I:Q + Czxs + D) + (A/.CC1 + A/:I:Q + A/Ig)(B.’L‘g + E) (2.5)

where A, B, and C are constant coeflicients for the resistance, drain capacitance, and source
capacitance, respectively, of a unit size transistor, and D and E are wire capacitances.

Thus the general form of the Elmore delay can be written as

n n
s .
D(x)= > ay=—+)Y —+K (2.6)
i,5=1 J o i=1
where a;;,b;, K € RT are constants and, x = [z1,---,z,) is the vector of transistor sizes.



This form is used in various published works on transistor sizing, for example, in TILOS [10]
and iICONTRAST [11]. A detailed treatment of timing analysis using the Elmore model
can be found in [12].

2.3 Transistor sizing problem

Increasing the width of a transistor results in an increase in the circuit area and power
dissipation. Moreover, if the updated transistor is an nmos transistor and lies on the resistive
path between input a; and the output of the gate, then it has two effects on the gate delay:
(1) it results in reduced delay from a; to output for the falling output transition, and
(2) it leads to increased delay from a; to output for the rising output transition.

Hence determining the widths of transistors in a circuit involves carefully solving this trade-

off. Transistor sizing has been traditionally been formally defined as [10]:

minimize Area or Power

subject to  Delay < Tipec- (2.7)

Previous works on the use of transistor sizing for area-delay trade-off optimization and

power-delay trade-off optimization are outlined in Sections 3.7.2 and 3.7.3, respectively.
2.4 Nonlinear optimization

A Nonlinear Program (NLP) is a problem that can be formulated as

minimize f(z)

subject to g =0, 1<i<k (2.8)

where f(x), g; and h; are all nonlinear functions, and & is the number of equality constraints
and m is the number of total constraints. Since, the functions are nonlinear, finding a global

minimum of the optimization problem is a very difficult task, and there is always the danger

10



that a solution technique may be trapped in a local minimum.

However, not all nonlinear programs are difficult to solve. The objective functions and
constraints may possess certain properties that can be exploited to efficiently obtain a global
solution. Two of such problems are the geometric programming and the convez programming

problems, which are explained in the next two sections.
2.5 Geometric optimization
2.5.1 Posynomial functions

A posynomial is a function p of a positive variable x € R™ that has the form
n
(e 771
p(x) = v [T (2.9)
i =l

where the exponents «;; € R and the coefficients y; € R*. In the positive orthant in the
x space, posynomial functions have the useful property that they can be mapped onto a
convex function (explained in next section) through an elementary variable transformation,
(z;) = (€*). Notice that the Elmore delay expressions provided in Equations (2.5) and 2.6
are a subset of the set of posynomials; specifically they are posynomials whose exponents

belong to the set {-1,0,1}.

2.5.2 Geometric programming

An optimization problem of the type,

minimize f(x) (2.10)
such that g¢;(x) <C,1<i<m

xRt

is a geometric programming problem if f(x) and g;(x) are posynomials.

A geometric optimizer converts the above minimization problem, called the primal prob-

11



lem into a maximization problem called the dual problem. It uses the arithmetic-geometric
inequality, which states that the weighted arithmetic mean of a set of positive numbers is
at least as great as their geometric mean, to prove that the maximum of the dual problem
is indeed the minimum of the primal problem.

The degree of difficulty of a geometric program is given as

degree = Number of terms — No. of variables —1 (2.11)

When the degree of a geometric programming problem is zero, then the solution of the
dual problem can be obtained by solving a system of linear equations. When the degree is
greater than zero, the dual problem takes the form of a simple optimization problem, where
all of the constraints are linear. Thus in either case, the dual problem is much simpler than
the original or primal problem, and leads to fast solutions. A more in-depth treatment on
geometric programming can be found in [13].

It can be noted that the area model mentioned in Section 2.1.1, is in the posynomial
form. Moreover, if the Elmore model is used to evaluate the gate delay, then the path delay
can be expressed as a summation of posynomials, and is hence a posynomial in itself. Thus
the transistor sizing problem under these models is one of minimizing a posynomial function
under posynomial constraints of the form mentioned in Equation (2.11), and is therefore a

geometric programming problem.

2.6 Convex optimization

2.6.1 Convex sets and convex functions

A set C in R" is said to be convez if, for every z1, zo € C, and every real number «,
0 < a <1, the point @ z1 + (1 — ) zo € C. This definition can be interpreted
geometrically as stating that a set is convex, if given any two points in the set, every point
on the line segment joining these two points is also a member of the set.

A function f defined on a convex set w is said to be convez if, for every z1, xo € w, and

12



every o, 0 < a <1,

flary + (1 — @)ze) < a f(r1) + (1 — @) f(z2) (2.12)

This can be geometrically interpreted as stating that a function is convex if the line joining
any two points on it, lies above the function. A few results are listed below.

(1) If f(z) is a convex function, the f(z) < ¢ corresponds to a convex set.

(2) The intersection of two convex sets is a convex set. However, the union of convex sets,
in general, is not convex.

For further details on convexity, the reader is referred to [14]. Figure 2.2 shows examples

of a convex set and a convex function.

Secant

S

X2

Convex set Convex function

Figure 2.2: Convex set and convex function

2.6.2 Convex programming problem

A convex programming problem, also referred to as a convex optimization problem, involves

the minimization of a convex function over a convex set. A problem of the type

minimize f(x) (2.13)

such that g¢;(x) <0,1<i<m

13



is a convex programming problem if f(x) and g;(x),1 < i < m, are convex functions.

The advantage of a convex programming formulation is that the problem is known to have
the property that any local minimum is also a global minimum, and efficient optimization
algorithms for solving such a problem are available. Therefore, it is desirable to attempt
to express any optimization problem using a convex formulation, as far as possible, under
the caveat that the accuracy of the modeling functions for the objective and the constraints
must be preserved.

Section 2.5 showed that transistor sizing under the area and delay models from Sec-
tions 2.1 and 2.2 is a geometric programming problem. Under the variable transformation
mentioned in Section 2.5.1 the transistor sizing problem takes the form of a problem of
minimization of a convex function under convex constraints and hence is a convex program-
ming problem. This indicates that under such models one can find a global optimum of
the transistor sizing problem. Since the posynomial to convex function mapping mentioned
in Section 2.5.1 is one-to-one, it can be used to claim that the minimum in original space
corresponds to minimum in the transformed space.

In the next chapter a new delay gate model is proposed that retains the convexity property

of the Elmore delay model.

2.7 Mixed integer nonlinear programs

A mixed integer nonlinear program (MINLP) is a nonlinear programming problem, where
some of the variables x;’s are required to have integer values. This problem is much more
computationally expensive than continuous optimization problems. The reason is that
in case of continuous optimization, gradient-based methods can be used to arrive at a
minimum, either local or global. But in the case of MINLP, due to the presence of integer
variables gradients are not available, since the function exists only at discrete points.

Obtaining computationally efficient heuristics that can provide reasonably good solutions
to this problem is an area of active research. One typical approach involves creation of a

branch-and-bound tree. Each node in the tree corresponds to a nonlinear program, and the

14



tree is bounded according to the solution of these nonlinear programs. One particular type
of MINLP is the 0-1 integer nonlinear program, where the integer variables are constrained
to have one of the two values. The application of the branch-and-bound method for this case
results in a binary tree, where the left child of a node fixes its corresponding integer variable
to 0, and the right child sets its to 1. This approach can result in reasonable computation
times for smaller programs, but for general purpose optimizations involving thousands of
variables and constraints, the approach is computationally prohibitive and unrealistic.
The second part of this thesis solves the V; assignment problem, where two fixed levels of
V; are used. It will be shown later in Section 4.3 that this problem is in the MINLP form.

Hence, Chapter 4 develops an efficient heuristic to solve this problem.
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Chapter 3

Convex Delay Modeling

3.1 Introduction

While building a timing optimization engine, it is essential for the underlying delay models
to be accurate and efficient. Moreover, the task of obtaining globally optimal solutions is
greatly eased if these models should possess convexity properties, as explained in Section 2.6.
This chapter proposes an accurate circuit delay modeling procedure that results in provably
convex delay functions.

The chapter is organized as follows. A brief summary of existing models is provided
in Section 3.2. The idea of a generalized posynomial is presented in Section 3.3, and its
application to gate delay modeling is discussed in Section 3.4. Section 3.5 presents the
results demonstrating the accuracy of the new model, and a technique for converting gener-
alized posynomial programs to posynomial programs is presented in Section 3.6. Section 3.7
presents a proof of convexity of path delays under this gate delay model and is followed by
experimental results on circuit optimization in Section 3.7 that demonstrate the computa-

tional efficacy of the new model.

3.2 Existing delay modeling approaches

The Elmore delay model presented in Section 2.2 has been used traditionally to perform

transistor-level delay analysis. This model, however, is known to be very inaccurate for
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modern designs. This inaccuracy can be attributed to its failure to accurately consider
important factors such as input transition times, the position of the switching transistor, the
sizes of fighting complementary transistors, and the temporal relationship between inputs
and transistor nonlinearities. As a result, exact optimization under this model may lead to
an incorrect solution to the sizing problem since the timing model has a bad correlation with
reality. More precisely, the solution may be either suboptimal in that it meets the timing
specification without minimizing the cost function, or entirely inaccurate, in the sense that
it may not meet the timing constraints at all. Therefore, it is immensely important to use
more accurate timing models in sizing.

Several other approaches for accurate timing modeling have been proposed in the past.
For example, one could model gate delays by developing closed form expressions [15]. Much
work has been carried out in the development of closed form models for inverters and
then mapping other gates to an equivalent inverter [16,17]. An alternative approach uses
a look-up table constructed using experimentally-derived delay data for various configura-
tions, with intermediate data points being derived by interpolation methods, as in the delay
model in [18]. However, this approach requires storage of large number of data points to
guarantee accuracy and hence is very expensive in terms of memory requirements. Neither
the closed-form modeling approach nor the table-look-up modeling method is particularly
well suited for optimization since the modeling functions typically do not possess any con-
vexity properties and cannot be used in the context of a formal optimization algorithm
that is guaranteed to find the global minimum in a reasonable time. Moreover, it is not
necessarily true that these models will have continuous derivatives, or, in the case of look-up
tables, any derivative at all. Therefore, there is a need for new models that permit accurate
delay computations, while maintaining convexity properties suited for optimization. This
work derives a methodology for developing such models.

The theoretical underpinning of this approach is a result that defines a new class of
functions that are shown to work well for modeling circuit delays. These functions are

provably convex under a variable transformation that is explained in the next section. The

17



set of functions from which these functions are chosen includes the set of posynomials
as a proper subset, and therefore, we refer to these functions as generalized posynomials.
This work uses a curve-fitting approach to find a least-squares fit from the delay function,
computed by SPICE over a grid, to a generalized posynomial in order to provide guarantees

on accuracy of the delay model.

3.3 Generalized posynomials

3.3.1 Definitions

Posynomials and convex functions, described in Sections 2.5 and 2.6, are rich classes of
functions and the basic motivation for this work is that better delay estimates can be
obtained by fully exploiting this richness.

A generalized posynomial function Gg(x),x € R", where k£ > 0 is called the order of the

function, is defined recursively as follows:

1. A generalized posynomial of order 0, Gy, is the posynomial defined earlier:
n
Qg
Go(x) =Y [T« (3.1)
i =1

where the exponents «;; € R and the coefficients v; € R™.

2. A generalized posynomial of order k > 1 is defined as

n

G0 = 32 [ [Grora (N (32)

i=1

where the exponents a;; € RT and the coefficients v; € R™, and Gj_1(x) is a

generalized posynomial of order k£ — 1.

Specifically, the generalized posynomial of first order, is given by

m

i n Bij
100 = S Il (z win 11 ) (33)
) =1 s=1
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where each ;; € R*, each a;j; € R, each 73 € RT, and each w;;; € RT. Stripping
Equation (3.3) of its complicated notation, one may observe that the term in the innermost
bracket represents a posynomial function. Therefore, a generalized posynomial of first order
is similar to a posynomial, except that the place of the z; variables in Equation (2.9) is
taken by a posynomial. Similarly, a generalized posynomial of order k uses a generalized
posynomial of order k — 1 in place of the z; variables in Equation (2.9). Appendix A shows
that if the range of interest of x is restricted to the positive orthant where each z; > 0,
then under the variable transformation from the space x € R" to the space z € R" given
by z; = €%, the generalized posynomial function f of Equation (3.2) is mapped to a convex

function in the z domain.

3.3.2 Proof of convexity

The following theorem parallels the relationship between posynomials and convex functions.
Theorem 1: If the range of interest of x is restricted to the positive orthant where each
xz; > 0, then under the variable transformation from the space x € R™ to the space z € R"
given by z; = e%, the generalized posynomial function f of Equation (3.2) is mapped to a
convex function in the z domain.
Proof: It is well known that a generalized posynomial of order 0, Gy(x), is transformed to
a convex function, Gy(z) in the z domain [19]. Since the functional form of the functions
Gi(x),k > 0, is different from that of Go(x) due to the additional nonnegativity constraint
on the «;; variables, they are treated separately.

The proof of Theorem 1 proceeds by considering G (z) for k > 1; to prove its convexity,

it is enough to prove the convexity of
m
L =P [[(Gr-1,:)%,8 >0, (3.4)

=1

since a sum of convex functions is convex. The gradient and Hessian of this function are,
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respectively, given by

vl = Pi { ( ﬁ (le,j)ﬂj> Bi(Gr-1,)P v le,i}

i=1 j=1,i#j
,81 V Gk 1,2
= I E 3.5
Gk 1,2 ( )

AVAC/ IRy
VL = {(Z & ZkGfZ“> (Zﬂ Zk o >+ (3.6)

Z 2 (Gkﬂ,i Vv’ Gr-1i — VGr-1, V Gf—u) }
= Gi

We will prove that L is a convex function by showing that the matrix 2L is positive
semidefinite. Since the first term is easily seen to be positive semidefinite, the function L is
convex if (Gr—1; \VAi Gr—1,— VGk-1,V G{_l’i) is positive semidefinite. We will now show
this by proving the following result, by induction and the proof of Theorem 1 follows as an
immediate consequence. The matrix (Gk V2 Gy — VG v G{) is positive semidefinite for
all k > 0.

