
Fast algorithms for retiming large digital circuitsbyNaresh MaheshwariA dissertation submitted to the graduate facultyin partial ful�llment of the requirements for the degree ofDOCTOR OF PHILOSOPHY
Major: Computer EngineeringMajor Professor: Sachin Sapatnekar

Iowa State UniversityAmes, Iowa1998Copyright c Naresh Maheshwari, 1998. All rights reserved.

iiGraduate CollegeIowa State University
This is to certify that the Doctoral dissertation ofNaresh Maheshwarihas met the dissertation requirements of Iowa State University

Committee MemberCommittee MemberCommittee MemberCommittee MemberMajor ProfessorFor the Major ProgramFor the Graduate College

iii

Dedicated to my Grandparents

iv
TABLE OF CONTENTS

LIST OF FIGURES : viiiLIST OF TABLES : ixACKNOWLEDGEMENTS : xABSTRACT : xi1 INTRODUCTION : 11.1 Types of Retiming : 11.2 Research on Retiming : 41.3 Organization of this Thesis : 72 BACKGROUND : 102.1 The Leiserson-Saxe Approach : 102.1.1 Notation : 102.1.2 The Minperiod Retiming Algorithm : 112.1.3 The Minarea Retiming Algorithm : 122.1.4 A More Accurate Area Model : 122.2 The ASTRA Approach : 152.2.1 The Relationship Between Clock Skew and Retiming : : : : : : : : : : 152.2.2 Minperiod Retiming Algorithm : 163 RETIMING FOR MINIMUM AREA : 183.1 Introduction : 183.2 Reducing the Problem Size : 183.2.1 The Concept of Restricted Mobility : 193.2.2 Deriving Bounds for the r Variables : 203.2.3 Eliminating Unnecessary Constraints : : : : : : : : : : : : : : : : : : : 243.2.4 Reduced Linear Program : 243.2.5 An Example : 243.3 Minarea Retiming Using Minaret : 263.3.1 Deriving Bounds on the r Variables : 263.3.2 Generating the Linear Program : 273.3.3 Solving the Linear Program : 29

v3.4 Experimental Results : 293.5 Conclusion : 334 RETIMING CONTROL LOGIC : 344.1 Introduction : 344.2 Ensuring Equivalent Initial States : 364.2.1 Obtaining the Justi�cation Bounds : 394.2.2 Searching for the Optimal Solution : 404.3 Conditional FF sharing : 434.3.1 Modi�cations in the Objective Function : : : : : : : : : : : : : : : : : : 454.3.2 Additional Constraints : 454.3.3 An Example : 464.3.4 FF Sharing with Don't Cares : 474.4 Experimental Results : 484.5 Conclusion : 505 RETIMING LEVEL-CLOCKED CIRCUITS : : : : : : : : : : : : : : : : : : 525.1 Introduction : 525.2 Background : 545.2.1 Clock Model : 555.2.2 Timing Constraints for Level-Clocked Circuits : : : : : : : : : : : : : : 565.3 Relation Between Retiming and Skew : 575.4 Minimum Period Retiming : 605.4.1 Phase A: Clock Period Optimization : : : : : : : : : : : : : : : : : : : 615.4.2 Phase B: GDT Minimization : 625.4.3 Retiming for a Target Period : 645.4.4 A Bound on the Clock Period of the Retimed Circuit : : : : : : : : : : : 655.5 Minimum Area Retiming : 675.5.1 The Minarea Linear Program : 675.5.2 Reducing the Linear Program : 695.5.3 Generating the Reduced Linear Program : : : : : : : : : : : : : : : : : 705.5.4 Solving the Linear Program : 745.6 Experimental Results : 745.7 Conclusion : 776 CONCLUSION : 796.1 Conclusion : 796.2 Directions for Further Research : 806.2.1 Restriction on Design Styles : 806.2.2 Veri�cation : 816.2.3 Position in Design Flow : 82

vi6.2.4 Improved Delay Models : 826.2.5 Retiming and Logic Synthesis : 82BIBLIOGRAPHY : 85BIOGRAPHICAL SKETCH : 97

vii
LIST OF FIGURESFigure 1.1 E�ect of retiming on clock period : 2Figure 1.2 E�ect of retiming on number of registers : : : : : : : : : : : : : : : : : 2Figure 1.3 Equivalent initial states in reverse retiming. : : : : : : : : : : : : : : : 4Figure 2.1 Unconditional register sharing at multiple fanouts. : : : : : : : : : : : 13Figure 2.2 Model for maximum register sharing at multiple fanouts. : : : : : : : : 14Figure 2.3 An example circuit. : 16Figure 2.4 Using clock skew to reduce clock period. : : : : : : : : : : : : : : : : : 16Figure 2.5 Retiming for clock period optimization. : : : : : : : : : : : : : : : : : : 16Figure 3.1 Possible FF locations after retiming. : : : : : : : : : : : : : : : : : : : 19Figure 3.2 E�ective skews at FF's after ASAP retiming across a gate. : : : : : : : 22Figure 3.3 Example illustrating the approach. : 24Figure 4.1 (a) Original circuit. (b) Retimed circuit : : : : : : : : : : : : : : : : : 34Figure 4.2 Forward retiming of a combinational logic node : : : : : : : : : : : : : 34Figure 4.3 Conventional minarea retiming : 36Figure 4.4 Example of variation in the number of FF's with initial state : : : : : 36Figure 4.5 Another example of variation in the number of FF's with initial state : 37Figure 4.6 An example circuit where lower bound � is achievable : : : : : : : : : 37Figure 4.7 A minarea retiming without equivalent initial state : : : : : : : : : : : 38Figure 4.8 A minarea retiming with equivalent initial state : : : : : : : : : : : : : 38Figure 4.9 E�ect of justi�cation of on the number of FF : : : : : : : : : : : : : : 40Figure 4.10 An example of a pruning technique : 42Figure 4.11 Conditional register sharing at multiple fanouts : : : : : : : : : : : : : 43Figure 4.12 An example of FF sharing : 44Figure 4.13 Example of positive retiming : 47Figure 4.14 Example of negative retiming : 47Figure 5.1 An example circuit. : 54Figure 5.2 Retiming for clock period optimization. : : : : : : : : : : : : : : : : : : 55Figure 5.3 Alternate retiming for clock period optimization. : : : : : : : : : : : : 55

viiiFigure 5.4 Phase i of a k-phase clock (all times in local time zone). : : : : : : : : 56Figure 5.5 The phase shift operator. : 56Figure 5.6 Using clock skew to reduce clock period. : : : : : : : : : : : : : : : : : 57Figure 5.7 The latch shift operator. : 58Figure 5.8 The ability of a latch to absorb some skew. : : : : : : : : : : : : : : : : 59Figure 5.9 Worst-case situation for remaining skew. : : : : : : : : : : : : : : : : : 66Figure 6.1 Di�erent path delays in a fanout dependent delay model. : : : : : : : : 83

ix
LIST OF TABLESTable 3.1 Minarea Retiming Using Minaret : 31Table 3.2 Reduction in Number of Variables and Constraints in Minaret : : : : : 32Table 4.1 Minarea Initial State Retiming : 49Table 5.1 Quality of Retiming for Single Phase Circuits : : : : : : : : : : : : : : 75Table 5.2 Quality of Retiming for Two Phase Circuits : : : : : : : : : : : : : : : 75Table 5.3 Reduction in the Size of LP for Single Phase Circuits : : : : : : : : : : 76Table 5.4 Reduction in the Size of LP for Two Phase Circuits : : : : : : : : : : : 77

x
ACKNOWLEDGEMENTSI would like to express my sincere appreciation for my advisor and mentor, ProfessorSachin Sapatnekar. He o�ered me enthusiastic support and guidance, and provided valuablesuggestions and encouragement. I also thank Professors L. F. Chao, M. Hassoun, S. C. Kothari,A Tyagi, R. L. Geiger, G. M. Prabhu and D. Fernandez-Baca for their advice and comments.I would like to acknowledge many useful discussions with Professor B. Vinnkota at Uni-versity of Minnesota; Professors S. M. Reddy and I. Pomeranz at University of Iowa; Dr. R.Rudell, Dr. N. Shenoy, P. Zepter and J. C. Madre at Synopsys; and Dr. C. Visweswariah,Dr. L. Stok, A. Mets, Anthony Drumm and Brian Wilson at IBM. I also thank ProfessorsAnshul Kumar, M. Balakrishnan and Shashi Kumar of Indian Institute of Technology, Delhifor introducing me to the �eld of Electronic Design Automation.Many thanks to fellow graduate students for making my stay pleasant and fruitful: DakshLehther, Govindaraju Venkatesh, Sabita Pilli, Jatan C. Shah, Huibo Hou, Yanbin Jiang, MinZhao, Kishore V. Kasamsetty, Joon-Yun Kim, Je� Echtenkamp, Prasoonkumar Surti, Laksh-mikant Bhupathi, Navin Venkata, Naveen Bohra, Tapas Ray, Madhusudhan R. Midhe, Jian-Feng Shi, Ankur Gupta, Ajay Jani, Sridharan Sucheendran, Ashutosh Joharapurkar, MugdhaKulkarni, Seshadri Anantharama, Siamak Mortezapou, Sudha Nagavarapu, Raghuram Mad-abushi, Jayesh Sidhiwala, Sunil Mishra, Vara Varavithya, Manoj Sahu, Saqib Malik, Tara John,Sunita Dash, Sudeer Vemulapalli, Jatin Upadhyay, Chung Yen Chang, Russ Meier, LavanyaApsani, Seema, Sucheendran Sridharan, Sudnya Shro�, Jiang Hu, Kaushik Gala and JunsooLee. Special thanks to Kaushik Gala for proof-reading this thesis, and to Vara Varavithya forhelping me with various formalities of thesis submmition.Thanks to Andrew, Jerry, Idarto, Chimai and other \sysadmin" people for keeping thecomputers up and running. I am grateful to National Science Foundation, Lucent Technologiesand Design Automation Conference for funding parts of my research; IEEE and Iowa StateUniversity for providing �nancial support to attend conferences; and IBM for providing mewith the opportunity to work two summers.I feel indebted to my aunts, uncles and cousins in US for their love and emotional supportand for many wonderful vacations; and to my parents for having faith in me.

xi
ABSTRACTThe increasing complexity of VLSI systems and shrinking time to market requirmentsdemand good optimization tools capable of handling large circuits. Retiming is a powerfultransformation that preserves functionality, and can be used to optimize sequential circuitsfor a wide range of objective functions by judiciously relocating the memory elements. Leis-erson and Saxe, who introduced the concept, presented algorithms for period optimization(minperiod retiming) and area optimization (minarea retiming). The ASTRA algorithm pro-posed an alternative view of retiming using the equivalence between retiming and clock skewoptimization.The �rst part of this thesis de�nes the relationship between the Leiserson-Saxe and theASTRA approaches and utilizes it for e�cient minarea retiming of large circuits. The newalgorithm, Minaret, uses the same linear program formulation as the Leiserson-Saxe approach.The underlying philosophy of the ASTRA approach is incorporated to reduce the number ofvariables and constraints in this linear program. This allows minarea retiming of circuits withover 56,000 gates in under �fteen minutes.The movement of ip-ops in control logic changes the state encoding of �nite state ma-chines, requiring the preservation of initial (reset) states. In the next part of this work theproblem of minimizing the number of ip-ops in control logic subject to a speci�ed clockperiod and with the guarantee of an equivalent initial state, is formulated as a mixed integerlinear program. Bounds on the retiming variables are used to guarantee an equivalent initialstate in the retimed circuit. These bounds lead to a simple method for calculating an equivalentinitial state for the retimed circuit.The transparent nature of level sensitive latches enables level-clocked circuits to operatefaster and require less area. However, this transparency makes the operation of level-clockedcircuits very complex, and optimization of level-clocked circuits is a di�cult task. This thesisalso presents e�cient algorithms for retiming large level-clocked circuits. The relationshipbetween retiming and clock skew optimization for level-clocked circuits is de�ned and utilized todevelop e�cient retiming algorithms for period and area optimization. Using these algorithmsa circuit with 56,000 gates could be retimed for minimum period in under twenty seconds andfor minimum area in under 1.5 hours.

