
UNIVERSITY OF MINNESOTA

This is to certify that I have examined this copy of a doctoral thesis by

Min Zhao

and have found that it is complete and satisfactory in all aspects,

and that any and all revisions required by the �nal

examining committee have been made.

Professor Sachin S. Sapatnekar

|||||||||||||||||||{

Name of Faculty Advisor

|||||||||||||||||||{

Signature of Faculty Advisor

|||||||||||||||||||{

Date

GRADUATE SCHOOL

Analysis and Optimization Problems in High Speed
Circuits with Special Reference to Domino Logic

and Supply Network Design

A THESIS

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA

BY

MIN ZHAO

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Sachin S. Sapatnekar, Advisor

DECEMBER 1999

c
Min Zhao 1999

Abstract

The thesis consists of �ve parts, the �rst four of which are on domino logic synthe-

sis and optimization, while the last related to fast power/ground analysis technique.

First, the problem of technology mapping for domino logic is addressed. The

domino logic family is non-inverting, and has
exible gate con�gurations with a large

NMOS pull-down network. In this work, several e�cient algorithms aimed at these

special features are presented.

The non-inverting property of domino logic requires logic duplication for generat-

ing both the negative and positive signal phases, which results in an area overhead.

In addition, the area cost of the negative and positive polarity can be signi�cantly

di�erent. This area overhead can be reduced by selecting an optimal output phase

assignment. In second part of the thesis, a 0-1 integer programming formulation for

the output phase assignment problem is presented.

Given a combinational network and its timing speci�cation, it is a non-trivial prob-

lem to decide which part should be implemented with domino logic and which part

with static logic. The third part of the thesis handles this static-domino partitioning

problem under timing constraints. The algorithm is extended to develop a method

for partitioning domino logic into two phases, with inverters permitted between the

two phases.

Next, we address a timing veri�cation and sizing optimization tool for circuits

containing mixed domino and static logic. After sizing, a realistic charge sharing

estimation and correction procedure is proposed to avert potential errors.

Finally, a fast power/ground network analysis technique is presented. To handle

the large size of power distribution networks in high performance designs, a fast hier-

archy analysis method is presented and a port admittance matrix sparsing algorithm

is proposed to speed up the hierarchical analysis method.

i

Acknowledgment

I would like to express my deep gratitude to my advisor and mentor, Professor

Sachin Sapatnekar. He o�ered me enthusiastic support and guidance, and provided

valuable suggestions and encouragement. I also thank Professors R. Janardan, E.

Shragowitz, G. E. Sobelman and B. Vinnakota for their helpful comments.

I would like to express my sincere appreciation to Dr. Liang-Fang Chao, now

at Cadence Design Systems, for introducing me to the �eld of Electronic Design

Automation. I would like to acknowledge many useful discussions with Dr. Andrew

Tickle, Dr. Cyrus Bamji, Dr. Hakan Yalcin, Dr. Mohammad Mortazavi, Christina

Chen at Cadence Design System, and Dr. David Blaauw, Dr. Rajendran Panda, Tim

Edwards, Rajat Chaudhry and others at Motorola.

Many thanks to fellow graduate students for making my stay pleasant and fruitful:

Jianfeng Shi, Naresh Maheshari, Songhua Xu, Wendong Wang, Huibo Hou, Yanbin

Jiang, Kishore V. Kasamsetty, Jiang Hu, Kaushik Gala, Mahesh Ketkar, Haihua Su,

Suresh Raman, Arvind Karandikar, Raza ul Mustafa.

I am grateful to National Science Foundation, Semiconductor Research Coopera-

tion for funding parts of my research; IEEE and University of Minnesota for providing

�nancial support to attend conferences; and Cadence Design System and Motorola

for providing me with the opportunity to work as a summer intern.

Finally I would like to thank my parents for their encouragement and support

throughout the years ever since I was a child. They have not only given me life,

but also encouraged me to do my best. They have been always there to share my

happiness of success as well as depression of failure.

ii

Contents

1 Introduction 1

1.1 Our Research Goal . 1

1.2 Contributions . 3

1.3 Organization of this Thesis . 5

2 Overview of Domino Logic 8

2.1 Con�gurations and Properties . 8

2.2 Clock Strategies . 10

2.3 Research on Domino Logic . 12

2.4 Synthesis Flow . 15

3 Technology Mapping Algorithms for Domino Logic 17

3.1 Introduction . 17

3.2 Parameterized Library Mapping Algorithm 19

3.2.1 Motivation and Previous Work 19

3.2.2 The Algorithm . 20

3.3 DAG Covering Mapping . 26

iii

3.3.1 Motivations and Previous Work 26

3.3.2 Algorithm Outline . 27

3.3.3 Duplication Cost Estimation 29

3.4 Dual-monotonic Gate Mapping . 30

3.4.1 Dual-monotonic Logic . 30

3.4.2 Previous Work and Motivation 30

3.4.3 Dual-monotonic Mapping Algorithm 31

3.5 Flexible Domino Con�gurations . 33

3.5.1 Wide Dynamic AND/OR Gate 33

3.5.2 Multiple-output Gate . 34

3.6 Technology Mapping for Static Logic 36

3.6.1 Parameterized Library Static Mapping 37

3.6.2 General Cost Functions . 41

3.7 Experimental Results . 42

3.7.1 Comparison with Previous Work 43

3.7.2 Comparison with Static Mapping with SIS 44

3.7.3 E�ectiveness of Various Methods 46

3.7.4 Parameterized Library Static Mapping vs SIS 48

3.8 Conclusion . 49

iv

4 0-1 Programming Output Phase Assignment Problem 51

4.1 Introduction . 51

4.2 Algorithm Outline . 54

4.3 0-1 ILP for Minimal Duplication Cost 54

4.4 0-1 ILP for Minimal Implementation Cost 57

4.5 Experimental Results . 59

4.6 Conclusion . 61

5 Timing-driven Partitioning of Domino and Mixed Static-Domino

Circuits 62

5.1 Introduction . 62

5.2 Problem De�nition and Motivations 65

5.3 Timing Driven Static-Domino Partitioning 68

5.3.1 Algorithm Outline . 68

5.3.2 Cost Estimation . 69

5.3.3 Determining the Candidate Cut Nodes 70

5.3.4 Finding the Minimum Cut . 72

5.4 Timing Driven Two-way Domino Partitioning 76

5.5 A Partitioning Flow for a General Two-phase Clocking Strategy . . . 78

5.6 Cost Modeling . 79

5.6.1 Power Model . 79

5.6.2 Delay Model . 81

5.7 Experimental Results . 82

5.8 Conclusion . 86

v

6 Timing Veri�cation and Sizing Optimization of Mixed Static-Domino

Circuits 88

6.1 Introduction . 88

6.2 Domino Logic Timing Constraints . 89

6.3 Timing Veri�cation and Sizing . 92

6.3.1 Timing Veri�cation . 92

6.3.2 Sizing Algorithm . 94

6.3.3 Noise Margins . 95

6.4 Charge Sharing Measurement and Correction 96

6.4.1 Estimation of Worst-case Charge Sharing 96

6.4.2 An Algorithm for Reducing Charge Sharing 98

6.5 Experimental Results . 100

6.5.1 Timing Veri�cation and Sizing 100

6.5.2 Charge Sharing . 102

6.6 Conclusion . 103

7 Hierarchical Analysis of Power Distribution Networks 105

7.1 Introduction . 105

7.2 Macromodeling Approach . 108

7.2.1 Overview of Power Grid Simulation 108

7.2.2 Basic Idea . 110

7.2.3 Hierarchical Modeling . 111

7.2.4 Partitioning Strategy . 114

vi

7.2.5 Macromodeling . 115

7.2.6 Analysis of the Computation Cost 117

7.3 Sparsi�cation of Macromodels . 120

7.3.1 Problem De�nition . 121

7.3.2 Problem Formulation . 122

7.4 Experimental Results . 123

7.4.1 Performance of Macromodeling Technique 123

7.4.2 Performance of the Sparsi�cation Technique 127

7.5 Conclusion . 128

8 Conclusion 130

8.1 Summary . 130

8.2 Directions for Further Research . 132

8.2.1 Future Work for Domino Logic 132

8.2.2 Future Work for Supply Network Analysis 135

vii

List of Figures

2.1 A typical domino circuit . 9

2.2 A common two-phase non-overlapping clocking scheme [17,18] 10

2.3 Four-phase overlapping clocking scheme [16] 11

2.4 Clock-delayed domino clocking scheme [19] 12

2.5 Domino logic synthesis
ow . 15

3.1 An illustration of node cost functions 23

3.2 An example illustrating the parameterized library mapping procedure 24

3.3 DAG decomposition . 27

3.4 Duplication at multiple fanout nodes 28

3.5 An example of a dual-monotonic gate 30

3.6 Matching pattern 1: three-input XOR gate 32

3.7 Matching pattern 2: arbitrary AND/OR/XOR logic 32

3.8 An example of a wide domino AND gate 33

3.9 Subsolution space to map wide domino AND/OR gates 34

3.10 Multiple-output domino logic mapping 35

viii

3.11 Matching technique of parameterized library mapping 37

3.12 Constructing the compressed network 38

3.13 Polarity assignment at multiple fanout nodes 40

3.14 An example illustrating the construction of the lookup table 42

4.1 Logic duplication in domino logic synthesis 52

4.2 The implementation cost of positive polarity 53

4.3 The implementation cost of negative polarity 53

4.4 An illustration of constraints (4.5) of 0-1 ILP 56

5.1 An example for static-domino partitioning 67

5.2 Determination of candidate cut nodes 71

5.3 Evaluating the cost of a cut . 73

5.4 Boolean network after mapping and candidate cut node decision . . . 74

5.5 Constructing the edge-cut maximum
ow network 75

6.1 An example to illustrate charge sharing 97

7.1 Hierarchical power network analysis 111

7.2 Flow of the hierarchical analysis . 114

ix

List of Tables

3.1 A comparison of our results with [5] 43

3.2 A comparison of our domino mapping algorithm with SIS 45

3.3 DAG covering mapping and dual-monotonic mapping 46

3.4 Comparisons of various mapping methods 47

3.5 Comparison of the parameterized library static mapping method with

SIS . 49

4.1 Output phase assignment using a 0-1 ILP 60

5.1 Results of the static-domino partitioning algorithm 83

5.2 Results of the two-way domino partitioning algorithm 84

5.3 Results of applying the partitioning
ows for the two-phase clocking

scheme . 85

5.4 Results of static-domino partitioning for power minimization 87

6.1 Transistor sizing on circuits for the two-phase clocking scheme 100

6.2 Transistor sizing on circuits for a four-phase overlapping clocking scheme101

6.3 Application of the charge sharing algorithm on the circuit of Figure 6.1 102

x

6.4 Results of the charge sharing algorithm on large circuits 103

7.1 Run-time and memory comparison for the �rst simulation 124

7.2 Comparison of run time for 1000 subsequent simulations 126

7.3 The e�ect of sparsi�cation . 128

xi

Chapter 1

Introduction

1.1 Our Research Goal

With the exponential scaling of feature sizes in Very Large Scale Integrated (VLSI)

circuits, it is expected that over half a billion transistors will be integrated on a single

chip with an operating frequency of 2� 3 GHz in the 70 nm technology by the year

2009 [1]. Because of this increase in the complexity, circuit designs require sophisti-

cated Electronic Design Automation(EDA) tools capable of handling large and high

speed circuits. Due to the increase in complexity and reduced time to market, design-

ers cannot rely on their intuition to optimally design circuits of this complexity. Thus

circuit analysis and optimization tools are indispensable for designers. In particular,

high speed circuits require more careful design and therefore more e�orts need be

focused on the development of good analysis and optimization tools to support high

performance circuit design. This work addresses two aspects of analysis and opti-

mization problems in high speed circuits, namely, (1) synthesis and optimization of

domino logic, and (2) fast analysis techniques for supply/ground networks.

Domino logic is an e�ective circuit con�guration for implementing high-speed

1

logic designs. It has made important contributions in the design of low cycle time

microprocessors and other high performance circuits [2{8]. As its use becomes more

widespread, there is a growing need for good EDA synthesis and optimization tools to

support this circuit style. The non-inverting nature of this logic family, and the fact

that its behavior is tightly coupled with the clock scheme, necessitate a more complex

synthesis
ow than that for static logic. In this thesis, we develop automation tools

for domino logic design. Speci�cally, a domino synthesis
ow is suggested and several

problems along such a domino synthesis
ow are addressed.

The second issue addressed in this thesis is related to fast analysis techniques for

power distribution networks. A robust power distribution network is vital to meeting

performance guarantees and ensuring reliable operation of high speed circuits. Higher

device densities and faster switching frequencies cause large switching currents to

ow in the power and ground networks, which degrades performance and reliability.

Excessive voltage drops (IR drop) in the power grid reduce switching speeds and

noise margins of circuits and inject noise, possibly leading to functional failures.

High average current densities lead to undesirable wearing out of metal wires due to

electromigration. Therefore, it is an important task to analyze the power distribution

network to verify whether speci�ed objectives on IR drop and electromigration have

been satis�ed. The challenge in power distribution network analysis problem is to be

able to handle the large size of a power/ground network. Today the power network

of microprocessor contains millions of nodes, and in the near future, this will increase

to the order of tens of millions. Solving a network of such a size requires a long time

and almost exhausts the memory available to a contemporary workstation. In this

thesis, we provide a solution to this problem.

2

1.2 Contributions

The major contributions of this thesis are:

� Various novel approaches for technology mapping for domino logic are presented.

We �rst provide a parameterized library mapping algorithm. The algorithm is

optimal for tree-by-tree mapping and has a computation time that is polyno-

mial in terms of constraint size. A mapping method using DAG covering that

permits the implicit duplication of logic nodes is then incorporated into the

framework of parameterized library mapping. We suggest a synthesis proce-

dure that maps the complementary logic cones independently when AND/OR

logic is to be implemented, and together using dual-monotonic gates in the case

of XOR/XNOR logic. In our mapper, speci�c consideration has been given

to practical domino circuit design techniques, such as wide dynamic AND/OR

gates and multiple-output gates. The results show large improvements over

existing approaches. Moreover, the area cost of our domino implementation is

better than or close to the cost of a static implementation, even through the

non-inverting property of domino logic may require the duplication of numerous

nodes of input network.

In addition, the parameterized library mapping algorithm is extended to static

technology mapping. The application of the algorithm provides speed-ups by

factors of over a hundred in CPU time over the static solution provided by SIS,

and some improvement in the area.

� A novel 0-1 integer programming formulation is provided for the output phase

assignment problem for domino logic. It considers the cost di�erence between

two polarities and enables a standard linear programming package to be used

to solve the problem. The 0-1 ILP algorithm provides the optimal solution to

the problem and results show large improvement in area.

3

� An algorithm for timing-driven partitioning of domino and mixed static-domino

circuits is presented. In most circuits, it is appropriate to use domino gates to

speed up parts of the circuit, while the remainder is implemented in static

CMOS. An important problem is, therefore, to partition a circuit to deter-

mine which parts should be implemented as static logic, and which parts as

domino logic, in conformance with the speci�ed clock scheme. We present an

e�cient timing driven static-domino partitioning algorithm. Our algorithm

�nds a partition of a logic network between static and domino implementations

that minimizes the cost, subject to timing constraints speci�ed by the clock-

ing scheme. This algorithm is extended to develop a method for partitioning

domino logic into two phases, with inverters permitted between the two phases.

Our partitioning algorithms are then applied to the most common two-phase

clocking strategy. Our results show that the area of original domino network

is reduced signi�cantly, while maintaining the circuit speed of a pure domino

implementation.

� A timing veri�cation and sizing optimization tool dealing with circuits contain-

ing mixed domino and static logic is presented. A timing analysis methodology

is developed, permitting the application of PERT and allowing mixed static-

domino circuits to be handled in a manner similar to static combinational cir-

cuits. The optimization procedure preserves the requirements of maintaining

adequate noise margins by constraining the sizing procedure. Finally, after siz-

ing, the circuit is evaluated for charge sharing using a procedure that is more

accurate and less pessimistic than previously proposed methods, and the circuit

is corrected to eliminate any charge-sharing problems.

� A solution that permits fast analysis of power distribution networks is provided.

With the increasing number of transistors on a chip, the size of power network

analysis problem makes it di�cult to solve in reasonable time without the use

4

of hierarchy. Moreover, the memory requirements may exceed the memory

limits available for a contemporary workstation using a
at method. This work

suggests a solution to this problem, where a hierarchical power network analysis

method is presented, using macromodels to accurately capture the behavior of

the partitioned blocks. A port admittance matrix sparsing method using a 0-1

integer linear programming formulation is suggested to maintain the sparsity

of the macromodels, while controlling the error. The experiments on power

networks with millions of nodes show signi�cant reduction in the run time, and

the memory requirements for power network analysis. The experimental results

on matrix sparsing show the speed-up of the global solving of macromodel with

negligible error.

Parts of this research have been published in [9{15].

1.3 Organization of this Thesis

This thesis is organized as follows.

Overview of domino logic In Chapter 2, we brie
y describe the con�gurations,

properties and general clocking schemes of domino circuits. In addition, a lit-

erature survey of recent research that relate to domino logic is included and a

synthesis
ow for domino logic is proposed.

Technology mapping algorithms for domino logic In Chapter 3, we study the

problem of technology mapping for domino logic. An e�ective parameterized

library (library-free) mapping algorithm for domino logic is presented. The

mapping approaches for the di�erent domino styles, such as dual-monotonic

(dual-rail) gates, wide AND/OR gates and multiple-output gates are discussed.

A static mapper based on the parameterized library algorithm is described.

5

0-1 programming output phase assignment problem The removal of interme-

diate inverters requires logic duplication for generating both the negative and

positive signal phases due to the inherent non-inverting property of domino

logic. The output phase assignment can reduce the logic duplication, and can

also reduce the cost overhead due to di�erences in the implementation cost of

the positive and negative phases. In Chapter 4, we consider the output phase as-

signment problem for domino logic and a 0-1 integer programming formulation

for the output phase assignment problem is presented.

Timing-driven partitioning of domino and mixed static-domino circuits In

Chapter 5, we discuss the issues of domino circuits partitioning, which includes

static-domino partitioning problem and two-way domino partitioning problem.

The static-domino partitioning problem is to decide which part of a given seg-

ment of combinational logic is to be implemented with static logic and which

part to be implemented with domino logic so that the timing constraints are

satis�ed. The two-way domino partitioning problem is to partition a network

implemented purely as domino logic into two phases with inverter permitted

between two phases.

Timing veri�cation and sizing optimization of mixed static-domino circuits

In Chapter 6, we address the problem of timing veri�cation and sizing opti-

mization in circuits containing mixed domino and static logic. A charge sharing

evaluation procedure and a method for correcting charge sharing problems are

proposed.

Hierarchical analysis of power network distribution Chapter 7 describes the

research on fast analysis of power distribution network. A hierarchical power

network analysis method is presented. An algorithm that sparsi�es the port ad-

mittance matrix using a 0-1 integer linear programming formulation is presented

6

to enhance the performance of hierarchical analysis method.

Conclusion In Chapter 8 we conclude this thesis and present a number of open prob-

lems on domino logic synthesis and optimization, as well as on fast power/ground

analysis. We also present some ideas and thoughts on these problems. The prob-

lems related to domino logic include noise estimation and correction, low power

domino logic design, clock network generation for domino logic circuits, domino

logic cell synthesis, delay balanced partitioning and asynchronous domino tech-

niques. The future work on power network analysis includes automatic parti-

tioning techniques, port collapsing and hierarchical analysis for RLC networks.

7

Chapter 2

Overview of Domino Logic

In this chapter, we �rst brie
y introduce the con�gurations, properties and clocking

strategies of domino logic. Next, a survey of recent research on domino logic is

described and �nally, a special synthesis
ow for domino logic is suggested.

2.1 Con�gurations and Properties

Domino logic is an e�ective circuit con�guration for implementing high-speed logic

designs. It is widely used in microprocessor and other high performance designs [2{8].

A representative domino gate con�guration is shown in Figure 2.1. It consists

of two clock controlled transistors, one pull-down NMOS network and one inverting

static gate, which traditionally is an inverter. In some situation, the NMOS clock

controlled transistor can be removed to obtain faster gate switch speed; this con-

�guration is referred to as footless domino. When the clock input is low, the gate

recharges the dynamic node d to logic 1. In the next half-cycle, when the clock goes

high, the domino gate evaluates, i.e., the dynamic node either discharges or retains

the precharged state, depending on the values of the input signals. The two-step mode

8

of operation with a precharge and an evaluate phase causes the timing relationships

in domino logic to be more complex than those for static logic.

A

B

z

d O

clk

clk
o o

. n1

y

x

Tc,f Tc,r Tc,f + P

Figure 2.1: A typical domino circuit

Domino circuits o�er the advantages of faster speed and glitch-free operation. This

is because (1) There is no �ghting during transitions since the clock transition is sharp

(2) Instead of both NMOS and PMOS transistors at the fanout having to be driven

as in static CMOS, only NMOS transistors need to be driven. (3) Large loads are

driven through inverters, instead of series logic stacks. (4) Since only the evaluation

speed is important to domino gates, the inverting static gate can be easily skewed to

favor the critical monotonically rising evaluation edges. In summary, domino logic

runs 1:5 to 2 times faster than static CMOS logic [16].

However, domino logic circuits have some drawbacks. They are susceptible to

charge-sharing and noise, and all signals must satisfy strict timing constraints to main-

tain the functional correctness. In addition, they can only implement non-inverting

logic. Hence, complements of internal signals must be realized through separate cones

of logic using complements of the primary inputs. This results in a signi�cant area

overhead when both a signal and its complement must be generated since the fanin

cone of the signal must be replicated, with the signal inversion implemented by using

DeMorgan's laws to push the inverters to the primary inputs. This is referred to as

logic duplication. Therefore, domino logic requires more careful design than its static

9

counterpart and currently most domino circuits are manually designed.

2.2 Clock Strategies

Domino logic is conventionally divided into multiple phases. Single-phase domino

logic is impractical since precharging all domino gates simultaneously would result in

wasted time during which no useful computation occurs. Depending on the source

from which the precharge control signal is taken and the timing relation between

control signal and logic signals, various clock strategies for domino implementations

are de�ned. In the following, we will brie
y introduce several strategies used in

current domino logic designs.

L
at

ch
 o

n
in

 Φ
1

L
at

ch
 o

n
in

 Φ
1

Domino chain

St
at

ic

Domino chain

St
at

ic

CLK

L
at

ch
 o

n
in

 Φ
2

Precharged in Precharged in Φ1 Φ2

Evaluated in Φ1Evaluated in Φ2

Figure 2.2: A common two-phase non-overlapping clocking scheme [17,18]

A common two-phase non-overlapping clocking scheme Since domino logic op-

erates in alternating precharge and evaluate modes, it is frequently implemented

with a two phase clock, as shown in Figure 2.2 [17, 18]. The logic between the

latches may be static, domino or a mix of static and domino logic. This is the

classical clocking strategy used with domino logic and has been widely employed

in various designs due to its robustness. In the remainder of this thesis, when

we refer to this as the two-phase clocking scheme, and we will denote the clock

phases by the symbols �1 and �2.

10

Skew tolerant domino clocking scheme In the two-phase non-overlapping clock-

ing strategy, the latch between two phases forms a hard edge that prevents time

borrowing between the two phases. In addition, the clock skew and delay of

latches may reduce the e�ective evaluation time. The work in [16] suggested

a novel clocking scheme that can overcome the above problems and make the

design more skew tolerant. In this clocking scheme, circuits are partitioned

into several stages and an overlapping clock is applied to each stage. Figure 2.3

shows an example of a four-phase overlapping domino clock scheme. Each block

consists of several levels of domino gates, or clocked bu�ers if no domino gates

are available.

Φ1 Φ2 Φ3 Φ4

Φ4

Φ2

Φ3

Φ1

BLOCK1 BLOCK3 BLOCK4BLOCK2

Figure 2.3: Four-phase overlapping clocking scheme [16]

Clock-delayed domino clocking scheme The work in [19] presents a clock-delayed

domino clocking scheme. The method overcomes the non-inverting property of

domino logic. The simplest clock scheme is shown in Figure 2.4. The delays,

�i, corresponds to the largest delay of gates of stage i, and are synthesized by

delay elements (PE) such as transmission gates.

Other clocking schemes include self-timed pipelines [17] and wave-domino pipeline

[20]. Self-timed pipelined domino circuits are asynchronous circuits where the precharge

signal is generated from the completion signals from neighboring stages. The wave-

domino pipeline scheme is used to implement wave-pipelines with domino logic.

11

dynamic
 gate

dynamic
 gate

φ1

dynamic
 gate

dynamic
 gate

dynamic
 gate

dynamic
 gate

φ3φ2
PE1 PE2 PE3

Figure 2.4: Clock-delayed domino clocking scheme [19]

2.3 Research on Domino Logic

In the recent years, with the wide use of domino logic in high performance designs, a

signi�cant amount of research has been carried out on domino logic. In this section,

we present a brief literature survey of research related to domino logic in recent years,

with emphasis on automation tools. A good introduction to domino logic can be found

in [17].

Domino circuit design The area of domino circuit design has been widely re-

searched. The research in [2{8], to name just a few, describes high performance

circuit designs that predominantly contain domino-like dynamic logic. Enhance-

ments to domino logic using multiple-output domino gates, and their applica-

tion to adder circuits to improve their area and speed are discussed in [21, 22].

Various novel domino-like dynamic gate con�gurations are presented, for ex-

ample in [23{25]. Speci�c applications include multiplier designs using mixed

static/dynamic implementations [26].

Clocking schemes Several clocking strategies have been proposed for domino cir-

cuit, as summarized in Section 2.2. These are described in greater detail

in [16, 17, 19, 20].

12

Timing issues Timing and functionality are closely coupled in domino logic circuits.

The research in [27{29] addresses the timing constraints between logic signals

and clocking signals for domino gates. In [18], a further description of timing

constraints at the static-dynamic interface are presented.