Basis case Consider a zeroth order generalized posynomial given by

P n P
Go = Zwi H ei®i = Zhi,

where h; = w; H;-lzl e®i%i_ It is easy to see that the value of each h; is positive for all z; this
observation is used later in the proof.

Now consider the matrix H = <G0 v2 Gy — vGo v GOT). The (q,1)*™" term of this matrix

Hy = (f: hz) (Zh azqazl> - (i hiaz’q) <i hiail>
= Z Z [hihj (aig — ajq) - @]

i=1j=1,j7#1

= Y Y [hihj(aig — ajq) - (@ — aj1)]

i=1 j=i+1

is given by
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Therefore, we can write

where @; = [a;1, a2, ---am]T. Therefore, H is positive definite since each h; > 0.

Induction hypothesis: For a generalized posynomial Gi_1(z) of order k£ — 1, where k > 1,

Gj-1(2) V* Gy_1(2) — VGi_1(z) v G_1(2)"

is positive semidefinite.

For the inductive step, we write

T k m;
Gr =Y Lpi =Y P [[(Gr-1,)", (3.7)
i=1 i=1 j=1

so that each Ly is of the form of the function L defined in Equation (3.4). We may use

the expressions for the gradient and Hessian of L in Equations (3.5) and (3.6) to write

Gy v’ G, — VG v G},
T r T T T
= (Z Lk,l) (Z V2Lk,l> - (Z VLk,l> (Z VLk,l>
I=1 I=1 =1 I=1

ror
= > (Lk,l V? Lig = Vit v Liq)
I=1¢=1

If we set
/Bj \V Gk 1, ]
= : 3.8
] Z Gk 1,4,5 ( )
this may be rewritten as
Z Z Ly g (L o{ iy Z (Gr—1,4 V° Gh-1,4i —
= 1q— k 1’q7

VG 1,4V Gk—l,q,i)}) - Lk,lLk,qul“q
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Rt — B 2
= 22 Lnilegd g (Gho1gi V° Ghorgi—
=1

=1 q:1 k_lﬂq’i

T '8 m
VGi-1,4iV Gh14:) + D > LigLpg Yy (iig — iiy) (g — )",
=1 ¢g=Il+1 =1

which is positive semidefinite by the induction hypothesis. QED.

3.4 Delay modeling using generalized posynomials

Delay estimation is carried out by using precharacterization, which is performed once
for every technology. For a given technology, the delay of a gate typically depends on the
sizes of transistors in the gate, the input slope, and the output capacitance; and these
are used as variables in the characterization procedure. These variables will be referred
to as characterization variables. The choice of these circuit parameters as characterization
variables can be better explained with the help of an example.

Let us consider the timing model for an inverter, such as the one shown in Figure 3.1;
this model is generalized to complex gates in subsequent sections. The aim is to be able
to estimate delay as a function of the pmos and nmos transistor widths, w, and wy, the
input transition time 7, and the output load capacitance, Cr. Therefore, for an inverter,
Wp, Wy, T, and Cr, form the set of characterization variables. These variables reflect the set

of variables that are generally considered to be important in defining the delay of a gate in

Vdd
e I
CL
Wn
1L

Figure 3.1: Inverter circuit

most models.

Several types of functions that are members of the generalized posynomial class, are tried

out to achieve the desired levels of accuracy. The general form of expression that provided
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consistently good results for different gate types is as follows

m n
Delay = Y P; - [[ (7 + ¢ij)f + C (3.9)
j=1 i=1

Here, the z;’s are characterization variables, and the ¢;;’s, 8;;’s, C, and P;’s are real con-
stants, referred to collectively as characterization constants. The parameter A is set to
either -1 or 1, depending on the variable, as will soon be explained. The problem of char-
acterization is that of determining appropriate values for the characterization constants. It
is shown in Section 3.7.1 that the use of this form of function implies that the circuit delay
can be expressed as a generalized posynomial function of the transistor widths.

Due to the curve-fitting nature of the characterization procedure it is not possible to
ascribe direct physical meanings to each of these terms. However, it can be seen that the
fall delay increases as Cr,, w, and 7 are increased, and decreases as wy, is increased, implying
that an appropriate choice for the parameter A for the first three variables is 1, and that for
wy, is -1. Note that this is not as restrictive as the Elmore form since, among other things,
the B3;;’s and c¢;;’s provide an additional degree of freedom that was not available for the
Elmore delay form. A similar argument may be made for the rise delay case.

A two-step methodology is adopted to complete the characterization. In the first step, a
number of circuit simulations are performed, using HSPICE to generate points on a grid.
In the second, a least-squares procedure is used to fit the data to a function of the type in
Equation (3.9).

A series of simulations is performed to collect the experimental data using the HSPICE
circuit simulator. The total number of data points, IV, increases exponentially with the
number of characterization variables. For the inverter circuit with four characterization
variables and d data points for each variable to cover the range of interest, the total number
of data points, N would be d*. Therefore, it is important to choose the data points carefully;
in particular, it is not necessary to choose an even grid for the transistor widths and a smaller

granularity of points can be chosen for larger w,’s in case of the fall transition.
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The determination of the characterization constants was performed by solving the fol-
lowing nonlinear program that minimizes the sum of the squares of the percentage errors

over all data points.

N . N2
. Destim(z) - Dactual(z)
minimize - 3.10

; |: Dactual(z) ( )

where N is the number of data points, Destin (i) and Dgeryar(%), respectively, represent
the values given by Equation (3.9), and the corresponding measured value at the i*" data
point. This minimization problem is solved using the MINOS optimization package [20] to

determine the values of the characterization constants.

3.4.1 Characterization of a set of primitives

For a library-based design, a full characterization of all cells is a viable alternative and its
complexity is comparable to that of characterizing the library using any other means. For
general full custom designs, however, the number of SPICE data points to be generated
for the curve fit increases exponentially with the number of characterization variables. It
is computationally expensive to perform such a large number of simulations and hence an
alternative strategy is suggested. An alternative strategy is to precharacterize a set of logic
structures such that any gate can be mapped to one of the elements of this set with some
acceptable loss of accuracy. It is important to note that even under this procedure, the
transistor sizing approach will size each transistor individually, and this method is only
used for delay estimation.

One straightforward technique that may be used is to map all of the gates to an “equiv-
alent inverter” [16,17], and use the inverter characterization to estimate delays; the sizes
of the pull-down nmos transistor and the pull-up pmos transistor of this inverter reflect
the real pull-down or pull-up path in the gate. The widths of these new transistors are
referred to as the equivalent widths. The equivalent width calculation is based on modeling
the “on” transistors as conductances, and the equivalent width corresponds to the effective

conductance of the original structure. Accordingly, if two transistors of widths wy and wo
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are connected in parallel, the equivalent width is defined as wy + wy and if the transistors
are connected in series, the equivalent width is defined as [wf Ly wy 1] 71.

However, such a reduction has shortcomings. Consider the NAND gate in Figure 3.2(a),
whose equivalent inverter approximation is illustrated in Figure 3.2(b). The node capaci-
tances at nodes other than the output are not accounted for in this approximation. Also,
the same mapping will be used irrespective of whether input A or B is switching, whereas
in reality, these two cases correspond to different delay values. This issue is addressed in

Section 3.4.1.

Vdd

Vdd

WI1+W2

Weq=W3*W4/(W3+W4)

Figure 3.2: Inaccurate mapping of a NAND gate

The mapping procedure developed in this work attempts to reduce the errors caused
because of such approximations. To this respect, a basic set of primitives is developed
such that any arbitrary gate can be mapped to one of the primitives with acceptable loss
of accuracy. Three types of primitives, namely, simple primitives, complex primitives and
sequential primitives are developed to handle various logic structures, for both rise and fall

transitions.

Simple primitives

One-input, two-input, and three-input primitives are developed as described below.

Single input primitive is basically an inverter; it is referred to as a primitive because of the
fact that mapping procedure along with inverters also maps NOR gates for fall transition
and NAND gates for rise transition on an inverter. For example, if we assume single input
transitions, then in case of a NAND gate only one of the pmos transistors will be on during

the rise output transition. The pmos transistor that is off contributes only as a loading

25



capacitance, and hence for rise delay calculation, the NAND gate is mapped to an inverter.
Since this inverter primitive is identical to the inverter described in previous section it is
not discussed any further.

It is necessary to emphasize that an n-input primitive does not mean that it is a primitive
only for the n-input gates. Any gate having equal to or more than n inputs would be mapped
to an n-input primitive depending upon the position of the switching transistor.

To illustrate this a set of two-input primitives for fall transition at the output is shown in
Figure 3.3 (the presence of a load capacitance at the output is implicit and is not shown). We
assume that the timing analysis procedure in our tool assumes only single input transitions,

and hence there can only be one pair of pmos and nmos transistors switching at a time.

PrimFallA PrimFallB

@ ®) ©

Figure 3.3: Two-input primitives for fall transition

A two-input NAND gate is shown in Figure 3.3(a). For the fall delay, if the input
transition occurs at input A, then the gate is mapped to Figure 3.3(b). Note that since the
output is being pulled down in the case of a fall delay calculation, the pull-down is retained
while the pull-up is replaced by a single transistor, and the characterization equations
of Figure 3.3(b) are used to estimate the delay. In a similar fashion, when the input
transition occurs at input B of Figure 3.3(a), the gate is mapped to Figure 3.3(c). A similar
procedure is applied for rise delays, i.e., the pull-up part is retained while the pull-down
part is replaced by an equivalent nmos transistor. Similarly, 2-input primitives, containing
two pmos transistors in series with an nmos transistor, namely PrimRiseA and PrimRiseB,
are developed that can accurately model NOR gates and NOR gate-like structures.

For simple gates with more than two inputs and complex gates, an expanded set of
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primitives is necessary. The set of primitives used to approximate such gates is shown in
Figure 3.4. It should be noted that these are not the only primitives on which gates with
more than three inputs will be mapped. For example, consider a three input NAND gate
and the case where the latest arriving input is the one connected to the topmost transistor
in the nmos chain. In this case, the NAND gate will be mapped to the two input primitive
PrimFallA shown in Figure 3.3(a); the two nmos transistors at the bottom are collapsed

into one transistor of equivalent width.

Vdd Vdd

out

S —

- —

(a) )

Figure 3.4: Three-input primitives

Complex primitives

One can see that above mentioned methodology can very efficiently handle various simple
gates as well as complex gates under certain switching scenarios. However, for the gates
with disjoints paths to power supply or ground, such as And-Or-Invert (AOI) gates, the
methodology will not always give accurate delays. In case of simple gates with only one
transistor chain, the internal node capacitances are inherently taken into account during the
modeling phase. But in the case of AOI gates there are multiple parallel chains of transistors.
Hence if AOI gates are mapped (except when all the transistors connected to the output
and belonging to the nonconducting chains are off) on to the simple primitives developed
earlier, then the internal node capacitances in non-conducting transistor chains would not
be correctly accounted for, resulting in inaccurate delay values. When the internal node

capacitances are charged then these capacitances need to be considered and hence a set of
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complex (AOI) primitives is developed. The beauty of this approach is that these primitives
can be developed as simple extensions of the primitives of simple gates. For AOI gates, one
can observe that the worst case delay corresponds to one conducting chain of transistors
between the output and supply, while all other chains are nonconducting. This shows that
primitives for AOI gate can be developed by addition of a nonconducting transistor chain
in parallel to the transistor chain in the simple gate primitive. A few example primitives

for AOI gates are shown in the Figure 3.5.

AOI12FALL AOI22FALL
vdd Vdd
/-
/- H
1
0 Ao T

Figure 3.5: Examples of AOI Primitives

For a general purpose arbitrary gate the longest resistive path is obtained to estimate
worst case delay. In addition, the side inputs are assumed to have values that will maximize
the loading capacitance. Then a systematic reduction to primitives can be obtained by
using following rules:

1. If there is a chain of on transistors, then those transistors can be collapsed in an equivalent
transistor without loss of much accuracy.

2. The position of switching transistor should decide the primitive to be used for delay
evaluation. For example, if there are four nmos transistors in a chain with the topmost
transistor switching and all of the remaining transistors on, then the chain can be collapsed
to an equivalent transistor. On the other hand if any of the middle transistors is switching,
then the transistors on the top can be collapsed in one equivalent transistor, and those at
the bottom can be collapsed into another transistor, and the primitive with this structure
can be used. The two cases will require different primitives because in the first case, all the

on transistors act only as resistances, while in the latter case, the transistors on top have
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both resistive and capacitive contributions, while those on the bottom exhibit only resistive
effects.
3. If a chain of transistors does not include the switching transistor, then after collapsing
into an equivalent transistor, one of the primitives developed for complex gates, for example
the primitives showed in Figure 3.5, can be used.
4. If a chain of transistors is on, but one of the ends is floating then the internal capacitances
are not charged, and the chain can be safely omitted from consideration, since it cannot
have any effect on delay.

If the reduction results into an error above acceptable limits and if there are considerable
number of instances of this gate, then it might justity investing efforts in fitting a model

for that particular gate, and the fitting procedure mentioned in Section 3.4 can be used.

Sequential primitives

A static sequential element normally consists of a set of pass transistors and inverters.
An example sequential element is shown in Figure 3.6. Since an inverter that drives a
transmission gate forms a single channel connected component, as shown in Figure 3.6,
a separate model is developed for this component. Using this model in conjunction with
the inverter model explained earlier, we are now able to model every channel connected
component in this sequential element. An advantage of the ability to develop accurate
models for the sequential elements is the simplicity in constraint formulation in the across-

latch optimization.