1
1 INTRODUCTIONWith the advances in integrated circuit (IC) technology, more than 10 million devicescan be manufactured on a single chip today. Because of this increase in the complexity,Very Large Scale Integration (VLSI) circuit designs require sophisticated Electronic DesignAutomation (EDA) tools capable of handling large circuits. Due to the increase in complexityand reduced time to market, designers cannot rely on their intuition to design fast, low powersequential circuits with minimum area. Thus circuit optimization tools are indispensable fordesigners, and much work needs to be done to develop good computer-aided design (CAD)tools. Most of the traditional circuit optimization techniques operate on combinational sub-circuits extracted from sequential designs. Thus they have limited capabilities for optimizationand true sequential optimization techniques are needed. This work develops CAD tools foroptimizing large sequential circuits.Retiming is a powerful transformation that has great potential for sequential circuit op-timization. It is the concept of moving storage devices across computation nodes to improveperformance without changing the input-output behavior, and can operate at gate level netlistsor higher abstractions (e.g. data ow graphs, communication graphs, processor schedules).At the circuit level these storage devices are called registers which can be either edge-triggered ip-ops (or FF's) or level sensitive latches (or latches), and the computation nodesare combinational gates. Retiming moves registers across gates without changing the numberof registers in any cycle or on any path from the primary inputs to the primary outputs.This preserves the input-output latency of the circuit. Since retiming does not directly a�ectthe combinational part of the circuit the circuit behavior remains unchanged. However sinceretiming can change the boundaries of combinational logic, it has the potential to a�ect theresults of combinational synthesis as well.1.1 Types of RetimingRetiming can be performed to improve the circuit behavior with respect to di�erent objec-tive functions. Some of these objective functions are discussed below.Clock Period The simplest objective function used in retiming is minimization of the clockperiod. Since the clock period in an edge-triggered circuit is given by the maximumcombinational delay, registers can be relocated to reduce the clock period. For the

2
(b)

IN OUT

G3 G4G1 G2

F1

OUT

G4

F1IN

G1 G2 G3
(a)

Figure 1.1 E�ect of retiming on clock periodcircuit shown in Figure 1.1 (a), with unit delay gates, the clock period is 3.0 time units.If we relocate register L1 from the output of gate G3 to its input, we get the circuit inFigure 1.1 (b), with a clock period of 2.0 units. Thus relocating registers can reducethe clock period of a circuit, and retiming can be used to minimize the clock period.Retiming to minimize the clock period is termed minperiod retiming. Notice thatthe input-output behavior is not changed by retiming since in both cases the output isproduced after 2 clock cycles. Retiming a circuit to achieve a given target clock periodis a special case of this problem.Area Since retiming does not a�ect the combinational part of the circuit, the area overheadof the combinational part remains constant. Retiming can, however, a�ect the overallarea of the circuit since it can alter the number of registers in the circuit.
G3

G2

G1

G4

F1

F2

(a)

G3

G2

G1

F3
G4

(b)Figure 1.2 E�ect of retiming on number of registersTwo circuits can have the same input-output behavior and clock period, but requiredi�erent number of registers. To illustrate this consider the circuits in Figure 1.2 whichare equivalent under the retiming transformation. The circuit in Figure 1.2 (a) requirestwo registers while that in Figure 1.2 (b) requires only one register.Retiming can therefore be used to minimize the number of registers in the circuit. Thiscan be done without any constraint on the clock period of the resulting circuit, or subject

3to a target clock period. The former is called unconstrained minarea retiming while thelatter is called constrained minarea retiming or simply minarea retiming.Power The power dissipated in a circuit depends on the product of switching activity andthe load capacitance at the output of a gate, summed over all gates. Since registers can�lter out glitches, relocation of registers will a�ect the switching activity at gate outputs.In addition relocating registers also changes the load capacitance seen by gates. Thusretiming can change the power requirements of a circuit, and can be used for reducingthe power dissipation in sequential circuits by placing registers on interconnections withhigh switching activity and high capacitive loads.Testability Since retiming relocates registers, it changes the state encoding in sequentialcircuits, thus a�ecting the test generation time, and the number of redundant faults. Therepositioning of registers also a�ects the length of scan chains, required for partial or fullscan designs. Retiming can, therefore, be used to improve the testability of sequentialcircuits.Quality of Logic Optimization Most logic optimization techniques operate on combina-tional logic within register boundaries. Hence changing these register boundaries (byretiming the registers) a�ects the quality of results obtained by logic optimization.Most of these objective functions have been used for retiming di�erent kinds of circuits. Abrief survey of publications describing these research activities is presented in Section 1.2.Algorithms for retiming a circuit must address the speci�c requirements of a circuit, andthe clocking discipline used. Four major classes of circuits are described below.Edge-triggered Circuits containing only edge-triggered FF's are called edge-triggered cir-cuits. In an edge-triggered circuit the clock period is given simply by the largest combi-national delay. The �rst publications on retiming addressed this class of circuits.Level-clocked Circuits using level-sensitive latches are called level-clocked circuits. Latchesare transparent during the period when the clock waveform is active. This transparentnature of latches give level-clocked circuits the potential to operate at a faster clock pe-riod, and require less area than the corresponding edge-triggered circuits. Unfortunatelythis also complicates the analysis of level-clocked circuits and hence �nding an optimalretiming can be computationaly expensive.Control Logic Since control logic consists of Finite State Machines (FSM's), the registersin the circuit are associated with the FSM states. Retiming changes the locations ofthese registers and hence the state encoding of the FSM. Thus issues regarding safereplaceability become important. In circuits that have a meaningful initial state, it isimportant to �nd a retimed circuit with an equivalent initial state. Not all otherwise

4valid retimings of a circuit will have equivalent initial states. Consider the circuit inFigure 1.3 (a). If we wish to move FF A and B across gate G1 (to FF C in Figure 1.3(b)), we need to �nd a initial value of FF C which is equivalent to the initial values ofFF A and B. If FF A and B have conicting values, no such equivalent initial value atFF C exists. Thus additional constraints have to be imposed to ensure the presence ofan equivalent initial state when retiming control logic.
0

G1

FF A

FF B

1

(a)

FF C

?

(b)

G1

Figure 1.3 Equivalent initial states in reverse retiming.FPGA's Field Programmable Gate Arrays (FPGA's) present some di�erent requirements. InLUT-based FPGA's the amount of logic is dependent on the number of inputs and not onthe complexity of the logic. Further since FPGA's have limited resources with memoryelements at �xed locations extra constraints are placed on the movement of memoryelements during retiming.1.2 Research on RetimingSince retiming was introduced by Leiserson and Saxe [58, 59] there has been signi�cantamount of research has been done on retiming both in the academia [10, 21, 28, 53, 92, 93,103, 104, 111, 112, 121, 40] and in the industry (e.g, IBM, Synopsys and Philips). In thissection we present a brief literature survey of retiming related research. A good survey ofretiming research is also provided in [113]. A good introduction to retiming can also be foundin Section 9.3.1 of [86].Edge-triggered Circuits Leiserson and Saxe introduced algorithms for minperiod and minarearetiming of edge-triggered circuits[58]. The circuit is represented by a graph and poly-nomial time algorithms are presented without any experimental implementations. Theminperiod retiming problem is solved by performing a binary search for the best clockperiod. The feasibility of a given clock period is checked by a Bellman-Ford like relax-ation algorithm. The minarea problem is formulated as a Linear Program (LP). This LPis the dual of a mincost network ow problem, and thus can be solved e�ciently. Detailsof this approach, which we call the \LS approach", are provided in [59] and describedbriey in Section 2.1.

5Shenoy and Rudell presented an e�cient and clever implementation of the LS algo-rithms in [115]. Their main contributions include reducing the memory requirementsfrom O(jGj2) to O(jGj), where jGj is the number of gates in the circuit, and the use ofback pointers to speed up the feasibility check during the binary search for minimumclock period. A technique for reducing the number of constraints in the minarea LP waspresented in [1].The ASTRA algorithm [21, 22, 109] exploited the retiming-skew equivalence for fastminperiod retiming. ASTRA �rst �nds a minimum period achievable by skew optimiza-tion, and then translates these skews into retiming. Circuits with 20,000 gates could beretimed in 2 minutes.Improved Timing Models Both the LS approach and the ASTRA approach assume thegate delays to be �xed and all FF delays to be equal. Since these are approximations,much e�ort has been spent in improving the delay models. Delay models that incor-porate clock skews, register delays, etc. are presented in [83, 124, 126, 127]. DelaY[54, 56] provides a mixed integer linear program (MILP) formulation for a model thathas delays associated with interconnects. Constraints are created from each interconnectto every other interconnect, unlike the traditional LS retiming approach that formulatesconstraints between gates.The work in [51] presents retiming under variable delays, while [118] presents retimingunder variable topology. The work in [57] presents techniques for handling multi-cyclepaths and multiple period clocks for minperiod retiming.Level-Clocked Circuits A signal that ows through a latch during its transparent phase caninitiate the computation of the next combinational stage before the beginning of the nextclock cycle; this phenomenon is called cycle stealing. Due to cycle stealing, level-sensitivecircuits have a potential to operate faster, and require less area. Algorithms to retimesingle phase level-clocked circuits are presented in [114]. Algorithms based on the LSmodel for retiming multi-phase level-clocked circuits were presented in [8, 9, 44, 68, 70,105, 106, 107]. TIM [96] is a comprehensive timing analysis and optimization CAD toolfor level-clocked circuits that is available in public domain. TIM was used to empiricallycompare edge-triggered and level-sensitive circuits in [95]. In [46] a polynomial-timealgorithm is presented for pipelining two-phase, level-clocked circuits under a boundeddelay model.Retiming with Equivalent Initial States Traditional retiming algorithms do not pay anyregard to initial states or power-on states of circuits and are not very useful for controllogic. Control logic usually have s meaningful initial states and any useful retiming mustalso �nd a new initial state for the retimed circuit that is equivalent to the initial stateof the original circuit.

6A method for minperiod retiming with equivalent initial states was presented in [130] anduses only forward retimings. In some cases this approach may require modi�cations in thecircuit before it can be used. An e�cient technique for these modi�cations is presented in[122]. Reversed retiming [30, 128] uses minimum number of reverse (backward) retimingmoves and does not require any modi�cations in the circuit.Low Power Retiming can alter the amount of switching that takes place in a circuit, and can,therefore, a�ect the power consumption of a circuit. The change in the fanout capacitancedue to the motion of FF's further a�ects the power consumption. A mechanism forreducing power by retiming [87], places FF's on interconnects with high switching activity.In [55], algorithms to reduce power by retiming only one phase in a two-phase circuit arepresented. The advantage of retiming only one phase is that it preserves the testabilityof the circuit. A similar approach is taken in [120] to reduce power in DSP designs.Testing Retiming can be used both to improve testability of a circuit, and as an aid toautomatic test generation. In the former case the retimed circuit is actually implemented,while in the later case the retimed circuit is used just by the test generator and the originalcircuit is implemented. Some work has been performed to characterize the e�ect of FFrelocation on the redundancy of faults [18, 23, 135, 136]. In [26], it was shown thatretiming preserves testability with respect to a single stuck-at-fault test set by adding apre�x sequence of a pre-determined number of arbitrary input vectors. Retiming mayconvert sequential redundancies into a combinational redundancies which are easier toidentify, thus improving testability. Retiming can also be used for reducing test lengthsin scan based designs [41, 42, 49], for improving built-in self test (BIST) [50, 60, 62] andfor pseudo-exhaustive testing [61].Pipelining and Architectural retiming Since retiming preserves the input-output behav-ior of the circuit, the number of registers on any path from a primary input (PI) to aprimary output (PO) does not change during retiming. A path here refers to a signalow through zero or more registers and not to a purely combinational path. Thus theminimum period possible under retiming is restricted by a critical cycle or IO-path. Acritical cycle is a maximum average delay cycle, i.e., a cycle for which the total delay di-vided by the number of registers is maximum. A critical IO-path is similarly a maximumaverage delay path from any PI to any PO.Pipelining is a technique that increases the latency, i.e., the number of latches on a PIto PO path, of a circuit in order to reduce the clock period [101]. Since pipelining canchange the latency, the minimum clock period achievable by pipelining is restricted onlyby critical cycles and not by the critical IO-paths. Pipelining can be achieved by addingone or more registers to all PI's (or PO's) and then retiming the circuit. Thus pipelining

7has a potential of achieving lower periods than retiming, by changing the latency of thecircuit [46, 82, 101, 116, 125].Architectural retiming [36, 37, 39, 40] modi�es the combinational part of a circuit toincrease the number of registers on a critical cycle or path without increasing the per-ceived latency. Thus architectural retiming unlike retiming and pipelining is not limitedby a critical cycle in period reduction, however, it changes the circuit structure, and isdi�cult to automate.Veri�cation Issues Research has also been performed on validating the replacement of acontroller circuit by a retimed version [47, 102, 123]. The work in [123] shows that whilean accurate logic simulation may distinguish a retimed circuit from the original circuit, aconservative three-valued simulator cannot do so. Techniques for veri�cation of retimedcircuits are presented in [35, 85, 104]. The work in [43] uses an ATPG based approachfor verifying retimed circuits.Other Applications Retiming has been used during the technology mapping step in FPGAsynthesis [15, 16, 91, 129, 133], to improve circuit partitioning [66], for scheduling inhigh level synthesis [12, 132] and in multiprocessor scheduling [11]. Other approaches forretiming for system level throughput optimization include [89, 134]. Retiming has beencombined with other logic synthesis techniques in [4, 63, 65, 80, 81, 90, 99]. Retiminghas also been used extensively in DSP applications [27, 34, 97, 98, 100]. The workin [84] presents techniques to handle enable registers. Other work on retiming include[13, 19, 20, 25, 29, 32, 33, 48, 64, 69, 88, 94, 117, 119, 137].1.3 Organization of this ThesisThis thesis focuses on the issue of e�cient retiming of large circuits. E�cient retimingalgorithms capable of handling large edge-triggered and level-clocked circuits are presented fordelay and area optimization. Parts of this research have been published in [72, 73, 74, 75, 76,77, 78, 79]. The remainder of the thesis is organized as followsBackground In this chapter we briey describe the minperiod and minarea retiming methodsgiven by Leiserson and Saxe in [59], and the ASTRA approach to minperiod retiming in[109]. The minimum clock periodis obtained by perfoming a binary search on the clockperiod. The minarea retiming problem is formulated as a Linear Program (LP).Minarea Retiming Since minperiod retiming may signi�cantly increase the number of FF'sin the circuit, minarea retiming is a important problem. However, traditional algorithmshave had a high computational expense, which has limited its use. In Chapter 3 wepresent an e�cient algorithm for delay constrained minimum area retiming of large cir-cuits with edge-triggered FF's. This algorithm is called Minaret and it performs minarea