Transistor Sizing Gate delays can be reduced signi�cantly by transistor sizing. In

[30], a transistor scaling procedure that considers individual domino logic gates

is presented. The work in [31] solves the sizing problem of domino circuits

without considering timing constraints of domino gate. In [32], the domino

timing and sizing problem in PowerPC microprocessor is discussed.

Technology independent optimization and technology mapping In [33], a mod-

i�ed synthesis procedure that unates the circuit �rst and then performs unate

technology independent optimization on the resulting network, is proposed. An

approach to technology mapping for domino logic, using on-the-
y cell gener-

ation, as opposed to using a �xed cell library is suggested in the same work.

While [19] discusses the synthesis of clock-delayed domino, the research in [34]

extends this work to address the synthesis of the most general form of a domino

gate, which consists of the pairing of a dynamic gate with any inverting static

gate. In [35], a new approach to the problem of inverter elimination in domino

logic synthesis is proposed.

Output phase assignment The area overhead caused by the non-inverting prop-

erty of the domino logic can be substantially reduced by selecting an optimal

output phase assignment. In [36], the output phase assignment problem is �rst

addressed and the optimal and heuristic algorithms to minimize logic dupli-

cation are presented. The research in [37] illustrated the signi�cant impact of

output phase assignment on power consumption and an algorithm similar to [36]

is applied to the objective of power minimization.

13

Partitioning Given a clocking frequency, it is a non-trivial to partition the de-

sign into static and dynamic implementation to maximize circuit timing perfor-

mance. Section 3 of [18] provides a heuristic method to solve this problem. The

circuits are �rst mapped to static logic and the outputs on the critical path are

detected; next the entire fan-in cones of these outputs are replaced with domino

logic.

Power Power is one main concern of contemporary circuit design. Compared with

static logic, domino logic provides advantages since it has no spurious transi-

tions, has smaller short-circuit currents and lower parasitic capacitances. How-

ever, the corresponding disadvantage is that it may waste more power since the

switching activity is typically higher than that of a static implementation. In

Section 3.A of [38], the power dissipation model of domino logic and the com-

parisons between domino and static logic are described. In [37], the problem of

reducing the power consumption of domino circuits by output phase assignment

is presented and an algorithm for this purpose is provided.

Noise Noise susceptibility is the major drawback of domino logic. Traditionally,

weak feedbacks are added to the domino gates to overcome the problem. Choos-

ing the size of feedback transistors involves a tradeo� between the noise margin

and switching speed of domino gates. In [39], noise sensitivity and noise gen-

eration issues in dynamic circuits are discussed and the theory, simulation and

measurements of the noise problem are covered. In [40], the growing prob-

lems of noise and the design techniques used to ensure the noise immunity are

described.

Testing The techniques for testing multiple output domino logic CMOS circuits are

presented in [41] and a new approach for detecting bridging faults in domino

logic circuits is described in [42]. In [43], several types of faults that can occur

14

in domino logic are analyzed.

2.4 Synthesis Flow

Due to issues arising from the precharge and evaluation mechanism of domino logic

and its non-inverting property, synthesizing domino logic is more complicated than

standard two stage static logic synthesis methods that perform technology-independent

optimization, followed by technology mapping.

Library layout
synthesizer

Physical design

Clock strategy

Timing Constraints

Parameterized library technology mapping

Logic Description(BLIF,Verilog)

Timing verification and optimization

Noise verification and optimization

Static-domino partitioning

STEP 1:

STEP 2:

STEP 3:

STEP 4:

STEP 5:

STEP 6:

Technology-independent optimization

Partitioning between clock phases

Figure 2.5: Domino logic synthesis
ow

To build a high-performance domino circuit taking these factors into account, we

suggest the synthesis
ow of Figure 2.5 instead of a traditional library based synthesis

ow. The �rst step corresponds to a standard technology-independent optimization.

In step two, according to timing speci�cations, possible noise in
uences, and the area

15

or power cost function, the input network is partitioned into the part implemented as

static logic and the part implemented using domino gates. If domino gates are used,

the choice of a clock scheme, and the partitioning of domino gates between clock

phases is essential for correct and e�cient performance of domino gates.

In step three, a technology mapping method that considers the characteristics of

domino logic is applied. Due to the large number of candidate domino gates, the

use of a parameterized library and a library layout synthesizer is considered a good

choice for this step [33,34]. In addition, an optimal output phase should be assigned

to minimize the cost of technology mapping. This can serve as a pre-processing phase

before technology mapping.

While coarse timing optimization measures may be built into the preceding steps,

there is a need for a rigorous timing veri�cation step, followed by timing optimization

to meet the set of applied constraints. This is performed in step 4, where, for example,

optimizationmethods such as transistor sizing are applied to correct to meet long path

constraint violations.

After these procedures, noise veri�cation and optimization, performed in step 5,

is necessary. This is particularly important since domino circuits can be susceptible

to noise e�ects such as charge sharing. This circuit is then passed on for physical

design in Step 6, with iterations being performed until timing closure.

In this thesis, we develop a static/domino partitioning algorithm for step 2 of the

ow, provide technology mapping algorithms of domino logic for step 3, and address

issues related to Steps 4 and 5 of the
ow by proposing a transistor sizing procedure

with a post-processing step that performs noise veri�cation and optimization due to

charge sharing. In addition, a pre-process of step 3, output phase assignment problem

is addressed.

16

Chapter 3

Technology Mapping Algorithms

for Domino Logic

3.1 Introduction

Technology mapping is an optimization phase at the logic synthesis stage that binds

the gates in the circuit network to the cells of the speci�c technology library. The

objective of this chapter is to examine special properties and the
exible con�gurations

of domino style gates and explore e�cient technology mapping methods for domino

logic.

Technology mapping based on a static standard cell library is a well established

problem that is addressed in [44, 45] and further extended in [46{54]. Although

technology mapping for domino logic follows the basic static technology mapping

procedure of dynamic programming, special features of domino style gates such as

large NMOS pull-down network,
exible gate con�gurations and logic duplication,

demand further consideration. Compared to the mappers that simply migrate the

algorithms for static logic, a procedure that makes use of these properties of domino

17

logic will signi�cantly improve the performance in both area and delay.

In [33], a complex CMOS domino logic circuit synthesis
ow for technology inde-

pendent optimization and technology mapping of CMOS domino logic circuits was ad-

dressed. The work in [34] introduces the the general form of a domino gate (dynamic-

static domino), which consists of the pairing of a dynamic gate with any inverting

static gate, and describes a methodology for synthesizing circuits with dynamic-static

domino. Other related work includes [18, 19, 34].

The chapter is organized as follows. In section 3.2, we present a parameterized

library mapping algorithm and illustrate its application on domino logic. In section

3.3, we describe a greedy method that permits the duplication of input network nodes

during technology mapping to obtain improved area and delay performance. Section

3.4 suggests a technology mapping methodology that maps dual-rail logic cones in-

dependently for AND/OR logic, and together for XOR/XNOR logic. The method

of incorporating the dual-monotonic domino gates into the framework of parameter-

ized library mapping is also described. Section 3.5 explores more
exible domino

style gates and their technology mapping methods. Multiple-output domino gates

and wide AND/OR domino gate are considered. Section 3.6 extends the parameter-

ized library technology mapping algorithms to static logic and a more general library

cost formula is considered. The static mapper applies the DAG mapping approach

in Section 3.3 and a
exible phase assignment method. The results for the tech-

nology mapping methods described in sections 3.2-3.6 are presented in section 3.7.

Our results are compared with previous work, static technology mapping results of

SIS system, between each other to show the e�cacy of the algorithms. Finally, we

summarize and present some concluding remarks on section 3.8.

18

3.2 Parameterized Library Mapping Algorithm

3.2.1 Motivation and Previous Work

The concept of a parameterized library was originally proposed in [55] for static

complex gate mapping. A parameterized library is de�ned as a collection of gates that

satisfy the constraints on the width (maximal number of parallel chains) and height

(maximal number of series chains) of the pull-down or pull-up implementations of a

gate. Such a library is then used to map the input network nodes. The layout of the

parameterized library is produced by an on-the-
y cell generator, instead of a �xed

cell library.

The application of a parameterized library and a on-the-
y cell generator on

domino logic technology mapping was suggested in [33], which further alluded to

[56, 57]. This is particularly useful in the context of domino circuits since the small

magnitude of the short circuit current and small driven load motivates the usage of

large NMOS pull-down networks. With the increase in the size of NMOS network,

the number of cells in a library increases super-exponentially [45]. In such a case,

it is di�cult to implement the
exible functionality of domino gates with �xed cell

libraries since the number of required cells is prohibitively large. Hence, a parame-

terized library is an appropriate option for domino gate mapping.

In an environment that uses a parameterized library, we modify the de�nition of

the domino technology mapping problem as: Given an optimized boolean network

and constraints on the width and height of the domino gates, implement the nodes

in the network with domino logic gates, such that the objective cost is minimized.

There are two existing technology mapping methods for parameterized library

mapping. In [55], the Boolean net is decomposed into a multiple input AND-OR-

NOT directed acyclic graph (DAG) network and a greedy method is used for node

19

mapping. In other words, at each mapping step, the work in [55] limits its view of a

certain expression to one level and maps as many current level nodes as possible into

a complex gate. In [33], all possible domino gates are enumerated at each node of

the DAG. However, at a particular node, under the width and height constraints, the

number of possible mapping schemes can be extremely large. Hence, recursively enu-

merating all possible solutions to obtain the optimal solution can be computationally

expensive.

In this section, we will provide a new parameterized library mapping algorithm

that provides an optimal mapping for a tree structure with a reasonable computational

complexity.

3.2.2 The Algorithm

Given an arbitrarily optimized network, it is �rst unated [36], since domino circuits

can only implement unate logic functions of the primary inputs. It is then mapped

into a two-input AND-ORDAG network, after which the DAG network is decomposed

into two-input AND-OR trees. This is the starting point of our algorithm, which is

based on the traditional dynamic programming method [58].

3.2.2.1 Node Data Structure

At each tree node, a set of subsolution is stored, each of which is optimal for its

subtree under some speci�ed constraints. Speci�cally, these are the optimal subsolu-

tions for all possible [height,width] combinations from [1,1] to [H,W] for the current

gate. Therefore, there are a maximum of H � W optimal subsolutions that can

be possibly stored for every node. Each optimal subsolution can be represented as

fS; P; C; fSl; Plg; fSr; Prgg. Here, S (1 � S � H) is the height constraint of the

current node, P (1 � P � H) is the width constraint of the current node and C is

20

the area cost. Unless otherwise stated, in this chapter, minimization of the area, mea-

sured in terms of the number of transistors, is the objective. Di�erent combinations

of the child node constraints can lead to the same parent node constraint, and of all

these, fSl; Plg, fSr; Prg is the combination that provides the minimal cost under the

current constraints fS; Pg.

Physically, fS; Pg represents a segment of a domino pull-down whose maximum

height and width are S and P , respectively. The area cost is the accumulated area

of its child transition cones, including the domino gate input cost and the number of

transistors in the current domino circuit segment.

3.2.2.2 Node Constraint Functions

The computation of the height and width of a subsolution at a parent node, formed by

combining subsolutions at child nodes, is illustrated here. Due to the series-parallel

structure of the domino pull-down, we only need to consider two types of nodes:

AND nodes and OR nodes. Here, we assume the height and the width, respectively,

of the subject node to be given by the pair fS; Pg. The constraint on its left child

is fSl; Plg, while that on its right child is fSr; Prg. The AND and OR formulas are

similar to [55].

1. OR operation: S = max(Sl; Sr), P = Pl + Pr

2. AND operation: S = Sl + Sr, P = max(Pl; Pr)

3. gate formation operation: S = 1, P = 1

A gate formation operation corresponds to a situation where the structure col-

lected so far is converted (during the dynamic programming procedure) to a domino

gate with an output at that node.

21

3.2.2.3 Node Cost Functions

The area cost function for each of the above possibilities is as shown below.

1. literal operation: if LITERAL C = C + 1; else C is unchanged .

2. OR/AND operation: C = literal operation(Cl) + literal operation(Cr)

3. gate formation operation: C = Cmin + 4

In Case 1, the LITERAL corresponds to a primary input or a situation where

the pull-down structure accumulated so far was consolidated into a domino gate

and therefore a new domino pull-down structure will be started at this point. In

this situation, the input transistor of the next level of domino gates adds one more

transistor to the cost; otherwise, the node is an inner node the domino gate and no

additional cost is required.

In Case 2, Cl is the optimal subsolution for the left child under the constraint

fSl; Plg while Cr is the optimal subsolution for the right child under the constraint

fSr; Prg. The number of transistors at an OR/AND operation is found by simply

summing up the number in the subtrees, after taking the literal operation into con-

sideration.

Finally, in Case 3, the gate formation operation involves the formation of a gate

from the above domino NMOS circuit segment. The minimal cost subsolution, Cmin,

from the set of subsolutions at that node is chosen. Above and beyond this cost,

which measures the number of transistors in the domino pull-down network, we add

the overhead of two clock control transistors and an inverter, corresponding to four

more transistors. Therefore, we have C = Cmin + 4. We emphasize that the gate

formation operation corresponds to the e�ect of creating a gate at the current node

of the DAG, and the literal operation considers its e�ect at the next node in the DAG.

22

These functions can be illustrated as shown in Figure 3.1. The AND operator

places the transistors in series, and the corresponding fS; Pg values and cost are

computed as shown. If, at this point, we were to decide to consolidate these into a

gate, then the corresponding situation would correspond to four extra transistors as

shown. The fS; Pg value of the last transistor would then be set to f1,1g.

leaf

PI

PI

leaf

gate formation

C = Cmin + 4
S = 1
P = 1S = Sl + Sr = 2

P = max(Pl , Pr) = 1
C = Cl + Cr = 2

AND

Cl = 1

Cr = 1

Sl = 1
Pl = 1
Cl = 0

Sl = 1
Pl = 1
Cl = 0

Figure 3.1: An illustration of node cost functions

3.2.2.4 Node Mapping Algorithm

ALGORITHM: Node Mapping

for each valid [height,width] subsolution of the left child

for each valid [height,width] subsolution of the right child

f

fS; Pg = NODE CONSTRAINT FUNCTIONS (fSl; Plg; fSr; Prg) ;

if fS; Pg is within the constraints (H;W)

f

C = NODE COST FUNCTION (Cl; Cr)

if (C < C[S; P]min) then C[S; P]min = C.

if (C < Cmin) then Cmin = C.

g

g

C[1; 1] = GATE FORMATION (Cmin)

23

The f1; 1g subsolution of at a node is obtained from the subsolution fS; Pg of the

same node whose implementation cost is minimal. A subsolution fS; Pg (S > 1 k P >

1) at a parent node is obtained by combining optimal subsolutions at children nodes.

The solution C[1; 1] of the root of the decomposed tree is the optimal subsolution of

the subject AND-OR tree.

3.2.2.5 An Example

N6

and

PI PI

or
{1,2,2}

 and

PI

{2,2,3}
{2,1,8}

N1 N2

N3

N4

N5

{1,1,0} {1,1,0}

{1,1,6}

{1,1,0}

{1,1,7}

or

....

{3,2,15}

{2,1,18}

{2,3,5}

{1,1,9}

{4,3,8}
{4,2,23}
{3,3,13}
{3,2,13}
{3,1,18}

{1,1,12}

{4,3,8,{2,2},{2,3}}

Figure 3.2: An example illustrating the parameterized library mapping procedure

The procedure in Algorithm Node Mapping is illustrated in Figure 3.2. In this exam-

ple, three-tuples are used to represent combinations of fS; P; Cg. All primary inputs

are initialized with the tuple f1; 1; 0g. The tree is traversed from the literal node

24

upwards, and all subsolutions are enumerated using dynamic programming, eliminat-

ing any solutions that are suboptimal. From the dynamic programming viewpoint,

the optimal solution under each constraint fS; Pg is a nonsuboptimal substructure.

The nonsuboptimal subsolutions at a node are listed and the problem is solved by

recursive enumerations of its higher level nodes.

For example, the operation of AND operation on both (f2; 2; 3g; f2; 3; 5g) and on

(f2; 1; 8g; f2; 3; 5g) produce f4; 3; Cg. Only the tuple of this type with minimal cost

and its corresponding child tuples are stored at node N6. This corresponds to f4; 3; 8g,

which is a partial solution that may be used in the future. For the combination of

S = P = 1, we choose the minimum cost solution at that node and construct a

gate corresponding to that subsolution. For each child tuple that has a f1; 1; Cg

con�guration, the cost is incremented by 1 by the literal operation. For example,

f1; 1; 7g is combined with f1; 1; 9g at node N6 to give the tuple f2; 1; 18g. Finally, at

node N6, the minimal cost obtained from all combinations of its children is 8, and

the subsolution f1; 1; 12g is obtained using the formula C = Cmin + 4, corresponding

to the gate formation operation.

3.2.2.6 Complexity Analysis

From the above procedure, we can see that the space complexity of the algorithm

is O(WHN) and the time complexity is O(W 2H2N). where N is the number of

tree nodes and W , H are the maximum allowable width and height of the domino

gate, respectively. At each node, the AND-OR cost function will be executed at

most W 2H2=2 times, but generally the number of executions is much lower than this

value. From the statistics of 16 ISCAS85 benchmarks, we �nd that approximately 4

cost function evaluations are performed, on an average, at every node.

25

3.3 DAG Covering Mapping

3.3.1 Motivations and Previous Work

There are two common approaches to map a DAG. One method is called DAG map-

ping [45, 47, 48] and it begins at a primary output and continues until a primary

input is encountered, or until another internal node that has been already mapped

is encountered. However, the mapping schemes at a node may contradict each other

at the multiple fanout nodes for parameterized library mapping method. The other

method, referred to as tree mapping, is to partition the DAG into disjoint set of trees

at multiple fanout nodes [44, 45] and compute the optimal solution at each tree.

The area cost of a domino gate is K+4 while that of a static gate is 2K, where K

is the number of literals. The delay cost of a domino gate is the sum of the pull-down

network delay and the inverter delay. If the transistor count of a tree is less than 4,

then the area cost of the domino mapping will be larger than that of static mapping,

even without considering duplication cost for unating [33]. The delay of the inverter

will also o�set the advantage of fast switching speed provided by domino logic. Since

large multi-level circuits often have a large number of multiple fanout nodes, the tree

mapping based procedure that breaks the subject DAG at multiple fanout points

often generates very small trees, leading to poor solutions. In our mapper, a greedy

method is provided to overcome the problem. The method decomposes the DAG into

larger trees as in [45] and permits the duplication of DAG nodes.

For static logic, duplication of network nets is mainly used to reduce the delay of

implementation. In domino logic, the area cost of a single input is just one NMOS

transistor and hence the duplication of DAG nodes will improve both area and delay.

26

3.3.2 Algorithm Outline

The DAG of the input network is decomposed at the reconvergent nodes, high fanout

nodes and the nodes that have already been mapped. A reconvergent node of a node

v is de�ned as a node from which there are two paths to node v. The high fanout

nodes are de�ned as those nodes whose fanout set has a cardinality that exceeds a

given threshold value. An example of DAG decomposition is shown in Figure 3.3.

A

B

C

D

E

F

decomposed tree

Figure 3.3: DAG decomposition

In Figure 3.3, node A is the root of the current tree and node B is the recon-

vergent node of node A. In this example, we consider node E to be a high fanout

nodes. Therefore, the DAG is decomposed at nodes B and E. Therefore, instead of

decomposing the DAG into trees rooted at nodes A, D, B and F, a larger tree rooted

at node A is formed and is mapped. A second tree rooted at C goes no further than

node D, which is already been mapped by the tree rooted at A.

Once a tree is obtained by decomposition, a postorder node cost calculation pro-

cedure and a preorder best solution assignment procedure are performed on the tree.

Multiple fanout nodes are greedily assigned the subsolution that favors the �rst traver-

sal to visit the node. If the multiple fanout node corresponds to an internal node of a

gate, then some logic duplication is necessary. This is illustrated in Figure 3.3, where

the multiple fanout node D belongs to both the tree rooted at node A and the tree

27

rooted at node C. Suppose tree A is mapped �rst and subsolution f2; 1g is assigned at

node D during the preorder assignment stage. During the mapping of tree C, f2; 1g

is the only subsolution available at node D. Therefore, the shaded area consisting of

nodes D, G, H is duplicated as part of both gate C and gate A. The motivation for

{2,1,*}

C

F

H

D

G

A

gate C gate A

Figure 3.4: Duplication at multiple fanout nodes

decomposition at reconvergent nodes is that it prevents contradictions in mapping

schemes at the fanout nodes. The purpose of decomposition at high fanout nodes is

to avoid the large area penalty caused by duplication for each fanout.

The algorithm is outlined as follows.

ALGORITHM: DAG Covering Mapping(current)

f

Traverse from node current to input, at each node v

f

If v is a reconvergent node or a high fanout node

DAG Covering Mapping(v)

else if v is already been mapped

Stop traversal

g

Postorder traverse the tree current, at each node v

DAG Node Mapping(v)

28

Preorder traverse the tree current, at each node v

Assign best mapping subsolution for node v

g

3.3.3 Duplication Cost Estimation

The DAG node mapping algorithm is similar to the node mapping algorithm described

in section 3.2.2.4, except that the duplication cost is also included in the node mapping

cost estimation. The node data structure of each optimal subsolution is modi�ed as

fS; P; C; fSl; Plg; fSr; Prg; DCg. Here, DC is the duplication cost if the current node

is a multiple fanout node and the current subsolution is assigned. Suppose that DCl

is the duplication cost of the left child under the constraint fSl; Plg while DCr is the

duplication cost of the right child under the constraint fSr; Prg, the duplication cost

function is as follows:

1. literal operation: if LITERAL DC = DC + 1; else DC is unchanged.

2. OR or AND operation: DC = literal operation(DCl) + literal operation(DCr)

3. gate formation operation: DC = 1

The additional cost caused by duplication will greedily be counted as part of the

mapping cost during the postorder node mapping procedure of the �rst traversal

through the node. During the �rst visit to a node, if the current node is a multiple

fanout node, then the cost of the current subsolution provided to its parents is C +

(DC � 1) � (Nfanout� 1), where Nfanout is the number of fanouts of the current node.

This is due to the fact that if the duplication subsolution is employed, then a cost of

DC transistors is needed for each fanout; otherwise, only one transistor is needed for

each fanout.

29

3.4 Dual-monotonic Gate Mapping

3.4.1 Dual-monotonic Logic

D

a NXOR bO1= O2= a XOR b

a

b

a

b

aa

G

clk clk

clk clk

Figure 3.5: An example of a dual-monotonic gate

A dual-monotonic gate is a merged gate that generates both negative and positive

polarities of a logic signal [17]. A typical dual-monotonic two-input XOR gate is

shown as Figure 3.5. The logic used to implement a � b and �a � b share the same

transistor, D. Due to the complementary relations between a and �a, a sneak path

between O1 and O2 can be prevented. While dual-monotonic implementations of

XOR logic use a smaller number of transistors than duplicated gates, this is not true

for all logic functions. Indeed, implementations of most common dual-monotonic

gates do not share as many transistors as the XOR gate.

3.4.2 Previous Work and Motivation

A domino gate implementation of an input network often requires the synthesis of

both positive and negative signals at many nodes due to the unateness requirements;

this is known as dual-rail logic. A logic function and its complement can be built as

two separate gates or as one merged gate (a dual-monotonic gate).

30

Recently, several papers on domino logic synthesis have appeared [33,34,9]. All of

them follow the synthesis methodology proposed in [33] in which dual-rail logic cones

are independently mapped. This approach has the advantage of maintaining the

mapping
exibility of each polarity. However, the presence of an XOR function and

its recovergence property will decompose the input network into very small mapping

trees, which causes a large area and delay cost for tree-by-tree technology mapping.

On the other hand, dual-monotonic XOR is a widely used con�guration in manually

designed domino networks; its application to synthesis of domino logic can e�ectively

solve the above problem. Therefore, we propose a mapping method that can make use

of the advantages of both cases by mapping dual-rail AND/OR logic independently

with standard domino gates, and mapping XOR/XNOR logic with merged dual-

monotonic gate.

3.4.3 Dual-monotonic Mapping Algorithm

The method consists of the following steps:

Step 1 Generate a DAG network of two-input AND/OR gates for the given circuit.

Step 2 Recognize the XOR/XNOR logic inside the DAG by pattern matching. If

both positive and negative polarity of XOR/XNOR logic are required, the

XOR/XNOR logic networks are collapsed into one XOR/XNOR node to be

implemented as a dual monotonic gate.

Step 3 Perform the technology mapping on the AND/OR/XOR/ XNOR subject net-

work, mapping AND/OR nodes to the standard domino gates and XOR/XNOR

nodes to various dual-monotonic gates.

The last step of the dual-monotonic mapping algorithm is technology mapping on

an AND/OR/XOR/XNOR network. During technology mapping, all possible match-

31

ings are enumerated at each network node. While the traditional mapping patterns

can be applied to AND/OR nodes, the matching patterns available to XOR/XNOR

nodes need to be considered. One single XOR/XNOR node can be mapped to a XOR

dual-monotonic gate. Moreover, the
exible con�gurations of dual-monotonic gates

enable the exploration of more matching patterns at XOR/XNOR nodes. For exam-

ple, the matching pattern of Figure 3.6(a) in the network corresponds to a three-input

XOR gate as Figure 3.6(b).

-
- b

bc
c

a

a

(b)(a)

XOR/XNOR

XOR/XNOR
a aa a

-

NODES
OTHER

cc

b

cc

b

clk clk

clk clk

Figure 3.6: Matching pattern 1: three-input XOR gate

The matching pattern of Figure 3.7(a) corresponds to the dual-monotonic gate

as Figure 3.7(b). It is obtained by replacing the transistors D and G in Figure 2 by

NMOS subnetworks.

hgf

hg

f

e

(b)(a)

a

AND

XOR/XNOR

OR
NODES
OTHER

-a

aa aa

e

clk clk

clk clk

Figure 3.7: Matching pattern 2: arbitrary AND/OR/XOR logic

32

In this work, we incorporate the above issues in the parameterized mapper in [9],

but any other mapper may easily be adapted for this purpose.