1
4
T
Sequential Element Primitive

Figure 3.6: Sequential Element and Primitive
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Primitive Delay
Mean | Deviation
InvRise 0.31 % 2.84 %
InvFall 1.29 % 2.82 %
PrimFallA | -1.28 % 4.74 %
PrimFallB | 1.07 % 2.95 %
PrimRiseA | -0.67 % 3.59 %
PrimRiseB | 0.13 % 0.93 %
PrimCoFall | -0.68 % 2.96 %
PrimCoRise | -0.35 % 1.79 %
AQOI12Fall | 0.87 % 6.27 %
SeqFall 746 % | 4.73 %

Table 3.1: Primitive Validation

3.5 Modeling Results

Table 3.1 shows the validation results of different primitives, proposed in Section 3.4.1,
with respect to SPICE.

The purpose of listing these validation results on the primitives is to emphasize that
transistor nonlinearities can be effectively modeled by convex functions and to test the
validity of the basic idea of modeling delay as convex functions. Referring to Equation (3.9),
a value of j = 1 was chosen, and it was observed that the use of higher values for j did not
offer significant improvements in accuracy. The characterization was performed in a 0.25pm
technology by varying transistor widths to up to 80um, 7 from 20 to 300 ps (10% to 90%)

and Cr, up to 800 fF. Figure 3.7 shows a typical histogram of the primitive validation.
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Figure 3.7: Primitive validation
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Gate Delay
Output Transition | Mean | Deviation

Inv Rise 0.31% 2.83 %
Fall 1.29 % 2.82 %
Nor2 Rise 1.82 % 2.56 %
Fall 11.10 % | 5.06 %
Nand2 Rise 5.18 % 6.17 %
Fall -0.46 % 3.58 %
Nor3 Rise 0.24 % 1.76 %
Fall 24.2 % 7.64 %
Nand3 Rise 9.21 % 5.98 %
Fall 1.26 % 2.29 %
AOI3 Rise 5.21 % 6.38 %
Fall 0.86 % 6.27 %

Table 3.2: Gate Validation

It should be noted that accurate fits are required only in the region where sizing con-
straints are satisfied. For example, if output transition time violates the specification then
the optimizer will ensure that its value is reduced to a point in the feasible region, and
the convexity of the functions will force the optimization to move to this region after some
iterations.

Table 3.2 shows the validation results of various gates with respect to SPICE. It is
important to note that that all the possible mappings for a gate are considered and the
worst case results are shown in the table. For example, the fall transition on gate Nand3
can map on to either primitive PrimFallA, PrimFallB or PrimCoFall. It was found that
PrimCoFall provided the best results, while PrimFallA and PrimFallB provided a smaller
degree of accuracy due to the fact that a three input gate was mapped to a two-input
primitive using the concept of an equivalent width of two series transistors. Figure 3.8

shows a typical histogram of gate validation.

The results show that the primitive-based gate delay estimation gives highly accurate
results. It is observed that all of the errors that are above 2% are obtained when an n-input
gate is mapped to a k-input primitive where k < n. If some gate type gives unacceptable

results for some input transition we can further enhance the accuracy by characterizing the
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Figure 3.8: Validation of a 2-input NAND gate

model for that specific scenario over a range of parameter values. It can be seen from the
table that two of the delay scenarios, namely, fall delay of NOR2 and NORS, resulted in an
error greater than 10%, and that rise delay of NAND3 is close to 10% as well. The reason
for these high errors is that an inverter primitive is used to estimate fall delay of a NOR
gate and rise delay of a NAND gate. One rise primitive can be developed for NAND gate,
and similarly for NOR gate to reduce the errors.

To verify the accuracy of the proposed model on whole circuit, the C17 benchmark
from ISCAS85 benchmark suite, is optimized with an accurate convex optimizer [11]. The
circuit is optimized for the target delays that vary from 60% to 90% of the unsized delay,
where the unsized delay corresponds to the circuit with all transistor sizes set to minimum.
The optimized circuit is then timing analyzed using SPICE. The results of the comparison
are shown in Table 3.3, where a row represents a circuit optimized by putting the delay
constraint provided in the first column. Columns two and three show the SPICE delay of
the optimized circuit and the error in the output delay measured by the proposed model as

compared to SPICE. The area of the circuit is shown in the last column.

3.6 Conversion of generalized posynomials to posynomials

The generalized posynomial model appears very complex at first and there are no accurate
mathematical optimizers available which can operate directly on generalized posynomials.

Therefore, it is in order that we examine how the model can be incorporated into conven-
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Output Capcitance = 30fF
Delay without any constraint = 934ps

Model Delay | SPICE Delay | Error | Area
(ps) (ps)
840 835 0.59 % | 6.67
745 752 -094 % | 7.75
655 670 -2.30 % | 10.01
560 594 -6.07 % | 14.05

Table 3.3: Comparison of Model Delay for C17 with SPICE

tional mathematical optimizers such as geometric optimizers which are traditionally used
to solve posynomial programs. This section shows the detailed mapping of generalized
posynomials to posynomials.

As will be shown shortly, the transformation is carried out by the introduction of addi-

tional variables. Consider the constrained generalized posynomial below:
m /[ Di n Bij
Ajjls
S fl (Son ) < Do )
=1 s=1

% j=1

where D4 is the required delay time, and 3;; > 0 V 4,j5. Note that the term in the
parenthesis is a regular posynomial. If we substitute that posynomial by the variable y;,

the result is the constraint
m
Z'Yi H (yj)/Bij < Dreq- (3.12)
% j=1

It is well known that any constraint where a posynomial function is required to be less
than or equal to a constant, is equivalent to a convex set under the variable transformation;
and such a constraint is referred here as a posynomial constraint. However, the above

substitution also requires that the following equality must be satisfied:

pi n
Y wii [[ 57 = y;. (3.13)
=1 s=1

This equality can be represented by a pair of inequalities, only one of which is a posynomial
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constraint. This implies that the constraint set is no longer transformable to a convex set
in the z and y variables.
If we relax the equality in (3.13) into a “<” inequality, then for any variable assignment

that satisfies the relaxed set of constraints, since v; > 0 and §;; > 0, it must be true that

m Pi n N Bij m
2]l (Z wij [ x?”“> <Y I @) (3.14)
( j:1 =1 s=1 i jZl

This subtle observation in conjunction with constraint (3.12) implies that the constraint (3.11)
must be satisfied.
Therefore, we may replace each such generalized posynomial constraint of order 1 by the

set of inequalities given by

m
Z'Yi H y]ﬂ” < Dreq
% j=1
Pi n
Qijis
> wi [ =57 < yj (3.15)
=1 s=1

It is instructive to note that this substitution technique may be used, in general, for general-
ized posynomials of order k. This is easily seen, since the above procedure reduces an order
k generalized posynomial constraint to an order k£ — 1 generalized posynomial constraint;
this process may be carried out recursively until posynomial constraints are obtained.
This is a powerful result, since we now have a large new class of functions that can
accurately capture the delay behavior of a circuit, but may use conventional fast methods,

which exploit the structure of the problem, for solving them.

3.7 Circuit optimization incorporating the new delay model

It is important to note that the proposed delay model is targeted towards transistor-level
optimization, although one can use them in gate-level optimizations as well. The material
presented below examines two problems in the domain of circuit optimization, namely, area-

delay optimization and dynamic power-delay optimization. The first problem is solved using
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a heuristic approach, while the latter is solved using an accurate mathematical optimizer
and exploiting the conversion outlined in the previous section. The formulations for both

problems are similar and are provided in Section 2.3.

3.7.1 Proof of convexity of path delays

The ensuing discussion shows that the delays of individual paths under the generalized
posynomial gate delay model satisfy the property of convexity. It is to be emphasized that
this discussion is purely for expository purposes; the optimizers used in this work for sizing
does not require the enumeration of all paths, and perform the optimization efficiently by
checking, through a timing analysis, whether the constraints are satisfied or not. For details,
the reader is referred to [10].

Let the critical path of the circuit be represented by a set of stages, where each stage
represents a gate. Let us first consider a scenario with fully characterized gates where no
primitives are used, but the delay is characterized in terms of the size of each transistor.
Then, substituting the characterization variables explicitly into Equation (3.9), we see that

the fall delay of the gate corresponding to stage [ has the following form:

Delay, = > P, - (Woi + cn1)? + v (wih + Cam,, )Prme (3.16)
i

(wpl + Cpl)ﬂpl cee (’U}pmp + Cpmp)ﬂpmp (Ti—l + CT)ﬂTHj(Cj + ch)ﬂcj

and the output fall transition time of the gate in stage [ has the form!

T=Q- (w;11 + k1)t - (w;r}m + knmy, ) (wp1 + kp1 )P - (3.17)

(wpmp + kpmp)’ypmp (Ti—l + kT)% Hj(Cj + ij )’ch

where B > Oa Q > 07 cniacpiakniakpiaﬂniaﬁpia YniyVpi Viaijach vjakTacTa 6Cj 7’YCJ' a/BTa’YT are

real constants. The wy; and wp; values, as usual, refer to the nmos and pmos transistor

!The rise delay and rise transition time expressions are similar, with the roles of w, and w, interchanged.

35



sizes, T refers to the transition time, and the C}’s correspond to the capacitances at the
gate output and at internal nodes.

The capacitance at each internal or gate output node ¢, C; is modeled by

Ci =) Kiw; + k" (3.18)
J
where the k; and k" values are real constants, and w;’s represent the equivalent transistor
widths in the circuit.

From the Equation (3.18) we can see that output transition time is represented by a
generalized posynomial. Additionally, the loading capacitance given by Equation (3.18) has
the form of a generalized posynomial. Using Theorem 1 from Section 3.3.2, it can be seen
that when the input transition time and loading capacitance expressions are substituted in
Equation (3.17), the resulting expression is also a generalized posynomial.

For area-delay trade-off problem, the objective function is the sum of the transistor sizes,
which is clearly a generalized posynomial form. For the power-delay trade-off problem the
dynamic power is expressed as Equation (2.2). It can be easily verified that this equation
conforms to the genearalized posynomial form.

Using identical arguments to [10, 11], since the maximum of convex functions is convex,
the problem of area or power minimization under delay constraints for “template” gates
can be shown to be a convex programming problem. For gates that do not adhere to the
template, the mapping techniques described in Section 3.4.1 may be used to model the
delay function. We will now show that in such a case, the delay function continues to
remain in the generalized posynomial form. Let wll, e ,w;n represent transistor widths in
the primitives the gates are mapped to. In the process of mapping the gates, the transistor
widths in the primitives can be expressed in terms of the actual transistor widths in the
circuit. Let wq, -+, wy represent the actual transistor widths in the circuit. Then w'’s can
be expressed as

wit= Y wL1<i<m (3.19)
g€{1-n}
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All occurrences of value of wgfl, which is a basic variable in the characterization equation,
can be substituted as above in Equation (3.17), maintaining the generalized posynomial

property of the delay equation.

3.7.2 Area — delay trade-off optimization

There have been many significant attempts to solve this problem, for example, [10,11,21].
Most published approaches use the Elmore delay model [5] for timing calculations, and a
breakthrough observation in [10] was that the circuit delay under this model is a posynomial
function of the transistor sizes. Recently an accurate technique for circuit optimization has
been presented in [22], using a nonlinear optimization technique. Simulation followed by
time domain sensitivity computation is used to provide gradients to a nonlinear optimizer.
However the drawback, as they have noted, is the possible destruction of convexity due to
transient-simulation-based modeling. Other drawbacks are the involvement of circuit-level
simulation which tend to make the optimization process a bit cumbersome, and the pattern-
dependent nature of the timing analysis which requires the user to supply the simulation
vectors.

The approach in this thesis tries to eliminate these drawbacks by incorporating the pro-
posed accurate and convex delay models. A sensitivity-based heuristic is used to solve the
optimization efficiently and with reasonable accuracy. The delay models were incorporated
into the TILOS algorithm described in [10] in a C program. The results of running the
algorithm on various test circuits are shown in Table 3.4. The cost function is set to be the
area of the circuit, estimated as the sum of the transistor sizes. We first measured unsized
delays using our model. The circuits are then optimized for target delays of 70% to 95% of
the unsized delay. The results show that the proposed convex model, in addition to being
very accurate is also computationally efficient when used in the inner loop of a TILOS-like

iterative transistor sizing algorithm.
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Circuit Unsized Unsized Tspec Sized Execution
Delay (ns) | Area (um) | (ns) | Area (um) | Time (s)
C432 2.517 403.5 2.391 458.09 69
2.265 499.39 130
2.175 595.06 173
2.136 603.08 179
2.013 787.57 270
C880 2.295 721 2.180 722.63 4
2.066 727.74 11
1.950 735.34 21
1.836 752.94 42
1.721 775.31 65
C499 3.644 1023 3.462 1023.35 3
3.279 1025.68 9
3.097 1031.27 18
2.915 1048.99 51
2.733 1104.73 166

Table 3.4: Results of area-delay tradeoff optimization

3.7.3 Dynamic power — delay trade-off optimization

Need for power-delay trade-off optimizations has accentuated in the recent generations due
to increasing heat dissipation which can be attributed in turn to increasing number of
transistors per chip. Several approaches that perform circuit level optimization for area
or power have been published. A linear programming based method for gate sizing for
power-delay tradeoffs, using a piecewise linear gate delay model, is presented in [23]. Such
a model is simplistic and inaccurate in the present deep submicron regime. In [24], the
power optimization problem is solved by transistor sizing and ordering. Power dissipation
is modeled accurately by incorporating fanout capacitances and gate transition measure.