8retiming through an amalgamation of the Leiserson-Saxe approach and the ASTRA ap-proach. The minarea retiming problem is formulated as an LP and the ASTRA approachis used to �nd tight bounds on the retiming variables. These bounds then help us re-duce both the number of variables and the number of constraints in the problem withoutany loss in accuracy. By spending a small amount of additional CPU time on the AS-TRA runs, this method leads to signi�cant reductions in the total execution time of theminarea retiming problem. The reduction in the problem size also reduces the memoryrequirements, thus enabling retiming of large circuits.Retiming Control Logic In control logic the initial state of a circuit is an integral part ofthe behavior. Hence any retimed circuit must have an equivalent initial state in order tohave the same behavior as the original circuit. In Chapter 4 we present an algorithm forminarea retiming with a guarantee of equivalent initial states, we call this problem theminarea initial state retiming problem.There are two basic problems in minarea initial state retiming: �rstly to ensure equiv-alent initial state, and secondly to correctly model the conditional sharing of FF's atthe outputs of a gate. We guarantee an equivalent initial state by allowing only thosebackward moves that have an equivalent initial value. This is achieved by enforcing abound on the retiming variables.Unfortunately the unconditional sharing model of [59] is not valid for minarea initialstate retiming, where FF's have initial states associated with them, and hence theseinitial states need to be taken into account in modeling FF sharing. We present a new0/1 MILP formulation for modeling this conditional latch sharing of FF's at the outputof a gate.Retiming Level Clocked Circuits Level-clocked circuits have the potential to operate fasterand require less area. However due to the transparent nature of latches the timing analysisand hence optimization of level-clocked circuits is a hard problem. Although polynomialtime algorithms for retiming level-clocked circuits are known, they can not handle largecircuits. In Chapter 5 we �rst present the equivalence between retiming and skew op-timization for level-clocked circuits, then we utilize this relation for e�cient minperiodand minarea retiming of large level-clocked circuits.We use a two phase solution for the minperiod retiming problem for general multi-phaseclock schedules. In Phase A we solve a clock skew optimization problem e�ciently, toobtain the relocation needed for each latch, in order to achieve the optimal clock periodunder a given schedule. In Phase B the latches are relocated across gates to achievethis target clock period. Since latches can absorb some skew (equal to the active periodof the clock), we can stop relocating latches as soon as the skew is small enough to becompletely absorbed.

9In minarea retiming of level-clocked circuits, the number of constraints is very high sincewe may have constraints through multiple latches. We use the retiming-skew relationto obtain bounds on the retiming variables. These bounds are then used to reduce thenumber of variables, and the number of constraints. We also use additional pruningtechniques to further reduce the number of constraints, and for their e�cient generation.Conclusion In this chapter we conclude this thesis and present a number of open problemswhich need to be solved before retiming can become widely accepted. We also presentsome ideas and thoughts on these problems. The problems disscuesed include limtationon design styles, veri�cation issues, combining retiming with logic synthesis and improveddelay models for retiming.

10
2 BACKGROUNDWe now briey describe the LS approach, details of which can be found in [58, 59]. Wewill then describe relationship between clock skew and retiming, and the ASTRA approach[21, 22, 109].2.1 The Leiserson-Saxe Approach2.1.1 NotationA sequential circuit can be represented by a directed graph G(V;E; d; w), where each vertexv corresponds to a gate, and a directed edge euv represents a connection from the output ofgate u to the input of gate v, through zero or more registers. Each edge has a weight w(euv),which is the number of registers between the output of gate u and the input of gate v. Eachvertex has a �xed delay d(v), that does not change during the retiming process. A specialvertex, the host vertex, is introduced in the graph, with edges from the host vertex to allprimary inputs of the circuit, and edges from all primary outputs to the host vertex.A retiming is a labeling of the vertices r : V ! Z, where Z is the set of integers. Theweight of an edge euv after retiming, denoted by wr(euv) is given bywr(euv) = r(v) + w(euv)� r(u) (2.1)The retiming label r(v) for a vertex v represents the number of registers that have beenmoved from its outputs to its inputs. Retiming can also be viewed as an assignment of a lagr(v) to every vertex v in the circuit. One may de�ne the weight of any path p originating atvertex u and terminating at vertex v (represented as u v), w(p), as the sum of the weightson the edges on p, and its delay d(p) as the sum of the weights of the vertices on p. A pathwith w(p) = 0 corresponds to a purely combinational path with no registers on it; therefore,the clock period can be calculated asc = max8 pjw(p)=0 fd(p)g (2.2)Another important concept used in the Leiserson-Saxe approach is that of the W and D

11matrices that are de�ned as follows: W (u; v) = min8 p:u v fw(p)g (2.3)D(u; v) = max8 p:u v and w(p)=W (u;v) fd(p)g (2.4)The matrices are de�ned for all pairs of vertices (u; v) such that there exists a path p : u vthat does not include the host vertex. W (u; v) denotes the minimum latency, in clock cycles,for the data owing from u to v and D(u; v) gives the maximum delay from u to v for theminimum latency.2.1.2 The Minperiod Retiming AlgorithmThe minimum period obtainable under retiming is found by performing a binary searchover all possible clock periods. At each step in the binary search, an attempt is made to retimethe circuit for the current value of the clock period. The smallest period for which retimingsucceeds is returned as the best clock period.The following O(jV jjEj)-time algorithm is used for obtaining a retiming for a given clockperiod.Algorithm FEASGiven a synchronous circuit G = hV;E; d; wi, and a desired clock period c, returna retiming r of G such that the clock period of the retimed circuit �(Gr) � c.f 1. For each vertex v 2 V , set r(v) 0.2. Repeat the following jV j � 1 times2.1 Compute graph Gr with existing values of r.2.2 Run Algorithm CP on the graph Gr to determine �(v) for each vertex v 2 V .2.3 For each v such that �(v) > c, set r(v) r(v) + 1.3. Run Algorithm CP on the circuit Gr. If �(Gr) > c, then nofeasible retiming exists. Otherwise, r is the desired retiming.gAlgorithm CPThis algorithm computes the clock period �(G) for a synchronous circuitG = hV;E; d; wi.f 1. Let G0 be the subgraph of G with contains precisely those edges ewith register count w(e) = 0.2. Perform a topological sort on G0, totally ordering its verticesso that if there is an edge from vertex u to vertex v in G0,

12then u precedes v in the total order.3. Go through the vertices in the order defined by the topological sort.On visiting each vertex v, compute the quantity �(v) as follows:a. If there is no incoming edge to v, set �(v) d(v).b. Otherwise, set �(v) d(v) + maxf�(u) : u!e v and w(e) = 0.4. The clock period �(G) is maxv2V �(v).g 2.1.3 The Minarea Retiming AlgorithmThe minarea retiming problem for a target period P can be formulated as the followingLP: minimize Pv2V [(jFI(v)j � jFO(v)j) � r(v)] (2.5)subject to r(u)� r(v) � w(euv) 8euv 2 Er(u)� r(v) �W (u; v)� 1 8D(u; v) > P�1 � r(u) � 1 8u 2 (V [M)where FI(v) and FO(v) represent the fanin and fanout sets of the gate v.The signi�cance of the objective function and the constraints is as follows (the reader isreferred to [59] for details).� The objective function represents the number of registers added to the retimed circuit inrelation to the original circuit.� The �rst constraint ensures that the weight euv of each edge (i.e., the number of registersbetween the output of gate u and the input of gate v) after retiming is nonnegative. Wewill refer to these constraints as circuit constraints.� The second constraint ensures that after retiming, each path whose delay is larger thanthe clock period has at least one register on it. These constraints, being dependent onthe clock period, are often referred to as period constraints.It is pointed out in [59] that the dual of this problem is an instance of a minimum cost networkow problem. Hence the LP can be solved e�ciently by solving this dual.2.1.4 A More Accurate Area ModelThe cost function in the LP's of Equation (2.5) assumes that each FF has exactly onefanout. However, in practice a FF can have multiple fanouts, allowing the FF's on di�erentfanout edges of a gate to be shared. This sharing must be taken into account for an accuratearea model. For example, consider gate A in Figure 2.1 with three fanouts B, C, and D having

13
B

C

D

A

(a) (b)

B

C

D

A

Figure 2.1 Unconditional register sharing at multiple fanouts.three, two and two FF's respectively. The LP in Equation (2.5) will model the total number ofFF's as seven as shown in Figure 2.1(a). However the FF's can be merged or shared as shownin Figure 2.1(b) resulting in a total cost of only three FF's.To model the maximal FF sharing1 the work in [59] introduces a mirror vertex mi for eachgate i that has more than one fanout, as shown in Figure 2.2. Further details of this maximallatch sharing model can be found in [111]. Every edge eij , in addition to having a weightw(eij), now also has a width �(eij). In Figure 2.2, the edge weights are shown above the edgeswhile the edge widths are shown below the edges. Consider a gate u with k fanouts to gatesvj ; j = 1 � � � k. To model the maximum sharing of FF's, an extra edge is added from eachfanout gate vj to the mirror vertex, mu, with weight w(evjmu) = w(maxu) � w(euvj), wherew(maxu) = max8i2FO(u)(w(eui)) is the maximum weight on any fanout edge of gate u. Eachof the edges from the gate i to its fanouts j, and from the fanouts to the mirror vertex has awidth of 1=k, i.e., �(euvj) = 1=k and �(evjmu) = 1=k for j = 1 � � � k:The original LP in Equation (2.5) is modi�ed to include the e�ect of register sharing asfollows: min Xv2(V [M)240@ X8j2FI(v)�(ejv)� X8j2FO(v)�(evj)1A � r(v)35subject to r(u)� r(v) � w(euv) 8euv 2 E (2.6)r(u)� r(v) �W (u; v) � 1 8D(u; v) > Pr(j)� r(mi) � w(maxi)�w(ejmi) 8(mi) 2M and 8j 2 FO(i)�1 � r(u) � 1 8u 2 (V [M)where M = fmvjv 2 V and jFO(v)j > 1g is the set of all the mirror vertices, and additionalconstraints due to the mirror vertices are called the mirror constraints. For simplicity we canrewrite the above LP as followsmin Xv2(V [M)240@ X8j2FI(v)�(ejv)� X8j2FO(v)�(evj)1A � r(v)351This model is valid only for unconditional sharing of FF's. In Section 4.3 we will present a model forconditional sharing of FF's.

14

euvw()
k

euv1w()

euvw()2

euv1w()()-w(max)u

euvw()2-()w(max)u

euvw()
k()-w(max)u

u
m

 vk

v

 v2

1

u

1/k

1/k

1/k

1/k

1/k

1/k

euvw()2

euv1w()

euvw()
k

u

v k

 v

 v

1

2

Figure 2.2 Model for maximum register sharing at multiple fanouts.subject to r(u)� r(v) � cuv 8(u; v) 2 C (2.7)�1 � r(u) � 1 8u 2 (V [M)where C = Cp [Cc [Cm is the constraint set of the LP in Equation (2.6), and includes theperiod constraint set (Cp), the circuit constraint set (Cc) and the mirror constraint set (Cm).A constraint (i; j) in the constraint set C is of the formr(i)� r(j) � cij 8(i; j) 2 Cwhere cij = w(eij) 8(i; j) 2 Cc, i.e., eij 2 Ecij = W (i; j) � 1 8(i; j) 2 Cp, i.e., D(i; j) > Pcij = w(maxi)� w(ejmi) 8(i; j) 2 Cm, i.e., mi 2M and 8j 2 FO(i)(2.8)The objective function of the LP in Equation (2.7) now denotes the increase in the numberof FF's assuming maximal sharing of FF's at the output of all gates. The weights on all pathsfrom gate u to its mirror vertex mu are the same before retiming, i.e., w(euvi) + w(evimu) =w(maxi) 1 � i � k, and therefore the weights on all paths from gate u to its mirror vertex mumust be equal after retiming. Since the mirror vertex mu is a sink in the graph, the registercount on one of the edge from the fanout nodes to mu will be zero, i.e., 9i jw(evi ;mu) = 0. Thusthe weight on all paths from gate u to mirror vertex mu after retiming will be wr(maxu) =max8j2FO(u)(wr(euj)). Since there are k paths, each with width 1=k, the total cost of all pathswill be wr(maxu) as desired. Like the LP in Equation (2.5) the LP in Equation (2.7) is alsothe dual of a minimum cost network ow problem.

15We now present an alternate view of this model. The change in cost function due to addingor removing FF's from the fanout junction of gate u is modeled by two retiming variables: onefor the gate, r(u) and other for the mirror vertex, r(mu). Any change in the cost function dueto FF's moving across the multi-fanout gate itself are modeled by r(u), while any change dueto FF motion across its fanout gates vi; 1 � i � k is modeled by the mirror variable r(mu).The change in the number of FF's in the circuit, under maximal sharing obtained byretiming a gate u by one unit can be calculated as follows. The decrease in the cost functionobtained by removing a FF from each of the fanouts of a gate is one unit, even for multiplefanout gates since the FF's on all the fanouts were shared. The increase in the cost functionfrom adding a FF to all the inputs of a gate u is equal to the number of fanins of u that haveonly one fanout, since any FF added to a fanin j of gate u that has more than one fanout(jFO(j)j > 1) is already modeled by the mirror variable of that fanin gate mj . Thus thecost contribution of any single fanout gate u is given by (jFI 0(u)j � 1) � r(u), while that of amulti-fanout gate is given by (jFI 0(u)j � 1) � r(u) + r(mu), where FI 0(u) is the set of faninsthat have only a single output, i.e., FI 0(u) = fvjv 2 FI(u) AND jFO(v)j = 1g.2.2 The ASTRA Approach2.2.1 The Relationship Between Clock Skew and RetimingIn a sequential VLSI circuit, due to di�erences in interconnect delays on the clock distri-bution network, clock signals do not arrive at all of the FF's at the same time. Thus, thereis skew between the clock arrival times at di�erent FF's. In a single-phase clocked circuit, inthe case where there is no clock skew, the designer must ensure that each input-output pathof a combinational circuit block has a delay that is less than the clock period. In the presenceof skew, however, the relation grows more complex, as one must compensate for this e�ect inensuring that the combinational blocks meet the timing requirements.The basis of the ASTRA approach is the equivalence between clock skew and retiming, asillustrated by the following example. Let us �rst consider the use of intentional clock skewsfor improving the circuit performance. In Figure 2.3, assume the delays of the inverters to be1.0 unit each. The delays of the �rst and second combinational blocks are 3.0 and 1.0 units,respectively, and therefore, the fastest allowable clock has a period of 3.0 units. However, if askew of +1.0 unit is applied to the clock line to FF L1, as shown in Figure 2.4, the circuit canrun with a clock period of 2.0 units. This approach was formalized in the work by Fishburn[31], where the clock skew optimization problem was formulated as a linear program (LP) thatmay be solved to �nd the optimal clock period.However, it is easy to see that for the given circuit, the period can also be minimized to 2.0units by retiming, i.e., by relocating the FF L1 to the left across the inverter G3. This resultsin both the combinational blocks having delays of 2.0 units each as seen in Figure 2.5.