3.5 Flexible Domino Con�gurations

3.5.1 Wide Dynamic AND/OR Gate

The static gate following the precharged stack is not necessarily restricted only to

be an inverter. One of the domino gate con�gurations used by our mapper is the

wide dynamic AND gate [17]. As an illustration of the concept, we consider an

AND domino gate with a stack of six serial NMOS transistors. To overcome the

disadvantages of placing a large number of transistors in series, an equivalent structure

that split the long stack and replace inverter with NAND can be used in practical

designs. It is illustrated in Figure 3.8, where (a) is a standard domino gate and (b)

is its equivalent counterpart. In the same way, NOR function with a high fan-in can

be decomposed into two NMOS stacks with a NAND gate in the next stage.

(b)

CLK

CLKCLK

CLK

CLK

(a)

Figure 3.8: An example of a wide domino AND gate

In our mapper, to incorporate the mapping of wide dynamic AND/OR gate into

our parameterized library mapping frame, an enlarged subsolution index, illustrated

33

in Figure 3.9, is used. The subsolutions in region a correspond to standard domino

gate mapping, the subsolutions in region b to wide AND domino gate mapping and

the subsolutions in region c to wide OR domino gate mapping. The subsolutions in

region b are only valid for AND operators; if the subsolution at region b has minimal

cost out of all the subsolutions of the current node, a wide domino AND gate is

mapped. A similar argument supports the use of OR operations.

H

W

2H

2W
(a) (b)

b

c

a

Figure 3.9: Subsolution space to map wide domino AND/OR gates

3.5.2 Multiple-output Gate

Another possible structure, mentioned earlier, is the multiple-output domino gate.

Multiple-output gates are most commonly used in high speed adder design [21, 22].

Consider the \regular" domino structure shown in Figure 3.10 (a) with three outputs,

O1, O2 and O3. We can see that the O1 logic is evaluated through three levels

of domino gates. This may be implemented as a multiple-output domino gate as

shown in Figure 3.10 (b) by sharing common substructures used by the three outputs,

resulting in a smaller number of transistors. One problem that hinders the application

of multiple-output domino logic is the possible existence of a sneak path. In Figure

3.10 (b), although transistor B is o�, if the transistors I and A are on, then O2 will be

evaluated as `1'. In our mapper, we use separate pull-up transistors for each multiple

output branch, as shown in Figure 3.10 (c).

34

The mapping of multiple-output gates can be incorporated into the DAG covering

mapping in section 3.3. During the mapping process, a multiple-output gate is a

potential mapping scheme for the multiple fanout node during postorder mapping.

Hence, a multiple fanout node could either be duplicated, or mapped as a multiple-

output gate, or be mapped as a simple domino gate at the node, depending on the

cost tradeo�.

(a)

(b)
(c)

E

F

clk

clk clk

clk

O1

O2O3

B A

G

H

I

clk

C

D

clk

A

B

O2

O3
G

H

I

O1

clk

C

D

E

F

clk

A

B

C

D

E

F

O2

O3

clk

clk

G

H

I

O1

Figure 3.10: Multiple-output domino logic mapping

35

3.6 Technology Mapping for Static Logic

Technology mapping for static logic has been a cornerstone in the logic synthesis and

has been well studied in the past. A good introduction to technology mapping can

be found in [59, 60].

Existing technology mapping techniques can be di�erentiated from each other in

the following aspects:

Partitioning Depending on the method by which the input DAG network is parti-

tioned, DAG mapping or tree mapping can be used as described in Section 3.3.

Decomposition The idea of decomposition is to express input network in terms

of simple functions, such as two-input NORs or NANDS and a decomposed

network is often used as a startup point for technology mapping.

Matching We say a cell matches a subnetwork when they are functionally equivalent.

The matching approaches generally can be classi�ed into two categories: the

structural approach [44, 45, 54] and the boolean approach [51{53]. The degree

of freedom is associating input pins is modeled by the permutation matrix. We

refer to this type of matching as Boolean matching because it is based on the

property of the function and to distinguish it from another weaker formating of

matching. Given a structural representation of two functions by two graphs in a

pre-de�ned format, there is a structural matching if the graphs are isomorphic.

The parameterized library mapping algorithm presented in Section 3.2 is a fast

structural matching technique. Its speed advantage can be explained with the help

of Figure 3.11. In the input network shown in the �gure, cells a and b are matching

patterns at node E and F , respectively, and have the same structure at node D. In

mapping techniques as far as we know, the cells are matched and their mapping costs

36

are calculated, which involves visiting nodes that are descendants of node D in the

tree. However, in our matching approach, the structure and cost information of one

segment of both cell a and b are stored at one subsolution of node D and the nodes

below the node D need not be visited repeatedly. This subsolution is shared by all

the matching patterns at nodes above node D.

[S, P, C] D cell a

E

F

cell b

Figure 3.11: Matching technique of parameterized library mapping

In this section, we apply our matching technique described in Section 3.2 and the

partitioning technique described in Section 3.3 to technology mapping for static logic,

and a
exible on-the-
y phase assignment method is suggested.

3.6.1 Parameterized Library Static Mapping

For deep-submicron technologies, it has been shown in [61] that the ratio of the

delay of NAND/NOR gates to the inverter delay is becoming smaller than older

technologies, which encourages the use of longer chains of pull-up/pull-down logic

in circuits and therefore will lead to an increased usage of complex gate in deep-

submicron circuits. Therefore, the parameterized library mapping concept introduced

in Sec 3.2 is a promising direction for static logic. Other algorithms for mapping to

static CMOS parameterized libraries have been suggested in [62{64].

37

3.6.1.1 Decomposition and Compressed Network

The input network is decomposed into the compressed network, which is a network

consisting of two-input AND, OR nodes and inverting function is represented by

polarities of edges(positive and negative).

The input network for static logic technology mapping consists of AND, OR and

NOT nodes. To permit the free (virtual) movement of inverters throughout the net-

work in a manner that allows a better exploration of the design space, a compressed

network was introduced to represent the original network. Each vertex in the com-

pressed network corresponds to a AND/OR node in the original network, and stores

information on the implementation of both the true and complemented forms of the

logic function realized at that node; these will be referred to as the positive and

negative polarities, respectively. The NOT nodes in the original network are merged

into the polarity of edges in the compressed network. In the compressed network, an

edge between two vertices can have two polarities: if an inverter exists between these

nodes in the original network, then the edge polarity in the compressed network is

negative; otherwise, it is positive. The building of the compressed network can be

illustrated in Figure 3.12, where inverter node d is collapsed into the edge between a

and b by setting its polarity to be negative.

N

N
I

N

N

N

N

N

N

N

N

(a)

I: inverter node
N: other type of node

(b)

b

d

b’

a’a

c

c’

Figure 3.12: Constructing the compressed network

38

3.6.1.2 Node Data Structure

At each vertex of the compressed network, subsolutions corresponding to both positive

and negative logic polarities are maintained. In other words, given the constraints

(H;W) on each node corresponding to the height and width constraints on each gate,

we generate optimal subsolutions of the form [B; S; P]. Here, B represents the polarity

which could be either positive (B = 0) or negative (B = 1); S (1 � S � W) represents

the height of pull-down network and width of pull-up network; P (1 � P � H)

represents the width of pull-down network and height of pull-up network.

3.6.1.3 Node Constraint Functions

The operation of node constraints is similar to the node constraints function of domino

logic except that the operations must be extended to account for the polarities, B.

1. OR operation: tmpl = Bl � Fl, tmpr = Br � Fr

if (tmpl == tmpr)

f S = max(Sl; Sr), P = Pl + Pr, B = tmpl g

2. AND operation: tmpl = Bl � Fl, tmpr = Br � Fr

if (tmpl == tmpr)

f S = Sl + Sr, P = max(Pl; Pr), B = tmpl g

3. gate formation operation: S = 1, P = 1, B = Bmin

Here, Pl, Pr, Sl, Sr, S and P is as de�ned in section 3.2, Bl and Br are the polarities

of the subsolutions of the left and right children, respectively. The symbols Fl and

Fr represent the polarity of the edges to the left and right children, respectively. The

polarity of subsolution whose cost is minimal is represented as Bmin. Note that the

inversion of the polarity at gate formation is caused by the inverting nature of static

CMOS gates.

39

3.6.1.4 Node Cost Functions

If the area is measured by the number of transistors, the area cost function C can be

desribed as follows:

1. literal operation: if LITERAL C = C + 2; else C is unchanged.

2. OR/AND operation: C = literal operation(Cl) + literal operation(Cr)

3. gate formation operation: C = Cmin

3.6.1.5 Node Polarity Assignment

For polarity assignment of multiple fanout node, a DAG covering mapping algorithm

can be applied. The mapping procedure maps the largest possible logic cone in the

network even if it contains multiple fanout nodes. Once a logic cone has been mapped,

we �nd its optimal implementation and assign a polarity to each node; this polarity

for multiple fanout nodes is then �xed and used to map the remaining logic cones.

{1,1,1]: C + Cinv
[0,1,1]: C

a

b

d

c

Figure 3.13: Polarity assignment at multiple fanout nodes

The procedure is illustrated in Figure 3.13. The DAG is decomposed into trees at

reconvergent nodes such as node d, which contains the multiple fanout node, c, within

40

its transitive fanin cone. If the tree rooted at b is mapped �rst, then the resulting

polarity at node c is found and then �xed during the remainder of the mapping; for

example, during the mapping of the tree rooted at a. If a subsolution other than

[B; 1; 1] is chosen at a multiple fanout node, then the duplication of DAG nodes is

permitted to reduce the delay with a minor area overhead.

3.6.2 General Cost Functions

So far, the cost functions in this work have used the number of transistors due to

its simplicity, and for easy comparison with other work. Other cost models can also

be applied to the parameterized library mapping algorithm. By de�ning di�erent

formulas to the AND, OR, gate formation and literal operations, the cost parameters

such as delay, power, or area with consideration of routing cost can be used as the

minimization objective.

One problem we will address here is the situation where a library is provided

with a cost assigned to each library cell. In such a case, we suggest the use of a

table lookup method that above matching method can be applied to perform the

technology mapping.

The lookup table is in the size of (H �W)� (H �W) for AND(OR) operations

and the AND(OR) operation formula in section3.2 is modi�ed as:

AND(OR) node: C = Cl + Cr + table[AND(OR); [Sl; Pl]; [Sr; Pr]] (3.1)

By inspecting the library cells and �nding the regulation of library cells area

variation, lookup tables may be built. Here we illustrate the procedure by a simple

example illustrated in Figure 3.14. Suppose that O1 =!(a + b) and O2 =!(a + b) �

(c+ d) are two cells of a library. The procedure of building up the table is shown in

Figure 3.14. [0; 1] is the [S; P] value of the cell O1. The item in the table indexed

41

by [AND(OR); [Sl; Pl]; [Sr; Pr]] has the entry cost(O2)� cost(O1)� cost(O1), so that

when a tree of the type shown in Figure 3.14 (b) is to be mapped, its cost is correctly

computed as cost(O2).

H * W

H* W x

AND [0,1]

[0,1]

‘‘

x = Table[AND, [1,0] , [1,0]]

= cost(O2) - cost(O1) - cost(O1)

(c)

a b a

+

b

+[0,1] [0,1]

[1,1]O2

CELL 2: O2 = (a + b) (c + d)

(b)

a

+

b

O1

CELL 1: O1 = a + b

[0,1]

(a)

Figure 3.14: An example illustrating the construction of the lookup table

The above example is a simple procedure for building up a lookup table. In more

complex situations where signi�cant contradictions exists in table entries between dif-

ferent library cells and there are cells composed of multiple channel-connected com-

ponents [65] in the library, further e�orts need to be made; these are not considered

in this work.

3.7 Experimental Results

Our technology mapping package for both domino logic and static logic have been

implemented using C++. The experiments were executed on the LGSynth91 multi-

level combinational circuit sets.

All of the input circuits are �rst optimized with script:rugged of SIS except for

the results in Table 3.1. The input circuits for technology mapping for domino logic

are unate equivalents of the benchmark circuits. They are obtained by �rst being

optimized, then pushing the inverters as close to the inputs as possible, and �nally

42

duplicating the fanin cones of the inverters. Except for the results in Table 3.1, all of

our results were obtained under the constraints of W = H = 4.

In the result tables, the results are presented in terms of both area and delay,

where the area is estimated as the transistor count while the delay is estimated by

a coarse measure that counts the number of gate levels. In the following discussion,

several sets of results show the comparison of our work with previous work, with

a static CMOS implementation, as well as comparisons among various methods we

discussed in section 2-6.

3.7.1 Comparison with Previous Work

Table 3.1: A comparison of our results with [5]

Circuits Results [5] Reduction

#trans/#levels #trans %

c8 289/6 328/7 13.5 %

count 283/6 348/16 23.0 %

i6 890/2 890/3 0 %

C880 1056/9 1499/7 42.0 %

C499 1324/6 1856/12 40.2 %

dalu 2201/10 2142/15 -2.8 %

A comparison of our results with [33] are shown in Table 3.1. The �rst col-

umn shows our approach, while the second column is reproduced from [33]. Both

techniques use W = 6, H = 4 (W = H = 4 for dalu) as the constraints of the param-

eterized library. In the results of [33], the optimized input circuits were obtained by

converting a raw CMOS circuit to its unate equivalent and then simplifying it using

their unate optimization procedure, named unate optimization. In our procedure,

due to the di�culty of implementing unate optimization, our optimized input circuits

43

were simpli�ed using the same script �le as [33] without unate modi�cation, and then

converted to its unate equivalent, a procedure was called binate optimization. In [33],

it was shown that unate optimization is better than binate optimization in most cases.

We expect that we would have further reductions in the transistor count if we were

to implement the unate optimization procedure instead of binate optimization.

3.7.2 Comparison with Static Mapping with SIS

Table 3.2 shows a comparison of our results with technology mapping to a static

CMOS library using SIS. The cell library 44 � 3:genlib, adapted with the cell area

taken to be the transistor count, was applied for SIS static mapping, and the objective

for both mappers was area minimization.

The second column shows our results in terms of the number of transistors and

number of gate levels. The third column contains the results of SIS. The comparative

results are listed in column 5 and show that domino logic always has better delay

performance than its static counterpart in terms the number of levels. The area cost

of the domino circuits is smaller than or close to that of the corresponding static circuit

for the small and intermediate sized benchmarks. In large circuits, with the increase

of the depth of the circuit, the number of nodes that need to be duplicated becomes

larger. Therefore, the area cost of domino logic is larger than that of the corresponding

static implementation. In the last column, we report the ratio of nodes that must

be duplicated in comparison with the number of nodes in the unated circuits. In the

situation where the amount of duplication is larger, the static implementation has

the advantage in terms of area cost.

In addition to the transistor count as the area cost of domino and static logic,

there are other factors that need to be considered for area cost comparisons. Domino

logic uses a very small fraction of PMOS transistors while half of the total number of

44

Table 3.2: A comparison of our domino mapping algorithm with SIS

Circuits Domino CPU 44-3.genlib CPU Reduction Dup-ratio

#tran/#levels time(s) #tran/#levels time(s) % %

b9 240/4 0.1 322/8 11.5 25.5% 10%

c8 272/4 0.1 316/8 12.6 13.9% 24%

count 326/6 0.1 354/18 12.5 7.9% 22%

i6 761/3 0.4 1194/5 50.3 36.3% 13%

C880 1019/14 0.3 1048/33 40.9 2.8% 47%

C1355 1360/7 0.4 1378/20 36.8 1.3% 77%

C1908 1456/12 0.4 1344/25 39.9 -8.3% 74%

C2670 1713/13 0.8 1952/17 70.7 12.2% 58%

C3540 4002/20 1.4 3140/34 133.7 -27.5% 92%

C6288 10795/47 4.0 8752/104 228.0 -23.3% 97%

C7552 6653/15 2.8 5834/26 178.6 -13.9% 79%

t481 1587/11 0.5 1838/19 82.9 13.7% 5.6%

rot 1667/9 0.6 1754/20 57.0 5.0% 33%

dalu 2245/11 0.9 2306/23 99.4 2.8% 43%

k2 2492/12 0.9 2928/23 97.0 15.6% 2%

des 9493/10 4.1 8694/19 178.6 -9.3% 49%

transistors of static logic are PMOS transistors, which are typically sized to be twice

as large to obtain the same driving ability. Also, it may be noted that the
exible

clock scheme of domino logic usually splits the large combinational circuit into smaller

circuits associated with di�erent phases, which may reduce the duplication cost. A

major disadvantage in terms of area to domino implementation is the overhead for

clock routing.

The CPU time of our mapping algorithm and SIS mapper are listed in columns 3

and 5, respectively. We can see that the computation time required by our domino

mapper is very small.

45

3.7.3 E�ectiveness of Various Methods

In Table 3.3, we compare the e�cacy of various algorithms described in sections

2-6. The parameterized library mapping procedure of Section 3.2 constitutes the

basic framework of the mapper. Other methods are incorporated in this framework

separately or in various combinations.

Table 3.3: DAG covering mapping and dual-monotonic mapping

Circuits Basic DAG-mapping Reduc Dual-mono Reduc #XOR

#tran/#levels #tran/#levels % #tran/#levels %

b9 261/5 249/4 4.6% 261/5 0 % 0

c8 282/6 274/5 2.2% 282/6 0 % 0

count 357/16 332/9 7.0% 357/16 0% 0

i6 763/3 763/3 0% 763/3 0 % 0

C880 1163/20 1131/14 2.7% 1051/20 9.6 % 16

C1355 1824/9 1696/7 7.0% 1360/7 25.4 % 72

C1908 1978/18 1809/14 8.5% 1588/14 19.7 % 50

C2670 1992/12 1940/13 2.6% 1777/12 12.1 % 40

C3540 4527/23 4259/19 5.9% 4241/20 6.3 % 38

C6288 13702/71 12814/45 6.8% 10629/57 28.9 % 419

C7552 7919/18 7493/16 5.4% 6613/16 16.6 % 213

t481 1697/12 1656/12 2.4% 1697/12 0 % 0

rot 1777/10 1695/9 4.6% 1775/10 0.1 % 1

dalu 2360/13 2294/11 2.8% 2349/13 0.5% 3

k2 2884/16 2759/13 4.3% 2884/16 0 % 0

des 9945/10 9736/10 2.1% 9843/10 1.0 % 51

Table 3.3 shows the e�ciency of DAG covering mapping and dual-monotonic map-

ping. Column 2 contains the results obtained from the basic tree-by-tree parameter-

ized library mapping method described in section 3.2. Column 3 shows the results

obtained from the DAG covering mapping algorithm of section 3.3 and Column 4

46

shows the corresponding reduction relative to the basic algorithm. We can see that

this method improves the area in some measure and is always e�ective in reducing

the number of levels of the mapped circuit.

Column 5 shows the results obtained from the dual-monotonic mapping algorithm

of section 3.4 while Column 6 shows the corresponding area reduction and Column 7

reports the number of XOR/XNOR gates detected in the circuits. We can see that

in the circuits with signi�cant XOR substructures, the dual-monotonic gate mapping

is quite e�ective.

Table 3.4: Comparisons of various mapping methods

Circuits Basic Wide-gate Multi-output Combination

#tran/#levels #tran/#levels #tran/#levels #tran/#levels

b9 261/5 261/5 247/4 240/4

c8 282/6 280/6 276/4 272/4

count 357/16 355/16 336/6 326/6

i6 763/3 763/3 763/3 761/3

C880 1163/20 1161/20 1131/14 1019/14

C1355 1824/9 1824/9 1696/7 1360/7

C1908 1978/18 1965/18 1720/13 1456/12

C2670 1992/12 1976/12 1940/13 1713/13

C3540 4527/23 4421/23 4262/19 4002/20

C6288 13702/71 13702/71 12812/45 10795/47

C7552 7919/18 7905/18 7476/16 6653/15

t481 1697/12 1628/11 1653/12 1587/11

rot 1777/10 1767/7 1687/9 1667/9

dalu 2360/13 2339/13 2289/11 2245/11

k2 2884/16 2738/15 2599/12 2492/12

des 9945/10 9819/9 9695/10 9493/10

Table 3.4 shows the e�cacy of other methods. Column 2 contains the results

47

obtained from the basic tree-by-tree parameterized library mapping method same as

Column 2 of Table 3.3. Column 3 lists the set of results using the wide AND/OR

con�guration, and Column 4 shows the results obtained by mapping multiple output

con�guration with node duplication. Column 5 displays the cumulative results of

combining all of the above methods and is identical to Column 2 of Table 3.2.

3.7.4 Parameterized Library Static Mapping vs SIS

A comparison between our static mapper with results of SIS is shown in Table 3.5

using the constraints of H = W = 4. The largest example library available, 44 �

6:genlib is used for SIS technology mapping, with the objectives of both competing

algorithms being area minimization.

Two sets of comparison between our mapper and SIS are shown. The �rst set

uses the number of transistors as the area cost model, with the library 44-6.genlib

being altered so that the cell area equals the transistor count. Columns 2 and 3 show

the area cost and CPU time for our parameterized library mapper, and Columns 4

and 5 show the corresponding �gures for the SIS technology mapper. The second set

uses the cost model of library 44-6.genlib, and the cell area assignment of 44-6.genlib

is �tted into the parameterized library cost model using the lookup table technique

described in Section 3.6.2. Column 6 shows the results of the parameterized library

mapper using this cost model, and column 7 shows the SIS results under the same

model. Since the CPU times are similar to the �rst set of comparisons, they are

omitted here.

Table 3.5 shows that the parameterized library mapper can be ten to a hundred

times faster than the SIS mapper. The area cost result provides improvements of 0

to 12.3%, except for the circuit \count." From these results, we can see the param-

eterized library mapping method in Section 3.6 is a good choice when a faster and

48

Table 3.5: Comparison of the parameterized library static mapping method with SIS

Circuits Lib-free CPU SIS CPU Lib-free SIS

4-4 (s) 44-6 (s) 4-4 44-6

b9 306/7 0.07 316/8 33 213 227

c8 314/8 0.06 314/8 35 209 208

count 352/31 0.06 324/17 36 240 212

i6 1120/7 0.31 1194/5 136 739 813

C880 1024/19 0.21 1046/33 114 688 711

C1355 1352/17 0.27 1378/20 108 962 978

C1908 1324/30 0.27 1344/33 112.7 941 960

C2670 1770/20 0.56 1936/17 202.1 1188 1356

C3540 2820/34 0.94 3112/35 368 1864 2076

C6288 8388/107 3.24 8728/104 662 6016 6400

C7552 5546/25 2.14 5744/26 537 3768 3942

t481 1798/16 0.39 1832/19 219.6 1198 1235

rot 1668/15 0.45 1714/20 167.2 1162 1214

dalu 2106/22 0.67 2284/24 278 1330 1497

k2 2852/19 0.69 2910/23 254.4 2024 2101

des 8226/18 3.16 8628/19 1030 5337 5728

rougher mapper is required.

3.8 Conclusion

In this chapter, we have mainly explored technology mapping techniques for domino

logic. Based on principles of dynamic programming, an e�cient parameterized library

mapping algorithm is presented. Several other technology mapping methods, consid-

ering various features of domino logic, are proposed and incorporated in the mapper.

In addition, the parameterized library method is extended to static mapping.

49

The results of our work have provided a smaller area and much lower CPU time

than the previous work for both static and domino mappers. As in static logic technol-

ogy mapping, the area minimization mapping can be extended to delay minimization

mapping, power minimization mapping, as well as area minimization mapping under

timing constraints.

Compared to static CMOS mapping, domino logic synthesis results have better

delay performance (measured in terms of the number of levels), and better or equal

area performance in small and middle sized circuits. With the increase in the number

of levels in larger circuits, the logic duplication of domino implementation will increase

continuously, which lead to a larger area cost than the corresponding static imple-

mentation. Fortunately, domino implementations of combinational circuits usually

are divided into multiple phases and the proper partitioning of input combinational

network may signi�cantly reduce the logic duplication and therefore reduce the area

cost. We will address this problem in Chapter 5.

50

Chapter 4

0-1 Programming Output Phase

Assignment Problem

4.1 Introduction

A major problem in domino logic synthesis is related to its non-inverting property.

This feature necessitates logic duplication of some nodes of an input network for which

both polarities of a logic signal are required, as illustrated in Figure 4.1. The manner

in which the logic duplication problem is handled is the main factor that in
uences

the quality of the domino logic synthesizer. In this chapter, a 0-1 programming

formulation was applied to assign the output phase to reduce the duplication cost

and minimize the implementation cost.

The output phase assignment problem was �rst addressed and solved in [36]. The

problem was de�ned as follows: Given a combinational logic network and all primary

inputs in the true and complemented form, choose an optimal phase (i.e., polarity)

assignment for the primary outputs so as to require minimal logic duplication for

obtaining inverter-free logic.

51

I1

In O

O’

input cones

I1’

In’

I1

In

O’

O
input cones

input cones2

Figure 4.1: Logic duplication in domino logic synthesis

In [36], given an input network, the network is divided into the region that must

be duplicated and region whose duplication cost can be minimized by output phase

assignment, referred to as the optimizable logic region. The fanout nets in the op-

timizable logic region are called candidate nets. The problem of �nding optimal

output phase assignment to minimize the duplication of optimized logic region was

formulated as a 2SAT unate covering problem and solved by using binary decision

diagrams.

Our solution to the output phase assignment problem improves over the work

in [36]. In our mapper, the output assignment problem is formulated into a 0-1

integer programming problem and a standard linear programming package is used to

solve the problem.

The objective of our phase assignment problem formulation is to minimize the

implementation cost of the mapped network, instead of minimizing logic duplication

in the unmapped network as in [36]. From our observations, the output phase as-

signment accomplishes the objective of reducing implementation cost through several

factors. Reducing logic duplication is one such factor, and the cost di�erence between

the implementations of positive and negative polarity logic is another important con-

sideration of output phase assignment. Suppose W and H are the constraints on

the width (maximal number of parallel chains) and height (maximal number of series

chains) of the NMOS pull-down network of domino gate, respectively. Due to the ab-

sence of a complementary PMOS network in domino gate, domino gates usually have

52

large W with limited H, which causes the cost di�erence between implementations

of positive and negative polarity.