’

A “pin-delay” model is developed based on the delay model used in SIS. However, in the
absence of any convexity properties, they use heuristic techniques to solve the problem.
The evident drawback of employing a heuristic approach is that there is no guarantee that
the solution will be optimal, even after application of refinement techniques. In [25], only

transistor reordering is used for the power-performance optimization, but the important

aspect of transistor sizing is not considered. However, drawbacks include the destruction
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of convexity properties due to transient simulation-based modeling, the need for circuit-
level simulation which tends to make the optimization computationally intensive, and the
pattern dependent nature of the timing analysis which requires the user to supply the
simulation vectors. Thus, although several attempts have been made to solve the problem,
the lack of convexity based techniques tends to keep the results away from optimality. The
solution is to use the models that posses accuracy as well as convexity properties and hence
lend themselves to accurate optimization techniques, and hence an optimization approach
that can derive benefits from the convex delay models presented earlier is developed in the
ensuing discussion.

In this problem we consider dynamic power dissipation, and the model used is introduced

in Section 2.1 and is given below for ease of explanation.

1
Py, =3 V?.C; - TD; (3.20)

where P, is the average switching power dissipation, V is power supply voltage, C; is the

output capacitance, and T'D; is the transition density, all corresponding to gate n;. The
transition density is defined [26] as limy_, o n(7") /T, where n(T') represents the number of
transitions the gate performs in time 7. The use of transition density allows a gate with
lower switching probabilities to be sized larger. The short circuit power is known to be
dependent on the input transition time to a great extent, and hence can be controlled by
placing constraints on the input transition time for each gate. Equation (3.20) also has the
generalized posynomial form and the proof is similar to the one that shows convexity of the
delay model.

Having shown that both power and delay model have generalized posynomial form, we
can use the conversion outlined in previous section to formulate the problem as a posynomial
program. A geometric optimizer is then used to solve this problem, and unlike the convex

optimizer in [7], it requires all constraints to be explicitly listed. This may be carried out

efficiently while preserving the posynomial nature of all constraints.
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3.7.4 Introduction of intermediate variables

As mentioned in Section 3.7.1, the path delay can be proved to be a convex function. How-
ever, the number of input to output paths increases exponentially with an increase in the
number of gates in the combinational logic. In this work path enumeration is avoided by
the introduction of intermediate variables. Following variables are introduced for each gate,
n;:

D;, : Arrival time at the output of gate n; for the rise transition at the output.

D;, : Arrival time at the output of gate n; for the falling transition at the output.

7;, + Rise transition time at the output of gate n;.

7, : Fall transition time at the output of gate n;.

In addition, variables are introduced to model the pin to pin delay. D;;, represents the
delay from gate n; to gate n; for the rise transition at the output of gate n;. Similarly, D;;,
represents delay from gate n; to gate n; for the fall transition at the output of gate n;. To

illustrate the constraint formation, consider a subcircuit shown below.

)
ab
Figure 3.9: An example circuit

Then the constraints related to gate C are,

(Daf+DaCr)/DCr Sl

(Dar +DaCf)/DCf < 1
(‘Dbf + Dbcr)/‘DC'r S 1
(Dbr + DbCf)/DCf <1 (321)
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The above set of equations represents the constraints on the arrival time at the output of
the gate C. All the gates are assumed to be inverting, but similar equations can be derived
if noninverting gates are used. These equations along with the equations resulting from the
conversion of generalized posynomials corresponding to Dy, , Dqc 1 Dbe, s Doe o tO regular
posynomials, and the constraints imposed on the output delay, form the complete set of

posynomial constraints to be fed to the geometric optimizer.

Circuit | Tran | Doutype. | Toutspe. | Power
Count (ps) (ps) (mw)

inv10 20 720 400 0.191
648 360 0.214

576 320 0.261

500 280 0.443

cl7 24 600 400 0.634
540 360 0.705

480 320 0.804

420 280 0.959

s27 42 900 400 0.648
810 360 0.739

720 320 0.891

630 280 1.314

combl 70 900 450 0.448
800 400 0.546

720 360 0.757

640 320 1.574

comb2 200 1669 360 0.634
1502 324 0.717

1335 288 0.922

1168 251 2.062

s298 582 1027 350 3.705
926 315 4.141

720 245 5.877

Table 3.5: Results of power-delay tradeoff optimization

A transistor sizing optimization tool which integrates constraint generation program and
a generalized posynomial solver is implemented in C and C++. The constraint generation
program writes the objective function and constraints in the generalized posynomial form.

The constraints are then converted into posynomial constraints, using the procedure for
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conversion of a generalized posynomial to a regular posynomial as described in Section 3.6.
The solver is extremely efficient since it utilizes the properties of geometric programs to
arrive at a solution. Several circuits have been optimized for power, placing constraints
on the input-to-output delay. The circuits are optimized for varying target delay and
output transition time constraints. The results are tabulated in Table 3.5. The first two
columns show the test circuit names and transistor counts. The third column titled Dout spe.
represents the input-to-output delay constraint, while the fourth column titled Toutspe.
represents the transition time constraint placed on the output. The last column represents
the power obtained after optimization. The execution times of optimization, using geometric
program solver, vary from about a second for very small circuits, to about 8 minutes for
moderately sized circuits. As expected, the power dissipation increases as the constraints

are made tighter.

3.8 Conclusion

A new delay model for CMOS gates is introduced in this chapter. The model is better
suited for modern technologies than the Elmore model, and yet maintains the convexity
properties. A new class of functions called generalized posynomials is proposed and its
members are shown to have the same relation to convex functions as posynomials. It is
shown that members of this new class of functions can accurately model gate delay. A new
mapping technique has been presented that can be used to convert generalized posynomials
to regular posynomials enabling the use of conventional geometric optimizers. The model is
incorporated in various optimizers and its use in the context of optimization for area-delay
trade-off and power-delay trade-off is demonstrated on several circuits. Results show that
in addition to possessing the useful property of convexity, the model is also computationally

efficient.
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Chapter 4

Leakage — Delay Trade-off

Optimization

4.1 Introduction

The scaling of supply voltage and the accompanying reduction of transistor threshold
voltage (V;) has helped in achieving about a 30% reduction in circuit delay from one tech-
nology generation to another [7]. However, in future technologies, V; will not scale in
proportion to the supply voltage, and this will result in a lower reduction in circuit delay
between generations. A strategy to improve circuit timing has taken shape in the form of
dual V; technology, where a transistor can have either a fixed low V; or a fixed high V;.
The choice of V; involves a tradeoff since the high V; leads to higher gate delay and lower
standby leakage power dissipation while the low V; leads to faster gates but with drastically
higher standby leakage power dissipation. However, unlike transistor sizing which achieves
delay reduction at the cost of increased area, V; selection has the advantage of allowing
timing improvements with no area overhead.

Section 4.2 presents a brief summary of previously proposed approaches for V; assignment
and for simultaneous sizing and V; assignment. The problem of leakage-delay trade-offs

in formulated in Section 4.3, and the techniques for estimating leakage and delays are
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presented in in Section 4.4. The V; assignment approach is presented in Section 4.5, and the
simultaneous optimization is presented in Section 4.6. This is followed by implementation

details in Section 4.7 and concluding remarks in Section 4.8.

4.2 Previous work

Static power-delay tradeoff optimization by dual V; assignment has been presented in
many works. A circuit graph enumeration approach presented in [27] involves successive
alteration of gate V;’s from low to high, while the work in [1] discusses different V; as-
signments that are suitable for manufacturing, and presents a heuristic method involving a
backward traversal- or priority-based method. In [28], an approach similar to retiming is
used to assign Vi’s.

An important drawback in [27,28] is that V; assignment is performed at the gate-level,
i.e., all of the transistors in a gate are forced to have the same V;, as opposed to considering
each transistor separately for assignment, and this eliminates a significant number of good

circuit configurations.

4500 R —
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4000 :1\*\\‘ "Gate Level" - -
2 3500 pa—y |
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Delay (ps)

Figure 4.1: Transistor-level versus gate-level V; assignment for C2670

As an example, let us consider the V; assignment results on the C2670 benchmark circuit
for the circuit configuration where all of the transistor widths are set to minimum size. A
comparison of the leakage current-delay tradeoff curve under gate-level V; assignment (where
all of the transistors in a gate must be assigned the same V; value) and under transistor-level

V; assignment (where V; assignments for transistors in a gate are carried out independently)
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is shown in Figure 4.1. The former yields a solution that is provably inferior to (or at best,
equal to) the latter, and experimental results reinforce the point that substantial gains are
obtainable from transistor-level V; assignment. This acts as a motivation for presenting an
algorithm that works at the transistor-level. However, in practice, process constraints may
place restrictions on the assignment of V;’s to individual transistors (for example, it may
be required that transistors in a pull-up or a pull-down have the same V;). The method
proposed in this thesis is general enough that it can tackle additional constraints such as
assignment of the same V; to a group of transistors. In fact, such a restriction could work
in favor of the proposed approach as it reduces the number of variables in the optimization
problem and further simplifies it. Experimental results with both individual V; assignment
and collective assignment are provided in the result section. The proposed approach is based
on explicit enumeration of all the design solutions, made efficient by the use of provable
pruning techniques. For each gate, it considers all possible V; settings for the transistors
within that gate, and stores all nonsuboptimal solutions at its output. The only heuristic
part of our approach involves breaking down the circuit graph into fanoutfree regions, a
technique traditionally employed in technology mapping algorithms.

Although V; assignment permits great reductions in circuit delay, it may not prove to
be the best approach for timing optimization if used alone, since it could entail a huge
penalty in leakage power. Nevertheless, the V; assignment algorithm finds its use in scenarios
where postplacement perturbations are heavily constrained and the only way to go for delay
reduction is either dual V; assignment or the use of other recently presented techniques such
as rewiring.

As mentioned in previous chapters, transistor sizing is another powerful method that has
been used traditionally to contain delays. However, in recent generations, the effectiveness
of transistor sizing has been limited because of severe constraints that restrict the area,
either directly or through indirect considerations such as dynamic power dissipation. This,
together with a need to contain leakage power, implies that a meaningful optimization

must carry out sizing simultaneously with V; assignment. The gate delay as well as the
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leakage current depend on the V; and the transistor size, and hence optimizing V; without
considering transistor sizing leaves a significant part of the design space unexplored. The
major drawback of [1,27,28] is that the dual V; assignment is carried out without any
consideration of transistor sizing.

This problem of circuit optimization by V; assignment and transistor sizing was first intro-
duced in [29], which used a simplistic binary search technique. The work in [2] considerably
enhances prior work in removing several of the limitations. It employs a a sensitivity-based
optimizer that begins with an initial circuit configuration in which all transistors are set to
a high V; and are sized to obtain the best delay under a specified area. In every iteration,
the optimizer evaluates each high V; transistor on the critical path to obtain the ratio of its
delay improvement to leakage power increase if it were to be changed to low V;. The tran-
sistor with the largest such ratio is set to low V;, and the circuit area is then redistributed
to recover performance. However, this approach is purely heuristic and lacks an accurate
mathematical formulation, due to which this may be far from optimal; in particular, the
area redistribution may not work well in the presence of stringent constraints or interacting
critical paths.

This chapter examines the circuit optimization problem of minimizing standby leakage
power under area and timing constraints. During the design process, a circuit is expected
to meet a set of delay constraints and to occupy an area that is no more than that allotted
to it during floorplanning, and hence this formulation has a closer correlation to reality
as compared to all previously proposed approaches. The variation in the dependence of
the transistor drain current on V; in the ohmic and subthreshold regions and the nature
of a typical area-delay tradeoff curve are used to draw a set of conclusions that form the
theoretical underpinnings of our approach. A solution approach based on the above men-
tioned conclusions is then presented; it involves sizing as the first step and the proposed
V; assignment approach as the second step. Since the proposed V; assignment approach
works at transistor level, it fits in well with the transistor sizing, and thus leads to efficient

exploration of the design space at transistor level. Sizing, a continuous optimization, is
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performed by using a fast sensitivity-based optimization engine.

Sizing is a continuous optimization problem, and is solved using a sensitivity-based opti-
mization procedure. V; assignment, on the other hand, is a discrete optimization problem,
and hence leaves room for fine tuning of continuous variables, which we perform using a

sensitivity-based sizing in postprocessing step.

4.3 Problem formulation

If we represent a high V; as 0 and a low V; as 1, then the V; assignment, X, of a
gate, can be encapsulated as a binary number whose ¢ bit corresponds to the V; of the
¢"" transistor in the gate. For example, for an m-input static CMOS gate, j, the binary
number X; = X1 Xjo -+ Xjo,,, where Xj; is the V; of the ith transistor of gate j. A gate is
then defined to be in a V;-state (not to be confused with an input state, to be defined later)
k if k is the decimal equivalent of the binary number, X;, representing the V; settings of
the gate j.

The V; assignment and transistor sizing problem can then be formulated as follows using
Equation (4.1), which together with leakage current equations introduced in the next section
and the delay model equation presented in Appendix A, states the above problem in terms
of optimization variables X;; and wj;. For easy readability, constraints are shown without
listing rise and fall times separately, although these considerations are incorporated in our
implementation. Likewise, constraints for the transition time are not shown but can be

similarly stated, and are included in the implementation.

minimize Z Tieak;
all gates j
subject to AR; < Digrget VPrimary outputsy
AR; = 0 VPrimary inputs:
AR; + f(X;,k) x Df; < AR; V{i,k}|
i € fanin(j), k€ V,— states of j

X5 = {0,1} Vi
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i € trans(j),Vgates j

Z Z Wyj < Atm‘get (41)

all gates j all i€trans(j)

where  Ijeqp, = leakage current of gate ¢
AR; = arrival time at the output of gate ¢
X = binary variable associated with the

V; of transistor ¢ of gate j

DE = delay from gate i to gate j, under
the V;-state k,

W = width of the transistor connected to
input gate ¢ of gate j

Dyyrger = target delay at the output

Atarget = target area

f(Xj,k) is a function of binary V; variables that correspond to transistors on the paths
to the supply nodes from the transistors connected to switching input. The gate delay ij
depends on the widths of transistors in gate j, widths of transistors in fanout of gate j,
the assignment corresponding to Vi-state k, and the transition time at the output of gate
1, which depends on widths of transistors in the gate ¢ and its fanin cone. The first con-
straint ensures that the arrival time at the circuit outputs should be less than the target
delay, Dygrget, while the second constraint sets the input arrival times to zero. The third
constraint states that for each Vi-state k and for each input of the gate, the arrival time at
its output should be greater than or equal to the arrival time at the input plus the delay
from that input to the output under the V;-state k. The fourth and the fifth constraints,
respectively, enforce the conditions that the Xj;’s are binary variables, and that the sum of
all transistor widths should be less than a target area.