16
0 3 41 2

G1 G2

IN

G4

OUT

G3

L1
IN

L1

CLOCK

actual
requiredFigure 2.3 An example circuit.

G1 G2

IN

G4

OUT

G3

L1
IN

OUT

L1

DelayClk

CLOCK

0 3 41 2Figure 2.4 Using clock skew to reduce clock period.This leads us to conclude that in each case, one unit of time is borrowed by the �rstcombinational block from the second; the manner in which cycle-borrowing occurs may eitherbe by the vehicle of clock skew or via retiming.2.2.2 Minperiod Retiming AlgorithmThe details of the ASTRA algorithm for minperiod retiming are provided in [21, 109];a brief description is presented here for completeness. The relationship between skew andretiming motivates the following two-phase solution to the retiming problem:Phase A: The clock skew optimization problem is solved to �nd the optimal value of theskew at each FF, with the objective of minimizing the clock period, or to satisfy a given
IN

OUT

L1

CLOCK

0 3 41 2

G3 G4G1 G2

IN L1 OUT

Figure 2.5 Retiming for clock period optimization.

17(feasible) clock period. This involves the (possibly repeated) application of the Bellman-Ford algorithm [17] on a constraint graph [109].Phase B: The skew solution is translated to retiming and some FF's are relocated acrossgates in an attempt to set the values of all skews to be as close to zero as possible. Weattempt to move each positive skew FF opposite to the direction of signal propagation,and each negative skew FF in the direction of signal propagation to reduce the magnitudeof its skew. A formal rationalization is provided in [109], but the example in Figure 2.5should su�ce to explain the intuition.After Phase B, any skews that could not be set exactly to zero are forced to zero. Thiscould cause the clock period to increase from Phase A; however, it is shown that this increasewill be no greater than the maximum gate delay. Note, however, that this is not necessarilysuboptimal since the minimum clock period using skews may not be achievable using retiming,since retiming allows cycle-borrowing only in discrete amounts (corresponding to gate delays),while skew is a continuous cycle-borrowing optimization [31].

18
3 RETIMING FOR MINIMUM AREA3.1 IntroductionFor digital design the interesting problem is of delay constrained area optimization, andconstrained minimum area retiming is one way to solve this problem. However, the highcomputational expense of this optimization has limited its use. In this chapter, we approachthe problem of constrained minarea retiming for circuits with edge-triggered FF's through anamalgamation of the Leiserson-Saxe approach and the ASTRA approach. By utilizing themerits of both approaches we develop an e�cient algorithm for constrained minarea retimingwhich is also capable of handling very large circuits. The basic idea of the approach is to usethe ASTRA approach to �nd tight bounds on the retiming variables. These bounds help usreduce both the number of variables and the number of constraints in the problem withoutany loss in accuracy. By spending a small amount of additional CPU time on the ASTRAruns, this method leads to signi�cant reductions in the total execution time of the minarearetiming problem. The reduction in the problem size also reduces the memory requirements,thus enabling retiming of large circuits.The chapter is organized as follows. In Section 3.2, we show the relationship between thesetwo, and utilize it to e�ciently solve the minarea retiming problem. Section 3.3 describes ourminarea retiming algorithm. Experimental results are presented in Section 3.4 followed byconcluding remarks in Section 3.5.3.2 Reducing the Problem SizeIn practical circuits, it is found that the number of period constraints is phenomenally large.For a circuit with n gates the number of period constraints is O(n2). However, it is also truethat a large fraction of these constraints are redundant as they are implied by some of the otherconstraints. Any algorithm with pretensions to practicality must use techniques for pruningthese redundant constraints. Note that the exactness of the solution is not sacri�ced in doingso, since none of the essential constraints are removed. Our approach is to �nd tight boundson the variable values, and to use these bounds to avoid generating the redundant constraints.By appropriate application of these bounds, we expect not only to prune the constraint set butalso to reduce the number of variables. In this way, we simplify the problem and enable the

19LP to be solved more e�ciently. We are also able to generate this set of reduced constraintse�ciently.3.2.1 The Concept of Restricted MobilityA modi�cation of the procedure used in ASTRA can be used to identify how far FF's maypossibly be moved. For the circuit in Figure 3.1, to achieve the minimum clock period of 4.0units, one must move one copy of FF B to the output of gate G4. The possible locationsfor FF's along the other path to FF C are at the input to gate G8, or at the output of gateG8, or the inputs of gates (G9,G10) or the outputs of gates (G9,G10); no other locations arepermissible
(a)

INPUT FF B

FF CFF A

OUTPUT

G1

G3

G9

G2

G4 G5 G6 G7

G12

G11
G10

G8

(b)

FF B

FF A FF C

INPUT OUTPUT

G8

G10
G11

G7

G12

G5 G6G4G3

G2G1

G9Figure 3.1 Possible FF locations after retiming.Therefore, it can be seen that the FF's cannot be sent to just any location in the circuit;rather, there is a restricted range of locations into which each FF may be moved, and themobility of each FF is restricted. This restricted mobility may be used to reduce the searchspace, and hence the number of constraints.This range of motion of FF's can be derived from the skews calculated by the Bellman-Ford procedure (which calculates the minimum allowable skew value at each FF) [109], and thecorresponding slacks in the constraint graph. The idea in this chapter is that the skew valuescan be used to reduce the search space for the minarea retiming algorithm using restrictedmobility. This is seen to translate to a smaller LP.We will now show the relation between the Leiserson-Saxe approach and the ASTRA ap-proach, and how a modi�ed version of ASTRA can be used to derive bounds on the r variablesin the Leiserson-Saxe method. Next, we show how these bounds can be used to prune thenumber of constraints in minarea Leiserson-Saxe retiming. Finally, we present an example to

20illustrate the method.3.2.2 Deriving Bounds for the r VariablesThe concept of restricted mobility is related to the \nearest" and \farthest" location thatany FF can occupy under the target clock period. This is relatively easy to map on to theclock skew optimization problem. To understand this, we provide a brief review of the clockskew optimization problem. Given a pair of FF's, i and j, if the maximum delay of any purelycombinational path connecting them is Dij , then the following long-path constraint must hold:xi + Dij � xj + P (3.1)where xi and xj are the clock skews at FF's i and j, respectively, and P is the target clockperiod. For a speci�ed clock period, this may be written as a di�erence constraint [17] asfollows: xj � xi � P �Dij (3.2)Note that the right hand side of the above equation is a constant, since the clock period isa speci�ed value. For a given circuit, one may build a set of di�erence constraints with onesuch constraint for every pair of FF's that have a purely combinational path connecting them,and these di�erence constraints may be represented by a constraint graph. The Bellman-Fordalgorithm may be applied to this graph to �nd the longest path in the graph. The �nal valueassociated with each vertex provides the required skew at that vertex and gives one possibleset of skews that can achieve the clock period P . Note that this is not the only allowableset of skews, since slacks [109] in the arcs of the constraint graph can lead to other allowablesolutions. Therefore, the �rst order of business is to determine bounds on the allowable skewsat each FF.ASTRA initializes all skews to 0 to achieve the minimum range of skews. To obtain thebounding skews we need to initialize all skews to �1. Now when the the Bellman-Fordalgorithm [17] is applied to the constraint graph for a speci�ed clock period, the as-late-as-possible1 (ALAP) skews are calculated for the network. The as-soon-as-possible (ASAP) skewscan be obtained by running the Bellman-Ford algorithm on the transpose of this constraintgraph [17] (i.e., a graph with the same vertex set as the original graph, but with the edgedirections reversed).These ASAP/ALAP skews can be translated to ASAP/ALAP locations for FF's. These lo-cations can be used to obtain bounds on the retiming variables of the Leiserson-Saxe approach,r, associated with the gates in the circuit as illustrated by the following example. Here weuse the terms \ASAP locations" to refer to the case when all FF's are as close to the primary1The calculation of ASAP and ALAP times is a technique that is routinely used in scheduling in high-levelsynthesis; see, for example, [86] .

21input as possible. Similarly the set of ALAP locations has all FF's as close to the primaryoutput as possible. For ASAP locations any available slacks are used to avoid moving a FFin the direction of signal ow, while for ALAP locations they are used to avoid FF motionagainst the direction of signal ow.Example: For the circuit in Figure 3.1, the locations for the FF's in the retimed circuitcorresponding to the ASAP and ALAP skew solutions are shown in Figure 3.1 (a) and (b),respectively. This implies that during retiming, no FF will move across gates G1, G2, G5,G6, G7, G11 and G12; one FF each will move from the input to the output of gates G3 andG4, and either 0 or 1 FF will move from the input to the output of gates G8, G9 and G10.Referring to Section 2.1 for the de�nition of the r variables, this implies that one may set thefollowing bounds on the r variables.(1) r(u) = 0 for u 2 fG1; G2; G5; G6; G7; G11; G12g(2) r(u) = �1 for u 2 fG3; G4g, and(3) �1 � r(u) � 0 for u 2 fG8; G9; G10g. �As explained in [109], FF's that have positive skews are moved in the direction opposite tothe signal ow direction, and FF's with negative skews are relocated in the direction of signalow (see Section 2.2 for a brief explanation). The procedure for �nding the ASAP and ALAPlocations proceeds along the same lines as in [109], with a few variations described below.During this procedure, we also generate the bounds on the r variables.When we consider the ASAP locations for the retimed FF's, the aim is to push the FF's asfar as possible in a direction opposite to the direction of signal propagation. Therefore, eachpositive skew FF is moved as far as possible in the direction opposite to the signal ow, andeach negative skew FF is moved as little as possible in the direction of signal ow. Therefore,(1) for a FF with positive skew s that is being moved across a single-fanout gate p againstthe direction of signal propagation, the skew value after the relocation at input i of p isset to s�delay(p). If this value is non-positive, then the ASAP location has been found.For gates with multiple fanouts, s = minall outputs(si), where si is the skew of the FFat the ith output, as shown in Figure 3.2(a).(2) for a FF with negative skew s that is being moved across a single-fanin gate p in thedirection of signal propagation, the skew value after the relocation at output i of p is setto s + delay(p) + slack(i), where slack(i) is the slack associated with the output i. Thisslack is de�ned as the amount by which the delay at output i may be increased beforeit becomes the critical output of p; by de�nition, the critical output has a slack of 0. Ifthe new skew is nonnegative, then the ASAP location has been found. For gates withmultiple fanins, s = maxall inputs(si), where si is the e�ective skew of the FF at the ithoutput, as shown in Figure 3.2(b).