For example, given the constraints that H = 2 and W = 4, the logic network

of Figure 4.2(a) will be mapped to three domino gates as Figure 4.2(a) while its

complement logic in Figure 4.3(a) requires only one domino gate implementation as

4.3(b).

a dcb

e

AND

AND AND

(a) (b)

clk

clk

clk

Figure 4.2: The implementation cost of positive polarity

(b)

OR

OROR

e’

d’c’b’a’

(a)

clk

Figure 4.3: The implementation cost of negative polarity

The remainder of the chapter is organized as follows. In Section 4.2, we present an

outline of the output phase assignment algorithm. In Section 4.3, we describe the 0-1

integer programming formulation of the output phase assignment problem which is

set up with the objective of minimizing the duplication cost. In Section 4.4, the cost

53

di�erence between positive and negative polarities is considered and new 0-1 integer

constraints are incorporated aimed at total cost minimization. Experimental results

are presented in Section 4.5 followed by concluding remarks in Section 4.6.

4.2 Algorithm Outline

The algorithm can be outlined as follows:

1. Decompose the network into a disjoint set of trees and obtain the area cost

estimation of each tree by counting number of nodes in the tree or performing

tree-by-tree mapping on the network. The area cost of a tree is assigned to the

root node of the tree, u, as the weight C(u).

2. Find the optimizable logic region using the method of [36]; build a DAG from

the multiple fanout nodes of the optimizable logic region.

3. Write out the 0-1 integer linear programming formulation and solve it.

4.3 0-1 ILP for Minimal Duplication Cost

Given an input network, a DAG G(V;E) can be built as follows. Each vertex v 2 V

corresponds to a multiple fanout or a primary output node in the optimizable logic

region of input network. If vertex u is a literal node of a tree rooted at vertex v in

the original input network, there is a corresponding edge eu;v 2 E in DAG.

In the DAG, several constants are assigned to an edge or a node from the original

input network. These include:

54

� O(u; v), which represents the inversion polarity between vertex u and vertex v.

If there is an even number of inverters from vertex u to vertex v in the input

network, O(u; v) is 0; otherwise, O(u; v) is 1.

� C(u), which represents the area cost of the tree whose root is at vertex u in the

input network.

� k(u), a constant whose value is twice the number of fanout of vertex u.

The f0, 1g integer variables that will be included in the 0-1 programming formu-

lation include:

� r(u) = 1 if there is an inverter moving from the inputs of node u towards the

outputs of node u; else 0.

� x(u; v) = 1 if there is an inverter on the edge eu;v after the output phase assign-

ment; else 0.

� y(u; v) is a dummy variable that transforms a condition statement into a linear

constraint.

� q(u) = 1 if the fan-in tree of node i needs to be duplicated; else 0.

The weight of an edge eu;v after output phase assignment, denoted by w(u; v) is

given by

w(u; v) = O(u; v) + r(u)� r(v) (4.1)

Since O(u; v), r(u), r(v) 2 f0; 1g, w(u; v) takes a value in the set f�1; 0; 1; 2g. If

w(u; v) = 0 or 2, it represents the absence of an inverter between node u and node v.

If w(u; v) = �1 or 1, then there is one inverter between node u and node v. Therefore,

this may be captured by the condition

55

x(u; v) =

8
><
>:

0 w(u; v) 2 f0; 2g

1 w(u; v) 2 f�1; 1g
(4.2)

The above condition may be rewritten as a linear equation.

w(u; v) + x(u; v) = 2� y(u; v) (4.3)

where y(u; v) 2 f0; 1g is a dummy variable introduced to transform a condition

statement into a linear constraint.

Combining the equations (4.1) and (4.3), we have

2� y(u; v)� x(u; v) = O(u; v) + r(u)� r(v) (4.4)

If there is an inverter at any position in the fanout cone of a node u, the node

will have to be duplicated to ensure the unateness property for domino logic. This

condition can be given by the linear formula

q(u)� k(u)�
X

i2dir�succ(u)

(x(u; i) + q(i)) � 0 (4.5)

x(u,i1)
q(i1)

q(i2)
x(u,i2)

q(i(k-1))

q(i(k))

x(u,i(k))

x(u,i(k-1))

q(u)

Figure 4.4: An illustration of constraints (4.5) of 0-1 ILP

It can be illustrated as Figure 4.4. Here, i 2 dir � succ(u) implies that there

is an edge from node u to node i in the DAG G(V;E) de�ned in Section 4.3. The

56

constant k(i) was de�ned earlier and can easily be veri�ed to always be larger than
P

i2dir�suc(u)(u)(x(u; i) + q(i)). This formula implies that if any of its successors needs

to be duplicated, or if there is one inverter at the output edges of node u, node u will

have to be duplicated as q(u) is forced to be 1; otherwise the objective function will

force q(u) to 0.

Therefore, the output phase assignment problem can be formulated as the 0-1

integer linear programming problem:

minimize
X
u2V

C(u)� q(u)

subject to 2� y(u; v)� x(u; v) = O(u; v) + r(u)� r(v) 8eu;v 2 E

q(u)� k(u)�
X

i2dir�succ(u)

(x(u; i) + q(i)) � 0 8u 2 V

q(u); r(u) 2 f0; 1g 8u 2 V

y(u; v); x(u; v) 2 f0; 1g 8eu;v 2 E

4.4 0-1 ILP for Minimal Implementation Cost

This section modi�es the 0-1 formulation of Section 4.3. to incorporate the cost di�er-

ence between positive and negative polarity implementations to obtain the minimal

implementation cost.

In addition to the notation de�ned in 4.3, the symbols that will be used include:

Z(u) is a constant that represents the cost di�erence between optimal implemen-

tation of each of the two polarities. If the implementation cost of positive[negative]

polarity of the node u is p(u)[n(u)], then the value of Z(u) = p(u)� n(u).

We introduce t(u) as a variable that help to maximize r(u). Its value can be

57

expressed as follows.

t(u) =

8
><
>:

0 q(u) = 1

r(u) q(u) = 0
(4.6)

Similarly, we also de�ne a variable s(u)to minimize r(u) as

s(u) =

8
><
>:

0 q(u) = 1

1� r(u) q(u) = 0
(4.7)

There are three possibilities for each node after output phase assignment. A node

will either be duplicated, implemented in positive polarity, or in negative polarity. In

the case of no duplication at node u, if Z(u) > 0, it costs less to implement the node

with negative polarity; if Z(u) < 0, it is better to implement the node u with positive

polarity. Hence, using the previous de�nitions of q(u) and r(u), the problem can be

expressed as

if q(u) = 0 and Z(u) > 0;maximize r(u);

if q(u) = 0 and Z(u) < 0;minimize r(u):

The �rst statement can be expressed by linear equations

minimize �Z(u)� t(u)

subject to t(u) � 1� q(u)

t(u) � r(u)

q(u); r(u); t(u) 2 f0; 1g; if Z(u) > 0;

When q(u) = 1, t(u) is forced to 0. Hence, there is no limit on r(u) and the

duplication cost is given by C(u) � q(u). When q(u) = 0, r(u) is forced to be as

large as possible since the negative value of �Z(u). When polarity preferences of two

58

nodes con
ict with each other, Z(i) is the weight that decides which node should win.

Similarly, the second statement can be captured by

minimize Z(u)� s(u)

subject to s(u) � 1� q(u)

s(u) � 1� r(u)

q(u); r(u); s(u) 2 f0; 1g; if Z(u) < 0

Combining with the linear equations of section 4.3, the 0-1 ILP formulation of the

output phase assignment problem for cost minimization can be rewritten as

minimize
P

u2V C(u)� q(u)�
P

Z(u)>0 Z(u)� t(u) +
P

Z(u)<0 Z(u)� s(u)

subject to 2� y(u; v)� x(u; v) = O(u; v) + r(u)� r(v) 8eu;v 2 E

q(u)� k(u)�
P

i2dir�succ(u)(x(u; i) + q(i)) � 0 8u 2 V

t(u) � 1� q(u); t(u) � r(u) 8Z(u) > 0

s(u) � 1� q(u); s(u) � 1� r(u) 8Z(u) < 0

q(u); r(u); t(u); s(u) 2 f0; 1g 8u 2 V

y(u; v); x(u; v) 2 f0; 1g 8eu;v 2 E

4.5 Experimental Results

The above algorithms are implemented using C++ and incorporated as the preprocess

of parameterized library domino mapper addressed in Section 3.2. All of the input

circuits are optimized with script:rugged of SIS and targeted to the area minimiza-

tion. In the result tables, the results are presented in terms of area where the area

is estimated as the transistor count. To demonstrate the in
uence of cost di�erence

59

between two polarities to total implementation cost, the domino gates were restricted

to W = 8 and H = 2. Table 4.1 shows the e�cacy of our 0-1 programming output

Table 4.1: Output phase assignment using a 0-1 ILP

Circuits #po no-ass opt-ass1 opt-ass2 reduction

area area area %

b9 21 391 389 311 20.5%

c8 18 407 364 330 18.9%

i6 67 1298 1281 766 41.0%

C1355 32 2064 2064 2064 0.0%

C2670 140 2647 2624 2414 8.8%

C6288 32 14257 14257 14252 0.0%

C7552 108 9069 9069 8904 1.8%

rot 107 2332 2296 2196 5.8%

dalu 16 3020 2752 2745 9.1%

k2 45 3974 - - -

des 245 13130 13130 11710 10.8%

apex7 37 833 791 736 11.6%

frg1 3 362 362 362 0%

x1 35 861 927 850 1.3%

x3 99 2381 2360 2100 11.8%

phase assignment algorithms. Column 2 contains the number of primary output in

the circuits. Column 3 lists the results when the output phase assignment are not

used. Column 4 shows the results when 0-1 formulation of 4.3 is applied. Column 5

shows the results obtained by incremental 0-1 programming formulation in 4.4 while

Column 6 shows the corresponding area reduction. We use the linear program solver

lp solve 2:3 [66] to solve the 0-1 integer linear programming formulas. All of the

benchmarks can solved in under one minute with no or minor simpli�cation of 0-1

ILP except for the 0-1 programming problem for Circuit k2, which is too large to

60

yield the result in reasonable time.

It was observed that in some circuits such as dalu, the cost reduction by output

phase assignment mainly comes from the duplication cost reduction; in some circuits

such as i6 and b9, the implementation cost di�erence between two polarities becomes

the most signi�cant consideration of output phase assignment. In some case, the

two objectives of output phase assignment can be contradictory to each other. In

Circuit x1, the optimization for duplication cost minimization causes a cost increase

due to the increased cost of implementing the reversed polarity and increases the total

implementation cost.

4.6 Conclusion

In this chapter, a 0-1 integer programming formulation is provided for the output

phase assignment problem for domino logic. It considers the cost di�erence between

two polarities and enables a standard linear programming package to be used to

solve the problem. The results show up to 41.0% improvement in area. By replacing

the area cost of logic trees with power cost, we expect our 0-1 ILP of output phase

assignment can serve the power minimization objective proposed in [37] similarly.

61

Chapter 5

Timing-driven Partitioning of

Domino and Mixed Static-Domino

Circuits

5.1 Introduction

After the technology-independent logic design step, a speci�ed technology must be

chosen to implement the input logic network. Both static and domino implementa-

tions o�er various advantages. While static logic is commonly used for its robustness,

its speed may be inadequate to satisfy the clocking constraints. Although various

optimization tools like sizing and bu�er insertion can be used to increase the speed of

the circuit, the area cost may increase exponentially beyond a certain point, and it is

worthwhile to alter the logic style to meet such stringent constraints. Domino circuits

typically provide higher speeds than static logic while having a higher clock routing

overhead and are less noise-tolerant. Depending on the amount of logic duplication

required to make the network unate, domino circuits may use a larger or smaller

62

number of transistors than static circuits. Therefore, for optimality, a determination

must be made as to which parts of the circuit should be implemented in static logic,

and which parts using domino logic. This must be carried out while keeping the

requirements of the speci�ed clock scheme in mind.

In this chapter, we describe an automated design strategy to solve the following

problems with the goal of minimizing an objective function such as area or power,

under a set of timing constraints:

� We partition a circuit into static and domino regions, under the same clock

phase. Note that since one of the partitions may be empty, the two extremes

of constructing the circuit entirely using domino logic, or entirely using static

logic, are also feasible solutions to the problem.

� Under a two-phase clocking scheme, we address the problem of partitioning the

domino region to determine which gates are to be clocked by each clock phase.

Since domino implementations always use multiple phases, and most commonly,

two phase clocks, this is an essential problem in domino circuit design.

� For a two-phase clocking discipline, we utilize the solutions for the above two

problems to arrive at a
ow that partitions a circuit into a common two-phase

clocking strategy as Figure 2.2.

As will be described through an example in Section 5.2, for a partitioned circuit, the

logic duplication penalty for the domino segment depends on the location of the cut

between the partitions. Our method �nds a partitioning solution that takes this into

account while minimizing the area objective.

To the best of our knowledge, the only published work addressing a related prob-

lem is [18], which outlines a static-domino partitioning procedure. Their work �rst

implements the input logic using static gates, and then �nds a critical path and its

63

fanin transition region. A greedy approach is taken and the logic in this region is

then remapped to domino gates to maximize the use of domino logic gates. No exper-

imental results were presented in this work. In our paper, the problem is approached

systematically, and a network
ow based algorithm that provides an optimal solution,

within the accuracy limitations of the cost estimation, is proposed. Our procedure is

based on the following observations that di�erentiate it from [18]:

� Logic duplication can cause a large area penalty for large combinational cir-

cuits [33, 34]. A proper choice of the partitioning cut can reduce the duplica-

tion cost. Our partitioning procedure automatically creates the largest possible

unate region within the domino partition.

� The critical path and its fanin transition cone may form a large part of the input,

or possibly even the entire network (for a circuit with one primary output).

Implementing this in domino logic as in [18] may be costly and unnecessary,

and as long as the timing constraints are satis�ed, it may not be essential to

maximize the use of domino gates in the fanin cone.

� The work in [18] attempts to greedily minimize the number of domino transistors

by utilizing them only in the critical region. We use an estimator that directly

incorporates the area cost (including the duplication penalty) for static gates

and domino gates to �nd optimal combinations between domino and static gates

that minimize the overall cost function, while meeting the performance targets.

The chapter is organized as follows. In Section 5.2, we provide the problem de�ni-

tion and motivations. Next, Section 5.3 describes the complete algorithm for timing-

driven static-domino partition. This is followed in Section 5.4 by a description the

modi�cations to the algorithm of Section 5.3 for timing-driven two-way domino parti-

tioning. Section 5.5 presents the
ow of partitioning for the general two-phase clock-

ing scheme in Figure 2.2, and a description of the cost model used for partitioning

64

is provided in Section 5.6. Finally, experimental results are presented in Section 5.7

followed by concluding remarks in Section 5.8.

5.2 Problem De�nition and Motivations

Synchronous domino logic is conventionally divided into multiple phases. From vari-

ous clocking schemes for domino circuits described in Section 2.2, we can see that it

is important to decide which part of a given segment of combinational logic is to be

implemented with static, and which part to be implemented with domino logic. This

determination depends on the clocking frequency objective of a design. Moreover,

even for a segment of a combinational network to be implemented purely as domino

logic, it is necessary to partition the input network into several stages, corresponding

to each clock phase.

The clocking strategy of Figure 2.2 is the most commonly used clocking scheme for

domino circuits. In the remainder of this chapter, we will address the general domino

partitioning algorithm with special emphasis on this common two-phase nonoverlap-

ping clocking strategy.

The problems of static-domino partitioning and domino partitioning between the

two phases are critical problems to be solved in determining the optimal circuit im-

plementation. We de�ne these two problems concisely as follows:

Static-domino partitioning Given an optimized combinational circuit and delay

speci�cations on the outputs of the network, implement the nodes in the network

using either domino logic gates or static gates such that the cost is minimized,

assuming them all to be within the same clock phase.

Two-way domino partitioning Given an optimized combinational circuit to be

implemented entirely in domino logic and a two-phase nonoverlapping clock

65

scheme which permits inverters to be placed at the interface between the two

phases, partition the boolean network into two clock phases such that the cost

of domino implementation is minimized.

We will use the solutions to the above problems later in this paper to solve a more

general statement of the partitioning problem in Section 5.5.

For the problem of static-domino partitioning, we assume that we are provided

with a combinational logic network description as an input, and that it can be par-

titioned into a static and a domino region within the same clock phase. Under this

model, an additional precedence constraint that must be satis�ed that states that no

static logic gate is permitted to fan out to a domino gate in the same clock phase. A

violation of this requirement would lead to functional errors in the domino logic [18].

The timing constraint for this situation is that the partitioned circuit must have its

outputs ready at the end of the clock phase.

For the problem of two-way domino partitioning, we assume that the input is

a combinational logic network that is to be partitioned so that its primary outputs

are available in one clock cycle. This imposes a similar precedence constraint, where

a domino gate in �2 is not permitted to fan out to a domino gate in �1. Due to

the nature of domino logic circuits under two-phase nonoverlapping clocks, the latch

between the two phases forms a hard edge that prevents time borrowing between the

phases. This imposes a timing constraint that states that the delay within each phase

must be restricted to a half-cycle.

The timing driven partitioning method must consider two factors: the timing

constraints, described above, and the cost of the implementation, measured in terms

of the area or the power. We will �rst describe the algorithm using the area as a cost

measure, and then show how a cost function modeling the power can be incorporated

within the same framework. In our experimental results, the area is modeled as the

66

total number of transistors, but it is easy to incorporate a factor that models the clock

routing penalty by adding a factor that is proportional to the number of domino gates.

An important consideration in the area cost relates to the requirement that only

unate functions can be implemented in domino logic, as a consequence of the non-

inverting nature of the domino logic family. Therefore, intervening inverters are

handled by implementing a logic function and its negation separately, which duplicates

the cost of logic implementation for that logic cone [36]. However, we observe that

the duplication cost can be reduced by partitioning, and our formulation directly

incorporates the cost of duplicating non-unate logic within a domino region in the

cost function. To see this, consider the example shown in Figure 5.1.

+

*

*

* *

*

+

* *

+

* * * *

+ +

CUT B

CUT A

*a *

Part 1

Part 2

Figure 5.1: An example for static-domino partitioning

In Figure 5.1, assume that the segment labeled \Part 1" corresponds to a domino

implementation, while \Part 2" represents a static CMOS implementation. Two

possible cut lines are shown in the �gure. If cut A is used, then both a and a must

be implemented as unate functions, resulting in a duplication of the fanin cone of a,

doubling the cost of implementing this cone. However, if cut B is used instead, then

there is no need to duplicate the fanin cone of a as the inverter may be implemented

in static logic. Similarly, under the scenario where Part 1 corresponds to domino

logic driven by phase �1 of a two-phase clock, and Part 2 corresponds to phase �2,

67

with latches being placed at the cut, an identical argument holds, with the di�erence

that the inverter for cut B would now be implemented using the Qbar output of the

inserted latch.

5.3 Timing Driven Static-Domino Partitioning

5.3.1 Algorithm Outline

The two subproblems listed in Section 5.2 can be solved using similar algorithms,

using di�erent cost formulations. In this section, we will illustrate the algorithm for

static-domino partitioning. The algorithm applies a DAG technology mapper based

on dynamic programming, a timing analysis method based on PERT, and a maximum

ow algorithm to realize a timing-driven two-way partitioning.

The input to the algorithm is an arbitrarily optimized two-input AND-OR DAG

network. In outline, the algorithm consists of the following steps that are described

in detail in the remainder of this subsection:

1. Perform static technology mapping and domino technology mapping separately

on the entire logic network to determine a cost estimate for every vertex.

2. Find the candidate cut nodes in the network. A candidate cut node is de�ned as

a node that satis�es the criterion that a cut passing through it will not violate

the timing speci�cation.

3. Build the
ow network from the candidate cut nodes. The capacity of the

ow network is determined from the cost di�erence between static and domino

implementations in Step 1. A maximum
ow algorithm is applied to the network

to obtain a minimal cost cut [58].

68

5.3.2 Cost Estimation

The �rst step of partitioning is to perform static and domino mapping on the logic

network to obtain the cost estimation. The partitioning between domino and static

requires a cost comparison of each vertex of the network implemented using a domino

or a static implementation. While we would like to perform this determination on the

same network for purposes of storage e�ciency, this task is complicated by the fact

that technology mapping of domino logic requires the input network to be unated;

after unating, the topology of the new network will be di�erent from the original

network on which static mapping is performed. Moreover, inverters may be pushed

through the network using De Morgan's laws, and therefore their location is not

�xed. Depending on where the inverters are placed, the cost of logic duplication and

the positions at which logic duplication occurs could vary, and a good partitioning

algorithm should consider all such possibilities in arriving at a partition.

To address these issues, we use the compressed network introduced in Section

3.6.1.1, denoted asNtwin, to represent the original network. Each vertex in compressed

network corresponds to a node in the original network, and stores information on

the implementation of both the true and complemented forms of the logic function

realized at that node; these will be referred to as the positive and negative polarities,

respectively. An edge between two nodes can have two polarities: if an inverter exists

between these nodes in the original network, then the edge polarity in the is negative;

otherwise, it is positive. It is not necessary to store inverters in the original network

as nodes in the twin network; rather, these may be merged into the polarity of an

edge as shown in Figure 3.12. The lists of positive and negative polarity fanouts of

each vertex in Ntwin are maintained, and in case of domino mapping, the duplication

of any fanout is
agged.

The actual procedure used for domino and static mapping is based on the work

69

in [9], and is not described here. Once the technology mapping results on Ntwin

are available for both for static and domino implementations, cost estimations are

available for both the static and domino implementation at each vertex.

De�nition 1: We de�ne the following quantities at each node N .

p delayd(N)[n delayd(N)] : the positive [negative] polarity delay from the

inputs to node N using a domino implementation.

p delays(N)[n delays(N)] : the positive [negative] polarity delay from the

inputs to node N using a static implementation.

p aread(N)[n aread(N)] : the area cost of implementing the positive [negative]

polarity logic of node N using domino gates.

p areas(N)[n areas(N)] : the area cost of implementing the positive [negative]

polarity logic of node N using static gates.

The cost estimation at each vertex includes both delay and area information,

and the following quantities are calculated at each node. Note that p areas(N) and

n areas(N) can di�er by at most two since one can be obtained by placing an inverter

at the output of an implementation of the other. Therefore, storing only one of the

two values will lead to a negligible loss in accuracy. However, for domino circuits, due

to the requirement of the unateness property, the positive and negative polarities of

a node are implemented separately, which may lead to a signi�cant di�erence in their

values.

5.3.3 Determining the Candidate Cut Nodes

Once a cost estimation at each vertex has been obtained, the next task is to determine

the region that can be partitioned without violating the timing constraints. We

introduce the idea of a candidate cut node, illustrated in Figure 5.2.

70

INPUT

OUTPUT

Vertex v

Dd(i,v)

Ds(v,o)

Figure 5.2: Determination of candidate cut nodes

Assume that v is some vertex in Ntwin. If the cutset passes through the node, then

the input transition cone of v will be implemented by domino gates and the output

transition cone of v will be implemented by static gates. Let Dd(i; v) be the largest

delay from the inputs to node v using a domino implementation, and Ds(v; o) be the

largest delay from the node v to outputs through paths using static logic. Then the

maximal delay from the input to output that passes through the cut at node v will be

Dd(i; v)+Ds(v; o). If this value is smaller than the speci�ed delay, Tspec, then the cut

through node v is eligible; if not, it is certain to violate the timing constraint. The

procedure of �nding candidate cut nodes makes this determination at each vertex.

The value of Dd(i; v) is directly obtained from delayd(v) from the technology

mapping phase. The value of Ds(v; o) can be obtained using a PERT-like procedure

[65] to traverse from the outputs of the network towards its inputs. The algorithm

for �nding candidate cut nodes is as follows:

ALGORITHM: Find candidate cut nodes

For all nodes i, Ds(i; o) = 0;

Perform a PERT traversal from outputs to inputs.

At each node v

f

If Ds(v; o) + delayd(v) � Tspec

71

v is a candidate cut node;

Slack = max[delays(v)� delays(i)], 8i 2 inputs(v);

For each input i of v

Ds(i; o) = max[Ds(i; o); Slack +Ds(v; o)];

g

5.3.4 Finding the Minimum Cut

After all of the candidate cut nodes have been found, a maximum
ow network is built

using these nodes using an identical DAG structure as in the original circuit, with

capacities assigned to the edges. The max-
ow min-cut algorithm is then applied to

this network to �nd the minimum cut.

5.3.4.1 Maximal Flow Capacity Assignment

The DAG technology mapping procedure performs the mapping of a Boolean net-

work to the gates in a parameterized library. For a multifanout node in the network,

the area contribution of the node is divided by the fanout count of the node, as

in [47], so that the area value of each node, area(N), is the approximate area contri-

bution of its fanin transition cone. Therefore, for any cut on the graph, the area cost

in the region from the primary inputs to each cut set node can be approximated as
P

i2CutSet area(Ni), where the value of aread(Ni) is set to min[p aread(N); n aread(N)].

In the example of Figure 5.3, if nodes a; b; c and d form the cut vertices, then the area

of region Y is calculated as aread(a) + aread(b) + aread(c) + aread(d).

For a given cut that divides the network into two parts, referred to as Region X

(closer to the inputs) and Region Y (closer to the outputs), the cost can be calculated

as follows. Assume the area cost of the entire network implemented in static logic is

As(sum), and the area costs for Region X to be implemented in static and domino

72

b

c da

INPUT

OUTPUT

Region X

Region Y

Figure 5.3: Evaluating the cost of a cut

logic are, respectively, As(X) and Ad(X). Then the total cost after partitioning,

with Region X implemented in domino logic and Region Y implemented with static

gates is As(sum) � As(X) + Ad(X). Since As(sum) is constant over all partitions,

the objective of minimizing cost is equivalent to minimizing �As(X) + Ad(X) =
P

i2cutset(aread(i)� areas(i)).

Based on this, we reduce the problem to one of �nding a minimum cost vertex cut

on the network. The capacity associated with each node i is set to aread(i)�areas(i).

The vertex cut must maintain the predecessor constraints that dictate that no static

node can feed a domino node.