It can be seen that the problem represented by Equation (4.1) is in the form of a mixed

integer nonlinear program (MINLP) introduced in Chapter 2. This is one of the most
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computationally expensive problems in the realm of mathematical programming, and our
experiments showed that the use of an accurate and exact MINLP solver [30] required large
CPU times even on small circuits. Therefore, a computationally efficient, yet accurate,

heuristic is essential.

4.4 Leakage and delay estimation
4.4.1 Leakage estimation

The effect of V; on leakage current can be seen from the BSIM leakage current model
equations for a single transistor provided in Section 2.1.3. Equation (2.3) shows that the
single transistor leakage current is exponentially related to the transistor V;. This model
provides a closed form expression for leakage current and thus allows static optimization.
Now, for the purpose of dual V; optimization, the leakage model of Equation (2.3) can be
multiplied with the probability that the transistor is leaking, and can be represented using

the terminology introduced in previous section, as

" XK'
Deak; = Y, Y K" X Py xwj; x e (4.2)
all gates j all i€input(j)

where K" and K’ are constants, and Pj; is the probability that the transistor ¢ of gate j is
off and the input state (to be defined shortly) is dominant [2]. We obtain the constants K’
and K" for a given technology, separately determined for nmos and pmos transistors, using
curve fitting over a set of SPICE-generated data points. It should be noted that K’ and
K" can be obtained directly from Equation (2.3), and have a physical significance, which
is often not the case for fitted equations. Since it is complicated to extract I, and Viperm
from SPICE technology files and to get accurate value of Vy;, the fitted approach is used
instead to determine K’ and K".

The evaluation of the leakage current of a gate can be made efficient by understanding its
leakage behavior. Let the input state of a gate be a possible combination of the logical states
of all of the inputs of that gate. In static CMOS, in each input state, a set of transistors

is on and the set of complementary transistors is leaking. To see why Equation (2.3) is
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sufficient to estimate leakage even for a chain of transistors, let us look at the concept of
dominant leakage states that are formally defined in [2]. Stated in plain English, dominant
leakage states for simple gates refer to the leakage states with only one transistor off in the
pull-up or pull-down chain. It has been shown that the dominant leakage states account for
95% of the total leakage for equal input state probabilities. Therefore, if an input state is
not dominant, then its subthreshold leakage current is negligible. This observation allows
us of the single transistor BSIM leakage current model for leakage power estimation, since

for a dominant state, each stack contains only one transistor in the subthreshold region.

4.4.2 Delay estimation

The dependence of transistor switching current on V; is examined in detail in section 4.6.1.
For the present treatment of the delay estimation, it will suffice to note that the gate delay
increases as V; increases. The gate delay model proposed in Chapter 3 is used for delay
estimation. In addition to being accurate in deep submicron and nanometer technologies,
the model also possesses convexity properties for a fixed value of V;. It is desirable to
preserve these convexity properties so that they can be exploited by the area-delay tradeoff
optimization, which is the first step in our solution approach, to arrive at a good solution.

However, when V; is varied, even under a simple model for inverter delay [31], it is easily
verified that the delay is not a convex function of the transistor V; (even assuming that V;
could be changed continuously). Since the objective is to capture the effect of V; on delay
while maintaining accuracy and convexity properties, V; is not used as a characterization
variable in the convex delay model, but instead, multiple pin-to-pin models are developed
for each switching scenario. The V;’s of transistors on the pull-up and pull-down resistive
path in a switching scenario have a varying, albeit visible, effect on the delay, and hence we
develop multiple equations for each switching scenario, with each equation corresponding to
a different V;-states. For example, in case of an inverter there are total four different thresh-
old voltage combinations, corresponding to low and high V; assignments on the nmos and

pmos transistors, and hence four different model equations are developed for each switching

50



scenario. Transition time models are developed similarly. The models are characterized
once for each technology. The precharacterization procedure involves development of a set
of primitives such that every gate can be mapped to one of those primitives with acceptable
loss of accuracy [32]. A primitive typically involves all of the transistors that lie on the
paths from switching transistors to output and supply nodes. Primitive development not
only avoids development of separate models for each new gate type but also obviates the
need for generating 2™ models for a general m-input gate, for large m.

Although, Chapter 3 provides details of using primitives in single V; configurations, the
usage can be easily extended to dual V; configurations. The extension to more than two V;
configurations could require development of many more primitives. To avoid this, for the
dual V; case, accurate equations are developed to collapse two transistors of different V;’s
into only one “equivalent” transistor of either high or low V;. The collapsing procedure is
validated on an extensive set of data, and delay values were seen to be within 6% of the
actual delay. However, if the accuracy of the mapping is not acceptable, one can characterize
all of the available gate types. Since this is a one-time procedure for a given technology,
the effort involved is comparable to that of characterizing a library.

The experiments performed showed that the effect of the V}’s of leaking transistors on
the switching delay of the previous stage, which is primarily manifested in the form of a
change in loading capacitance, is extremely small, and can safely be neglected. Moreover, in
nanometer technologies this change is nearly overshadowed by the interconnect capacitance.

On a 0.1pm technology [33], this delay change was found to be under 2% in most cases.

4.5 Dual V; assignment

The proposed method employs an enumeration-based approach to explore the design
space at the transistor level, and the method is made efficient by the use of effective pruning

techniques enumerated following the presentation of the algorithm.
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4.5.1 Algorithm

A level is assigned to each gate using the topological sort algorithm [34]. In other words,
primary inputs of the fanout-free region correspond to level 0, while a gate is at level ¢ if
the maximum level among all its inputs is ¢ — 1. The enumeration, which starts from the
primary inputs and proceeds in the order of increasing level, processes every gate for its all
possible V;-states, and calculates the corresponding arrival times and leakage.

A combinational circuit is represented as a directed acyclic graph where each node cor-
responds to a gate and each edge corresponds to an interconnection between gates. The
graph is decomposed into fanout-free regions (as in technology mapping algorithms such
as DAGON [35]) and the enumerative techniques are used to select V;’s within each such
region.

At any particular gate, the enumeration stores all solutions that are not suboptimal.
This is achieved by maintaining a set of tuples of the form {X,L, AR, AF,1S}, where X
is the Vj-state of the gate under consideration, L is the total leakage of the tree rooted at
the node representing current gate. IS represents the set of input tuples (where one tuple
corresponds to each input), and AR and AF are the rise and fall arrival time at the output
of the gate just processed. The accurate gate delay model also uses the input transition
time as a variable. Hence the transition times are included in the tuples as well, but are
omitted from the discussion for simplicity.

Figure 4.2 provides the outline of the V} assignment algorithm. The routine get_new_tuple
generates a tuple for the gate under consideration based on its input tuple set and the current
V;-state. The output tuple set is generated by setting the arrival times at the gate inputs
to those corresponding to the input tuples, and then calculating the arrival times, AR and
AF, at the gate output and the corresponding leakage under allowable Vi-settings for the
gate. If a generated tuple is not provably suboptimal (explained in Section 4.5.2), it is
inserted in the tuple set of the gate j.

When a multifanout node is reached, algorithm process_tree is used to assign V;’s to

the nodes belonging to the fanout free tree rooted at the multifanout node. At multiple
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Algorithm : assign._vt
for each level i
for each gate j in level 4
for each V;-state k

for each set of tuple combinations

at the input nodes of j
get new_tuple();

prune_tuple set();

if multifanout gate
process_tree();

. Algorithm : get_new_tuple
AR]' = AFJ = Lj = 0;
L = leakage(3);
for each input k of gate j
evaluate ARkj = AF}, + DRy
evaluate AFk] = ARk + DFk],
L;j =L;+ Ly;
check for suboptimality;
if provably suboptimal then continue;
insert current tuple in the set of tuples,
tuple_set(j)

. Algorithm : prune_tuple_set
for each tuple j in the set
for each tuple i|i > j, in the set of tuples
if AR; > PF x AR; and AF; > PF x AF;
if Ly > PF x L; then remove
tuple ¢ from the set;
elseif AR; > PF x AR; and AF; > PF x AF;
if Lj > PF x L; then remove
tuple j from the set;
proceed to next tuple;

. Algorithm : process_tree
for each tuple at the node
if AR; < RR; and AF; < RF;}
if L < L(mintuple)
mintuple = current tuple;
assign X (mintuple) to current gate;
input_queue insert IS of mintuple;
while input_queue is not empty
current_tuple = pop input_queue;
current_gate = gate of current_tuple;
if V; assigned to current_gate, next;
assign X (current tuple) to current_gate;
if IS not empty insert IS in input_queue;

Figure 4.2: Pseudocode for V; assignment
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fanout node, the assignment of V; is chosen based on the required time constraints that are
calculated from the required times at the outputs. At root node, the tuple that has the
lowest leakage among all of the tuples that meet the arrival time constraints at that node
is selected. If none of the tuples can meet the constraints, the tuple that has minimum
offset from the required arrival time is selected. Based on the ID’s of the tuples at each of
its input nodes, the inputs are assigned the corresponding V; settings, and the backward

traversal is performed until the tree has been exhausted.

Vt assigned

15 {1,15,3.3.1,<10,1>}

0 {15,5,3.2,3,<0,0>}

0 {3,1,1.5,1.6,<2>}

10 {4,7.5,2.3,2.5,<1,1>} PR

0 (23,151.1,<25) s

0 3.1151.6<2.4>) k1 {23,11,12,<2>})

1 {2,3,1.1,1.2,<2,4>}

0 {0.2.5,1.3,6,<2.3>}
1 {12.1,1.2,6,<2.3>}
2 {1,2.2,9,.8,<2,4>}

Figure 4.3: Enumeration for V; assignment

Figure 4.3 shows an example of the enumeration phase, where tuples are shown at the
internal nodes of the tree. Consider a sample tuple, shown in bold face, at node j, which
corresponds to an inverter, where the number outside the brace represents the ID of the
tuple. The first value in the tuple is 2 which means that the V;-state is 2, corresponding to a
V; assignment of {1,0}, for the transistors of the gate j. The second number represents the
total local leakage, i.e., the leakage of node j plus the leakage corresponding to its transitive
fanins, the third and fourth values are AF and AR, respectively, and the last field is a vector
that holds the ID of the input tuple. Now, when this tuple propagation reaches node m,
which is a multifanout node, the best tuple that meets the timing constraints is selected
and the corresponding V; is assigned to m. The algorithm then checks the ID’s of input
tuples, < 10,1 >, for the left and right child, respectively, and assigns V;’s corresponding

to tuple 10 to node [ and corresponding to tuple 1 to node j, and so on.
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4.5.2 Pruning techniques

Since the algorithm employs explicit enumeration, use of pruning techniques is necessary
to make it efficient. Due to the dependence of the gate delay and transition time on the
fanout loading, there is no straightforward optimal substructure property that can enable
the use of dynamic programming.

Provably suboptimal tuples

A provably suboptimal tuple can be a tuple that satisfies one of the following three prop-

erties:

e There exists another tuple whose fall and rise arrival times and leakage current are

all less than those in the current tuple.

e The rise time for the tuple, when it is added to the low-V; delay from current gate to
the root of the fanout-free tree, results in a delay that exceeds the required rise time

at that multi-fanout gate. A similar condition applies for the fall time.

e The tuple has rise and fall times such that when they are added to the high-V; delay
from the output of the gate under consideration to the root of the tree, the resulting
delays both satisfy the required times at the multifanout gate, but with a higher

leakage than a previously computed tuple that also satisfies those required times.

To illustrate first condition let us consider two tuples with {AR, AF, L} values of {1,1,1},
and {1.2,1.3,1.1}. The latter tuple has both delay and leakage worse than first tuple, and
hence is clearly suboptimal. The second criterion can be explained using a chain of three
inverters where the last inverter fanouts to more than one gate. Here, we have a tree, in
this case just a series connection of three nodes, rooted at the node corresponding to last
inverter. There are two inversions between output of first inverter and last inverter, or in
other words, a rising output at first inverter, gives rise to a rising output at last inverter.
Now, if the first inverter had a tuple {1,1,1} at its output and the delay corresponding

to low-V; setting between these two points is 3, and the required time at the output of
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last inverter is 3.5, then this tuple cannot clearly lead to a solution, and hence is provably
suboptimal. Since the assignment of required times at the output of multifanout nodes is
heuristic in nature, in the implementation low-V; delay is multiplied by a factor less than
1, before testing for suboptimality resulting from condition 2. The last criterion can be
explained using the tuples {1.4,1.5,2}, and {1.3,1.7,3.5} at the output of first inverter, in
the inverter chain mentioned above. Let us assume that the rise and fall delays between
first inverter output and third inverter output are both 1 units, under high V; setting. Now
if the required times at the output of third inverter are {5,5} then both of the tuples clearly
can lead to a feasible solution at the output of third inverter. Out of these solutions, the
one corresponding to the prior tuple will have lower leakage and hence the latter tuple is

provably suboptimal.