22
Skew max(s1,s2) + d(p) + slack2

Skew max(s1,s2)+ d(p) + slack1

Skew s1 < 0

Skew s2 < 0

p

Skew s2 > 0

Skew min(s1,s2)-delay(p)
Skew s1 > 0

(a) (b)Figure 3.2 E�ective skews at FF's after ASAP retiming across a gate.The ALAP locations can be found similarly with positive skew FF's being moved as littleas possible in the direction opposite to the signal ow direction, and negative skew FF's beingmoved as much as possible in the signal ow direction.While moving the FF's to ASAP and ALAP locations, subject to the speci�ed clock periodP , we count the number of FF's that traverse each gate; these lead us to upper and lowerbounds, respectively, on the r variables for each gate. A FF moving from the inputs to theoutput of a gate decrements the count by one, while one moving from the output to the inputsincrements it by one.For the ASAP case, we move FF's as far as possible against the direction of signal prop-agation. In other words, we relocate the largest number of FF's possible from the output tothe inputs of a gate. By the de�nition of the r variables, this gives us an upper bound on rfor the gates.Similarly, the ALAP times are used to relocate the largest number of FF's that can movefrom the inputs of a gate towards its output, and this gives us a lower bound on the r valuesfor the gates in the circuit. Therefore, this procedure provides upper and lower bounds on ther variable corresponding to each gate y of the form.Ly � r(y) � Uy (3.3)We will refer to Ly as the lower bound for gate y and to Uy as the upper bound of gate y.Like the ASAP and ALAP retimings, these bounds are with reference to a �xed host vertex,i.e., LH = UH = 0. If Uu = Lu = ku we say that gate u is If Uy = Ly = ky we say that gatey is �xed or immobile since r(y) = ky is not really a variable any more. On the other hand ifUy 6= Ly we say that gate y is exible or mobile. Thus we can reduce the variable set V of theLeiserson-Saxe model to V 0 � V , the variable set of Minaret whereV 0 = fv 2 V jUv 6= Lvg (3.4)Bounds on the mirror vertices, introduced to model the maximal latch sharing can beobtained directly from the bounds on fanout gates (as given by Theorem 1). The mirror

23variable set M is also reduced to M 0 �M the mirror variable set of Minaret whereM 0 = fm 2M jUm 6= Lmg (3.5)Theorem 1 The bounds on the r value of a mirror vertex mi of gate i in Figure 2.2 can easilybe derived from the bounds on the fanout gates and are given byUmi = max8j2FO(i)(Uj + w(eij))� w(maxi)Lmi = max8j2FO(i) (Lj + w(eij))� w(maxi) (3.6)Proof: After optimal retiming the weight on at least one of the edges to the mirror vertex(see Figure 2.1) will be zero [59] hencemin8j2FO(i)(wr(ejmi)) = 0min8j2FO(i)(w(ejmi) + r(mi)� r(j)) = 0i.e., min8j2FO(i)(w(ejmi)� r(j)) = �r(mi)i.e., r(mi) = max8j2FO(i)(r(j)� w(ejmi))Since r(j) � Uj 8j 2 FO(i)we have max8j2FO(i)(r(j) �w(ejmi)) � max8j2FO(i)(Uj � w(ejmi))Therefore r(mi) � max8j2FO(i)(Uj � w(ejmi))Thus the upper bound isUmi = max8j2FO(i)(Uj + w(eij))� w(maxi)After retiming all edge weights including edges to mirror vertices must be nonnegative,that is wr(ejmi) � 0 8j 2 FO(i)or w(ejmi) + r(mi)� r(j) � 0 8j 2 FO(i)i.e., r(mi) � r(j)� w(ejmi) 8j 2 FO(i)i.e., r(mi) � r(j) + w(eij)� w(maxi) 8j 2 FO(i)or r(mi) � max8j2FO(i)(r(j) +w(eij))� w(maxi)Therefore the lower bound isLmi = max8j2FO(i) (Lj +w(eij))� w(maxi)

243.2.3 Eliminating Unnecessary ConstraintsIn this section, we illustrate how the addition of bounds (derived previously) to the LP ofEquation (2.7) in Section 2.1.4 may be used to reduce the constraint set by dropping redundantconstraints. It can be seen from the bounds on r(i) and r(j) in Equation (3.3) that r(i)�r(j) �Ui �Lj. Therefore, if Ui �Lj � cij then r(i)� r(j) � cij is also true, and the constraint (i; j)can be dropped. Thus the Leiserson-Saxe constraint set C can be reduced to the Minaretconstraint set C 0 � C where C 0 = f(i; j) 2 Cj Ui � Lj > cijg (3.7)Notice that constraints associated with �xed or immobile gates can be treated as bounds andneed not be included in C 0. Like the Leiserson-Saxe constraints, the Minaret constraints alsoconsists of circuit, period and mirror constraints, i.e., C 0 = C 0c [C 0p [C 0m, where C 0c is thereduced circuit constraint set, C 0p is the reduced period constraint set, and C 0m is the reducedmirror constraint set.3.2.4 Reduced Linear ProgramWe use the Equations (3.4), (3.5) and (3.7) to reduce the LP in Equation (2.7) to thefollowing LP in Minaretmin Xv2fV 0[M 0g240@ X8j2FI(v)�(ejv)� X8j2FO(v)�(evj)1A � r(v)35 (3.8)subject to r(u)� r(v) � cuv 8(u; v) 2 C 0Lu � r(u) � Uu 8u 2 (V 0 [M 0)3.2.5 An ExampleThe following example illustrates the method and shows how the number of constraintscan be reduced using our approach.Consider the circuit example shown in Figure 3.3. As in the previous examples, we makethe assumption that the gates have unit delays. We consider two possible clock periods of 2units and 3 units in this example.
IN OUTFF1

a b c dFigure 3.3 Example illustrating the approach.

253.2.5.1 When P = 2 unitsFor a clock period of two units, the list of constraints generated by the approach in [115]is listed below. Circuit constraints r(h)� r(a) � 1r(a)� r(b) � 0r(b)� r(c) � 0r(c)� r(d) � 0r(d)� r(h) � 0Period constraints r(h)� r(c) � 0r(a)� r(c) � �1r(b)� r(d) � �1Note that(a) the delay associated with the host node is zero, and(b) the value of r(h) is set to zero as a reference, so that it is not really a variable.Therefore, this is a problem with four variables and eight linear constraints (of which three actas simple bounds).In our approach, for a clock period of 2, we �rst �nd the bounding skews. The FF's atthe input and output may not be moved, and therefore, the only movable FF is FF1, whichis assigned a skew of -2 units. The correctness of this skew value is easy to verify since theonly feasible location of FF1 under c = 2 is two delay units to the right of its current location.Therefore, we �nd that by using the concept of restricted mobility,�1 � r(a) � �1) r(a) = �1�1 � r(b) � �1) r(b) = �10 � r(c) � 0) r(c) = 00 � r(d) � 0) r(d) = 0Since all nodes are �xed, and all the constraints can be dropped, all of the constraints andvariables have been eliminated!

263.2.5.2 When P = 3 unitsWith the clock period is set to 3 units, the list of constraints isCircuit constraints r(h)� r(a) � 1r(a)� r(b) � 0r(b)� r(c) � 0r(c)� r(d) � 0r(d)� r(h) � 0Period constraints r(h)� r(d) � 0r(a)� r(d) � �1;As before, r(h) = 0 is set as a reference, giving a problem with four variables (as before) andseven linear constraints (of which three act as simple bounds).Under our approach, the relocated FF can reside either at the input of gate b, the outputof gate b, or the output of gate c. Therefore, we have�1 � r(a) � �1) r(a) = �1�1 � r(b) � 0�1 � r(c) � 00 � r(d) � 0) r(d) = 0Using these bounds we drop all constraints butr(b)� r(c) � 0Therefore, we have reduced the problem complexity to two variables, each with �xed upperand lower bounds and one linear constraint. (Note that upper/lower bound constraints aretypically much easier to handle in LP's than general linear constraints; in fact, in many cases,upper and lower bounds are actually helpful in solving the LP.)3.3 Minarea Retiming Using MinaretThe ideas described so far have been encapsulated in Minaret (MINimum Area RETiming),a minimum area retiming algorithm for large sequential circuits. Minaret consists of threephases of �nding the bounds, generating the LP and solving it. Each of these is described indetail in this section.3.3.1 Deriving Bounds on the r VariablesAs described in Section 3.2.2 the bounds are derived by �nding the ASAP and ALAPlocations of the FF's, using a modi�ed form of ASTRA. An e�cient method for calculating

27all FF-to-FF delays (Dij 's) required by ASTRA, presented in [108], is used in Minaret. If theinitial locations of FF's satisfy the target clock period all lower bounds must be nonpositiveand all upper bounds must be nonnegative (i.e., Li � 0 and Ui � 0 8 i), since r(i) = 0 8 i isa feasible solution. However, if the target clock period is smaller than the initial period, wemay be forced to move a FF from the inputs of a gate to its outputs to obtain any feasible(including the ASAP) locations. Thus it is possible to have a negative upper bound. Similarlyit is possible to have a positive lower bound if the target clock period is smaller than the initialperiod. The bounds on the mirror vertices for all gates with more than one fanout are derivedfrom the circuit graph using Theorem 1.3.3.2 Generating the Linear ProgramUsing the alternative description of the maximal FF sharing in Section 2.1.4 the objectivefunction coe�cients are obtained by inspection of the circuit, without explicitly adding themirror vertices. The circuit and the mirror constraints in C 0 are obtained from direct inspectionof the circuit graph using Equation (3.7). Because the bounds on the mirror vertices can alsobe obtained directly from the bounds on the gate vertices, we do not need to explicitly addthe mirror vertices to the circuit graph. Since every multi-fanout gate has a mirror vertex, thisgives us important savings in terms of the space and time requirements. We now describe howto obtain the period constraints in C 0.For large circuits (with tens of thousand gates) O(jV j2) memory required by the Leisersonand Saxe method of generating period constraints [59] is not practical, therefore, we use themethod from [115], which requires only O(jV j) memory. We take advantage of the boundsobtained in Section 3.3.1 to modify this method to run faster, generating only the reducedconstraint set C 0.The algorithm in [115] uses a combination of the Dijkstra's algorithm and the Bellman-Fordalgorithm. The algorithm works by generating one (sth) row of the W and the D matrix at atime. An ordered pair (w(eij);�d(i)), denoted by (ai; bi), is associated with each edge eij andis used to compute the shortest distance from vertex a source vertex s. A heap is maintainedfor each distinct value of ai and is indexed by this value. Until all heaps are empty, we extractthe node u at the top of the minimum index heap using the function pop-min(heap index).The fanouts of u are added to the appropriate heaps if their au or bu values are updated(Bellman-Ford relaxation). At the end of this procedure D(s; u) = �bu and W (s; u) = au.Note that to satisfy a clock period P , all we have to do is to ensure that each path whosedelay is greater than P has at least one FF on it. The number of FF's on any path is monotonicwith the path length because negative edge weights are not allowed. Due to the monotonicityof edge weights, if we ensure at least one FF on any sub-path, we are assured to have at leastone FF on all paths containing this sub-path. This strategy can be used to prune the numberof constraints generated as well as the gates examined.

28Adding a period constraint from s to u is one way to ensure at least one FF on all pathsfrom s to u. This observation presented by Leiserson-Saxe was used in [115] to prune theconstraint set. The idea was to add a period edge to only the vertex v, reachable from s, thatsatis�es the following: D(s; v) > P and D(s; u) � P 8 u on s FI(v) (3.9)where s FI(v) is a path from s to a fanin of v. Thus if the period constraint is added, thefanouts of u need not be relaxed. Similarly if the bounds on the r variables guarantee us atleast one FF on any sub-path, we need not process any path containing this sub-path.At the end of the ASTRA run for obtaining the lower bounds all FF's are in the ALAPlocations. If the delay of all the gates is not the same, it is possible that retimed circuitobtained by ASTRA with FF's in the ALAP locations may have some purely combinationalpaths with delays that are greater than the target clock period P . However in practice, mostof the other paths satisfy the target clock period. We will use this observation to further speedup the constraint generation process.Consider a �xed gate a in the circuit at the end of the ALAP run. Now if none of thecombinational paths starting at this gate violate the clock period, we have WALAP (a; i) � 1if D(a; i) > P 8i. Since WALAP (a; i) = W (a; i) + Li � La we have La � Li � W (a; i) � 1,or La � Li � ca;i. Since gate a is �xed Ua = La, we obtain Ua � Li � ca;i 8i 2 V , which isguaranteed to be true, and hence all constraints starting from �xed gate a are redundant, andwe do not need to generate them. Thus we must generate period constraints only from those�xed gates which have at least one purely combinational path starting from it with delay morethan the clock period. Let us call this set V 00.The pseudo code presented bellow explains how we use the bounds on the r variables togenerate the reduced constraint set C 0 e�ciently.P = target clock period;Li � r(i) � Ui 8i 2 V ;Sk= the kth heap;Lmin = min(Li) 8i 2 V ;8s 2 V 0 [V 00f s = current vertex;8v 2 V; av =1 and bv = 0;S0 = fsg; as = 0; and bs = �d(s);k = current register weight;do fk = minfp j Sp 6= ;g;if(k � Us � Lmin + 1) break;

29u = pop-min(Sk) ;if(Us � Lu � k � 1) continue;if(�bu > P)add a period edge c(s; u) with weight au � 1else f8v 2 FO(u) fif(k � Us + Lv < 1)if((av; bv) > (au + su;v; bv � d(v)))heap-insert(Sa(u)+su;v; v);ggg while(9 p j Sp 6= ;)g3.3.3 Solving the Linear ProgramLike Equation (2.7), the LP in Equation (3.8) is also a dual of a minimum cost network owproblem. We found that it could be solved very e�ciently using the network simplex algorithmfrom [5]. The network simplex method is a graph based adaptation of the LP simplex methodwhich exploits the network structure to achieve very good e�ciency. The upper and lowerbounds on the r variables provide a initial feasible spanning tree. This tree has two levels only,with the host node as the root and all other nodes as leaves. To prevent cycling we constructthe initial basis to be strongly feasible by using the appropriate bound (upper or lower) toconnect a node to the root (host node). It is easy to maintain strongly feasible trees duringthe simplex operations, and details are given in [5].Using the �rst eligible arc pivot rule with a wraparound arc list from [3] (page 417) gave ussigni�cant improvements in the run time. The dual variables (r variables) are directly availablefrom the min cost ow solution. We could solve problems with more than 57,000 variables and3.6 Million constraints in about 2.5 minutes.3.4 Experimental ResultsWe now present area minimization results on circuits in the ISCAS89 [7] benchmark suite,subject to a given clock period. We assume that all gates have a unit delay, although weemphasize that the algorithm is applicable when gates have non-unit delays. The target clockperiod is set to be the minimum achievable clock period for the circuit under retiming and iscalculated using ASTRA. Therefore the results show the smallest number of FF's for the bestclock period for all circuits. Since we did not have access to large circuits (> 20; 000 gates) we