5.3.4.2 Building the Maximum Flow Graph

The maximum
ow algorithm is a well-established approach for �nding minimum cost

cuts. The procedure of building the maximum
ow network can be illustrated on the

example circuit of Figure 5.1.

After performing static and domino mapping on Ntwin and determining the can-

didate cut nodes, we obtain an example circuit shown in Figure 5.4 (a). The shaded

part of the network shows the region containing the candidate cut nodes. There are

two weights on every node, which represent the result of domino mapping, aread(i)

73

and the result of static mapping, areas(i), respectively.

T

h’b’

c

f

f’

S

0 -8

8

8

88

0

88 8

8

88
8

-2

a

a’

e’ c’

g’

8

b hd

e

g

8

0-8

1

8

2

d’

*

*

*

+

* *

+

**

+

* *

+

*

*

[domino cost - static cost]

*

*

[30-34] PI+

[8-8][8-8] [8-8] [8-8]

[12-20] [12-20]

[21-21]

[0-0]

[0-0]

PId

e

f [34-33]

c[18-14]

b

h

g

a

(a) (b)

Figure 5.4: Boolean network after mapping and candidate cut node decision

Finding the minimum cost cut of the above network is equivalent to �nding the

minimum cost cut on the maximum
ow graph shown in Figure 5.4 (b). In the list

of candidate cutsets, the nodes in the shaded region that are closest to the primary

inputs are connected to the source node, and the nodes of the region that are closest

to the primary outputs are connected to the sink node. Each vertex in Figure 5.4 (a)

is split into two vertices connected by an edge of capacity aread(i)� areas(i).

However, before the standard max-
ow min-cut algorithm can be applied on the

network, two conditions in the network must be considered:

1. The vertex cut must maintain the predecessor constraints that dictate that no

static node can feed a domino node. The solution to this problem is provided

in the work in [67, 68].

2. Standard maximum
ow algorithms cannot handle edges with negative capaci-

ties, and the network must be modi�ed suitably.

To solve the problem, we heuristically transform the vertex-cut maximum
ow

74

network into an edge-cut maximum
ow network and and translate it into a standard

maximum
ow network with nonnegative edge capacities.

T

S

8

88

8
8

88

8

8 8

8

5 5

d h

e c

f g

8
8

8 8

a b

0
08

18

8

15

8

8 14

8 0

T

8

S

8

(b) STEP 2

b h

e
8

0

-4

88

ad

8

c

h

gf

T

(a) STEP 1

8 8

gf

ce

b

S

0 -4 -8

0 1

2 -1 -1

d a

0+8

-1+6

-8+8
-4+4

0+18

2+12

-4+4 0+8

initial flow=32

-1+6

1+14

(c) STEP 3

Figure 5.5: Constructing the edge-cut maximum
ow network

The procedure consists of the following steps:

1. Building the edge cut maximum
ow network.

If (u; v) is an edge originating at the candidate cut node u in Ntwin, the capacity

of the edge is heuristically assigned to Cinit = (aread(u)�areas(u))=fanout(u),

where fanout(u) is fanout number of node u.

2. A positive initial
ow is injected into the source node, and the initial
ow is

distributed into the whole network. The
ow at each node is calculated by a

PERT-like traversal on the DAG, with the
ow from node u to a fanout node

v being calculated as F low(u; v) =
P

i2input(u)(F low(i))=fanout(u). Since this

is a feasible
ow, updating the capacity C of each edge as Cmodified(uv) =

Cinit(uv) � F low(uv) leaves the identity of the minimum cost cut unchanged.

This procedure is repeated until the value of Cmodified for each edge is nonneg-

ative; it is easily veri�ed that this method must converge.

3. For each edge (u; v) in the graph, a new edge (v; u) with a capacity of 1 is

75

introduced into the graph to force the predecessor constraint.

The max-
owmin-cut algorithm is then applied to the network to obtain the minimum

cost cut.

5.4 Timing Driven Two-way Domino Partitioning

The problem of two-way domino partitioning of a circuit under a two-phase clock is

to determine which gates in the circuit should be clocked by the �rst clock phase,

and which by the second clock phase. Like the static-domino partitioning scenario

described earlier, there is an inherent precedence constraint that states that no gate

clocked by �2 may fan into a gate clocked by �1. The common features of the

two problems is that the partitioning itself in
uences the cost of implementation

area. The di�erences between the two lie in the manner in which the candidate cut

node is chosen, and how the capacities in the max-
ow network are assigned. These

di�erences are summarized as follows:

Determining the candidate cut nodes For any vertex N of the input network,

let Dd(i; N) be the largest delay from the inputs to node N and let Dd(N; o)

be the largest delay from node N to the outputs, calculated using a reverse

PERT traversal as before. The physical meaning of the cut in this situation

is that if the cutset passes through some node N , then all gates in the fanin

transition cone of N will be clocked by clock phase �1, and all gates in the

fanout transition cone of N will be clocked by �2. Therefore, since candidate

cut nodes are those that satisfy the timing constraints in each phase and no

time borrowing between two phases, a vertex is a candidate cut node if both

Dd(i; N) and Dd(N; o) are smaller than the clock pulse width.

76

Maximal
ow capacity The two clock phase regions must be separated by a latch,

which provides the ability to invert a signal. The cost function here is the cost

of latches and the cost of logic duplication.

In the input network, some of the logic nodes must be duplicated since the logic

function is required in both true and complemented forms, while some of the

other logic outputs are required only in one polarity and need no duplication.

There are two possible cases:

� Assume that N is a node at which both the true and complemented form

of the logic function are required. If this node does not belong to the

cutset, then the logic must be duplicated, and hence the area cost at this

node is p aread(N) + n aread(N). If the node lies on the cut, then only

one polarity of the logic needs to be generated and the other is generated

by inverter or within the latch placed at the cut. Therefore, the area

contribution of the node can be modeled as min[p aread(N); n aread(N)].

Therefore, the area cost di�erence between placing node N on the cutset

or not is the p aread(N) (n aread(N)]), plus the latch area.

� On the other hand, for a node N at whose output only one polarity is

required, the area cost di�erence between passing a cut through N or not

is merely the area of the latch.

In either case, the capacity corresponding to a cut at this node is represented

by the area cost di�erence values de�ned above.

77

5.5 A Partitioning Flow for a General Two-phase

Clocking Strategy

Using the solutions developed in previous sections, we solve the problem under the

general two-phase clocking scheme in Figure 2.2. We present two design
ows, the

�rst of which is Flow 1 below:

1. We �rst perform static-domino partitioning on the entire network to divide the

circuit into domino and static regions, labeled, respectively, as Region 1 and

Region 2. The timing constraint speci�ed here is a full clock cycle.

2. We now specify the required time at the output of Region 1. Next, we perform

two-way domino partitioning on this region to obtain the domino partition to

be (tentatively) clocked by phase �1 of the clock (Region 3) and the region to

be clocked by phase �2 of the clock (Region 4).

3. Region 3 is now assigned to Phase 1; however, we now investigate the possibility

of implementing a part of it in static logic. Therefore, we perform static-domino

partitioning on this region to divide it into a phase �1 domino region (Region 5)

and a phase �1 static region (Region 6).

The end result of this procedure is that Region 2 and Region 6 are implemented in

static CMOS, Region 5 is implemented as phase �1 domino, and Region 4 as phase

�2 domino.

Another possible partitioning design
ow (Flow 2) �rst performs two-way domino

partitioning on the input circuit, followed by a static-domino partitioning step on each

of the two resulting partitions.

78

5.6 Cost Modeling

In the discussion so far, we have used the area as the cost function for partitioning.

However, the algorithm may be adapted to other cost objectives, and in this section

we will describe a power model incorporated into this algorithm.

5.6.1 Power Model

The dynamic power dissipation is given by

Power = Pt � CL � V
2
dd � fclk (5.1)

where Pt is the transition probability, CL is the loading capacitance, Vdd is supply

voltage, and fclk is the clock frequency. Since we assume that Vdd and fclk are con-

stant over the optimization, it is enough to consider Pt � CL as the objective. In the

succeeding description, we denote the probability that a node is at logic 0 or 1 as

P (0) and P (1), respectively.

Power Model for a Domino Gate

A domino gate must be precharged during every clock cycle. Therefore, some nodes

may be immediately discharged during evaluation after being precharged, possibly

leading to a higher activity factor [38]. For domino logic, the probability of a 0-to-

1 transition at the output of the domino gate is the probability that domino gate

evaluates to 1. This is identical to the probability of a 1-to-0 transition at the dy-

namic node d in Figure 2.1. Since each 1-to-0 transition must correspond to a 0-to-1

transition, the transition probability at these nodes is given by Pt = P (1).

Under the assumption all transistors of the same type have the same size, and that

pmos transistors are sized to be larger than nmos transistor by a factor cpnratio, the

79

pmos to nmos gate capacitance ratio is cpnratio. Therefore, the power dissipated by

the gate is P (1)� ((1 + cpnratio) +Nfanout)� Cgate, where Nfanout is the number of

fanouts driven by the gate and Cgate is the gate capacitance of an nmos transistor. In

the formula, the quantity \1 + cpnratio" represents the nmos and pmos transistors

of the inverter, corresponding to the load driven by the dynamic node, and Nfanout

represents the load driven by the domino gate.

We also model the power dissipation of the clock tree required to drive the domino

gates as part of power consumption. The two clock controlled transistors make a

transition each time the clock signal changes, and have a transition probability of 1.

Therefore we model the power consumption for the domino due to the clock network

by (1 + cpnratio)�Cgate. The power due to additional routing may also be modeled

by an additive factor here, but we have not considered it in our experimental results.

Therefore, the total power dissipation of the gate is

Pdomino = Cgate � [(P (1) � (1 + cpnratio +Nfanout) + (1 + cpnratio)] (5.2)

Power Model for a Static Gate

For static gates, the transition probability Pt is well known to be P (1)� (1� P (1)),

and the equation for the power dissipation is

Pstatic = P (1) � (1� P (1)) � Cgate � ((1 + cpnratio) �Nfanout) (5.3)

Other Considerations

Since domino logic has the advantage of having no glitching transitions and signi�-

cantly smaller short-circuit dissipation, we alter the power equations above to re
ect

this fact. We make a simple modi�cation to the static power dissipation equation

80

given by (5.3) as

Pstatic = P (1) � (1� P (1)) � Cgate � ((1 + cpnratio) �Nfanout) � cglitch; (5.4)

where cglitch > 1 is a constant to compensate for the additional power dissipation

error caused by glitches. Similarly, the domino power dissipation equation of (5.2) is

modi�ed to

Pdomino = P (1) � Cgate � ((1 + cpnratio +Nfanout) � cshort + (1 + cpnratio)); (5.5)

where cshort < 1 is a constant to make up the power estimation error caused by short

circuit consumption.

5.6.2 Delay Model

A transistor level Elmore delay model that is similar to that in [69] was used here.

While the Elmore delay is known to be limited in its accuracy, it is reasonable to use

it here for a fast and approximate delay estimate early in the design
ow shown in

Figure 2.5.

Delay Model for a Domino Gate

The delay of a domino gate is given by

Ddomino = Rn�(1+H)�Cgate�(1+cpnratio)�cdomino+Rp�Cgate�Nfanout+Delaypara; (5.6)

where Rn, Rp are the driving resistances of the NMOS transistor and the PMOS

transistor, respectively, H is the maximum height of the NMOS pull-down network,

cdomino is a delay reduction factor attributed to the absence of short circuit current

during transition of domino gate. The �rst term in Equation (5.6) represents the delay

of NMOS pull-down network that is driving an inverter. The existing clock controlled

81

transistor at the bottom of the NMOS pull-down network contributes the (1 + H)

factor in Equation (5.6). The second term in Equation (5.6) represents the delay

of inverter that is driving the fanout gate capacitance. The third term represents

the delay caused by parasitic capacitance due to source/drain capacitance within the

gate. The Delaypara is calculated by modeling a gate as a distributed RC network

and �nding the corresponding Elmore delay expression.

Delay Model for a Static Gate

Separate rising and falling delays were used for static gate. They are given by

Dr;static = Rn �H � Cgate � ((1 + cpnratio) �Nfanout) +Delaypara

Df;static = Rp �W �Cgate � ((1 + cpnratio) �Nfanout) +Delaypara;

where H, W is the maximum height of the NMOS segment and the PMOS segment

of the static gate, respectively.

5.7 Experimental Results

The entire partitioning mapping
ow has been implemented using C++. The param-

eterized library domino technology mapping algorithm of [9] is used for the domino

technology mapping. The parameterized library contains all possible cells with up to

4 transistors in series and 4 transistors in parallel. The static technology mapping

method modi�ed from [9] is used for the static technology mapping to a parame-

terized library that contains all possible cells with up to 3 transistors in series and

3 transistors in parallel. The mapping objective is area minimization. An initial

technology-independent logic minimization for all circuits was performed using SIS

with script.rugged script �le. The number of transistors is used to represent the area.

82

The delay estimation is obtained from the delay model described in Section 5.6.2.

The primary inputs are assumed to be available in true and complemented form, and

it is assumed that each of these is driven by a
ip-
op that provides that inverted

signal at no cost. The partitioning algorithm is applied on the LGSynth91 multi-level

circuits.

Table 5.1: Results of the static-domino partitioning algorithm

Circ- Domi Static No spec Spec=(�1:25) Spec=(�1:05) CPU

uits Ntran Ntran/Del Ntran Gd=Gs Ntran Gd=Gs Ntran Gd=Gs (s)

c1355 1824 1302/2.25 1302 0/260 1800 170/104 1800 170/104 1.4

dalu 2360 2192/2.16 2098 97/198 2096 147/132 2096 189/75 7.9

c880 1163 982/2.08 958 21/124 1015 56/88 1027 62/85 1.4

count 357 336/2.77 344 5/54 350 23/30 353 32/18 0.3

c1908 1978 1308/1.78 1306 5/263 1723 174/86 1928 238/34 1.4

c2670 1992 1754/1.75 1775 79/173 1775 79/173 1774 81/170 3.5

c3540 4527 2850/1.43 2748 88/349 3312 260/218 3987 461/26 10.9

c6288 13702 8350/1.78 8340 16/1771 12079 1301/493 13456 1733/73 33.5

k2 2884 2896/1.54 2884 368/68 2884 368/68 2884 368/68 8.6

des 9945 8134/4.25 7527 160/915 7536 165/911 7536 165/911 60.2

c7552 7919 5464/2.35 5370 78/296 5987 375/578 6198 456/504 30.9

t481 1697 1832/1.35 1695 203/19 1695 203/19 1693 206/15 3.7

rot 1777 1536/1.99 1462 55/171 1514 87/137 1611 126/103 3.0

The results of static-domino partitioning are shown in Table 5.1. The second and

third columns show the results of pure one-phase domino mapping and pure static

mapping, respectively. The delay of the static implementation is also shown. All

delays in this table are normalized so that \�1:0" corresponds to the delay of a purely

domino implementation. Next, for various delay speci�cations, we list the number of

transistors, Ntran, and the number of domino/static gates (Gd=Gs) using our method.

83

From the table, we can see that when the timing constraints are larger, the cost

is smaller than the minimum of columns 2 and 3, as expected. We observe that

domino implementations of the benchmarks usually have a speed advantage over static

circuits, but tend to have larger areas. Therefore, the tighter the timing constraints,

the more domino gates are required, and the larger the area cost. The average CPU

execution time of static-domino partitioning including technology mapping is shown

in column 10.

Table 5.2: Results of the two-way domino partitioning algorithm

Circuits Domino No spec S=(�1:05) CPU

Ntran Ntran Ntran (s)

c1355 1824 1656 1600 1.8

dalu 2360 1971 2080 10.0

c880 1163 933 1037 4.6

count 357 267 347 0.4

c1908 1978 1867 1838 2.7

c2670 1992 1703 1705 6.0

c3540 4527 3499 3499 11.7

c6288 13702 13173 13170 96.4

k2 2884 2856 2920 9.6

des 9945 8265 10835 111.5

c7552 7919 6434 6607 44.6

t481 1697 1638 1812 5.43

rot 1777 1422 1638 4.9

The results of two-way domino partitioning are shown in Table 5.2. Column 2

shows that the results of one phase domino implementation are identical to Column

2 of Table 5.1. Column 3 shows the two way partitioning results without any timing

speci�cation and Column 4 shows the results under timing speci�cation of �1:05. If

84

the maximum delay for the domino mapping is x, then �1:05 speci�cation represents

the fact that a delay constraint of x� 1:05� 0:5 is assigned to each phase of domino

partition, corresponding to the fact that the total delay must be evenly distributed

over the two partitions for a symmetric clock scheme. The area cost for the latches

and inverters between two phases is not counted. In most cases, the resulting area is

about the same or larger for the tighter speci�cation, as expected. In a few cases, a

slightly smaller area is obtained (but within a reasonable margin of error); this is due

to approximations in the cost estimation for the max
ow problem. The di�erential

between Ntran(no spec) here and column 2 shows the reduction in logic duplication

obtained by exploiting the inverters at the partition boundary. The CPU execution

time for the two-way domino partitioning procedure is shown in the last column.

Table 5.3: Results of applying the partitioning
ows for the two-phase clocking scheme

Circuits Ntran/Nlatch

Flow 1 Flow 1 Flow 2 Flow 2

�1:25 �1:05 �1:25 �1:05

c1355 1408/8 1456/8 1452/48 1486/48

dalu 1998/56 2050/78 1923/63 2049/117

c880 944/13 953/14 926/43 943/43

count 346/9 345/14 337/23 338/23

c1908 1449/46 1560/46 1519/40 1590/60

c2670 1538/52 1538/52 1548/95 1548/95

c3540 3063/60 3235/68 2943/53 3277/53

c6288 11604/104 12511/115 12105/110 12410/111

k2 2691/157 2795/152 2862/147 2889/156

des 7510/118 7513/119 8452/437 8766/437

c7552 5754/164 5772/164 5701/192 5892/194

t481 1701/84 1752/90 1831/80 1833/85

rot 1463/36 1515/51 1485/118 1538/119

85

The results of Flow 1 and Flow 2 from Section 5.5 for the general two-phase

clocking scheme are shown in Table 5.3. We lists the number of transistors, Ntran,

and the number of latches, Nlatch. The experiments were executed under two sets of

delay speci�cation of �1:05 and �1:25. From the results, we can see that that while

we �nish the task of partitioning the combinational circuits to �t into the two-phase

clocking strategy, we use much less area than domino logic and obtain the almost

the same speed as the domino implementation. If the timing constraints are more

relaxed, the resulting area will be even smaller. Therefore, our method can be used

to �nd an area-delay tradeo� curve for static-domino partitioning. It is observed that

Flow 2 introduces more latches than Flow 1. This can be explained by the fact that

it begins with an initial two-way domino partition and hence must insert latches at

the boundaries even if they are not essential to the �nal partition. The variation in

the number of transistors with the delay speci�cation shows the expected trends.

The partitioning algorithm was also be applied to the power model provided in

Section 5.6.1 and the results for static-domino partitioning are shown in Table 5.4.

Values of power consumption are in normalized units. The second and the third

columns show the power dissipation as a result of pure domino mapping and pure

static mapping, and the last three columns show the power corresponding to di�erent

delay speci�cations.

5.8 Conclusion

In this chapter, we have explored algorithms for timing-driven static-domino parti-

tioning and for timing-driven two-way domino partitioning. The experimental results

are executed with the aim of minimizing both the area and the power dissipation.

Our results show that partitioning can e�ectively reduce the logic duplication penalty.

The two algorithms are then applied to partition an input network so that it con-

86

Table 5.4: Results of static-domino partitioning for power minimization

Circuits domino static static-domino partitioning

�1:5 �1:2 �1:05

c1355 875.1 242.9 709.6 712.2 868.7

dalu 1232.1 303.4 368.6 365.3 654.4

c880 506.1 151.6 178.1 187.2 311.5

count 165.5 26.1 87.7 111.8 119.6

c1908 1016.5 230.5 458.0 913.8 968.6

c2670 842.9 340.2 296.3 319.5 493.6

c3540 2211.1 539.4 698.1 1276.3 1697.1

c6288 7112.9 2144.0 3867.6 6047.4 6960.6

k2 2205.7 185.4 367.7 520.8 640.7

des 5347.4 1533.1 1274.5 1321.9 1321.9

c7552 3963.3 1481.4 1619.1 1891.3 1994.5

t481 1300.6 161.8 199.0 525.7 551.6

rot 773.4 248.8 346.5 459.0 465.1

forms to a common two-phase nonoverlapping clocking scheme. Our results show

that the area of the original one-phase domino network implementation is reduced

signi�cantly, while maintaining the circuit speed of a pure domino implementation.

87

Chapter 6

Timing Veri�cation and Sizing

Optimization of Mixed

Static-Domino Circuits

6.1 Introduction

The correct functionality of a circuit containing domino logic is contingent on correct

timing relations between the clock and logic signals of domino gates. For a given

circuit topology consisting of static and domino gates, timing veri�cation and opti-

mization is an essential step of the design process. In di�erent designs, domino circuits

may utilize various clocking schemes; some typical clocking strategies are shown in

Figures 2.2, 2.3 and 2.4 of Section 2.2. In addition, various self-timed domino and

wave-domino circuits are also used. The goal of the section is to provide a general

timing veri�cation and sizing tool for mixed static-domino circuits that presents the

problem in a similar framework as the corresponding solutions for static circuits.

The basis for this work lies in the timing analysis technique used in [28, 29] for

88

timing analysis at the gate level. Although several sizing algorithms have been pub-

lished in the past (a survey is provided in [65]), most of them have not considered

domino logic. Although the research of [30, 31] performs sizing for domino circuits,

both techniques perform local optimizations, optimizing only one domino block at a

time. In [32], a sizing tool for domino style circuits called Focus was developed.

The rest of this chapter is organized as follows: In Section 6.2 we present the

long path and short path time constraints domino logic gate, followed by the timing

veri�cation and sizing algorithms described in Section 6.3. Section 6.4 discusses the

charge sharing measurement and correction problem after timing veri�cation and

sizing. Finally, we present the experimental results in Section 6.5 and conclude the

chapter in Section 6.6.

6.2 Domino Logic Timing Constraints

Let us �rst consider the timing constraints of an individual domino gate used in our

timing analysis and sizing optimization tool. The domino logic timing constraints

listed below are based on [28, 29], but we express them at the transistor level. In

addition, we di�er from that work in o�ering further insights into domino timing

constraints by using more accurate short path timing constraints.

The clock input to the domino gate is shown in Figure 2.1. The precharge phase

begins at Tclk;f and continues until Tclk;r, and the evaluate phase begins at that time

and ends at time Tclk;f + P where P is the period of the clock signal feeding the

domino gate. The reference time t = 0 is set with respect to the clock signal at the

primary input of the circuit block. If more than one clock signal is used, any one of

them may be used as a reference, and the transition times of the other clocks may be

expressed according to the reference.

89

6.2.0.1 Long Path Timing Constraints

We list the node timing constraints for domino logic as follows, in terms of the signal

arrival times and the clock arrival time. In case of multiple clocks, the clock signal

clk should be set to be the clock signal that feeds the gate that is currently under

consideration.

(i) Any falling event at a data input should meet the setup-time requirement to the

rising edge of the evaluate clock. If Tf (in) refers to the falling event time of the input

node, then we require that

Tf(in) � Tclk;r � Tsetup (6.1)

where the setup time Tsetup is a constant that acts as a safety margin.

(ii) The rising event of the output node of the domino gate must be completed before

the falling edge of evaluate clock. If Tr(out) refers to the rising event time at the

output node, then the circuit operates correctly only if

Tr(out) � Tclk;f + P (6.2)

In other words, before the beginning of the precharge for next cycle, the correct

evaluation result must have traveled to the output node. For example, in Figure 2.1,

the rising event at the output node o of the domino gate must satisfy (6.2). Since we

can write

Tr(out) = max((Tr(x) +Df (x; d); Tr(y) +Df (y; d); Tr(z) +Df(z; d); Tclk;r +Df(clk; d)))

+Dr(d; out));

where Tr(x), Tr(y), Tr(z) are the rising event times at inputs x; y and z, respectively,

Df(i; d) represents the delay of a falling transition at the dynamic node d due to a

90

rising transition at input in 2 fx; y; zg, and Dr(d; out) represents the rise delay of

the inverter feeding the gate output node out. Therefore for in 2 fx; y; zg, we get

Tr(in) +Df(in; d) +Dr(d; o) � Tclk;f + P (6.3)

Tclk;r +Df(clk; d) +Dr(d; o) � Tclk;f + P (6.4)

The relation (6.3) corresponds to the requirement that the rising edge of each input

should appear in time for the falling edge of the evaluate clock so as to allow su�cient

time for the output to be discharged [29]. To be more conservative, we also add the

delay through the inverter and ensure that it is allowed su�cient time to discharge.

The relation (6.4) ensures that the pulse width of the evaluate clock is su�cient for

pulling down the output node [29].

(iii) The rising event d of the domino gate must be completed before the rising edge

of the evaluation clock, i.e.,

Tr(d) � Tclk;r (6.5)

If we denote the rise time of the dynamic node through the p-transistor fed by the

clock as Dr(c; d), then the rising event time can be expressed as:

Tr(d) = Tclk;f +Dr(clk; d) (6.6)

This leads us to the constraint given by

Dr(clk; d) � Tclk;r � Tclk;f (6.7)

This constraint implies that the pulse width of precharge clock must be capable of

pulling up the output node.

6.2.0.2 Short Path Timing Constraints

Instead of using the conservative constraints of [29] or more aggressive constraints

of [28], we use di�erent constraints for falling and rising edges, which is more accurate

timing request for the correct function of domino logic.

91

Suppose tf (in) and tr(in) are, respectively, the earliest falling and rising event

time of input signal. A falling input data line may not go down to logic 0 but must

be held at the logic 1 level until the output transition in that cycle has been completed.

It is given by

tf (in) + P � Tr(out) (6.8)

For any rising input data line, the hold constraint states that a transition should

occur only after Tclk;f , i.e.,

tr(in) � Tclk;f (6.9)

Note that if the falling signal arrives before the evaluation phase, it will not

in
uence the output as long as the dynamic node has already been discharged. If,

however, the rising signal arrives earlier than the end of the evaluation phase, it may

cause a glitch at the output. The presence of Tr(out) in Equation (6.8) causes the

short path timing analysis to be related to the long path timing analysis.