Quasi-suboptimal tuples

More aggressive pruning techniques are required to control the number of tuples, especially
when the fanout-free regions are large. For this purpose, the function prune_tuple set re-
moves quasi-suboptimal tuples. A tuple is quasi-suboptimal if there exists another tuple
such that multiplication of the arrival times and leakage of that tuple by a small prune
factor makes the current tuple provably suboptimal. Intuitively, this is equivalent to saying
that the tuple is “nearly suboptimal,” but not provably so. For example, consider tuples
A and B with {AF, AR, L} values of {1,1,1} and {1.01,1.01,0.5}, respectively. With a
pruning factor of 0.99, tuple B is transformed to {0.9999,0.9999, 0.495}, which is provably
suboptimal to tuple A. To prevent the better of the two tuples from being removed, the
tuples can be sorted in order of nondecreasing leakage before pruning, and only the tuple
under consideration and all the tuples after it are considered for pruning using this con-
dition. This quasi-suboptimal pruning helps in reducing the size of tuple set, and speeds
up optimization, with very minute, if any, loss in optimality. In practice, different pruning

factors can be used for arrival times and leakage.
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It is important to explain why the use of these pruning techniques leads to the removal
of a significant number of tuples. While the number of tuples can theoretically increase
exponentially, this does not happen in practice.

The first reason for existence of suboptimal tuples is the nature of enumeration technique.
The extensive spread of variables such as input arrival times, input transition times, and V;-
settings can produce very close tuples. For example, consider two scenarios for an inverter:
Case 1: The V;-setting for the inverter is such that the nmos transistor is set to high V4,
and the input tuple has low arrival times and high leakage.

Case 2: The V;-setting for the inverter is such that the nmos transistor is set to low V4, and
the input tuple has high arrival times and low leakage.

In the first case, the inverter delay is high but the input arrival times and the inverter
leakage are low, and in the second case inverter delay is low, due to low V; of switching
nmos, but the arrival times and input leakage are low. Hence the two tuples produced at
the output can lie in close proximity. In case of gates with higher number of inputs several
combinations of arrival times and V;-settings can lead to generation of very close tuples.

Another reason for tuple pruning is the phenomenon of input dominance. This refers to
the fact that if one of the inputs of a gate has a tuple with rise and fall arrival times of ARy
and AF1, respectively, then for any tuple at the other input with rise and fall arrival times
ARy < AR; and AFy < AF1, respectively, the output rise and fall time will be decided by
the tuple at the first input (assuming equal pin-to-pin delays, although a similar argument
can be made if these are unequal). We say that the first input dominates the second input
for that particular tuple-combination.

The concept can be further explained using a noninverting two-input gate, C, shown in
Figure 4.4, where all tuples have the form {X,L, AR, AF, IS}, as described earlier. The
rise and fall times in Tuple 1 at input A of the gate are both higher than those in all of
the tuples at input B. Assuming a unit pin-to-pin delay from both input pins, it can be
seen that the input tuple combinations will create three tuples at the output with the same

arrival times. It is important to note that these arrival times are all dictated by tuple at
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the input A. The leakage values in the output tuples are obtained by adding leakage values
of the input tuples and to that adding leakage of the gate C, which is assumed to be 1
unit, in the 0 Vi-state. Out of the three tuples at gate C, the highlighted tuple is the only
nonsuboptimal tuple, since it has the least leakage among three tuples and only that tuple
will be preserved. The other tuples will be pruned, and this is indicated in the figure by

striking them out.

1{0,2.5,1.3,0.6,<2,3>}
2{1,2.1,1.2,0.6,<2,3>}

H025.14.1.6<23>) A B 3(12209.08<245)

Figure 4.4: Input dominance

In general, if a tuple at one input dominates k tuples at the other input, then all of the
resulting k£ tuples will have the same rise times and the same fall times. Out of these k
tuples only the tuple having lowest leakage is nonsuboptimal and all others will be pruned.
In the implementation there is in fact no need to generate the suboptimal tuples that fall
under this category. A simple condition before generating the tuple can test for provable
suboptimality due to input dominance. This obviates generation of output tuple altogether,

resulting in reduction in CPU time.

4.6 Sizing and V; assignment
4.6.1 Theoretical development

The heuristic approach presented in this section separates the optimization problem into
two distinct steps, namely, transistor sizing and dual V; assignment. The important con-
sideration in this two step procedure is to decide whether to carry out sizing prior to V;
assignment, or vice versa, and to analyze whether such a separation can be logically justi-
fied. To assist in this analysis, we will now consider the effect of sizing and V; assignment on
both the delay and leakage current. Consider the first order equations for inverter delay [31],

given below:
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b 2C(V; = 0.1Vpp) 2C r—0.1
! Bn(Vbp — V2)? BnVop(1—71) [ 1 -7

1
+ 5ln(19 —20r) (4.3)

where r is V;/Vpp, and the two terms on the right hand side represent two distinct intervals
corresponding to the inverter being in saturation region and linear region, respectively,
of the total fall duration. All other symbols have their standard meanings. Although
these equations may be numerically inaccurate in nanometer technologies, they have a
good fidelity with accurate models and are good predictors of trends. Following trends are
evident form Equation (4.3): Observation I: Delay is inversely proportional to transistor
width, and decreases at a super-quadratic rate with decrease in V;.
From the transistor leakage current expression in Equation (2.3), one can see that:
Observation 2: The leakage current varies exponentially with Vi, but linearly with the
transistor width.

Let us examine a typical delay-area trade-off curve for applying only transistor sizing on

a combinational circuit; an example is shown in Figure 4.5.
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Figure 4.5: Delay-area curve of C499 demonstrating the knee region
The curve shows a distinctive knee region, beyond which the improvement in the delay
per unit increase in the area decreases significantly, and this leads to the next observation:
Observation 3: Up to the knee point, sizing results in a linear increase in the area, with a
very small rate of increase. Beyond this region, the area increases exponentially. Although

this is not visible from the figure, our experiments show that individual transistor sizes
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also increase at a slow rate until the knee of the curve, and rapidly beyond it. Since the
leakage current varies linearly with the transistor width (see Observation 2), it shows the
same trends as the area.

From these three observations, we can conclude that:

e Up to the knee of the curve, both sizing and V; optimization cause the delay to
reduce, but from Observation 3, their effects on the leakage power are different: while
V; alteration causes an exponential jump, a sizing step causes a much more sedate

and linear change.

e Beyond the knee of the curve, both sizing and V; alteration show an exponential
increase in the leakage power, while the latter is more effective at delay reduction, as

noted in Observation 1.
Therefore, it makes engineering sense to use a two-stage optimization as follows:

e Perform delay reduction using sizing until the knee of the area-delay curve is reached,

so that leakage current increases linearly in this region.

e Beyond this point, since the leakage current increases exponentially regardless of
whether the sizing is used or the V; assignment is used, V; assignment alone can

be used since it is more effective in delay reduction, while maintaining constant area.

Thus even though the problem is divided into two steps, the advantage of this method-
ology stems from the fact that the required time constraints, used in the second step corre-

spond to optimal sizes from sizing problem.

4.6.2 Algorithm

The two steps of the heuristic are given below.
Step 1: All transistors to high V; and the transistor sizing problem is formulated as one of
delay optimization under area constraints. A sensitivity-based heuristic, similar to TILOS

[10] is used for optimization in this step. The optimization is stopped at the knee of the

60



area-delay curve.

Step 2: In the second step dual V; assignment is performed using the transistor sizes obtained
in the first step. Based on the delay values, which correspond to transistor sizes under
high V; assignments, and on the required times at the output, rise and fall required times
are assigned at the output of every multifanout gate. The required times are propagated
from outputs to inputs using Critical Path Method [12], with modifications to incorporate

separate rise and fall times.

4.6.3 Postprocessing

Although V; assignment is carried out based on the optimal transistor sizes calculated in
Step 1, Step 2 was a discrete optimization step, and there is room for fine tuning the
transistor sizes by continuous optimization after this step. This is achieved by employing
the fast sensitivity-based sizing engine again to meet delay constraints, this time under the
V; assignments obtained above. Since the result of Step 2 is a feasible solution for this
problem, the result is guaranteed to be no worse than that after Step 2.

Typically this step leads to a circuit configuration where the area is less than that after
step 1 of the heuristic, and this motivates further processing to recover leakage. For each
low V; transistor we examine if the transistor can be converted to high V; while maintain-
ing circuit delay and area constraints. An incremental timing analysis engine makes the

postprocessing very fast.
4.7 Implementation and results

The algorithms are implemented as a CAD tool called MinSATVA (Minnesota Sizing
And Threshold Voltage Assignment). The experiments are carried out using 0.1um tech-
nology parameters provided by Predictive Technology Model developed at Berkeley [33].
The probability values used in Equation (4.2) are obtained using a probability propagation
routine written in PERL. In the implementation, all of the inputs are assigned a probability,
Py (i) = 0.5, where P (z) represents the probability that the signal i is at logic 1. The prob-

ability calculation is carried out only once, since input state probabilities are not dependent
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on the delay value; the delay can only change the input state probabilities if glitching is
considered, which does not arise in the stand-by mode. The delay analysis routine, the siz-
ing algorithm, the enumeration based heuristic algorithms and postprocessing algorithms
are implemented in C. The circuit is first sized up to the knee point of the area-delay curve
in Step 1, after which the enumerative V; assignment technique is applied in Step 2 followed
by a final postprocessing step. Before application of Step 2, delays from every gate to root
of the fanout free tree to which it belongs are calculated and stored, for both all high-V;
and all low-V; settings, and are used in provable pruning. The experiments are carried out
on a Sun Ultra 10 workstation. ISCAS85 benchmark circuits, mapped to simple gates, are

used as inputs to our optimization algorithm.

Circuit | Low V; PB Our Tool

L(nA) |LnA)| % [LM®A)| %

C432 1937 1422 | 26.6 417 78.5
C499 4990 4266 | 14.5 | 1944 | 61.1
C1908 7295 6116 | 16.6 | 1593 | 78.2
C2670 11173 8704 | 22.1 | 2450 | 78.1
C3540 15520 | 12874 | 17.1 | 3300 | 78.7
Ch315 | 21749 | 17625 | 19.0 | 4414 | 79.7
C6288 18099 | 15646 | 13.6 | 5536 | 69.4
C7552 | 32019 | 26247 | 18.0 | 6923 | 78.4

Table 4.1: Dual V; assignment using PB algorithm [1] and the proposed algorithm

A priority-based backtracking (PB) approach similar to one presented in [1] is imple-
mented for the purpose of demonstrating the efficacy of the V; assignment algorithm under
constant transistor sizes. Both algorithms are run at transistor-level, and the comparison
is shown in Table 4.1. The first column lists the circuit name, while the second column
lists its leakage (L) when all the transistors are set to low V4. Columns 4 and 6, provide
leakage numbers when the PB algorithm and the proposed V; assignment algorithm are
applied, while maintaining the delay corresponding to all low-V; setting. It can be seen that
the proposed algorithm performs better than the PB algorithm on all the circuits. The

benefits in results can be attributed to the fact that our algorithm evaluates all the possible
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solutions for a gate for all the solutions at its input gates. Percentage reductions obtained
using PB algorithm do not match to those indicated in [1]; this might be due to difference
in the delay model. The highly accurate delay model used here also considers transition
time effects, and V; setting of the transistor that opposes the output transition.

For purposes of comparing MinSATVA algorithm with an existing simultaneous sizing and
V; assignment algorithm, a sensitivity-based approach (SBA) similar to [2] is implemented,

and the results of comparison are shown in Table 4.2.

Circuity Unsized | Target Target SBA MinSATVA
delay (ps) | area | delay (ps) | Leakage (nA) | CPU (s) | Leakage (nA) | CPU (s)
C432 1775 106 1240 302 64 259 448
1150 363 7 360 545
1060 537 98 488 1762
C499 1570 262 1100 631 332 610 460
1020 698 340 651 465
940 761 386 797 463
C1908 2240 391 1570 923 519 939 1770
1460 1025 568 1054 1864
1340 1365 824 1411 175
C2670 2615 564 1830 1374 407 1351 270
1700 1482 560 1467 257
1570 1795 879 1665 283
C3540 3155 788 2210 1965 1167 1906 473
2050 2336 1726 2149 2000
1890 2905 5556 2488 898
Cbh315 2786 1163 1950 2669 1233 2629 757
1810 2856 1714 2706 17
1670 3365 4900 2832 776
C6288 7760 1080 5430 5275 5400 3726 2700
5040 6657 9400 4853 3250
4650 8903 9436 5960 3000
C7552 2280 1646 1600 4197 10600 3999 5929
1480 4891 11700 4299 6007
1370 6632 11125 4802 6202

Table 4.2: Optimization results, comparing the performance of SBA [2] and MinSATVA.

The first column lists the circuit name, and the second column provides the circuit delay
when all of the transistors are set to minimum size. The third and fourth columns represent
target area and target delay, respectively. The circuit configuration obtained after the

sizing step of MinSATVA is used as the input to SBA. The remaining columns list the
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leakage current and CPU times for the two methods. It can be seen that MinSATVA
delivers performance improvements over SBA, and also results in significant improvement
in quality, especially as the constraints are tightened.

These observations are in line with the observation that a general sensitivity-based al-
gorithm fails to perform well on tight constraints on large circuits. Moreover, in this case,
where the problem contains discrete variables, a sensitivity-based heuristic is further hand-
icapped. Our algorithm, on the other hand, only uses a sensitivity-based approach to solve
a continuous optimization problem, and this has been well documented as providing good
solutions until the knee of the sizing curve [36]. The enumeration-based algorithm then
exploits the good quality of the starting circuit configuration to solve the discrete problem.

The improvement in processing time compared to SBA stems from the fact that the
proposed enumerative algorithm is not altered by the constraints, while in the case of
sensitivity-based algorithm, not only it is hard to converge with tightening constraints, but
the tightened constraints also themselves require further processing. It was found that the
dominant factor in the CPU times of MinSATVA comes from the sizing step, while the V;
assignment step is very fast.