30created some large circuits (myex1 through myex5) by combining circuits from the ISCAS89benchmark suite.We present the results in two tables. Table 3.1 presents measures of the quality of minimumarea retiming in the circuits. For each circuit, the number of gates jGj, the target clock periodP , the �nal number of FF's in the circuit from both ASTRA and Minaret, and the CPU timein seconds Texec of Minaret are shown. Also shown are two metrics on the circuits: Ffx, thepercentage of gates found to be �xed and Mavg , the average mobility, i.e., the average valueof (Uy � Ly) over all gates in the circuit. Since Uy � Ly gives the range in possible values(or mobility) of r(y), Mavg is a measure of the average mobility in the circuit. The numberof FF's both in ASTRA and Minaret are obtained under the more accurate area model ofSection 2.1.4, after taking into account the maximum sharing of FF's at all nodes (includingprimary inputs) in the circuit. The execution times are in seconds on a DEC AXP system3000/900 workstation, and include the time spent in getting the bounds, generating the LPand solving it.For most ISCAS89 circuits Mavg was less than unity and the average over all ISCAS89circuits was about 0.7. The percentage of �xed nodes Ffx varied from being as high as 95% tobeing below 1% (for s38417). We observed that circuits that have a small critical part (perhapsa cycle in the retiming graph) with most gates being o� the critical paths in the timing graph,result in high values of Mavg. We note that these circuits are not very well suited for retimingsince the small critical parts of the circuit restrict the rest of the circuit from achieving betterclock periods. The CPU time Texec depends on the the number of gates in the circuit jGj, theaverage mobility Mavg and Ffx.In [115] the circuit s38584 needed 38 hours of CPU time, while Minaret could retime it inabout one minute. We point out, though, that such a comparison is not entirely fair since (a)the results are generated on di�erent platforms and (b) the circuits used in [115] are modi�edISCAS89 benchmarks and have a much smaller number of gates. For example s38584 has 7882gates in [115] while it has 19,253 gates in this work.In Table 3.2, we compare the size of the LP for Minaret and the original problem bypresenting the number of variables and constraints for both methods. The number of variablesinclude both the gate and mirror variables. The number of constraints for Minaret includesthe upper and lower bounds, while that for the original method are obtained by using thepruning strategy suggested in [59], and implemented in [115]. The reduction in the numberof constraints in Minaret depends on the average mobility Mavg and Ffx. However, since theoriginal constraints are generated after some pruning them self, the reduction is a�ected byother factors as well. Table 3.2 also presents the breakup of the CPU time (in seconds) interms of the time spent in using ASTRA to arrive at the bounds for the r variables (Tb), thetime spent in generating the LP of Equation (3.8) (Tg) and the time needed to solve this LPby the network simplex method (Ts).

31
Table 3.1 Minarea Retiming Using MinaretCircuit jGj P # FFs Ffx Mavg TexecASTRA Minarets27 10 6.0 3 3 86.67% 0.13 0.00ss208.1 104 10.0 27 9 66.09% 0.36 0.01ss298 119 6.0 36 22 34.38% 0.75 0.01ss382 158 7.0 33 23 32.93% 0.67 0.02ss386 159 11.0 6 6 90.75% 0.09 0.01ss344 160 14.0 22 19 11.11% 1.24 0.04ss349 161 14.0 22 19 11.05% 1.24 0.04ss444 181 7.0 49 28 31.05% 0.69 0.03ss526n 194 6.0 41 30 42.36% 0.59 0.02ss510 211 11.0 8 7 42.62% 0.62 0.07ss420.1 218 12.0 57 17 60.76% 0.41 0.03ss635 286 66.0 35 35 68.17% 0.32 0.04ss641 379 74.0 19 19 70.55% 0.29 0.05ss713 393 74.0 19 19 67.85% 0.32 0.08ss967 394 12.0 41 35 12.24% 0.88 0.22ss953 395 13.0 44 27 8.99% 0.93 0.26ss838.1 446 16.0 117 33 53.01% 0.51 0.14ss938 446 16.0 117 33 53.01% 0.51 0.14ss1196 529 24.0 18 18 81.33% 0.19 0.03ss1238 508 22.0 18 18 81.53% 0.19 0.03ss1269 569 19.0 111 84 54.77% 0.49 0.11ss1494 647 16.0 20 7 93.47% 0.07 0.05ss1488 653 16.0 17 7 95.44% 0.05 0.05ss1423 657 53.0 76 76 28.13% 0.83 0.59ss1512 780 23.0 84 70 18.55% 0.99 1.05ss3271 1,572 15.0 306 168 49.38% 0.81 0.25sprolog 1,601 13.0 358 122 49.77% 0.55 0.27ss3384 1,685 27.0 438 167 14.31% 3.15 2.44ss3330 1,789 14.0 331 110 63.46% 0.39 0.22ss4863 2,342 30.0 201 138 28.46% 0.97 5.24ss5378 2,779 21.0 555 173 36.12% 0.85 1.28ss6669 3,080 26.0 719 305 40.02% 0.76 2.20ss9234.1 3,270 38.0 205 134 14.62% 1.55 6.18ss13207.1 7,791 51.0 629 446 21.49% 2.96 10.38ss15850.1 9,617 63.0 571 525 24.15% 1.52 38.81ss35932 16,065 27.0 1,729 1,729 55.27% 0.54 7.56ss38584.1 19,253 48.0 1,428 1,427 14.22% 2.13 65.07ss38417 21,370 32.0 1,616 1,370 0.88% 4.35 146.92smyex1 25,717 42.0 5,146 2,293 4.75% 2.51 169.10smyex2 28,946 45.0 5,655 2,022 8.73% 2.26 160.47smyex3 35,353 35.0 8,052 3,279 5.22% 2.65 489.52smyex4 40,661 35.0 11,591 2,803 1.80% 4.12 421.50smyex5 56,751 47.0 11,488 3,378 4.95% 3.98 799.64s

32
Table 3.2 Reduction in Number of Variables and Constraints in MinaretCircuit # Variables # Constraints Tb Tc TsMinaret Original Fred Minaret Original Freds27 5 20 75.00% 10 35 71.43% 0.00s 0.00s 0.00ss208.1 54 144 62.50% 239 540 55.74% 0.00s 0.00s 0.00ss298 117 163 28.22% 628 1,471 57.31% 0.01s 0.00s 0.00ss382 157 217 27.65% 1,005 2,146 46.83% 0.01s 0.01s 0.00ss386 22 200 89.00% 73 2,903 97.94% 0.01s 0.01s 0.00ss344 201 221 9.05% 1,722 2,117 18.66% 0.01s 0.03s 0.00ss349 203 223 8.97% 1,581 1,847 14.40% 0.01s 0.03s 0.00ss444 177 256 30.86% 1,430 3,121 54.18% 0.01s 0.02s 0.00ss526n 167 258 35.27% 1,097 4,674 76.53% 0.01s 0.01s 0.00ss510 183 311 41.16% 2,303 7,331 68.59% 0.01s 0.06s 0.00ss420.1 123 296 58.45% 553 609 9.19% 0.01s 0.02s 0.00ss635 157 416 62.26% 478 1,283 37.26% 0.02s 0.02s 0.00ss641 158 496 68.15% 521 1476 64.70% 0.02s 0.03s 0.00ss713 191 532 64.10% 663 2,373 72.06% 0.02s 0.07s 0.00ss967 527 583 9.61% 9,223 13,929 33.79% 0.02s 0.18s 0.02ss953 554 593 6.58% 10,918 12,585 13.24% 0.02s 0.22s 0.03ss838.1 296 600 50.67% 1,235 2,482 50.24% 0.03s 0.11s 0.00ss938 296 600 50.67% 1,235 2,484 50.24% 0.03s 0.11s 0.00ss1196 184 713 74.19% 570 1,686 66.19% 0.02s 0.01s 0.00ss1238 182 702 74.07% 565 1,781 68.28% 0.02s 0.01s 0.00ss1269 371 765 51.50% 1,363 20,250 93.27% 0.03s 0.08s 0.00ss1494 50 751 93.34% 247 32,215 99.24% 0.02s 0.03s 0.00ss1488 37 757 95.11% 154 33,277 99.54% 0.03s 0.03s 0.00ss1423 647 860 24.77% 2,359 16,266 85.50% 0.05s 0.54s 0.01ss1512 823 983 16.28% 24,331 52,346 53.52% 0.04s 0.98s 0.03ss3271 1,079 2,038 47.06% 5,492 43,506 87.38% 0.07s 0.16s 0.02sprolog 1,039 1,992 47.84% 5,304 37,319 85.79% 0.08s 0.17s 0.02ss3384 1,870 2,166 13.67% 47,916 49,487 3.17% 0.12s 2.07s 0.25ss3330 858 2,212 61.21% 4,595 30,409 84.84% 0.08s 0.12s 0.01ss4863 2,170 2,995 27.55% 92,873 597,323 84.45% 0.11s 4.80s 0.34ss5378 2,385 3,664 34.91% 19,170 168,530 88.63% 0.11s 1.04s 0.13ss6669 2,539 4,100 38.07% 20,041 341,750 94.14% 0.17s 1.89s 0.14ss9234.1 3,366 3,893 13.54% 54,610 137,962 60.42% 0.18s 5.65s 0.35ss13207.1 7,303 9,180 20.45% 38,630 491,561 92.14% 0.63s 8.74s 1.01ss15850.1 8,740 11,332 22.87% 38,318 1,046,108 96.34% 0.99s 36.32s 1.50ss35932 10,306 21,716 52.54% 53,087 389,647 86.38% 1.13s 4.55s 1.88ss38584.1 20,486 23,390 12.42% 97,268 11,450,472 99.18% 2.23s 54.40s 8.44ss38417 25,731 25,923 0.74% 1,507,162 1,628,544 7.45% 2.93s 91.60s 52.38smyex1 31,476 32,922 4.39% 812,872 3,275,567 75.18% 3.41s 146.34s 19.36smyex2 31,704 34,493 8.09% 398,697 17,185,252 97.68% 4.26s 131.83s 24.38smyex3 42,604 44,812 4.93% 5,693,689 16,978,788 66.46% 5.01s 403.84s 80.66smyex4 48,415 49,214 1.62% 2,635,127 8,186,340 67.81% 6.47s 311.51s 103.52smyex5 57,488 60,241 4.57% 3,600,681 24,316,717 85.20% 10.33s 637.84s 151.47s

33Tb depends on the number of gates and FF's in the circuit, jGj and the average mobility,Mavg , of the circuit. Phase A of ASTRA is dependent on the number of gates for obtaining theFF to FF delays and on the number of FF's for the Bellman-Ford runs. The CPU time takenfor phase B of ASTRA depends on Mavg , since Mavg gives a measure of how many retiming(or movement of FF's across gates) are performed in phase B.Tg is most strongly inuenced by the number of exible gates, i.e., (1�Ffx) � jGj, which isequal to the number of rows of W and D matrices we need to generate. It is also inuenced byMavg in that it determines the number of gates processed for each row of W and D matrices.Ts depends on the size of the LP in terms of the number of variables and constraints.3.5 ConclusionIn this chapter we presented a fast algorithm for minarea retiming of large circuits. Thecontributions of this chapter are twofold. First, it reconciles the Leiserson-Saxe algorithmwith the ASTRA algorithm and shows the relation between these two. Second, it utilizes thisrelationship to good purpose by modifying the ASTRA algorithm to make available informationfrom the skew-retiming equivalence that is of great bene�t in solving the minarea retimingproblem under the Leiserson-Saxe framework.Experimental results on benchmark circuits in the ISCAS89 benchmark suite have beenpresented, and the procedure is seen to give good bene�ts. The number of variables andconstraints where dramatically reduced in most cases. The entire ISCAS89 benchmark suitecould be retimed in minutes. This chapter shows that it is possible to perform minarea retimingon large circuits in a reasonable amount of time.Even though the average mobility Mavg is high and the fraction of �xed gates Ffx is lowfor the large circuits we created, we are still able to retime them in a reasonable amount oftime. Because of the various pruning techniques used in Minaret, the number of constraintsin practical circuits grows at a far slower rate than O(jGj2).Minaret also has a reduced memory requirement since a signi�cant number of constraintsare not stored. We found that for large circuits having constraints in millions, the memoryrequirement becomes a bottleneck. The reduction in the number of constraints also reducesboth the problem generation and the problem solution time.To the best of our knowledge, no other retiming algorithm incorporates pruning methods toreduce the number of variables. This reduction in the number of variables signi�cantly reducesthe problem generation time. Notice that due to the presence of mirror vertices, the numberof variables can be up to twice the number of gates in the circuit. Hence the reductions inthe number of variables and constraints provided by Minaret are important to retime largecircuits.

34
4 RETIMING CONTROL LOGIC4.1 IntroductionA major problem associated with the application of retiming to control logic, is the preser-vation of the initial (reset) state of a circuit, which is determined by the initial values of theregisters in the circuits. In the synthesis of control logic, the initial state of the circuit is anintegral part of its behavior therefore, it is necessary to �nd an equivalent initial state for theretimed circuit. An initial state in the retimed circuit is equivalent to that in the originalcircuit if for any input sequence applied to both the circuits, with the original circuit startedin the initial state and the retimed circuit started in the equivalent initial state, the samesequence of outputs is produced [30].

0

?