6.3 Timing Veri�cation and Sizing

6.3.1 Timing Veri�cation

The timing analysis procedure described here is based on the PERT procedure and

uses a table-lookup delay model for delay calculation. The long path timing analysis

consists of two steps.

First, the circuit is forward-traversed, beginning with the primary input nodes

and the clock node. The rising and falling event arrival times for each node v are

calculated as follows:

Tr(v) = max(Tf(u) +Dr(u; v)) (6.10)

Tf(v) = max(Tr(u) +Df (u; v) (6.11)

92

where Tr(u) and Tf(u) are, respectively, the rising and falling event times for nodes u

and v, and Df(u; v) and Dr(u; v) are, respectively, the worst fall delay and rise delay

from input u to output v. The domino clock input node is treated in the same way

as any primary input node, and the rising or the falling edge of the clock provide

the corresponding event times for the clock node. The rising and falling event arrival

times at the output node of a domino gate can be obtained similarly to the static gate

arrival time computations, using equations (6.10) and (6.11). The only di�erence is

that the rising event at the dynamic node is related only to the falling edge of the

domino clock and is independent of the other input nodes. This fact is captured by

setting the value of Dr from each input node of the domino gate to the output node as

�1 . At the end of this traversal, the arrival time at each node has been computed.

Next, a backward traversal is carried out to calculate the required time at each

nodes. Before traversal, the required time of domino gates from constraints (6.1),

(6.2), (6.5) and the required time at each primary output from synchronizer have

been assigned the corresponding nodes. Beginning with the primary output nodes,

we make a reverse PERT pass back through constraint graph to compute the required

time at each node and the slack associated with every edge. At the same time, the

critical path, de�ned as the path with maximum negative slack, is found. During

this second traversal, the algorithm keeps a record of the minimum negative slack.

If an edge with same slack is encountered, then it is incorporated the into critical

path. If an edge with smaller (more negative) slack is traversed, then the previous

critical path is discarded and the critical path is updated to begin at that edge. Note

that due to the presence of constraints at each domino gate, the critical path does

not necessarily terminate to a primary output and could terminate at a domino gate

instead. Additionally, it is possible for the origin of the critical path to be either at

a PI or at the clock node.

Constraints (6.8), (6.9) provide the short path constraints. After long path timing

93

analysis is performed, Tr(out) in constraint (6.8) has been computed. A similar

procedure as long path timing veri�cation can be applied to support short path timing

veri�cation.

6.3.2 Sizing Algorithm

If long path timing constraints are found to be violated after applying the above

timing analysis procedure, a sizing algorithm is applied. For short path violations,

delay insertion techniques [70] are more appropriate, and are not addressed in this

work. However, constraint (6.8) is incorporated into the sizing procedure. The sizing

problem is formally stated as follows:

minimize Area (6.12)

subject to

max(Tr(o); Tf(o)) � Tspec 8o 2 PO

Tf (in) � Tclk;r � Tsetup 8in 2 Idomino

Tr(out) � Tclk;f + P 8out 2 Odomino

Tr(d) � Tclk;r 8d 2 Ddomino

Tr(out) � tf(in) + P 8out 2 Odomino

K1 �
Wp

Wn

� K2 8 gates in the circuit:

where Area is the area of the circuit and, as in other work on transistor sizing [69], is

approximated as a sum of transistor sizes, PO is the set of primary outputs, Idomino,

Odomino and Ddomino are, respectively, the set of inputs, outputs dynamic nodes of all

of the domino gates in the circuit. The last constraints come from the noise margin

that we will address in Section 6.3.3.

The sizing algorithm used here is an adaptation of the TILOS algorithm [69].

Beginning with a circuit where all transistors are minimum-sized, each iteration selects

94

one transistor and increases its size by a constant factor. In each iteration, a timing

analysis is performed to identify the constraint g(w) � 0 with the largest violation,

where g(w) denotes the fact that the constraint g is a function of the vector w of

transistor widths. The traceback procedure described above is used to determine

the critical path of the circuit, which corresponds to that constraint. The sensitivity

of the constraint function g to each transistor width is computed, and the width of

the transistor with the most negative sensitivity is increased. The iterations continue

until the timing speci�cations are all met, or until no further improvement is possible.

6.3.3 Noise Margins

Noise margin constraints are applicable to both static and dynamic gates. In [31],

Chen and Kang describe a technique for deriving bounds K1 and K2 on Wp=Wn that

will ensure that noise margin constraints are satis�ed:

K1 � Ratio = Wp=Wn � K2 (6.13)

For an inverter, it is a simple matter to verify whether Ratio satis�es the speci�ed

bounds or not. For complex gates, each domino gate is reduced to an equivalent

inverter corresponding to the largest and smallest value of Ratio. During the sizing

process, these are compared with K1 and K2, respectively, to ensure that during the

sizing process, these bounds are not violated.

In other words, the constraint above corresponds to the following two constraints

that are always maintained during sizing:

Ratiomin = Wp(min)=Wn(max) � K1

Ratiomax = Wp(max)=Wn(min) � K2

The value Wp(max)(Wn(max)) corresponds to the equivalent inverter width when all

pmos (nmos) transistors in the complex gate are on, and Wp(min) (Wn(min)) is the

95

equivalent inverter width when only the largest resistive path [65] of the complex

gate is on.

6.4 Charge Sharing Measurement and Correction

After the timing veri�cation and sizing algorithm is executed, charge sharing is mea-

sured from the timing information obtained earlier.

6.4.1 Estimation of Worst-case Charge Sharing

Charge-sharing noise is produced by charge redistribution between a dynamic evalua-

tion node and internal nodes within the gate. The usual way [31,71,72] of estimating

worst case charge sharing is as follows. During the precharge stage, the uppermost

device of every n-stack is assumed to be o�, so that only the capacitance at the

dynamic node, Cd is precharged. In the evaluate stage, the bottommost devices in

the n-stack are con�gured to be o�, and all devices above these in the n-stack are

assumed to be on, and the total capacitance that now shares charge with the dynamic

output node is Cd+C, where C is the sum of all internal node capacitors. Therefore,

charge sharing can cause the dynamic node can have a worst-case voltage given by

the following expression instead of being at Vdd:

Vworst = Vdd �
Cd

Cd + C
(6.14)

For correct operation of the circuit, it is required that Vworst must be no smaller than

a speci�ed voltage, Vspec.

However, the above expression may be too pessimistic. If the worst-case arrival

time for each input is known, and if we can identify a node n such that there is a

path from the dynamic node d to n on which the rise transition on all transistors is

96

guaranteed to arrive su�ciently before time Tclk;r, then node n will be precharged and

will not trigger charge-sharing. If Cpre is the total capacitance of all such nodes n,

then we can arrive at a less conservative estimate of charge sharing that states that

Vworst = Vdd �
Cd + Cpre

Cd + C
(6.15)

where Cd and C are as de�ned in Equation (6.14).

The calculation of Cpre is illustrated by the example of Figure 6.1, which is taken

from a fast adder [22]. The value of C in Equations (6.14) and (6.15) is C1 + C2 +

C3 +C4 +C5 +C6 +C7 +C8. If we know that signal a4 arrives before Tclk;r and that

the arrival of a3, b3 is later than Tc;r, then we know C1, C3 should be precharged

and C2 may not be precharged. Therefore, the value of Cpre in (6.15) is C1 + C3.

If instead, b3 were to arrive before Tc;r, then C2 can also be added to Cpre and this

would correspond to a smaller value of Vworst.

a3

b3

a3 b3

a2 b2

a1 b1

C0

a1

b1

a2

b2

a4

b4

a4 b4
C1 C3

C2
C4

C5

C6 C7 C8

Cd

Figure 6.1: An example to illustrate charge sharing

97

6.4.2 An Algorithm for Reducing Charge Sharing

Charge sharing can be reduced by various methods, e.g., adding a keeper, changing

the size of the inverter, using separate parallel branches by replacing the inverter with

a NAND gate, and adding more pmos transistors [17]. In the CAD tool presented

here, we consider two methods that are performed as a post-processing step after

sizing has been completed.

One common method used by designers is to add one or more pmos transistors

from the Vdd node to nodes the cannot be charged during precharge. Our algorithm

suggests methods for choosing the best node to which a pmos transistor should be

connected, and adds it automatically when charge sharing drops the output voltage

below a speci�ed bound, Vspec. As mentioned above, the worst case signal arrival time

information is used. The procedure is interactive, and at each step, the designer can

specify one of two possible ways to reduce charge sharing. This is continued until

charge sharing constraints are met.

Method 1

The basic idea is that this added pmos should precharge the largest internal node ca-

pacitance values. For simple domino gates, a pmos transistor can be added intuitively.

However, when the domino gate becomes more complex, the algorithm suggested here

is helpful.

We note that if two nodes are connected by a transistor whose input arrives before

evaluation, then precharging one node will also precharge the other node; if this is not

true, then precharging one node would not precharge the other. We refer to any set

of such nodes as a channel-connected precharge set. Our algorithm �nds the channel

connected precharge set with the largest total capacitance and connects a pmos to a

node in that set. This procedure requires one traversal of the graph representing the

channel-connected component [65]. This total capacitance is then added to Cpre in

98

Equation (6.14) and the worst case voltage due to charge sharing is calculated.

Method 2

A second method is to alter the node timing constraints for some input node. We

note that at any input transistor, if the input rising event time lies between the end

of precharge and end of evaluation begins at time Tc;r, then our worst-case charge

sharing estimation assumes that even if the drain node of the transistor is precharged,

the source node cannot be precharged. To relieve this problem, we may increase the

value of Cpre by ensuring that the signal at the transistor gate node arrives before

evaluation by sizing transistors in the circuit and set the required arrival time for the

rise transition to be to be the rising edge of domino clock instead of the falling edge

of domino clock.

As in the �rst method, we are faced with the problem of determining which nodes

should have a modi�ed timing speci�cation. Here again, we search for the section

with the largest sum of node capacitances, and we restrict the candidate sections to

those whose neighbors can be precharged.

However, this method will not always work. When the input under consideration

is the output of another domino gate with same domino clock, it is impossible for its

rising event time to be smaller than precharge time. Moreover, if the arrival time has

to be changed by a large amount, this will require a large amount of sizing elsewhere

in the circuit, which may introduce charge-sharing problems at other points in the

circuit. Therefore, we only permit this sizing operation if the input arrival time is

greater than Tclk;r by Tthre, where Tthre is the threshold value de�ned by the user.

99

6.5 Experimental Results

6.5.1 Timing Veri�cation and Sizing

Table 6.1: Transistor sizing on circuits for the two-phase clocking scheme

Circuit Unsized Clk Spec Optimized CPU

Area Period(ns) Area (s)

C1355 1582 1.8 1589 1.2

1.6 1605 1.5

1.4 - 2.3

dalu 2357 2.3 2453 7.2

2.08 2524 10.4

1.86 2711 15.7

1.64 - 17.0

C1908 1764 2.6 1780 2.1

2.2 1871 6.3

1.8 2107 16.5

1.4 - 31.8

des 9881 4 9910 10.1

3.6 9977 13.7

3.2 10156 26.4

2.8 10506 57.1

C7552 6948 3.5 6954 5.9

3.0 7015 14.8

2.6 7210 38.7

2.1 - 73.5

The timing veri�cation and sizing tool has been implemented in C++, and takes

an input in the format of a SPICE transistor netlist. The speci�cations applied on the

circuits include the clocking scheme, output timing constraints, noise margins, and

technology parameters. The characterization was performed in a 0.5 �m technology.

100

The factor, Bumpsize, for the TILOS-like algorithm is set to �1:5 of original size and

the noise margin constraints require that Ratio 2 [1:0; 4:0].

The procedure has been performed on two sets of circuits of di�erent clock strate-

gies. A summary of the results are listed in Table 6.1 and Table 6.2, respectively.

For each circuit, the original unsized area is listed. For various domino clock speci�-

cations listed in the \Clk spec" column, the results of sizing are listed. The output

timing speci�cation is always set to the corresponding clock period. In our sizing

experiment, the duty cycle of the clock is �xed as the clock period speci�cation is

changed. The area is reported as \-" if the speci�cations are too tight to be satis�ed.

Table 6.2: Transistor sizing on circuits for a four-phase overlapping clocking scheme

Circuit Unsized Clk Spec Optimized CPU

Area Period(ns) Area (s)

C1355 2736 1.36 2744 1.4

1.22 2774 2.2

1.08 - 4.9

dalu 3414 2.1 3417 1.7

1.88 3423 1.9

1.22 3552 6.9

1 - 13.3

C1908 2922 2.2 2929 1.6

1.8 3091 8.6

1.4 3554 23.3

1 - 24.7

des 17368 2.8 17369 10.7

2.4 17370 10.8

2 - 17.3

C7552 10264 2.12 10321 11.8

1.66 10614 44.3

1.2 - 72.1

101

The �rst set of results, reported in Table 6.1 uses the two-phase clocking scheme

of Figure 2.2, whose duty cycle is set of 1=2. To test the more complex timing relation

of clock and domino gate, we apply our procedure to four-phase overlapping domino

clocks of Figure 2.3, whose duty cycle is set to 1=3. The results are listed in Table 6.2.

Both the long path and short path timing veri�cation are performed for the input

circuit.

6.5.2 Charge Sharing

The procedure of charge sharing is a post-processing phase after timing veri�cation

and sizing. The results of the application of the charge sharing algorithm on the

example in Figure 6.1 is illustrated in Table 6.3. The set of signals that arrive before

time Tclk;r are listed as the early signals in the �rst column. The second column

shows the parameter Vworst
V
dd

, which is de�ned in Equation (6.15). The node at which

a PMOS transistor is added is de�ned in column Pnode, and the updated value of

Vworst
V
dd

is listed after the addition of the �rst pmos and the second pmos, respectively.

Table 6.3: Application of the charge sharing algorithm on the circuit of Figure 6.1

N(< Tcr) Ratio 1st Iteration 2nd Iteration

Pnode Ratio Pnode Ratio

NULL 0.210 c5 0.361 c2 0.514

a1,b1,a3,b3,a4,b4 0.635 c5 0.939 c8 1

a1,b1,a2,b2,a3,b3 0.210 c1 0.939 c3 1

a1,b2,a3,a4,b4 0.939 c8 1 - -

a1,a2,a3,a4 1 - - - -

Table 6.4 shows the results when the above charge sharing algorithm are performed

on benchmark circuits. The circuits are the same as those in 6.2. The threshold

102

value, Vspec, is set to 1. The sizing procedure is performed before the charge sharing

procedure, with the clock speci�cations of all circuits set to around 80% of the delay

of the minimum sized circuit under a four-phase overlapping clocking scheme. In

Table 6.4, Column 2 shows the number of pull-up transistors that will be added

without considering timing information and Column 3 shows the number needed

with our method, and this shows that our method provides signi�cant improvements.

The CPU times on the circuits in Table 6.4 are under several seconds.

Table 6.4: Results of the charge sharing algorithm on large circuits

Circuits Traditional Method Our method

(#added transistors) (#added transistors)

C1355 358 104

dalu 485 135

C880 225 46

count 64 0

C1908 342 132

C2670 492 76

C3540 915 365

C6288 2345 1574

k2 438 239

des 2209 242

C7552 1612 473

t481 373 36

rot 306 162

6.6 Conclusion

In this chapter, a timing veri�cation and sizing optimization tool dealing with cir-

cuits constraining mixed domino and static logic is presented. Timing constraints

103

of domino logic gate in transistor level are addressed and more accurate short path

timing constraints are provided. A timing analysis methodology permitting the ap-

plication of PERT, allowing mixed static-domino circuits to be handled in a manner

similar to static combinational circuits, is developed. Finally, a more accurate charge

sharing estimation and correction procedure is proposed as a post-processing phase

after sizing.

104

Chapter 7

Hierarchical Analysis of Power

Distribution Networks

7.1 Introduction

With the increase in the complexity of VLSI chips, designing and analyzing a power

distribution network has become a challenging task. A robust power network design is

essential to ensure that the circuits on a chip operate reliably at the guaranteed level of

performance. A poorly designed power network can become the cause for a variety of

problems such as loss of circuit performance, noise generation, and electro-migration

failures. With the increased power level and device densities of microprocessors in

sub-micron technologies, these problems are more likely unless serious attention is

given to power network design. Critical to obtaining a robust design is the ability

to analyze the network e�ciently several times in the design cycle. Several research

works [73{76] published earlier discuss methodologies and techniques to accomplish

this task e�ciently.

The di�culty in power network analysis stems mainly from three sources: (i) the

105

network is very large, typically 1 million to 100 million nodes, (ii) the network is

nonlinear as it contains switching devices, and (iii) the voltage and current distribu-

tion in the network is dependent on the instruction executed on the processor. Our

work, presented in this chapter, addresses the �rst problem. The second problem

is circumvented traditionally [73] by performing nonlinear simulation of individual

circuit blocks without including the parasitics in the power interconnects, and then

simulating the power interconnect as a whole using the time-variant current pro�les,

obtained in the nonlinear simulation as the excitation sources. The power grid needs

to be simulated as a whole since it is tightly coupled, and as a result, currents drawn

in one part of the chip a�ect the voltage distribution throughout the chip. However,

the complexity of analysis is reduced substantially by not having to perform a non-

linear simulation of the entire interconnect and circuit devices. The third problem is

one of obtaining a good coverage of all possible worst case power demand situations.

Manually generated \hot loops," an extensive set of input vectors, and statically gen-

erated worst case current pro�les [77{79] are some of the alternatives that address

the worst case coverage issue.

The size based complexity of the problem has been partly addressed earlier [73,74]

by using very e�cient sparse linear system solution techniques. Cholesky factoriza-

tion (direct method) [80] and Conjugate gradient techniques with pre-conditioners

(iterative method) [80] have been used to solve the linear system associated with

the power grid. These specialized techniques operate very e�ciently by exploiting

the special structure and properties of the underlying linear system. However, the

earlier proposed solutions have applied these techniques to a
at (nonhierarchical)

model of the power network. As a result, there is a serious limitation on the size of

the problem they can solve, the limitation being imposed by the amount of mem-

ory available for computation. At the current technological level, it is seen that the

available computing resources are insu�cient to simulate very large power grids of

106

today's microprocessors using a
at model. The size of the power grid of a typical

high performance microprocessor in 0.18 micron design, and using 6 layers of metal, is

in the range of 10 million to 100 million nodes. Thus the power grid simulation would

require solving a linear system of similar size at multiple time points. Clearly, the

speed and memory capacity of a typical computing environment is insu�cient to solve

such a large system even with the most e�cient linear system solution techniques.

In this work, we propose a hierarchical analysis technique to overcome the lim-

itations of the traditional approach based on
at power grid model. Our approach

comprises of the following steps: (1) Partitioning of the power grid into local and

global grids, using the hierarchical structure in the design, (2) Generating macro-

models for the local grids using e�cient numerical methods, (3) Sparsifying the port

admittance matrices of the macromodels, while maintaining the accuracy of the solu-

tion, (4) Simulating the global grid after augmenting it with the macromodels of the

local grids, and �nally, (5) Simulating the local grids where desired.

The basic strength of the proposed approach is derived from the well-known strat-

egy of \divide and conquer," which is realized through partitioning. However, the

e�ciency and usefulness of the hierarchical approach is sensitive to several factors,

such as the partitioning technique, the memory and runtime costs involved in gener-

ating the macromodels, etc. Our work in this research addresses these problems in

order to realize a practical and e�cient implementation of the hierarchical analysis

strategy. We propose a partitioning strategy that reduces the memory required for

storage in our hierarchical simulation approach. Moreover, a novel matrix sparsi�ca-

tion technique based on 0-1 integer linear programming is proposed to further reduce

the memory requirements. Also, an e�cient numerical procedure for calculating the

macromodels is given. The computation takes advantage of the fact that the under-

lying linear system is symmetric and positive de�nite. The proposed approach has

been applied for analyzing the power grid of a number of high performance micropro-

107

cessors and DSP chips, obtaining signi�cant memory and runtime advantages over

the
at model analysis approach. To our knowledge, no work has been reported so

far to address this critical issue of limitation on the size of power grids analyzable

using current approaches.

The remainder of the chapter is organized as follows. In section 2, we present

the concept of macromodeling and the partitioning strategy. Also presented in that

section are the computational techniques for generating the macromodels. In section

3, the matrix sparsi�cation technique is explained. Section 4 reports the performance

results of the proposed approach for a set of benchmark designs, followed by conclu-

sions in section 5.

7.2 Macromodeling Approach

7.2.1 Overview of Power Grid Simulation

Before presenting the macromodeling approach, let us present an overview of power

grid simulation in general. A chip's power distribution system is modeled as a linear

RLC network with independent time-varying current sources modeling the switching

currents of the transistors. Simulating the network requires solving the following

system of di�erential equations, which are formed in a typical approach such as the

Modi�ed Nodal Analysis (MNA) [81] approach:

G � x(t) +C � x0(t) = b(t); (7.1)

where G is a conductance matrix, C is the admittance matrix resulting from ca-

pacitive and inductive elements, x(t) is the time-varying vector of voltages at the

nodes, and currents through inductors and voltage sources, and b(t) is the vector of

independent time-varying current sources. This di�erential system is very e�ciently

solved by reducing it to a linear algebraic system

108

(G+C=h) � x(t) = b(t) +C=h � x(t� h); (7.2)

using Backward Euler (BE) technique with a �xed time step, h. The BE reduction

with �xed time stepping is advantageous for transient simulation since the left hand

side (LHS) matrix (G +C=h), referred to as the coe�cient matrix, is rendered sta-

tionary, allowing either pre-processing or factoring of the matrix for a one-time cost

and reusing it e�ciently to solve the system at successive time points.

When x consists only of node voltages, as in the case of a modi�ed nodal for-

mulation of a network with R's, C's, and current sources only, the coe�cient matrix

can be shown to be symmetric and positive de�nite. A symmetric positive de�nite

formulation is feasible even when inductive elements are included in the analysis,

although this would involve an additional reduction step from the modi�ed nodal for-

mulation. The symmetric positive de�niteness of the coe�cient matrix, which is also

very sparse, is especially attractive as the system can now be solved very e�ciently

using specialized linear system solution techniques, such as Cholesky factorization

(direct method) and Conjugate Gradient (iterative method) techniques. The direct

method through Cholesky factors is very cost-e�ective for simulations at multiple

time points, as the expensive step of factoring is performed only once initially and

its cost is amortized over multiple time point solutions. Successive solutions would

involve only inexpensive forward and backward substitution procedures. Although

the macromodeling techniques presented in this chapter are suitable for use with ei-

ther type of solution approach, direct or indirect, we will assume, for simplicity of

presentation, that the underlying linear solver is direct.

109

7.2.2 Basic Idea

The run time and memory requirement for solving a linear system is determined

primarily by the size, sparsity, and structure of the coe�cient matrix. If the network

is very large (107 - 108 nodes), the available physical and virtual memory of the

system is insu�cient even for loading in the data associated with the network. Even

when the base memory requirement is met, memory demand quickly grows during

the matrix factorization process, due to new �lls being created. Given a reordering

scheme, the number of �lls created is determined by the initial sparsity and structure

of the matrix. The sparsity is given by the ratio of the number of elements in the

network to the number of nodes. While tree-like network structures have low �lls,

mesh structures generally tend to have large �lls during factorization. The amount

of matrix computation being very sensitive to the sparsity and �ll pattern, it is very

desirable to have the initial matrix as sparse as possible. The objective of the proposed

approach is, hence, twofold - (i) to reduce the size of the problem, and (ii) to maintain

a high degree of sparsity in the reduced problem.

The �rst objective is met by partitioning the given network into subnetworks of

manageable size, and solving the network by solving the sub-pieces individually. Since

the entire network is tightly connected, we cannot ignore the interaction between the

various partitions without incurring signi�cant error. So, in order to account for the

interactions between partitions, while at the same time not enlarging the size of the

problem at hand, we use models for the partitions that capture their behavior as

observed at their interface nodes (also called ports). We refer to these models as

macromodels. A macromodel is a multi-port linear circuit element that has the same

linear relation between the voltages at and currents through its ports as the partition

itself. With macromodels for partitions available, the original (unpartitioned) network

is e�ciently solved after replacing the partitions by the respective macromodels, as

the macromodels are much smaller in size than the partitions themselves.

110

The gains made through partitioning can be quickly lost if the partitions generate

very dense macromodels, and thus increase the e�ective size of the problem. Our

approach addresses this issue in two ways. First, the partitioning is performed strate-

gically as explained in section 7.2.4. Then, an optional step of sparsi�cation can be

applied to the generated models. The key issue in sparsi�cation is not to compromise

accuracy of the �nal solution. The sparsi�cation technique is covered in section 7.3.

Besides the memory advantage, the macromodeling approach has signi�cant speed

up as the creation of macromodels for the partitions can be performed in parallel.

7.2.3 Hierarchical Modeling

global nodes

global grid

ports

nodes

ports

nodes

ports

nodes

internal internal internal

local grid

k local partitions

Figure 7.1: Hierarchical power network analysis

The macromodel approach to power grid analysis is illustrated in Figure 7.1. Let us

consider a division of the entire power network into one global partition and k local

partitions. A node in a local partition having links only to other nodes in the same

partition is called an internal node, a node in the global partition is called a global

node, and a node in a local partition that is connected to some node outside the

local partition (i.e., in the global partition or in another local partition) is called a

port. The global grid is then de�ned to include the set of nodes that lie in the global

111

partition and the port nodes, while the grid in a local partition constitutes a local

grid.

Now each of the k local grids can be modeled as a multi-port linear element with

transfer characteristics given by

I = A �V + S; I 2 Rm; A 2 Rm�m;V 2 Rm;S 2 Rm (7.3)

where m is number of ports in the local grid, A is the port admittance matrix, V is

the vector of voltages at the ports, I is the current through the interface between the

local and global grids, and S is a vector of current sources connected between each

port and the reference node. S essentially has the e�ect of moving all the current

sources internal to a local grid to the ports of the multi-port model. We refer to the

set (A,S) as the macromodel of the respective local grid.