Finally, the postprocessing step, of Section 4.6.3 was seen to improve the result typically

by about 3 to 5%.
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Figure 4.6: Comparison of V; assignment at transistor-level, stack-level, and gate-level

To test the efficacy of MinSATVA when a set of transistors is constrained to have the same
V4, stack-level and gate-level assignments are performed. Stack-level assignment means all

the transistors in a stack are constrained to have the same V;, while in case of gate-level,
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all the transistors within a gate are constrained to have the same V;. Note that this type of
assignment allows more freedom than gate-level assignment, since although V; assignment
is not performed at transistor-level, the sizing is still performed at the transistor-level. The
enumeration-based algorithm makes it very easy to incorporate stack-level and gate-level
assignments; we only need to consider those V;-states where the stack-level and the gate-
level assignment constraints are satisfied, respectively. The sized circuit obtained after Step
1 is used as input configuration. Figure 4.6 shows optimization results on only two of the
circuits at different delay constraints. The bars from left to right correspond to transistor-
level, stack-level, and gate-level, respectively. It can be seen that the gate-level assignment
results in significant increase in leakage in comparison with transistor-level or stack-level
assignment, especially as the constraints are tightened, underscoring the relevance of a
approach that can work at these finer levels. The CPU times for assignment at the stack-
level and gate-level varied from about half to about the same as that of the transistor-level

assignment.

4.8 Conclusion

A fast approach to solve the problem of stand-by power versus delay tradeoff optimiza-
tion is presented. The problem is formulated as stand-by leakage optimization problem
under area and delay constraints. The proposed solution approach involves transistor siz-
ing, which is carried out till the knee point on the delay-area curve is reached, followed by
an enumeration algorithm for V; assignment. Effective pruning is used to enhance the speed
of enumeration algorithm. The results show that the algorithm performs much better com-
pared to sensitivity-based algorithm, both in terms of quality of solution and optimization

time, on a wide range of combinational circuits.
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Chapter 5

Synthesis of Datapath-Dominated

Circuits

5.1 Introduction

A majority of high-performance digital circuits tend to be datapath-dominated, and
synthesis of these datapath circuits continues to be a very important problem. An important
characteristic of datapath circuits is the presence of functional and structural regularity.
This presence of structural regularity directly translates down to regularity in layout, and
this is beneficial not only because it results in better area but also because it enables
better prediction of layout parameters, especially that of layout parasitics during synthesis.
Therefore, it is very important that the regularity that datapath circuits already possess be
preserved during the synthesis process as much as possible.

Traditionally, dedicated datapath layout generators have been used to realize datapath
circuits [37], and a lot of work has been carried out in exploiting regularity for layout
purposes. Regular layouts generally benefit from smaller area and smaller complexity of
layout synthesis process. In [38], the authors present an iterative methodology, consisting of
logic optimization, layout, and back-annotation, to generate regular layouts. The original

circuit is first laid out utilizing regularity information. The layout parameters are then used
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in logic optimization, and following this functional correspondences between the optimized
and the original netlists are obtained to realize a placement that is as far regular as possible.
The method does not exploit regularity either to guide or to speed up the optimization
process, and does not try to preserve any existing circuit regularity during optimization. It
uses regular placement of the unoptimized circuit to back-annotate the layout parameters
and hence results in early convergence.

Another approach used for realizing datapaths involves the use of specialized datapath
compilers or datapath generators, which employ a fixed library of datapath operators to
implement the circuits, and hence strictly maintain the circuit regularity. Due to the regular
placement, the circuit realizations obtained by these tools are generally smaller in area as
compared to traditional synthesis. However, it has been pointed out [39] that this enforced
regularity often does not lead to the best possible performance since it hinders aggressive
synthesis. Conventional synthesis, on the other hand, does not respect regularity, and
applies transformations in a nonincremental and local fashion. Although such synthesis is
good for control circuits, its complete disregard for regularity is detrimental for datapath
circuits, and experimental results to support this claim have been well documented. It
was shown in [39] that even though conventional synthesis results in faster circuits prior to
layout, as compared to datapath generators, the gain in speed comes at the cost of increased
layout area.

Regularity has also been exploited for speeding up synthesis of datapath circuits. The
idea in [40] is to synthesize only one slice of a regular group and then to repeat that slice.
This approach also preserves the regularity during the synthesis process. More recently,
there has been some work on regularity-driven synthesis [41], where regularity information
is used to selectively apply transformations to regions with similar regularity characteristics
as captured by regularity signatures.

The approaches mentioned above suffer from the fact that they maintain all of the circuit
regularity, and as has been pointed out earlier, this does not necessarily lead to area- and

delay-optimized circuit configurations. Examining this critically, we observe that it is not
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necessary to choose between the two extremes of complete regularity and no regularity.
Instead, starting from a very regular layout we could identify gates that lie on a critical
path and destroy the regularity on this path in a controlled manner. Consequently, we can
trade off complete regularity for timing improvements. Moreover, since many gates in a
circuit lie on non-critical paths, a substantial amount of regularity may be preserved. Such
an approach would present a way of smoothly trading off the delay for the regularity, and
the best solution could be characterized as one that satisfies the delay constraints with the

maximum regularity.

Critical path Resynthesized Logic

E >

(a) (b)
Figure 5.1: Trading off circuit regularity for delay reduction

oi?

The idea above can be further illustrated by an example. Figure 5.1(a) shows the orig-
inal circuit, which clearly has a very high regularity, and the critical path is shown by the
darkened edges. Let us assume, for simplicity, that the delays of all other paths in this ex-
ample are significantly smaller than the critical delay. Preserving the regularity completely
would imply living with this large delay. On the other hand, if the circuit is selectively
resynthesized so that the critical path is mapped for reduced delay while the remainder is
left untouched, we would obtain the circuit in Figure 5.1(b), which can be seen to have a
slightly reduced, but still very high, regularity and perhaps a much smaller delay.

The “sacrifice” that is made in this example is to exclude the remainder of the circuit
from a full synthesis step and to preserve its regularity instead. However, this is less of a
compromise than is apparent, since the delay numbers computed by synthesis could be very

far off from the actual delays for a complete synthesis step. If a large degree of regularity
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is preserved, a good layout model is instantly available, which enables a more accurate
prediction of circuit parasitics. Therefore, even though this circuit may not have as good
a delay estimate from synthesis, the estimate will have a much better correlation with the
final delay after layout, thereby greatly enhancing the predictability and hence the speed
of design closure.

This forms the motivation for this work, and the method proposed in this thesis achieves
high performance with very little sacrifice of regularity as compared to traditional logic
synthesizer, and involves a two-step approach for synthesis of datapath-dominated circuits.
In the first step, regularity is exploited to speed up synthesis by synthesizing only one
slice and repeating it, thereby preserving maximum regularity in the synthesized circuit.
In the second step, the regularity is iteratively destroyed in a controlled way to obtain
timing improvement at minimum cost. Specifically, the regularity is destroyed on critical
paths in an incremental fashion. Although logic synthesis transformations are employed
in the second step, the approach of selective regularity destruction is general enough to
accommodate other kinds of circuit transformations. For example, instead of applying
logic-level operations, one can apply gate sizing transformations.

This chapter is organized as follows. Section 5.2 presents the motivation with the help
of an example. Section 5.3 explains the details of regularity modeling, and presents various
approaches of regularity extraction. Section 5.4 presents our methodology, while Section 5.5

lists our results and is followed by concluding remarks in Section 5.6.

5.2 Motivation

Synthesis typically involves two distinct steps, namely, technology-independent synthesis
and technology mapping. Conventional technology-independent synthesis pays no regard
to regularity, and in the succeeding technology mapping phase, the circuit is then mapped
to available library cells. As stated above, this initial technology-independent synthesis can
hinder the optimal synthesis of datapath circuits if it completely disregards the inherent

circuit regularity. In case of control logic, where the initial circuit is likely to be irregular,

69



this kind of synthesis is acceptable, but this is not so for datapaths, where the performance
constraints are very stringent.
As an example, we will now consider a four-bit ripple carry adder circuit, implemented

in 0.13p [42] technology. The adder was synthesized in three different ways as follows:

e In the first approach, the circuit was synthesized in SIS [43] by using script.rugged
followed by the map command with the delay minimization option selected. The
synthesized circuit had gate area of 363u , and a delay of 1.69ns . The value of the
regularity index, to be defined in Section 5.3.1, for the synthesized circuit was 0.14

units in the resulting circuit.

e In the second approach, one slice of the circuit was synthesized and repeated to obtain
a four-bit adder. This resulted in a configuration with a much reduced gate area of

86w, a larger delay of 2.6 ns units, and a regularity index of 35 units.

e Finally, the regularity on the longest path was destroyed and the synthesized circuit
had a gate area of 176y, a delay of 1.72 ns, and a regularity index of 3.5 units.
Thus the resulting circuit had better delay and regularity as compared to traditional

synthesis.

A notable fact is that the circuit configuration obtained by strictly enforcing regularity
would not have been able to match the delay obtained by traditional synthesis. The third
method results in a higher gate area, but has much higher regularity as compared to the
results of traditional synthesis, and lower delay as compared to that of circuit realized with
strictly enforced regularity. Note that the area estimate in the first case is much more
unreliable than that in the second and third cases. Therefore, the key to obtain both area-
and delay- optimized circuit configurations is to use judicious regularity destruction.

To verify that the controlled regularity destruction indeed results in better postlayout
parameters, the resultant circuits were laid out using DRAGON [44], a publicly available

placer.
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Figure 5.2: Layout of synthesized adders

Figure 5.2 shows the layout of the adder obtained by using judicious regularity destruc-
tion on the left and that obtained by conventional synthesis on the right. A quick inspection
of the layouts can show that the one on left is very regular, while the one on right shows
comparatively much less regularity. The postlayout delays were, for the traditionally syn-
thesized circuit and the circuit obtained by controlled synthesis, were 1.73 ns and 1.75ns,
respectively. Thus it can be seen that the controlled destruction of regularity leads to
lower percentage increase in postlayout delay as compared to that of conventional syn-
thesis. Therefore the judicious destruction of regularity can lead to better overall circuit

configurations, and this forms the motivation of this work.

5.3 Circuit regularity

5.3.1 Regularity modeling

Regularity in a circuit can be of one of the two types: functional regularity or structural
regularity. Functional regularity means that identical functional blocks exist within a circuit.
The blocks can have different implementations. Structural regularity, on the other hand,
indicates that structurally similar blocks exist in the circuit. Thus the presence of structural
regularity indicates the presence of functional regularity, as well. Functional regularity does
not necessarily result in regular layouts. In addition, identifying the functional regularity

is a complex task, hence this thesis concentrates on exploitation of structural regularity.
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Structural circuit regularity refers to the repetition of bit slices where each slice contains

similar bit stages, and is illustrated in Figure 5.3.

Bit stage

ny
0T

T
OO0

Width

Height

Bit slice

N7

Figure 5.3: Circuit regularity

A slice or a template is a subcircuit of a given circuit that is repeated two or more times in
that circuit. A set of slices with a similar structure is called a regularity group. Our purpose
is to extract as many non-overlapping regular groups as possible in the circuit and use them
to reduce synthesis effort. The amount of regularity can be represented numerically by the
regularity indez, RI, which is calculated as follows [41]:

1 u 2v/Sgrp,
RI=—— . (nm + ; <ng. : ﬁ)) -1 (5.1)

Ngrp + Nnr

In the above equation, ng., is the number of regular groups, n,, is the number of gates
that are not within a group, h; and w; are the height and the width of the regular group 1,
respectively, and Sgp, is the product of h; and w;. The height of a group is the number of
slices in that group and the width of the group is the number of gates in a slice. The term
in the innermost parenthesis favors square structures over rectangular strip-like structures,
and this is in line with the fact that the former is more amenable to chip layout, under the
assumption of a square aspect ratio for the layout. It can be seen that higher regularity
index represents higher regularity in the circuit and regularity index of 0 represents a circuit
without any regularity. It should be noted that under this model, the presence of structural

regularity necessarily indicates the presence of functional regularity. In other words, each
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slice in a regular group represents the same function.

5.3.2 Regularity extraction

A number of approaches for extracting circuit regularity have been published in the past,
and three of the recently employed approaches are presented in this section. The explanation
uses following terminology. A digital circuit is represented as a directed graph G, composed
of a vertex set V, where each gate in the circuit represents a vertex in the graph, and an
edge set E, where each connection represents one edge in the graph.

A template-based approach was presented in [45], and can be summarized as follow. It
involves generation of two different types of templates: tree templates and single principle
output (PO) templates. A single PO template is a multi-output template where every
output lies in transitive fanin cone of a single principle output. The problem of regularity
extraction is tackled in two steps, namely, template generation and circuit covering by
templates. In general, a given graph can lead to an exponential number of templates,
and hence two simplifying assumptions are made to reduce the complexity of template
generation and number of templates generated. The set of templates is restricted to contain
only those subgraphs that are not in any other subgraph, and all of the incoming edges of
a node are marked with unique indices. The latter assumption obviates checking for graph
isomorphism, though this faster procedure may exclude otherwise regular structures. For
covering the circuit graphs, two different methods are proposed. The, first method selects
templates greedily according to size, while the second method makes greedy selections based
on the number of occurrences. It is argued that the former method leads to better results,
while the latter method requires a smaller optimization time due to a large number of
repetitions of smaller blocks. The drawback of this approach is its very high time complexity;
it is shown that the complexity for generation of tree templates is O(V2logV), and for
generation of single PO templates, it is O(V?). Experimental results show that CPU times
are of the order of a few minutes to extract regularity from circuits up to 2000 nodes.

Therefore, such a approach is clearly not very practical when larger circuits are under
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consideration and synthesis is to be carried out after regularity extraction.