G1

FF B

1
FF A

(a) (b)Figure 4.1 (a) Original circuit. (b) Retimed circuitIt is not always possible to �nd an equivalent initial state for the retimed circuit withoutmodifying it. For example, consider the circuit in Figure 4.1 taken from [130]. If the initialvalue of FF's A and B are 1 and 0, respectively, then the retimed circuit cannot be initializedto have the same behavior as the original circuit since an equivalent initial value of FF C in theretimed circuit cannot be found. Techniques for �nding a retiming with an equivalent initialstate were proposed in [30, 130].
retiming by -1 f(a,b)f

a

b

f

Figure 4.2 Forward retiming of a combinational logic node

35As shown in Figure 4.2, an equivalent initial state can always be found for forward motionof FF's (referred to as \negative retimings" using the notation of Leiserson and Saxe). Thus,one way to ensure that an equivalent initial state can always be found, is to permit onlyforward retiming moves. This concept was used by Touati and Brayton in [130] to computeinitial states of retimed circuits. In their approach, FF's may be removed from all the primaryinputs and inserted at all the primary outputs, corresponding to a motion across the host node(de�ned in Section 2.1). The problem is then reduced to determining the initial values forthe FF's inserted at the primary inputs. If k FF's are inserted at the primary inputs thena sequence of k input values is required. This sequence is obtained from the state transitiondiagram extracted from the circuit. Such a sequence exists if the initial state is reachablefrom any other state in k transitions; otherwise the circuit has to be modi�ed by incorporatingadditional logic to obtain such a sequence. This logic increases the circuit area and may alsoincrease the minimum achievable clock period [30].Permitting only forward moves is too restrictive because some backward moves have equiv-alent initial states. For example, if in the circuit in Figure 4.1, both FF A and B have the sameinitial value, then the backward move across gate G1 is possible while maintaining equivalentinitial state. Hence another retiming requiring some backward moves may exist, that enablesone to �nd an equivalent initial state without any modi�cations to the circuit, even for cir-cuits where the method of [130] required circuit modi�cations. Reverse retiming [30, 128] �ndsthis retiming by disallowing FF moves across the primary outputs and by minimizing theirbackward motion.For digital circuit design, the most useful objective function is that of constrained minarearetiming. However none of the above methods considers the area penalty during retiming toachieve the target clock period since they perform minperiod retiming rather than minarearetiming. The standard minarea algorithms, e.g., [59, 115] or Minaret pay no regard to theinitial states, and while they have applications in datapaths where the initial state is unim-portant, they cannot be used to optimize control logic since an equivalent initial state is notguaranteed to exist in the retimed circuit.We believe that this thesis is the �rst to target the problem of minarea retiming for controllogic guaranteeing equivalent initial states. As in [130], we use the phrase retiming an initialstate to mean �nding a retiming (with a initial state) such that the original circuit and theretimed circuit have the same behavior when started in their respective initial states. Weuse the term minarea initial state retiming to refer to retiming an initial state with minimumnumber of FF's.In this chapter we use bounds on the retiming variables to allow backward motion of FF'sonly if an equivalent initial value exits. Therefore, any retiming thus obtained will have anequivalent initial state. There may be multiple sets of these bounds, and all of them mustbe explored to obtain an optimal minarea initial state retiming. However the number of FF's

36obtained by standard minarea retiming can be used as a lower bound to prune this exploration.This chapter also provides a new formulation that takes into account the initial value ofthe FF's while modeling the sharing of FF's at the output of a multi-fanout gate. The methodpresented here is applicable for retiming of any circuit which has more than one type of memoryelements (e.g., FF's with load enables) such that memory elements of di�erent types can notbe merged together.The rest of the chapter is organized as follows: In Section 4.2 we present an method to en-sure the existence of an equivalent initial state, followed by the FF sharing model in Section 4.3.We present experimental results in Section 4.4 and conclude the chapter in Section 4.5.4.2 Ensuring Equivalent Initial StatesThe requirement of initial state equivalence imposes restrictions in addition to those in theconventional minarea retiming problem. Thus the number of FF's obtained by the conventionalminarea retiming is a lower bound on the number of FF's obtainable by a minarea equivalentstate retiming. We call this lower bound �.
?

(b)(a)

A

B

C

D
0

1

1

0

Figure 4.3 Conventional minarea retiming
D

(a) (b)

0

1

0

0

0

1

0

C

B

A

Figure 4.4 Example of variation in the number of FF's with initial stateHowever it is not always possible to achieve this lower bound. As an example, considerthe circuit shown in Figure 4.3(a), and the conventional minarea retiming (without regard toinitial state) shown in Figure 4.3(b) requiring only one FF. If the initial value for FF A throughD is as shown, then the retimed circuit in Figure 4.3(b) does not have an equivalent initial

37
(a) (b)

1

0
0

A

0
B

1
C

1
DFigure 4.5 Another example of variation in the number of FF's with initialstatestate. Further, there is no possible retiming with one FF that has an equivalent initial state.However, if the initial value for each FF in the circuit is 0 and FF D is 0, then the retimingobtained in Figure 4.3(b) is feasible in terms of initial state equivalence. Therefore, dependingon the initial state, it may or may not be possible to achieve the lower bound �.Additionally, the optimal number of FF's with equivalent initial state depends on the initialstate of the original circuit. As shown in Figure 4.4, if initial value of FF's are fA=0, B=0,C=1, D=0g then the minimum number of FF's possible is 3. It can readily be veri�ed thatif the initial value of FF's are fA=0, B=0, C=1, D=1g then the minimum number of FF's istwo, as shown in Figure 4.5.In this chapter, we will attempt to �nd the minarea equivalent state retiming for a givencircuit topology, and a given set of initial values. To ensure the existence of an equivalentinitial state in the retimed circuit we allow only those retiming moves that have an equivalentinitial state. This includes all forward retimings except across host node (r(H) = 0), andbackward retiming moves with equivalent initial states. We forbid retiming across the hostvertex because it requires a sequence of initial values for the primary inputs to be obtainedfrom the state transition diagram extracted from the circuit and, in addition could requiremodi�cations to the original circuit [130].

G1

G2

G3

G4

G5

C

B

1

1

A
0

Figure 4.6 An example circuit where lower bound � is achievableAs an example, consider the circuit in Figure 4.6 and its retimed version in Figure 4.7.If the initial values of FF's are fA=0, B=1, C=1g, then there is no equivalent set of initialvalues for the retimed FF's D and E in Figure 4.7. Figure 4.8 presents a alternative retimingof the original circuit requiring the same number of FF's, but in this case an initial value

38
G1

G2

G3

G4

G5
E

1

?
D

Figure 4.7 A minarea retiming without equivalent initial state
G1

G2

G3

G4

G5
H

I
0

1Figure 4.8 A minarea retiming with equivalent initial stateof 0 at FF I and 1 at FF H is equivalent to the original initial state. Note that performingconventional minarea retiming without regard to initial states could result in either of theseretimings. Therefore, even if the lower bound � is achievable, there is no guarantee that analgorithm that ignores the initial state will �nd it.To understand why some retimings have equivalent initial states and others do not, weobserve that the fundamental reason for being unable to achieve an equivalent initial statefor retiming is the presence of conicting values at the fanouts of a gate. For example, inFigure 4.6 if we try to move the FF's in the original circuit backwards to obtain the retimingin Figure 4.7 we get FF's at the output of gate G1 with values 1 and 0, which cannot be movedto the input of gate G1 while maintaining an equivalent initial state. We refer to this situationas a conict, and it is the reason why the lower bound � is not always achievable.To see how we perform initial state retiming in the presence of conicts, consider the circuitof Figure 4.6. If we do not allow any backward motion of FF's across gate G1, than we can beassured that every retiming has an equivalent initial state. Backward motion across G1 canbe prohibited by forcing an upper bound of 0 on the r variable of gate G1. It can be seen thatany retiming with r(G1) � 0 and r(H) = 0 has an initial state equivalent to the initial stateof the original circuit.Thus one way to ensure that any obtained retiming has an equivalent initial state, is toupdate the upper bounds Uv in the LP of Equation (3.8) so that conicting FF's at the fanoutsof a gate are never retimed to its inputs. This will ensure a valid equivalent state in the retimedcircuit. This new upper bound on gate v that ensures a valid equivalent state is called Bv. Sincewe want a retiming that has an equivalent state and satis�es the target clock period we need toenforce r(v) � Bv and r(v) � Uv. If we de�ne justi�cation upper bound as Jv = min(Bv; Uv),

39then we only need to ensure r(v) � Jv . A set of such justi�cation upper bounds denoted by�i = fJ iuj 8u 2 V g. Since forward retiming moves always have equivalent initial values, thelower bounds from Equation (3.8) for conventional minarea retiming are still valid for minareainitial state retiming. Thus we obtain the following modi�ed LPminimize Pv2V [(jFI(v)j � jFO(v)j) � r(v)] (4.1)subject to r(u)� r(v) � cuv 8c(u; v) 2 CLu � r(u) � Ju 8u 2 VAny solution to this LP will have an initial state that is equivalent to the initial state inthe original circuit and will satisfy the target clock period. The techniques of Section 3.2.4 canbe applied to further reduce the size of the LP in Equation (4.1).4.2.1 Obtaining the Justi�cation BoundsWe will now describe a method for obtaining these new justi�cation upper bounds Jv fora gate v. The procedure consists of two steps: a justi�cation step, where an equivalent initialstate is found, and a bound computation step, where the bounds Jv on each gate under thatequivalent initial state are calculated.With every FF we associate a three valued (1,0,X) logic. We de�ne compatibility as follows:a logic value of 0 is compatible with both 0 and X, but logic values 0 and 1 are not compatiblewith each other1. A gate can only be retimed if it has FF's with compatible logic values at allof its fanouts. A gate is retimed in the backward direction by removing a FF from each of itsfanouts, and adding one to each of its inputs. A gate is called output-ready if it has a FF oneach of its fanouts and the logic value on each such FF is compatible with the values on theothers. The procedure maintains a list of gates that can be retimed. A gate is taken from thelist and retimed, and the list is updated. As the gates are retimed, a procedure similar to theone in Section 3.2.2 is used to compute the bounds. The upper bounds, Jv are obtained bymoving FF's as far backwards, as possible without violating the period constraints. The countof the FF's moved across any gate gives its upper bound on the r variable of the gate.Each time FF's are moved from the outputs of a gate to its inputs, we must assign logicvalues to the new FF's added at the inputs. These logic values must be equivalent to the originalvalue at the output of the gate in order to obtain a initial state retiming. This assignment,in general, may not be unique and is similar to the phase of justi�cation in the process ofautomatic test pattern generation [2]. We classify these output ready gates into the followingtwo categories.Unique Justi�cation If there is only a unique mapping of the logic value at the output to thelogic values at the inputs, then we do not have to make any choices. These justi�cations1For circuits with multiple types of memory elements that cannot be combined, compatibility can be de�nedsimilarly.

40are maintained in a unique justi�cation queue, U. The following cases are examples ofunique justi�cations:� A single input gate such as inverter or bu�er.� A logic value of X at the output: in this case all inputs can be assigned a logic valueof X.� A logic value of 0 at the output of an OR (NAND) gate: in this case we assign allinputs to logic value 0 (1).� A logic value of 1 at the output of an AND (NOR) gate: in this case we assign allinputs to logic value 1 (0).Nonunique Justi�cation If there are multiple mappings possible for the logic value at theoutput to the logic values at the inputs, then we must make a choice or a decision in thiscase. These decisions are maintained in a decision queue, D. Since the solution to theLP in Equation (4.1) depends on the set �i which in turn depend on these decision wemake here, we may have to revisit these decisions. The following cases are examples ofnon-unique justi�cations:� A logic value of 1 at the output of an OR (NAND) gate: in this case we assign anyone input to logic value 1 (0) and the rest to logic value X.� A logic value of 0 at the output of an AND (NOR) gate: in this case we assign anyone input to logic value 0 (1) and the rest to logic value X.4.2.2 Searching for the Optimal Solution
G1

G2

G3

G4

G5

0

0

1

d

h

e

g

c

f

b

a

c

G3

G4

G5d

e

f

G2

b 0

a

G1
1

g

h

x
0

G1

G2 G4

G5

b

a

c 1

G3

d
0

e

f

0

g

h

0
x

(c)(b)(a) Figure 4.9 E�ect of justi�cation of on the number of FFDi�erent justi�cation decisions may lead to a di�erent number of FF's obtained afterminarea retiming. As an example, consider the circuit shown in Figure 4.9(a), with a FFwith value 0 at the output of an AND gate, leading to two possible choices shown in Fig-ures 4.9(b) and 4.9(c). The corresponding decisions lead to retimed circuits with three andtwo FF's, respectively.