The macromodel (A,S) in equation (7.3) is obtained through a reduction procedure

starting from the modi�ed nodal equations of the local grid expressed in the form:

G �U = J; G 2 Rn�n;U 2 Rn;J 2 Rn (7.4)

where n is number of nodes in the local grid, G is the coe�cient matrix, U is the

voltage vector of the nodes of the local grid, and J is vector of currents that
ow out

of each node in the local grid. For the port nodes, J would also include the currents

through the interface between the local and global grids. The procedure of deriving

the transfer characteristic in Equation (7.3) from the modi�ed nodal equation of (7.4)

is referred to as macromodeling, and will be addressed in detail in section 7.2.5.

Once the macromodels for all the local grids are generated, the entire network can

be abstracted simply as the global grid, with the macromodel elements connected to

it at the port nodes. This is achieved by combining the coe�cient matrix and the

112

RHS current vector of the global grid with the macromodels, (A,S); Equations (7.3)

of each local grid may be stamped into the modi�ed nodal equations of the global

grid as follows.

2
6666666666664

G00 G01 G02 : : : G0k

GT
01 A1 G12 : : : G1k

GT
02 GT

12 A2 : : : G2k

...
...

GT
0k GT

1k GT
2k : : : Ak

3
7777777777775

2
6666666666664

V0

V1

V2

...

Vk

3
7777777777775

=

2
6666666666664

I0

�S1

�S2
...

�Sk

3
7777777777775

(7.5)

In the above equation,

� global nodes are labeled as partition 0

� Ai is the port admittance matrix of partition i, where i 2 [1; k].

� Gij represents the conductance links between partition i and partition j.

� I0 is the vector of currents that
ow out of the global nodes.

� Si is the constant vector of partition i.

� Vi is voltage vector of partition i.

This is a system of (n0+m1+m2+ : : :+mk) linear equations, where n0 is the number

of global nodes and mi is the number of ports in each partition.

From the above reduction scheme, the voltages and currents in the entire power

grid can be solved in the following steps:

� Obtain global grid voltages by solving equation (7.5).

� For each partition, obtain I from equation (7.3) using the port voltages

113

� Solve equation (7.4) for each partition using I on the right hand side, to obtain

voltages at the internal nodes of partitions.

The
ow of the macromodel approach is illustrated in Figure 7.2.

V 1

Model Reduction Model Reduction Model Reduction

Global Grid
Solution

Solution Solution Solution

1, S1 A 2 2, S A k k, S

V 2 kV

Local Grid 1 Local Grid 2 Local Grid k

Local Grid 1 Local Grid 2 Local Grid k

A

Figure 7.2: Flow of the hierarchical analysis

7.2.4 Partitioning Strategy

The main di�culty in macromodeling is that the model is often fully dense even

though the partition from which it is created itself may be very sparse. Note that

the entries of matrix A in equation (7.8) are admittance of paths between pairs of

ports. Thus, a nonzero entry at position (i; j) results if there is a conducting path

in the partition between these ports, even though there may not be a direct link

between these ports. As a result, the number of nonzero entries in A is O(m2), where

m is the number of ports, unless the grid inside the partition is heavily fragmented.

Nevertheless, there is a substantial win if m2 is much smaller than the number of

nodes in the partition that are abstracted away by this model. Thus, the key idea in

the partitioning strategy is to identify a subnetwork and a interface boundary such

that the number of internal nodes is much larger than the square of the number of

nodes at the interface.

114

Fortunately, the natural hierarchical boundaries of circuit blocks often meet the

above criteria. For instance, a large memory array with 3 local metal layers may

have several millions of internal nodes, but it may have very few (hundreds of) nodes

interfacing with the upper layer of the global grid, and almost none with other circuit

blocks. Although one can have a sophisticated partitioning strategy, we have found

in practice that a simple inspection procedure of checking every circuit block or a

group of adjacently placed blocks for the above criteria works very well.

7.2.5 Macromodeling

Macromodeling is the procedure of deriving Equation (7.3) from the modi�ed nodal

equations of the partition. The modi�ed nodal equations for a partition can be written

as

2
64
G11 G12

GT
12 G22

3
75

2
64
U1

V

3
75 =

2
64

J1

J2 + I

3
75 (7.6)

where

� U1 and V are vectors of voltages at the internal nodes and ports respectively

� J1 and J2 are vectors of current sources connected at the internal nodes and

ports respectively

� I is the vector of currents through the interface

� G12 is the admittance of links between the internal nodes and the ports

� G11 is the admittance matrix of internal nodes

� G22 is the admittance matrix of ports.

115

From (7.6), we may rewrite the �rst set of equations as

U1 = G�1
11 (J1 �G12V) (7.7)

Substituting this value of U1 into the second equation of (7.6), we get

I = (G22 �GT
12G

�1
11 G12)V + (GT

12G
�1
11 J1 � J2) (7.8)

Here, GT
12G

�1
11 J1�J2 is the constant vector S in Equation (7.3) and G22�GT

12G
�1
11 G12

is the port admittance matrix A in Equation (7.3).

It may be noted that the pre-multiplication and post-multiplication operations

with G�1
11 can be carried out without explicitly inverting G11, but through multiple

invocation of the direct or iterative solver.

The above calculation can be made very e�cient using the fact that the coe�cient

matrix, G is symmetric and positive de�nite. We show below how A and S can be

computed e�ciently from the submatrices of the Cholesky factors, rather than the

Cholesky factors themselves.

Relating G11, G12, and G22 to the submatrices of the Cholesky factors of G, we have

2
64
G11 G12

GT
12 G22

3
75 =

2
64
L11 0

L21 L22

3
75

2
64
LT
11 LT

21

0 LT
22

3
75

=

2
64
L11L

T
11 L11L

T
21

L21L
T
11 L21L

T
21 + L22L

T
22

3
75

Now computing A in terms of submatrices of factors, we get

A = G22 �GT
12G

�1
11 G12

= L21L
T
21 + L22L

T
22 � L21L

T
11(L11L

T
11)

�1L11L
T
21

= L22L
T
22

116

Similarly, vector S is given by

S = GT
12G

�1
11 J1 � J2

= L21L
T
11(L

T
11)

�1L�111 J1 � J2

= L21L
�1
11 J1 � J2 (7.9)

The above simpli�ed technique reduces computation dramatically over the direct

computation based on equation (7.6), as L22 and L11 used in equation (7.9) are already

triangular.

7.2.6 Analysis of the Computation Cost

In this section we present the computational advantage of macromodeling over the

at model analysis approach.

Suppose the cost of factorizing a matrix is C1(l), and the cost of one forward and

one backward substitution is C2(l), where l is the size of the matrix, and C2(l) <<

C1(l). Let N be the number of nodes in the entire power network.

If no macromodels are used for the power analysis, the computation cost of the

�rst run is C1(N) and the computation cost of a subsequent run is C2(N). In the

macromodeling approach, the computation cost of the �rst run can be expressed as

C1(n1)+C1(n2)+: : :+C1(nk)+C1(n0+m0+m1+: : :+mk)+C2(n1)+C2(n2)+: : :+C2(nk)

(7.10)

Here, ni; i 2 [1; k] is number of nodes in each partition and n0+n1+n2+: : :+nk = N .

The computation cost from macromodeling is given by C1(n1)+C1(n2)+ : : :+C1(nk)

by using the simpli�ed macromodeling method described in section 7.2.5. The cost of

�nding the solution to the global network is C1(n0+m0+m1+ : : :+mk) and the cost

117

of solving the local grids is C2(n1)+C2(n2)+ : : :+C2(nk), since the factors obtained

from macromodeling can be used for solving the local grid.

The computation cost of the subsequent run can therefore be approximated as

C2(n0 +m0 +m1 + : : :+mk) + 2C2(n1) + 2C2(n2) + : : :+ 2C2(nk) (7.11)

where the computation cost of macromodeling is C2(n1)+C2(n2)+ : : :+C2(nk) since

the Ai's are unchanged and only the Si's must be recalculated during the subsequent

run in macromodeling.

Expressions (7.10) and (7.11) provide a rough estimate of computation costs based

on the size of the network and its partitions. In reality, the density of a matrix is

an important factor that in
uences the solution speed. Generally, the conductance

matrices for partitions are denser than the conductance matrix of the entire network,

and thus the conductance matrix in equation (7.8) used for the global solution is a

dense matrix.

Typically, Cholesky factorization requires n3=6 multiplications and substitution

requires n2=2 multiplications. However the sparsity of the conductance matrix, com-

bined with e�cient reordering, enables the observed computation cost to be near-

linear with the dimension of the matrix. However, with an increase in the size of the

conductance matrix, the computation cost will approach the n3=6 or n2=2 curve grad-

ually. In such cases, the computation cost for the macromodel approach will be lower

than that for the
at analysis even with the overheads associated with partitioning.

Most important of all, the divide and conquer procedure applied to the power net-

work makes parallel execution of power network simulation possible. During parallel

execution, the execution time of the �rst run is given by

max(C1(n1); C1(n2); : : : ; C1(nk)) + C1(n0 +m0 +m1 + : : :+mk)

+max(C2(n1); C2(n2); : : : ; C2(nk))

118

where max(C1(n1); C1(n2); : : : ; C1(nk)) represents the maximum execution time among

macromodeling of partitions, C1(n0+m0+m1+ : : :+mk) is the global solution time

and max(C2(n1); C2(n2); : : : ; C2(nk)) represents the maximal execution time out of

partition solutions. Similarly, the execution time of the subsequent run is given by

C2(n0 +m0 +m1 + : : :+mk) + 2�max(C2(n1); C2(n2); : : : ; C2(nk))

Moreover, the memory requirement with macromodels is the maximum memory

required for solving any partition, rather than the sum of memory requirement of

each partition.

Besides run time and memory advantage, macromodeling provides a certain
ex-

ibility to a design/analysis situation so that signi�cant analysis e�ort can be saved.

Given below are few examples of design/analysis situations when such
exibility is

useful.

Example-1: When a designer is interested in the detailed analysis only of a speci�c

circuit block, then signi�cant design time is saved by not simulating the other parti-

tions, but while accounting accurately the e�ect of switching of these other blocks on

the block s/he is interested in.

Example-2: A designer knows a priori in which circuit block or blocks the worst

drop is to be expected, and the objective of the analysis is to only to �nd the worst IR

drop estimate for the design. Then, it will be necessary to simulate only few blocks

(partitions) in the last step of the macromodel approach.

Example-3: The process of �xing problems in a power grid is usually an iterative

one. The process consists of detecting an error, making local changes to the grid to

correct the problem, and re-running the analysis. In this case, only the macromodeling

of the partition whose grid was changed needs to be recalculated. The speed-up in

analysis due to this makes it possible for the designer to �x the problems interactively

with the analysis tool.

119

7.3 Sparsi�cation of Macromodels

In section 7.2.4, we pointed out that the number of entries in the macromodel has

O(m2) complexity for model size m. Although the macromodels reduce the size of

the system to the smaller system described in equation (7.5), the sparsity of the co-

e�cient matrix of equation (7.5) decreases considerably due to the density of the Ai

submatrices. For an iterative solver, this is undesirable as the number of
oating

point operations (FLOPs) to solve the system increases. For a direct solver, this

a�ects both the FLOPs, as well as the memory required to factorize. The additional

memory demand is caused by excessive �lls created by the dense parts during factor-

ing. So, to derive the most bene�t out of the macromodeling approach, it is important

that the coe�cient matrix in equation (7.5) is kept sparse. While the partitioning

strategy explained in section 7.2.4 is a natural way of achieving this, other sparsi�-

cation techniques in conjunction with good partitioning schemes are very useful for

making the macromodeling approach practical. In this section, we present a novel

technique to sparsify the port admittance matrices of the macromodels.

Our sparsi�cation method is motivated by the observation that although the ma-

trix A is dense, it consists of a large number of values that are numerically small

and will have little in
uence on the results if approximated to zero. We provide an

algorithm to sparsify the coe�cient matrix A by dropping some of its entries, while

keeping the error introduced by this process below a speci�ed value. The proposed

sparsi�cation technique also preserves the symmetry and the positive de�nite prop-

erty of the matrix. Note that the sparsi�cation procedure needs to be performed only

once (during the �rst run).

120

7.3.1 Problem De�nition

The problem is stated as follows: Given the transfer characteristic equation of each

partition

2
6666666666664

i1

i2

i3
...

im

3
7777777777775

=

2
6666666666664

a1;1 a1;2 a1;3 : : : a1;m

a2;1 a2;2 a2;3 : : : a2;m

a3;1 a3;2 a3;3 : : : a3;m
...

am;1 am;2 am;3 : : : am;m

3
7777777777775

2
6666666666664

v1

v2

v3
...

vm

3
7777777777775

+

2
6666666666664

s1

s2

s3
...

sm

3
7777777777775

; (7.12)

the nominal value of vj, j 2 [1; m]: B, B > 0, and

the error in ij, j 2 [1; m]: ej

transform equation (7.12) into

2
6666666666664

i01

i02

i03
...

i0m

3
7777777777775

=

2
6666666666664

a01;1 a01;2 a01;3 : : : a01;m

a02;1 a02;2 a02;3 : : : a02;m

a03;1 a03;2 a03;3 : : : a03;m
...

a0m;1 a0m;2 a0m;3 : : : a0m;m

3
7777777777775

2
6666666666664

v1

v2

v3
...

vm

3
7777777777775

+

2
6666666666664

s1

s2

s3
...

sm

3
7777777777775

(7.13)

to maximize

the number of a0j;k; j 6= k; such that a0j;k = 0;

subject to

j ij0 � ij j� ej; j 2 [1; m]

a0j;k = a0k;j (maintaining matrix symmetry):

121

7.3.2 Problem Formulation

This problem can be formulated into a 0-1 multidimensional knapsack problem [58,

82]. In this section, we describe the transformation from the above problem to the

knapsack problem.

The task here involves zeroing out o�-diagonal elements of the matrix A. It is easy

to show that these sparsi�cation operations maintain the positive de�nite property

of the matrix. To see this, we note �rst that the partition can be thought of as being

purely resistive (for example, any capacitors are linearized). Given this \resistive"

network, one may build an equivalent network of a set of equivalent resistances Rjk

between each pair of ports j and k. The matrix A is then simply the conductance

matrix for this network of Rjk's, and is therefore diagonally dominant. This leads to

two conclusions: (1) all o�-diagonal elements must be non-positive, and (2) zeroing

out o�-diagonal elements of A maintains the diagonal dominance of the matrix, and

therefore its positive de�nite property.

The problem formulation is described as follows. First consider the maximum

error that an element of matrix aj;k can cause if it is rounded o� to 0. Since B is

positive and aj;k � 0; j 6= k, the maximum negative error caused by rounding o� aj;k,

enj;k, is given by

enj;k = aj;k �B; j 6= k

Let Xj;k represent a Boolean value, 1 when element aj;k is rounded to zero, and 0

otherwise. The matrix sparsi�cation problem can be formulated as 0-1 knapsack

problem as follows.

Maximize z(x) =
Pm

k=1

Pk
j=1Xj;k

subject to �

Pj�1
k=1 enj;k �Xj;i �

Pm
k=j+1 enj;k �Xj;k � ej; j 2 [1; m]

Xj;k 2 f0; 1g for all Xj;k, j < k (7.14)

122

In (7.14), the indices of the variables Xj;k are required to satisfy the relation,

j < k, so that Xj;k = 1 indicates the rounding-o� of both aj;k and ak;j to maintain

the symmetricity of A. Therefore, the resulting sparsi�ed matrix is symmetric and

positive de�nite.

The 0-1 knapsack problem can be solved optimally either by dynamic program-

ming or using an ILP solver. In our implementation, we use the latter, but with some

modi�cations for speed considerations. First, we relax the integer requirement and

solve the fractional knapsack problem using a linear programming solver [66]. Next,

the fractional xjk's are sorted, and greedily applied successively until the maximum

error in jijj reaches the speci�ed limit, ej.

7.4 Experimental Results

The hierarchical analysis method using macromodels was implemented using C and

embedded in an existing in-house power analysis tool [73]. An e�cient direct linear

solver based on Cholesky factors was used in all the experiments. The extracted power

grids of four high performance general purpose/DSP microprocessor chips were used

to benchmark the performance of macromodeling (Tables 7.1 and 7.2) and sparsi�ca-

tion (Table 7.3) techniques. Chips 1 and 2 are DSP and communication chips whose

power grids are implemented in 3 layers of metal. Chips 3 and 4 are high performance

microprocessor chips using 5 and 6 metal layers respectively. The analyses were run

on dedicated Sun workstations with 2 GBytes of physical memory and 2 GBytes of

swap space. The run time measures used for comparison are based on the actual time

required to complete the task.

7.4.1 Performance of Macromodeling Technique

123

Table 7.1: Run-time and memory comparison for the �rst simulation

Chip #nodes Without macromodel With macromodel

(millions) Run-time Peak # #nodes Total Run-time Peak

(minutes) Memory part (max) Serial Parallel Memory

(GB) (millions) (min) (min) (GB)

Chip-1 3.9 93 1.5 12 0.40 43 7 0.2

Chip-2 2.7 57 1.2 9 0.58 25 6 0.3

Chip-3 7.5 629 2.6 11 0.79 136 26 0.4

Table 7.1 compares the performance of the proposed hierarchical approach using

macromodels with that of the nonhierarchical approach. Two metrics are compared -

the peak memory demand and the total run-time. The number of nodes, in millions,

for the entire power network is given in column 2, and the number of nodes in the

largest partition (or the global grid if it is larger than other partitions) is given in

column 5. Column 3 shows the total time, in minutes, taken for completing the

analysis on the
at model, while columns 7 and 8 show the total time required by the

hierarchical approach. The run-time in column 7 corresponds to the cases when the

macromodels for the various partitions were generated serially on a single computer,

whereas column 8 is for the cases when these computations are performed in parallel.

The run-time reported in this table is the time taken for analyzing the power network

at the �rst time point in a sequence of simulations. Columns 4 and 9 show the peak

memory demand, in Gigabytes, during the analysis without macromodels and with

macromodels, respectively.

It is evident from the above table that the problem size tackled with the proposed

approach is substantially reduced from the original problem. This is the primary goal

of the proposed approach so that a chip-level analysis of very large designs is made

possible. Based on the benchmarks, it can be seen that the size of the linear system

that needs to solved with the new approach is about 10X smaller than the traditional

124

approach.

The e�ect of problem size reduction is clearly re
ected in the peak memory re-

quirements of the di�erent approaches shown in the table. Again, a 10X to 20X

reduction in memory requirement is seen possible with the hierarchical approach.

This implies that with the available computing resources (memory and speed), the

new method enables analyzing much larger designs that will become common in the

near future.

From the results, we can see that without macromodels the run time can be several

hours (e.g. 10.5 hours for Chip 3) for a supply network with millions of nodes. As a

result of reducing the size complexity, the run-time is reduced by a factor of 2X to 5X

even when the macromodels are computed one after another on a single computer.

The run-time is dramatically reduced by 10X to 23X, if the parallelism created by

the macromodel is utilized. Observing that the designs for the various circuit blocks

become available at di�erent time points in the design cycle, all the macromodels

need not be created all at once. That is, the e�ort of creating macromodels, which is

a signi�cant part responsible for the total run-time, can be distributed through out

the design cycle, saving time during the �nal analysis stage.

It should be noted that the performance of hierarchical approach reported in Table

7.1 does not consider the additional performance gain resulting from the proposed

sparsi�cation technique.

Table 7.2 compares the performance of the two approaches based on the time

required to perform simulations at 1000 successive time points, after the �rst one.

Thus, the run-times here are independent of the time taken to generate the macro-

models. Column 2 shows the run time without macromodels. For the hierarchical

approach, run-times for both serial (column 3) and parallel (column 4) execution are

shown. Since the memory requirement of these runs is less than that of the �rst run,

these �gures are omitted in Table 7.2.

125

Table 7.2: Comparison of run time for 1000 subsequent simulations

Chip Without macromodel With macromodel

Run-time(hours) Total run-time(hours) Parallel run-time(hours)

Chip-1 8.4 28.0 4.0

Chip-2 8.0 22.5 4.4

Chip-3 33.7 43.5 6.6

The hierarchical approach executed in serial mode recorded unfavorable run-times

for the benchmarks. However, the disparity in run-times between the nonhierarchical

and hierarchical approach (in serial mode) diminishes as the size of the original net-

work becomes larger, as evidenced from the results for Chip-3, which has 7.5 million

nodes. This behavior is not unexpected, and can be explained by the fact that the

overhead associated with computing the S vector for each partition at every time

step, and back-solving each partition again in the �nal step of the solution, is a dom-

inant factor. This behavior is exhibited for networks up-to a certain size, where the

original matrix and the reduced matrix do not di�er greatly in terms of the time

required for a back-solve. However, as the network becomes larger, the di�erence

in problem sizes with and without macromodels are signi�cantly di�erent, and the

overhead cost of handling the partitions becomes negligible in the overall cost. As a

result, the hierarchical approach becomes favorable for very large networks even in

the serial execution mode.

The run-time advantage of parallel execution mode is very clear from Table 7.2.

Results show that the parallel execution utilizing hierarchy is 1:8 � 5:1 times faster

than the nonhierarchical approach. As designers would like to simulate the power grid

with long traces of current signatures in order to obtain good coverage of the IR-drop

situations, e�ciency of simulation in this phase is crucial. The parallel execution

mode, as well as the
exibility in the hierarchical analysis discussed in section 7.2.6,

126

make the hierarchical analysis approach extremely attractive.

7.4.2 Performance of the Sparsi�cation Technique

The sparsi�cation procedure described in section 7.3 reduces the number of nonzero

elements while maintaining an acceptable level of accuracy. In our implementation,

the speci�ed error ej is de�ned as ej = max(const; j sj � x% j), where const is a

small positive constant, sj; 1 � j � m, is as de�ned in equation (7.12), and x% is the

user-de�ned error limit, which is typically 0% � 10%. The sparsi�cation technique

was implemented using a linear programming solver lp solve 2.3 [66].

Table 7.3 reports the sparsity and run-time improvements achieved for two bench-

mark examples, analyzed at di�erent levels of accuracy. The second column in the

table shows the voltage value of the clean power supply and the value of the maximum

voltage drop observed in the circuit. Columns 3 and 4 report the number of nodes

and the total number of ports respectively in the global grid. The number of nonzero

elements in the coe�cient matrix of equation (7.5) are shown in Column 5. Column

6 shows the maximum voltage error caused by the sparsi�cation procedure. The ra-

tio of maximum observed error in voltage to the maximum voltage drop is shown in

column 7. Finally, column 8 reports the time required to solving equation (7.5).

For each benchmark, the proposed sparsi�cation technique was tested at four

levels of accuracy. The benchmark Chip-4 is a 6-layer, mesh type, power grid. Its

power grid is much denser than the other examples, and this example also has some

partitions with large number of ports. As a result, the coe�cient matrix obtained

for this example could not be solved with the available computing resources without

sparsi�cation.

The results clearly show that the sparsity of the coe�cient matrix is improved by

as much as 11X, incurring only 2:6% error in the �nal results. The improved sparsity

127

improved the run-time for the dense example, Chip-4 signi�cantly, besides greatly

reducing the memory requirement.

Table 7.3: The e�ect of sparsi�cation

Chip Clean/ #nodes #ports #nonzeroes Max-err Error Run-time

Max drop(v) (v) % (secs)

Chip-3 2.0/0.12 23261 379 106909 0.0 0.0% 38.3

98505 0.000043 0.04% 36.0

98253 0.00058 0.5% 32.4

98005 0.0013 1% 30.6

Chip-4 1.8/0.02 2932 2849 2067572 0.0 0.0% -

366612 0.000045 0.2% 36.5

249588 0.00021 1.0% 24.4

197868 0.00051 2.6% 20.1

7.5 Conclusion

In this chapter, we have presented a hierarchical power network analysis method using

novel macromodeling and matrix sparsi�cation techniques. The proposed techniques

were shown to gain signi�cant memory and run-time advantages over the traditional

approach of analyzing the power network without using the hierarchy. The experi-

mental results based on analyzing the entire power network of four high performance

microprocessor designs con�rmed these claims. Our work addressed several issues that

arise in designing a practical and e�cient hierarchical analysis methodology. These

issues related to partitioning of the network and handling the density growth in the

matrices of the underlying linear system. The hierarchical analysis approach shows

excellent promise as a viable alternative to the traditional nonhierarchical analysis

128

method, capable of handling the increasing size of power grids in modern micropro-

cessors.

It was shown that the method of partitioning has a signi�cant in
uence on the

performance of this approach. One of our future directions is to explore optimal par-

titioning techniques that can be applied with minimal user-intervention. It may

be still important to maintain the natural hierarchical boundaries alongside the

automatically-created boundaries in order to preserve the
exibilities of hierarchi-

cal analysis discussed earlier. Another research direction is to develop more e�cient

sparsi�cation techniques.

129

Chapter 8

Conclusion

8.1 Summary

In this thesis, we have addressed several analysis and optimization problems in high

speed circuits, related to domino logic and supply network.

In Chapter 2, we provided a brief introduction to domino logic, and suggested a

synthesis and optimization
ow for domino logic is suggested. Several parts of this

ow were described in subsequent chapters.

In Chapter 3, we addressed the problem of technology mapping for domino logic,

and presented an e�cient algorithm for parameterized library mapping using a DAG

covering mapping method and a dual-monotonic gate mapping method. In our map-

per, speci�c consideration has been given to practical domino circuit design tech-

niques, such as wide dynamic AND/OR gates and multiple-output gates. The results

show up to 42.0% improvement in area over existing approaches. A comparison with a

static implementation shows that the domino logic synthesized by this method shows

better performance in terms of delay. Moreover, the area cost of our domino imple-

mentation is better than or close to the cost of a static implementation, even though

130

the non-inverting property of domino logic may require the duplication of numerous

nodes of in the input network. In addition, the parameterized library mapping algo-

rithm was extended to static technology mapping. The application of our algorithm

provides an average of 3.8% improvement in the area and an average speedup of 418x

in the CPU time over the static solution provided by SIS using its largest built-in

library, 44� 6:genlib.