A clustering-based approach for regularity extraction was presented in [46]. This ap-
proach consists of two steps: the first step performs template generation while the second
step involves graph covering. In the first step, the circuit graph is decomposed in a hier-
archical parse tree using a clan-based decomposition algorithm. A clan is a group of nodes
in the graph that have a natural affinity towards each other, and is modeled as a group of
nodes with common transitive fanins and common transitive fanouts. The parse tree nodes
are then classified into equivalence classes; the classes represent templates that are suitable
for circuit covering. It is argued that the hierarchical nature of this method enables the fast
recognition of templates. However, the complexity of the template generation is O(V*) and
hence this approach has the same scaling problem as the previous approach.

To avoid the complexity of template generation, a very efficient approach based on reg-
ularity signature was first published in [47], and later used in [40,41]. In [47] the signature
of a random instance of a design cell is defined using its master cell and its connectivity. In

general, the signature can be defined from the cell type and its connectivity.

Figure 5.4: Regularity signature

A vertex v is called a successor of vertex u and vertex u is called a predecessor of vertex of
v if there is a directed edge from vertex u to vertex v. A reqularity signature, RS, is defined
as a directed graph consisting of a vertex S and all of the vertices that are successors of
the vertex v. Figure 5.4 shows a circuit graph; the subgraph enclosed in dotted rectangle
represents a signature.

The extraction procedure used in this work is taken from [40] and is provided here in

detail for completeness. A few terms are introduced before enumerating these steps. A gate
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in a regular group is assigned a group number which is the identifier of the group to which
that gate belongs, a slice number which is the identity of the slice in the group to which
that gate belongs, and a member number that represents the identity of the gate within that
slice. All of the gates that have the same member number within a group have the same
regularity signature. The circuit is represented as a graph where each node in the graph
corresponds to a gate and each edge corresponds to an interconnection. The extraction

procedure can be now explained as follows:

Step 1 The extraction procedure starts by identifying sets of nodes that have the same
regularity signature. Such a set is called a reference set, and the initial reference sets
are obtained by considering input nodes and multifanout points. If a multifanout
point has outputs that all have the same regularity signature, then the outputs form
a valid reference set. Each set is taken as a starting point for a regular group. For

example, in Figure 5.5 nodes 7 and ¢’ form the initial reference set.

Step 2 All of the reference sets are then placed in a priority queue based on the number

of nodes in the set.

Step 3 The reference sets are then popped from the queue, one at a time, and the regularity
signatures of all of its outputs (inputs) are compared. If the regularity signatures are
identical, then a forward (backward) expansion of all of the slices in the group is
carried out by including those nodes in the regular groups. The newly added nodes
with same signature will be assigned the same group number and member number,
while their slice numbers will remain different. For example, in Figure 5.5 let us
assume that nodes b and b’ are in reference set. It can be seen that the node b along
with its output nodes ¢, d, and e, form the regularity signature which is identical to
that of node o’. Hence, the forward expansion is carried out by including nodes c, d,

and e, in Slice 1, and nodes ¢, d’, and €/, in Slice 2.

Step 4 The newly added nodes constitute a reference set and are added to the reference
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Figure 5.5: Regularity extraction
set queue.

Step 5 The above three steps are repeated until all of the regularity in the circuit is

extracted.

5.4 Synthesis approach

The synthesis approach is divided into two stages. In the first stage, regularity is extracted
and a slice from each group is synthesized and repeated. In the second step the regularity

is destroyed in a controlled manner if it results in the reduction in the circuit delay.

5.4.1 Slice synthesis

In the first step, regularity is extracted from the original circuit using the extraction ap-
proach described in Section 5.3.2. Each extracted group is a set of identical slices, and the
synthesis can be carried out by synthesizing one slice from each group and then replacing all
of the instances of the original slice with instances of the synthesized slice. The gates that

do not belong to any regular group are then synthesized as a separate subcircuit, and the
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whole circuit is then constructed by stitching the regular and irregular parts together. The
synthesis here involves technology independent synthesis followed by technology mapping

because we will need accurate timing information in the next step.

5.4.2 Controlled regularity destruction

The first synthesis stage rigidly maintains all of the regularity present in the circuit. In this
stage we will destroy the regularity in a controlled manner to meet timing constraints using
the following steps:

Step 1: Timing analysis is performed to identify the most timing critical path.

Step 2: The circuit is then synthesized along the critical path in one of the following ways.

o If all of the gates on the critical path lie within a single slice of a regular group then
the delay can be optimized by resynthesis of that slice. In such a case it is often seen
that parallel critical paths exist, each path typically belonging to a separate slice of
the same group. A delay-oriented technology mapping step is carried out for the slice
using cells from a given library, and the resynthesized slice then replaces all instances
of the original slice. If the delay after this mapping is the same as the delay from the
previous step, then no further improvement is possible and the synthesis procedure
stops; otherwise it returns to Step 1. In this case, the delay could be reduced by
adding cells of higher strengths into the library, but this is beyond the scope of our

problem statement.

e If the critical path consists only of gates outside the regular region, then the subcircuit

along the path is resynthesized to minimize delay.

e If the path crosses multiple slices, all of which belong to one regular group, then
it is checked whether the network along the critical path within a slice is already
resynthesized for delay. If it is not, then the part of critical path in one slice is
synthesized for delay and is subsequently replaced in all the remaining slices of that

regular group.
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If the network along the path is already synthesized then nodes on the critical path
from adjacent slices are synthesized together. A new regular group is formed, which

has half the number of slices as the original regularity group.

‘ ! Nodes on critical path from
7D(} ' adjacent slices to be collapsed
3 Reduced group together

Slice 2

Original group

Figure 5.6: Collapsing nodes from adjacent slices

The latter case can be explained using Figure 5.6. The original regular group in
Figure 5.6 has two slices, and the critical path through them is shown highlighted.
We will assume that the slice has already been synthesized for delay. Now, to collapse
nodes on the adjacent slices that lie on critical path, we separate out those nodes.
That still leaves three nodes in each slice, and the original regular group is maintained.
Our example shows only two slices, but let us consider an alternative scenario. If the
original group had, say, four of these slices instead of two, with the same critical path
going through the third and fourth slice, then the resynthesized circuit would have a
critical path going through slices 1 and 2, and separately resynthesize the same critical
path through slices 3 and 4. This would lead to the identification of new regularity,
as the optimized critical path through Slices 1 and 2 would look identical to those

through Slices 3 and 4. These would now form a new regular group with two slices.

The original regular group is removed only if all of the nodes in the group are used in
destruction procedure. Otherwise it is stored and now contains nodes that are off the

critical path.

78



e If some of the nodes on the critical path lie outside the regular groups, while some
within regular group, then first nonregular part is mapped for delay. If that part
is already resynthesized for delay, then nodes on the critical path that belong to
regular group are removed from regular group. The network along the path is then
resynthesized for delay. During the removal of the nodes from a particular slice of a

regular group, the corresponding nodes from all the slices of that group are removed.

o If the critical path traverses multiple regular groups, then a check is made to see
whether the path belongs to only one slice of each of those regular groups. If there is
at least one regular group that has only one slice on the critical path, then that slice

is mapped for timing and replicated throughout the group.

Step 3: Steps 1 and 2 are carried out iteratively till the delay cannot be further improved

without significant reduction in regularity.

The details of the algorithm are now explained with the help of another example. Con-
sider two adjacent bits of a fictitious datapath shown in Figure 5.7. Assuming a unit delay
model for the sake of simplicity, it can be easily verified that the most timing-critical path

consists of the highlighted edges.

All of the nodes in the first slice have a corresponding node in the second slice, and
the circuit is totally regular. The critical path contains five nodes (i, j, [, p, and g) that
are identical (have same regularity signature) in both slices. The second slice has one
additional node, node o', on the critical path, and including it in the list for resynthesis
would be beneficial. The algorithm, therefore, checks if there is a node corresponding to o'
in Slice 1, and in this case node corresponds to node o. Thus the algorithm does not work
only on the critical path, but also takes into account off-critical path nodes, which may
correspond to some nodes on critical path in another slice.

However, in many cases, considering only the nodes on critical path may not yield much

improvement. This is because the freedom for resynthesis is very limited since we must
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Figure 5.7: Node selection for resynthesis

preserve those nodes that fan out to nodes off the critical paths. Fox example in Figure 5.7,
three nodes in Slice 1 (g, [, and j), are on the critical path, but also fanout to nodes off
the critical path. Therefore, when only the critical path is synthesized, we must identify
these three nodes as the outputs, as also the three corresponding nodes in Slice 2. Thus we
can map those output nodes in a different way, but we cannot eliminate them using any
aggressive transformations, and this is somewhat restrictive. Therefore, improved results
are possible if we consider a subcircuit of depth k from the critical path, where k can be
any positive integer. In practice, & can take values between 1 to 5, depending on the size of
the circuit, and this provides ample freedom for resynthesis transformations. For example,
if we use k = 1, then for the circuit shown in Figure 5.7, the algorithm will select the nodes

shown by the shaded regions.
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5.5 Implementation and results

The algorithms are implemented as a CAD tool called MinRDS (Minnesota Regularity
Driven Synthesis). The regularity extraction procedure and the synthesis driver are imple-
mented as C++ programs. The regularity signature is implemented as a properly-chosen
hash function. In the implementation, a slice in a group is constrained to have atleast four
gates. This is for two reasons: firstly, it is not useful, from the point of view of synthesis,
to have very small slices, and secondly, if the limit is any smaller than this, then too many

regular groups are extracted, and this may not be particularly useful in aiding layout.

Circuit SIS MinRDS
Area Delay Reg || Area Delay Reg
synthesis | layout | Gates synthesis | layout | Gates

(n) | (ns) (ns) | (%) || () | (ns) (ns) | (%)
addl6 | 915 | 4.76 465 | 88 | 705 | 5.02 4.98 | 100
logic5 | 1064 | 3.35 324 | 5 [1219| 3.8 349 | 33
div4 1027 | 7.47 752 | 24 |[1106 | 7.2 725 | 66
csal6xd | 2726 | 514 | 547 | 16 | 2988 [ 5.38 545 | 77
bmul8 | 2764 | 10.65 | 1041 | 26 [ 3823 | 10.26 | 10.20 | 39
cla64 | 4562 | 13.06 | 13.95 | 22 | 5211 | 8.49 8.66 | 100

Table 5.1: Comparison of synthesis results.

SIS [43] is used for performing synthesis, and is invoked from the synthesis driver in
Step 2 of the methodology. The program writes the equations describing the slice to be
synthesized in each step. SIS reads these equations and outputs another equation file which
is read by the program. For original synthesis, script.rugged is used and is followed by
the map command. The map command with timing optimization option is used during the
resynthesis step. A small subset of a 0.13 p library is used for conventional synthesis, as well
as for regularity driven synthesis. First the delay values are obtained by synthesizing circuits
using SIS, and then it is assumed that this represents the best speed that is possible using
synthesis with pre-layout estimates. Since preserving the regularity involves an additional
constraint on synthesis, it may not be possible to improve upon this speed, and hence our
algorithm is run with a delay constraint set to be a little higher than the delay obtained by

SIS. Because the library used in experimentation is not sufficiently fined-grained, the delay
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obtained by MinRDS is seen to be higher than SIS delay for some circuits, while it beats
SIS delay on others.

Table 5.1 shows a comparison of the area, delay, and regular gates as a percentage of
total gates, obtained by our approach and by traditional synthesis. The synthesized circuits
are laid out using DRAGON, the delay values after the layout step are provided, along with
the prelayout delay values.

The important point is conveyed by prelayout delay and percentage of regular gates. It
can be seen that MinRDS achieves delay in the vicinity of the SIS delay, while maintaining

higher regularity in the synthesized circuit as compared to SIS synthesized circuit.

5.6 Conclusion

The chapter proposed an approach for synthesizing datapath-dominated circuits. The
methodology employs controlled destruction of regularity to obtain circuits with higher
regularity indices as compared to traditional synthesis. The experimental results show
that the circuits synthesized in this way have resulted in delay close to that obtained by

traditional synthesis.
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Chapter 6

Conclusion and future research

directions

This thesis has addressed three important problems in VLSI circuit synthesis. The first
part of the thesis has proposed a convex and accurate model for gate delay that is better
suited than the Elmore model for the current deep submicron technologies. The model was
shown to be highly accurate and the computational efficacy of the model has been shown by
incorporating it into various different optimization engines. In particular, the models have
been incorporated in the solution of area-delay and power-delay trade-off optimizations.

The second part of the thesis has presented a methodology for leakage power minimiza-
tion. A unified approach involving transistor sizing and V; assignment has been proposed.
A novel enumerative approach has been employed for the V; assignment phase. The ex-
perimental results have shown that the proposed methodology outperforms an existing
sensitivity-based methodology, both in quality of solution and in optimization time. The
enumerative approach involves decomposing a circuit graph into fanout-free trees as in the
case of technology mapping. This partitioning can, depending on the nature of the circuit,
have adverse effect on the quality of solution. This prompts further explorations in the way
in which the fanout free trees are obtained.

The third part of the thesis has addressed the issue of optimization considering multiple
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levels by employing a synthesis approach directed by the structural properties of the circuit.
In particular, the research has been targeted towards synthesis of datapath-dominated cir-
cuits, and is driven by the regularity presented in the unoptimized circuit. The approach
involves the controlled destruction of regularity to obtain highly regular yet timing- and
area-optimized circuit configurations. The research has considered synthesis of combina-
tional circuits only. In future, it is necessary to evaluate such an approach on sequential
circuits, perhaps by using regularity-driven synthesis along with retiming to obtain bet-
ter realizations of sequential circuits. Another direction that may be explored is to use
regularity-driven synthesis with lower levels of optimization such as transistor sizing or gate
sizing. Sizing a gate can potentially avoid local destruction of regularity, and the cost of
destroying regularity should be weighed against the improvements in performance.

Finally, the research in this thesis has been variously published [32,48-50].
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