The output phase assignment has a signi�cant impact on both the logic duplication

cost and the implementation cost of a circuit. In Chapter 4, a 0-1 integer programming

formulation was provided for the output phase assignment problem for domino logic.

It considers the cost di�erence between two polarities and enables a standard linear

programming package to be used to solve the problem. The results show up to 41:0%

improvement in area.

An important problem for domino logic synthesis is to partition a circuit to deter-

mine which parts of the circuit should be implemented as static logic, and which parts

as domino logic, in conformance with the speci�ed clock scheme. In Chapter 5, we pre-

sented an e�cient timing driven static-domino partitioning algorithm. Our algorithm

�nds a partition of a logic network between static and domino implementations that

minimizes the cost, subject to timing constraints speci�ed by the clocking scheme.

This algorithm was extended to develop a method for partitioning domino logic into

two phases, with inverters permitted between the two phases. The results show that

the e�ect of partitioning is to reduce the logic unating penalty. Our partitioning

algorithms were then applied to the most common two-phase clocking strategy, and

we showed that the area of original domino network is reduced signi�cantly, while

maintaining the circuit speed of a pure domino implementation.

In Chapter 6, we addressed a timing veri�cation and sizing optimization tool for

circuits containing mixed domino and static logic. The timing constraints from both

synchronizer and domino gates were considered during the timing analysis and opti-

131

mization procedure. After sizing, the circuit was evaluated for charge sharing using

the a procedure that is more accurate and less pessimistic than previous proposed

methods, and the circuits was corrected to eliminate any charge-sharing problems.

These techniques were shown to work well on the standard benchmark circuits.

The last part of the thesis addressed the problem of analyzing large supply net-

works hierarchically since many of today's designs have power networks are too large

to be analyzed in the traditional way as
at networks, both in terms of being compute-

intensive and memory-intensive. In Chapter 7, we proposed an analysis technique to

overcome these capacity limitations. We presented a new technique for analyzing a

power grid using macromodels that were created for a set of grid partitions. E�cient

numerical techniques for the computation and sparsi�cation of the port admittance

matrices of the macromodels were presented. A novel sparsi�cation technique using

a 0-1 integer linear programming formulation was proposed to achieve superior spar-

si�cation for a speci�ed error. The run-time and memory e�ciency of the proposed

method was illustrated through analysis case studies of several multi-million node

power grids, extracted from real microprocessor and DSP designs.

8.2 Directions for Further Research

8.2.1 Future Work for Domino Logic

Although a large amount of research has been performed on domino logic, many issues

are still open problems that remain to be solved. We now present some of these issues,

and our thoughts on them.

E�ective Noise Estimation and Correction Noise susceptibility is the major draw-

back of domino logic, as well as the most di�cult to be overcome. The two major

132

sources of noise, i.e., crosstalk and power/ground bounce [1], have great impact

on the correct operation of domino logic. In both cases, accurate noise values

are extremely di�cult to predict and calculate in an early phase of the design

process as they depend on the detailed layout and timing information. With the

rapid increase of coupling capacitance with the technology scaling, the capac-

itive coupling crosstalk will become more and more signi�cant. Therefore, the

handling of noise problem is crucial for domino logic to maintain the predomi-

nant role in the next several generations of high performance designs. Although

in [83], there are some discussions on noise in dynamic circuit and in [40], design

methodologies for noise in digital circuits are described, further e�orts must be

made for noise estimation and correction problem of domino logic, such as ex-

ploring more robust dynamic circuits, more accurate noise estimation, as well

as domino logic design methodology to reduce the impact of noise.

Low Power Domino Logic Design Power consumption has become one of the

main concern of contemporary VLSI circuit designers. If the output signal

of a domino gate remains a \1", the dynamic node and its driven inverter will

continuously be precharged and evaluated even though there is no actual activ-

ity on the output signal, which causes a signi�cant amount of power wastage.

Thus, the power problem is another important factor that must be considered

during domino logic design. The work in [37] proposes a method of reducing the

power consumption of domino logic by optimal output phase assignment. The

0-1 ILP formulation proposed in Section 4 should be capable of being adapted

for a power minimization objective. The partitioning problem addressed in Sec-

tion 5 could also be used to reduce power. Moreover, other techniques such as

gated clocks and asynchronous domino logic style circuits should be considered

to provide an e�ective solution to this problem.

133

Clock Network Generation All the synthesis tools for domino circuits so far have

concentrated on the logic part of the domino logic design. An indispensable part

of domino logic is related to the clocking strategies and their implementations.

As we can see from con�gurations of domino logic in Figures 2.1, 3.5, 3.8, 3.10,

each domino gate requires the clock input signal of various skews. Typically,

these clock signals are generated locally rather than from the global clocking

signals [16, 17, 19], in order to provide more
exible clock signals and to avoid

the di�culties associated with the magnitude of the physical clock distribution

problem. These clocks are usually generated manually by the designers and it

is di�cult to match them with the delay of domino gates. Therefore, it is an

important task to explore the methodology and develop automated synthesis

tools for the clock network design and routing for domino logic. In the context

of static CMOS circuits, the clock generation and routing problem has been

widely addressed [84{88]. Both [16] and [19] mention some con�gurations for

clock generation circuits without an extensive exploration of the problem. A

systematic method aimed at the special properties associated with clocking for

domino logic must be established in the future.

Domino Logic Cell Synthesis Domino logic consists mainly of NMOS transistors,

as against static CMOS logic, which uses a balanced number of PMOS and

NMOS transistors. Therefore, the layout of a domino cell may be greatly dif-

ferent from that of the static library cell. Making e�ective use of the features of

domino logic to produce compact layouts for domino cells is non-trivial problem

that has not been addressed in current research.

Delay Balanced Partitioning Partitioning of an input combinational network to

�t into the clocking scheme is an essential problem of domino logic synthesis.

Besides the objective we addressed in Section 5, delay balancing is an important

objective for some clocking schemes. For example, in clocking scheme of Figure

134

2.4, the delay of each stage is the largest delay of all the gates of the same

stage; in clocking scheme of Figure 2.3, if the entire circuits is partitioned into

one stage and the other is empty, clocked bu�ers have to be used to replace the

logic gates in the latter. Therefore, delay balanced partitioning is important for

domino logic design with the speci�ed clocking scheme.

Asynchronous Domino Techniques Self-timed pipelined domino circuits are a

promising class of asynchronous domino design techniques addressed in [17].

In these circuits, the precharged signal comes from the completion information

from neighboring stages, o�ering the potential advantages of reduced power

consumption and high speed. However, the design of asynchronous domino

circuits is quite di�cult and may result in a large area overhead. Exploring

the asynchronous domino logic synthesis technique is a key issue before the

asynchronous domino techniques can be widely used.

8.2.2 Future Work for Supply Network Analysis

With the increase in the complexity of VLSI chips, designing and analyzing a power

distribution network has become a challenging task. The hierarchical analysis ap-

proach show excellent promise as a viable alternative to the traditional
at analysis

method, capable of handling the increasing size of power grids in model microproces-

sors. The method requires further re�nement in the following aspects.

Automatic Partitioning Techniques The method of partitioning has a signi�cant

in
uence on the improvements provided by a hierarchical analysis of the power

network. Section 7.2.4 addresses the partitioning strategy for our hierarchical

simulation reduction. In the future work, an automatic partitioning tool that

incorporates the connectivity information of the power network and satis�es the

objective of our partitioning criterion must be developed.

135

Port Collapsing A well-designed power supply network should be a strongly con-

nected network. This makes the task of partitioning network di�cult since

it is di�cult to �nd clusters that interact through a small cut, and increases

the computation cost of macromodel, as shown by the cost formula of (7.10).

While sparsifying of the port admittance matrix is one way to prevent this,

other methods will be explored to overcome the problems caused by the pres-

ence of a large number of ports. One such a method would judiciously collapses

ports that have similar voltage levels into a single port to reduce the size of

the cut between clusters, and hence the computational overhead with minimal

sacri�ces in the accuracy.

Hierarchical analysis for RLC networks At present, our hierarchical power net-

work analysis method is used on a RC model of power network. We expect this

divide and conquer algorithm to be applied to more complex RCL analysis of

power networks in the future.

136

Bibliography

[1] Semiconductor Industry Association, \National technology roadmap for semi-

conductors," 1997.

[2] P. E. Gronowski, W. J. Bowhill, R. P. Preston, M. K. Gowan, and R. L. All-

mon, \High-performance microprocessor design," IEEE Journal of Solid-State

Circuits, vol. 33, pp. 676{686, May 1998.

[3] S. Na�ziger, \A sub-nanosecond 0.5um 64b adder design," in Proceedings of the

IEEE International Solid-State Circuits Conference, pp. 362{363, 1996.

[4] C. Heikes and G. Colon-Bonet, \A dual
oating point coprocessor with an FMAC

architecture," in Proceedings of the IEEE International Solid-State Circuits Con-

ference, pp. 354{355, 1996.

[5] P. E. Gronowski, P. J. Bannon, M. S. Bertone, and et al., \A 433MHz 64b quad-

issue RISC microprocessor," in Proceedings of the IEEE International Solid-State

Circuits Conference, pp. 1687{1696, 1996.

[6] M. Benes, A. Wolfe, and S. M. Nowick, \A high-speed asynchronous decom-

pression circuit for embedded processors," in Proceedings of the Conference on

Advanced Research in VLSI, pp. 219{236, 1997.

137

[7] F. Lu and H. Samueli, \A 200-mhz CMOS pipelined mutiplier-accumulator using

a quasi-domino dynamic full-adder cell design," IEEE Journal of Solid-State

Circuits, vol. 28, pp. 123{132, Feb. 1993.

[8] R. P. Colwell and R. L. Steck, \0.6um BiCMOS proessor with dynamic execu-

tion," in Proceedings of the IEEE International Solid-State Circuits Conference,

pp. 176{177, 1995.

[9] M. Zhao and S. S. Sapatnekar, \Technology mapping for domino logic," in Pro-

ceedings of the IEEE/ACM International Conference on Computer-Aided Design,

pp. 248{251, 1998.

[10] M. Zhao and S. S. Sapatnekar, \Timing optimization of mixed domino and static

logic," in Proceedings of the IEEE International Symposium on Circuits and

Systems, 1998.

[11] M. Zhao and S. S. Sapatnekar, \Timing-driven partitioning for two-phase domino

and mixed static/domino implementations," in Proceedings of the IEEE/ACM

International Conference on Computer-Aided Design, pp. 107{110, 1999.

[12] M. Zhao and S. S. Sapatnekar, \Dual-monotonic domino gate mapping and op-

timal output phase assignment of domino logic," submitted for publication, 1999.

[13] M. Zhao, R. Panda, S. S. Sapatnekar, T. Edwards, R. Chaudhry, and D. Blaauw,

\Hierarchical analysis of power distribution networks," submitted for publication,

1999.

[14] M. Zhao and S. S. Sapatnekar, \Technology mapping algorithms of domino

logic," submitted for publication, 1999.

[15] M. Zhao and S. S. Sapatnekar, \Timing-driven partitioning and timing optimiza-

tion of mixed static-domino implementations," submitted for publication, 1999.

138

[16] D. Harris and M. A. Horowitz, \Skew-tolerant domino circuits," IEEE Journal

of Solid-State Circuits, vol. 32, pp. 1702{1711, Nov. 1997.

[17] T. Williams, \Dynamic logic: Clocked and asynchronous." Tutorial notes at the

International Solid State Circuits Conference, 1996.

[18] R. Puri, \Design issues in mixed static-domino circuit implementations," in Pro-

ceedings of the IEEE International Conference on Computer Design, pp. 270{275,

1998.

[19] G. Yee and C. Sechen, \Dynamic logic synthesis," in Proceedings of the IEEE

Custom Integrated Circuits Conference, pp. 345{348, 1997.

[20] W. H. Lien and W. P. Burleson, \Wave-domino logic: Theory and applications,"

IEEE Transactions on Circuits and Systems, vol. 42, pp. 78{90, Feb. 1995.

[21] J. Wang, Z. D. Wang, G. A. Jullien, and W. C. Miller, \Area-time analysis of

carry lookahead adders using enhanced multiple output domino logic," in Pro-

ceedings of the IEEE International Symposium on Circuits and Systems, pp. 59{

62, 1994.

[22] Z. Wang, G. A. Jullien, W. C. Miller, J. Wang, and S. S. Bizzan, \Fast adders

using enhanced multiple-output domino logic," IEEE Journal of Solid-State Cir-

cuits, vol. 32, pp. 206{213, Feb. 1997.

[23] D. H. K. Hoe and C. A. T. Salama, \Dynamic GaAs capacitively coupled domino

logic (CCDL)," IEEE Journal of Solid-State Circuits, vol. 26, pp. 844{849, June

1991.

[24] S. M. Menon, A. P. Jayasumana, and Y. K. Malaiya, \A novel high-speed BiC-

MOS domino logic family," in Proceedings of the IEEE International Symposium

on Circuits and Systems, pp. 21{24, 1995.

139

[25] J. R. Yuan, C. Svensson, and P. Larsson, \New domino logic precharged by clock

and data," Electronics Letters, vol. 29, pp. 2188{2189, Dec. 1993.

[26] J. Kernhof, M. Selzer, M. A. Beunder, B. Hoe�inger, B. Laquai, and I. Schindler,

\Mixed static and domino logic on the CMOS gate forest," IEEE Journal of

Solid-State Circuits, vol. 25, pp. 396{402, Apr. 1990.

[27] D. V. Campenhout, T. Mudge, and K.Sakallah, \Modeling domino logic for static

timing analysis," Tech. Rep. CSE-TR-295-96, The University of Michigan, 1996.

[28] D. V. Campenhout, T. Mudge, and K. A. Sakallah, \Timing veri�cation of se-

quential domino circuits," in Proceedings of the IEEE/ACM International Con-

ference on Computer-Aided Design, pp. 127{132, 1996.

[29] K. Venkat, L. Chen, I. Lin, P. Mistry, and P. Madhani, \Timing veri�cation of

dynamic circuits," IEEE Journal of Solid-State Circuits, vol. 31, pp. 452{455,

Mar. 1996.

[30] L. T. Wurtz, \An e�cient scaling procedure for domino CMOS logic," IEEE

Journal of Solid-State Circuits, vol. 28, pp. 979{982, Sept. 1993.

[31] H. Y. Chen and S. M. Kang, \A new circuit optimization technique for high

performance CMOS circuits," IEEE Transactions on Computer-Aided Design,

vol. 10, pp. 670{676, May 1991.

[32] A. Dharchoudhury, D. Blaauw, J. Norton, S. Pullela, and J. Dunning,

\Transistor-level sizing and timing veri�cation of domino circuits in the Pow-

erPC microprocessor," in Proceedings of the IEEE International Conference on

Computer Design, pp. 143{148, 1997.

140

[33] M. R. Prasad, D. Kirkpatrick, and R. K. Brayton, \Domino logic synthesis and

technology mapping," inWorkshop Notes, International Workshop on Logic Syn-

thesis, 1997.

[34] T. Thorp, G. Yee, and C. Sechen, \Domino logic synthesis using complex static

gates," in Proceedings of the IEEE/ACM International Conference on Computer-

Aided Design, pp. 242{247, 1998.

[35] K. W. Kim, C. L. Liu, and S. M. Kang, \Implication graph based domino

logic synthesis," in Proceedings of the IEEE/ACM International Conference on

Computer-Aided Design, pp. 111{114, 1999.

[36] R. Puri, A. Bjorksten, and T. E. Rosser, \Logic optimization by output phase

assignment in dynamic logic synthesis," in Proceedings of the IEEE/ACM Inter-

national Conference on Computer-Aided Design, pp. 2{8, 1996.

[37] P. Patra and U. Narayanan, \Automated phase assignment for the synthesis of

low power domino circuits," in Proceedings of the ACM/IEEE Design Automa-

tion Conference, pp. 379{384, 1999.

[38] A. P. Chandrakasan, S. Sheng, and R. W. Brodersen, \Low-power CMOS digital

design," IEEE Journal of Solid-State Circuits, vol. 27, pp. 473{484, Apr. 1992.

[39] P. Larsson and C. Svensson, \Noise in digital dynamic CMOS circuits," IEEE

Journal of Solid-State Circuits, vol. 29, pp. 655{662, June 1994.

[40] K. Shepard, \Design methodologies for noise in digital integrated circuits," in

Proceedings of the ACM/IEEE Design Automation Conference, pp. 94{99, 1998.

[41] N. K. Jha and Q. Tong, \Testing of multiple-output domino logic (MODL)

CMOS circuits," IEEE Journal of Solid-State Circuits, vol. 25, pp. 800{805,

June 1990.

141

[42] A. Walker, A. P. Henry, and P. K. Lala, \An approach for detecting bridging

faults in CMOS domino logic circuits using dynamic power supply current mon-

itoring," in Proceedings of the IEEE International Symposium on Defect and

Fault Tolerance in VLSI Systems, pp. 272{280, 1997.

[43] R. Morien and R. Anthony, \Testing of domino and latched domino circuits using

current sensors," in Proceedings of Midwest Symposium on Circuits and Systems,

pp. 572{575, 1991.

[44] K. Keutzer, \DAGON: technology mapping and local optimization," in Proceed-

ings of the ACM/IEEE Design Automation Conference, pp. 341{347, 1987.

[45] E. Detjens, G. Gannot, R. Rudell, A. Sangiovanni-Vincentelli, and A. Wang,

\Technology mapping in MIS," in Proceedings of the IEEE/ACM International

Conference on Computer-Aided Design, pp. 116{119, 1987.

[46] H. J. Touati, C. W. Moon, R. K. Brayton, and A. Wang, \Performance-oriented

technology mapping," inMIT Conference on Advanced Research in VLSI, pp. 79{

97, 1990.

[47] K. Chaudhary and M. Pedram, \Computing the area versus delay trade-o� curves

in technology mapping," IEEE Transactions on Computer-Aided Design, vol. 14,

pp. 1480{1489, Dec. 1995.

[48] Y. Kukimoto, R. K. Brayton, and P. Sawkar, \Delay-optimal technology map-

ping by DAG covering," in Proceedings of the ACM/IEEE Design Automation

Conference, pp. 348{351, 1998.

[49] D. Gragory, K. Bartlett, A. de Geus, and G. Hachtel, \SOCRATES: a system for

automatically synthesizing and optimizing combinational logic," in Proceedings

of the ACM/IEEE Design Automation Conference, pp. 79{85, 1986.

142

[50] M. Lega, \Mapping properties of multi-level logic synthesis operations," in Pro-

ceedings of the IEEE International Conference on Computer Design, pp. 257{260,

1988.

[51] F. Mailhot and G. DeMicheli, \Technology mapping using boolean matching and

don't care sets," in Proceedings of the European Design Automation Conference,

pp. 212{216, 1990.

[52] F. Mailhot and G. DeMichel, \Technology mapping with boolean matching,"

IEEE Transactions on Computer-Aided Design, vol. 12, pp. 599{620, May 1993.

[53] H. Sato, N. Takahashi, Y. Matsunaga, and M. Fujita, \Boolean technology map-

ping for both ECL and CMOS circuits based on permissible functions and binary

decision diagrams," in Proceedings of the IEEE/ACM International Conference

on Computer-Aided Design, pp. 286{289, 1990.

[54] C. R. Morrison, R. M. Jacoby, and G. D. Hachtel, \Techmap: Technology map-

ping with delay and area optimization," in Logic and Architecture synthesis

for Silicon Compilers, North-Holland, Amsterdam, The Netherlands, pp. 53{64,

1989.

[55] M. R. C. M. Berkelaar and J. A. G. Jess, \Technology mapping for standard-

cell generators," in Proceedings of the IEEE/ACM International Conference on

Computer-Aided Design, pp. 470{473, 1988.

[56] R. K. Brayton, C. L. Chen, C. T. McMullen, R. H. J. M. Otten, and Y. J.

Yamour, \Automated implementation of switching functions as dynamic CMOS

circuits," in Proceedings of the IEEE Custom Integrated Circuits Conference,

pp. 346{350, 1984.

143

[57] R. R. Ortiz and M. C. Lefebvre, \Technology mapping for NORA dynamic

logic circuits," in Proceedings of the European Design Automation Conference,

pp. 310{314, 1993.

[58] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms.

New York, NY: McGraw-Hill, 1990.

[59] G. D. Micheli, Synthesis and Optimization of Digital Circuits. New York, NY:

McGraw-Hill, 1994.

[60] S. Devadas, A. Ghosh, and K. Keutzer, Logic Synthesis. New York, NY: McGraw-

Hill, 1994.

[61] T. Sakura and A. R. Newton, \Delay analysis of series-connected MOSFET

circuits," IEEE Journal of Solid-State Circuits, vol. 26, pp. 122{131, Feb. 1991.

[62] A. Reis, R. Reis, D. Auvergne, and M. Robert, \The library free technology map-

ping problem," in Workshop Notes, International Workshop on Logic Synthesis,

1997.

[63] Y. Jiang and S. Sapatnekar, \A fast global gate collapsing technique for high

performance designs using static CMOS and pass transistor logic," in Proceedings

of the IEEE International Conference on Computer Design, pp. 276{281, 1998.

[64] A. Reis and R. Reis, \Covering strategies for library free technology mapping,"

in Workshop Notes, International Workshop on Logic Synthesis, 1999.

[65] S. S. Sapatnekar and S. M. Kang, Design automation for timing-driven layout

synthesis. Boston, MA: Kluwer Academic Publishers, 1993.

[66] M. R. C. M. Berkelaar, \LP SOLVE 2.3 Users' Manual," 1998.

144

[67] H. Liu and D. F. Wong, \Network
ow based circuit partitioning for time-

multiplexed FPGA's," in Proceedings of the IEEE/ACM International Confer-

ence on Computer-Aided Design, pp. 497{504, 1998.

[68] S. Iman, M. Pedram, C. Fabian, and J. Cong, \Finding uni-directional cuts based

on physical partitioning and logic restructing," in 4th International Workshop

on Physical Design, 1993.

[69] J. P. Fishburn and A. E. Dunlop, \TILOS: A posynomial programming approach

to transistor sizing," in Proceedings of the IEEE/ACM International Conference

on Computer-Aided Design, pp. 326{328, 1985.

[70] N. V. Shenoy, R. K. Brayton, and A. L. Sangiovanni-Vincentelli, \Minimum

padding to satisfy short path constraints," in Proceedings of the IEEE/ACM

International Conference on Computer-Aided Design, pp. 156{161, 1993.

[71] K. Venkat, L. Chen, I. Lin, P. Mistry, P. Madhani, and K. Sato, \Timing veri�ca-

tion of dynamic circuits," in Proceedings of the IEEE Custom Integrated Circuits

Conference, pp. 271{274, 1995.

[72] K. L. Shepard and V. Narayanan, \Noise in deep submicron digital design,"

in Proceedings of the IEEE/ACM International Conference on Computer-Aided

Design, pp. 524{531, 1996.

[73] A. Dharchoudhury, R. Panda, D. Blaauw, R. Vaidyanathan, B. Tutuianu, and

D. Bearden, \Design and analysis of power distribution networks in PowerPC

microprocessors," in Proceedings of the ACM/IEEE Design Automation Confer-

ence, pp. 738{742, 1998.

[74] G. Steele, D. Overhauser, S. Rochel, and Z. Hussain, \Full-chip veri�cation meth-

ods for DSM power distribution systems," in Proceedings of the ACM/IEEE

Design Automation Conference, pp. 744{749, 1998.

145

[75] H. Chen and D. Ling, \Power supply noise analysis methodology for deep-

submicron VLSI chip design," in Proceedings of the ACM/IEEE Design Au-

tomation Conference, pp. 638{643, 1997.

[76] S. Taylor, \The challenge of designing global signals in UDSM CMOS," in Pro-

ceedings of the IEEE Custom Integrated Circuits Conference, pp. 429{435, 1999.

[77] H. Kriplani, F. Najm, and I. Hajj, \Pattern independent minimum current esti-

mation in power and ground buses of CMOS VLSI circuits," IEEE Transactions

on Computer-Aided Design, vol. 14, no. 8, pp. 998{1012, 1995.

[78] A. Krstic and K. Cheng, \Vector generation for maximum instantaneous cur-

rent through supply lines for CMOS circuits," in Proceedings of the ACM/IEEE

Design Automation Conference, pp. 383{388, 1997.

[79] Y.-M. Jiang, T. Young, and K. Cheng, \VIP { an input pattern generator for

identifying critical voltage drop for deep sub-micron designs," in Proceedings

of the International Symposium of Low Power Electronic Devices, pp. 156{161,

1999.

[80] G. H. Golub and C. F. V. Loan, Matrix Computations. Baltimore, MD: The

Johns Hopkins University Press, 1984.

[81] C. Ho, A. Ruehli, and P. Brennan, \The modi�ed nodal approach to network

analysis," IEEE Trans. Circuits and Systems, vol. CAS-22, no. 6, pp. 504{509,

1975.

[82] K. G. Murty, Operations Research Deterministic Optimization Models. Engle-

wood Cli�s, NJ: Prentice Hall, 1995.

[83] P. Larsson and C. Svensson, \Noise in digital dynamic CMOS circuits," IEEE

Journal of Solid-State Circuits, vol. 29, pp. 655{662, June 1994.

146

[84] S. Ganguly, D. Lehther, and S. Pullela, \Clock distribution methdology for Pow-

erPC microprocessors," Journal of VLSI Signal Processing, vol. 16, pp. 181{189,

Jun{July 1997.

[85] M. P. Desai, R. Cvijetic, and J. Jensen, \Sizing of clock distribution networks

for high performance CPU chips," in Proceedings of the ACM/IEEE Design Au-

tomation Conference, pp. 389{394, 1996.

[86] A. B. Kahng and G. Robins, On Optimal Interconnections for VLSI. Boston,

MA: Kluwer Academic Publishers, 1995.

[87] R. S. Tsay, \An exact zero-skew clcok routing algorithm," IEEE Transactions

on Computer-Aided Design, vol. 12, pp. 242{249, Feb. 1993.

[88] D. Lether and S. S. Sapatnekar, \Clock tree synthesis for multi-chip modules,"

in Proceedings of the IEEE/ACM International Conference on Computer-Aided

Design, pp. 53{56, 1996.

147