41Under nonunique justi�cations, a number of di�erent allowable justi�cations are possible.Let us de�ne a set of one such possible justi�cation as �i. Each such �i will give us a set(one for each gate) of justi�cation upper bounds �i = fJ iv j 8v 2 V g that is used to solvethe minarea LP. If the number of FF's so obtained is not equal to the minarea lower bound�, we must backtrack and obtain another set of justi�cations �j that leads to a di�erent�j . This process is repeated until we either achieve the minarea lower bound �, or no morejusti�cations exist. Since a complete exploration will be computationally expensive, one mayhalt the exploration of the search space at any time and take the best solution obtained so far.Thus the process of minarea initial state retiming can be given by the following pseudocode.The procedure returns the minarea retiming with an equivalent initial state.1 Obtain minarea lower bound �2 j = 0;3 Best = 1;4 while (true)5 f6 while (U 6= ; OR D 6= ;)7 f8 if (U 6= ;) do unique justification9 if (D 6= ;) = do decision justification10 g11 /* This gives us a justification set �j. */12 /* which corresponds to a set of justification upper bounds �j. */13 Obj = lp solve(�j); /* solve LP in Equation (4.1) */14 If(Obj == �) return(Obj); /* lower bound obtained */15 If(Best > Obj) Best = Obj; /* store best result */16 B = backtrack(�j);17 If(B == Infeasible) return(Best); /* all justifications explored */18 gThe function backtrack changes the last decision that has a yet unexplored choice, andis similar to one used in automatic test pattern generation (see for example [52]). The periodconstraints need be generated only once during the entire procedure since they do not dependon the justi�cation process. This is helpful since the period constraint generation is a verycomputationally intensive process.The theoretical upper bound on the number of possible justi�cation sets �i's in the worstcase is jFF j�Q8v2V jFI(v)j, where jFI(v)j is the number of fanins of the gate v, and jFF j is thenumber of FF's in the original circuit. This upper bound is due to the fact that in the worstcase, each FF in the circuit may move across every gate and every such move may require

42a decision. This bound is clearly exponential and thus the problem of �nding all possiblejusti�cation sets for a general circuit is NP-hard, as in the case of the justi�cation phase ofautomatic test pattern generation [52].However in practical circuits the number of feasible justi�cations will be much less thanthis theoretical upper bound due to the following reasons� As shown in Section 3.4 the mobility of FF's is very limited in practice and hence allFF's cannot move across all gates as assumed by the theoretical bound above.� Due to conicts at the gate fanouts the FF's may not be able to move towards the inputsof that gate, and this further restricts the mobility of the FF's.� Some FF's moving across gates have unique justi�cations.� Every time a decision is made in case of a nonunique justi�cation, all fanins but one areassigned logic value X. This logical X moves backward through unique justi�cation untilit is forced to a 0 or 1.� As soon as the lower bound of � is achieved we do not need any more justi�cation sets.In our experimental results we founds that in many circuits this lower bound is achievedin the �rst few iterations.� Only backward moves need justi�cation, while forward moves have a unique mapping oflogic values and hence do not add to the number of �i's.
B

G1

G2

a

b

0

0
A

Figure 4.10 An example of a pruning techniqueThe number of justi�cation sets can be further reduced by pruning suboptimal �i's. Con-sider the circuit in Figure 4.10 with the logic values of FF A and FF B equal to 0. Since theoutput of the AND gate G1 is at logic value 0 we have two possible mappings for the equivalentvalues at the inputs a and b. However the choice of setting input a to X and input b to 0 isbetter than the choice of a = 0 and b = X. This is because in the presence of FF B with logicvalue 0, the X on input b will be forced to a 0, e�ectively setting the choice to a = 0 and b = 0.This is suboptimal to the choice of a = X and b = 0, since X on input a can move further backthan a 0.

434.3 Conditional FF sharingThe LP of Equation (2.7) in Section 2.1.4 assumes that a FF can be combined with anyother FF, and hence is not applicable to minarea initial state retiming where FF's have logicvalues associated with them, and a FF with logic value 1 can not be shared with one thathas logic value 0. For example, consider the circuit in Figure 2.1(a) with initial state valuesas shown in Figure 4.11(a). With these initial values, the sharing given by the mirror vertexmodel of Section 2.1.4 is shown in Figure 2.1(b); this is not valid for the given initial values.Instead, the maximal sharing is as shown in Figure 4.11(b) and requires a total of six FF's.The reason is that only two FF's, shown in the dashed box in Figure 4.11(a), can be shared.The situation is further complicated by the fact that two FF's can be shared only if the FF'sat their fanins (if any) are also shared. For example, consider the circuit in Figure 4.11(b),the FF's on output C and D cannot be shared, although both have an initial state value of 1,because their fanins are not shared.
1

0 1

0 1

(b)(a)

1

1 0 1

1 1

0 1

B

C

D

A
A

B

C

D

Figure 4.11 Conditional register sharing at multiple fanoutsThus we need a way to model the conditional sharing when FF's have initial values asso-ciated with them. This conditional sharing is also required for circuits having more than onetype of FF's that can not be shared with each other. We will now present the modi�cationsrequired to model the conditional sharing by a 0/1-MILP formulation. This modi�cation isused for all gates with conicts at their fanouts, and for all other gates the simpler model ofSection 2.1.4 is used. This combination keeps the number of integer variables within a smallfraction of the total number of variables. We will �rst present the model and then illustrate itthrough an example.The justi�cation process of Section 4.2 determines the logic values of all FF's that canpossibly be retimed backwards to arrive at the fanout of a given gate. There is a sequence ofthese \possible" FF's that may arrive at every fanout of every gate, and possibly be retimedacross the gate, or remain at the gate output; the �nal retiming may contain only a subsequenceof this possible sequence. The logic values of these possible FF's at the fanouts of a gate uare represented by a table Tu with jFO(u)j rows as shown in Figure 4.12. Since a maximumof Jv FF's can be moved backwards across gate v to its fanins, and w(euv) FF's already existbetween gate u and gate v, the maximum number of FF's possible between gate u and gate v

44
a

b

d

c

101

11

01

1 0 1

1 1

10

c

d

b

1 2 3

α

α

α

α

α α1 2 3

4

65Figure 4.12 An example of FF sharingis Jv +w(euv). Therefore each row, v 2 FO(u), has Jv +w(euv) entries, each of which is eithera 0 or a 1.The value in the vth row and kth column of the table is denoted by Tu(v; k). We de�ne asharing class2 Si to contain a set of values that can be shared, and represent the set of sharingclasses for the fanouts of gate u by Nu. Two values Tu(p; q) and Tu(r; s) can be shared (i.e.,belong to the same sharing class) only if q = s and Tu(p; i) = Tu(r; i) for i = 0; � � � ; s � 1.A function class(Tu(v; k)) gives the index of the sharing class for entry (v; k) in table Tu,e.g., Sclass(Tu(v;k)) is the sharing class containing the kth FF between gate u and its fanout v(counting from u). All the FF's in a sharing class can be shared with each other, and hencerequire only one physical FF. Each sharing class Si is represented in the MILP by a variable�i 2 f0; 1g. If �i = 1 in the optimal solution of the MILP, then the FF's of sharing class Sishare a physical FF and the sharing class Si is said to be active. FF's moved forward acrossgate u to its fanouts can be shared unconditionally and will be handled later.To ensure that the kth FF retimed across gate v activates its own sharing class vari-able �class(Tu(v;k)), we require that the variable �class(Tu(v;k)) be active before the variable�class(Tu(v;k+1)). This is achieved by adding the following constraint�class(Tu(v;k)) � �class(Tu(v;k+1)) 8v 2 FO(u) and 1 � k � Jv + w(euv)� 1For every multi-fanout gate u we also de�ne a integer variable �u � 0, which models theforward retiming. This is required because unlike backward retiming, FF's introduced at thefanouts by forward retiming across gate u can be unconditionally shared since all of themhave the same logic value. Thus the � variables model the backward retiming and � modelsthe forward retimings. Notice that this is di�erent from the unconditional sharing modelof Section 2.1.4 where the mirror variable r(mu) modeled FF's moved by both forward andbackward retimings since all FF's could be unconditionally shared. Requiring the � variablesto be nonnegative, �i � 0 ensures that they model only forward (positive) retiming moves,while the condition �u � 0, ensures that �u models only backward (negative) retiming moves.2Sharing classes for circuits with di�erent types of FF's can be de�ned similarly.

454.3.1 Modi�cations in the Objective FunctionTo model the conditional sharing represented by the sharing classes, the objective functionterm for a gate u that has a conict at its fanouts is modi�ed to(jFI 0(u)j � 1) � r(u) + �u +Pi2Nu �i (4.2)This expression counts the number of FF's that settle at the output of gate u after retimingand the signi�cance of each term is as follows:� The �rst term (jFI 0(u)j � 1) � r(u) in Equation (4.2) models the increase in the numberof FF's when gate u is retimed by one unit, and is similar to the model in [59]. Asearlier FI 0(u) is the set of fanins that have only a single output, i.e., FI 0(u) = fvjv 2FI(u) AND jFO(v)j = 1g. It assumes a shared cost of one at the fanouts of gate u forany set of FF's retimed in either direction across gate u. In forward retiming, all FF'sinserted at the outputs of a gate have the same logic values, and therefore the shared costat fanouts of gate u in forward retiming is one. Since a gate can be retimed backwardsonly if all FF's at its output have the same logic values, the shared cost at the outputsbefore retiming is also one, as modeled by this term. The bound r(u) � Ju, ensures thatno set of FF's, with shared cost greater than one, is ever retimed backwards across gateu.� The second term �u � 0 is a correction factor applied to correctly model the situationin which a set of FF's moves forward across gate u and all its fanouts. It is active onlyduring forward retiming steps, and models the number of FF's moved across the fanoutjunction of gate u by forward retiming. Since a negative value of �u denotes forwardretiming, it reects a cost saving in the objective function.� As mentioned earlier �i = 1 implies that the sharing class Si is active, thereforeP8 i2Nu �idenotes the number of active sharing classes at the fanouts of gate u. Since each activesharing class requires one FF, the number of active sharing classes is also the numberof physical FF's required at the fanouts of gate u. The minimization of the objectivefunction will force the maximal sharing at the outputs of gate u. The �rst FF in asharing class Si that arrives at the fanout junction activates the sharing class variable�i, incurring a cost of one in the objective function. The remaining FF's in that sharingclass can then arrive without incurring any extra cost in the objective function.4.3.2 Additional ConstraintsThe number of FF's between gate u and its fanout v is given by wr(euv) = w(euv) +r(v)� r(u). The cost of the FF's between u and v is given by PJv+w(euv)k=1 �class(Tu(v;k)), out ofwhich r(u) FF's are removed by backward retiming across gate u and ��u FF's are removed by

46forward (negative) retiming across the fanouts. The conditional sharing of FF's is automaticallymodeled by the sharing of the � variables amongst the fanouts. Since the cost of FF's shouldbe same as the number of actual FF's, we getw(euv) + r(v)� r(u) = Jv+w(euv)Xk=1 �class(Tu(v;k)) � r(u) + �u 8 v 2 FO(u) (4.3)which can be rewritten asw(euv) + r(v) = �u + Jv+w(euv)Xk=1 �class(Tu(v;k)) 8 v 2 FO(u) (4.4)Since the right hand side of Equation (4.4) is being minimized in the objective function, wecan relax the equality to the following inequalityw(euv) + r(v) � �u + Jv+w(euv)Xk=1 �class(Tu(v;k)) 8 v 2 FO(u) (4.5)4.3.3 An ExampleConsider the circuit with the sharing classes in its table of logic values, as shown in Fig-ure 4.12. The MILP for this circuit isMinimize : �r(b)� r(c)� r(d) + �1 + �2 + �3 + �4 + �5 + �6 + �asubject to r(b) � �1 + �2 + �3 + �ar(c) � �1 + �4 + �ar(d) � �5 + �6 + �a�1 � �2 � �3�1 � �4 ; �5 � �6�a � 0 ; �i 2 f0; 1g 8iBackward Retiming: Suppose we want to model the sharing for r(a) = 0, r(b) = 3, r(c) = 1and r(d) = 2. Then the optimal objective function value of the above LP is -1, which givesthe correct increase in the number of FF's from the original circuit in Figure 4.13(a) to theretimed circuit in Figure 4.13(b).Forward retiming: Now suppose we want to model the sharing for r(a) = �2, r(b) = �2,r(c) = �1 and r(d) = �1. Then the optimal objective function value is 3, which is theincrease in the number of FF's from the original circuit in Figure 4.14(a) to the retimed circuitin Figure 4.14(b). As can be seen one FF is shared for the edges eac and ead even thoughthey where not in the same sharing class. This is possible because the FF's moved forwardto the outputs of gate a hence they all have same logic value without regard to the sharingclass which are de�ned for backward movements. Thus these FF's can be shared and ourformulation correctly models the cost.

47
1 0 1

1 1

0 1

a

b

d

c

(a)

1

0 1

1

0 1

a

b

c

d

(b)

r(a) = 0

r(b) = 3

r(c) = 1

r(d) = 2

Figure 4.13 Example of positive retiming
a

(a) (b)

a

b

d

c1 1

b

c

d

1

1 1

1

1

r(a) = -2

r(d) = -1

r(c) = -1

r(b) = -2

Figure 4.14 Example of negative retiming4.3.4 FF Sharing with Don't CaresSince every nonunique justi�cation decision generates an X, the actual problem of FFsharing is to �nd the optimal sharing between 0, 1 and X, FF's. The logic value X canbe shared with either 0 or 1 and hence presents additional modeling problems. Particularlydi�cult are the cases when X's are followed by 0's and 1's in a sequence, since the choice ofmerging X with 0 or 1 inuences sharing of the remaining sequence.As an example consider the following values at the output of a gate.0 11 X1 0The X can only be shared with 0 and hence should be converted to 0. However it is not alwayspossible to uniquely determine the possible values a X may take. Consider the following valuesat the output of a gate.Here the X may be converted to either 0 or 1. If all 6 FF's arrive, then it is bene�cial to mergeX with 0; however, if only the �rst X and 1 arrive then X should be merged with 1. The valuesin the table show the FF's that can potentially arrive at this junction by reverse retiming, butnot all of these FF's are required to arrive at the junction. In fact, due to the constraints andthe objective function any combination of these FF's may arrive, and this makes it di�cultto model the sharing in presence of X's. To avoid this problem, we convert all X's to either

480 1X 11 00 or 1. If the X can be shared with only 0 (or a 1) then it is converted to a 0 (or a 1). Foroptimal solution both possibilities need to be explored, however, in our implementation we usea random assignment to convert X's to 0 or 1.4.4 Experimental ResultsWe implemented a initial state minarea retiming based on the presentation in this chapter.Since obtaining an optimal solution requires complete exploration of the problem, it impliesgenerating all the possible justi�cation sets �i's, and solving the corresponding LP's. Since thisis a NP-hard problem, it is not likely to be computationally feasible. Hence, we implement ajusti�cation algorithm that makes random choices whenever there is a non-unique justi�cation.The LP is then solved for the corresponding �i. If the lower bound � is not achieved, thenwe perform another random decision based justi�cation. This process is repeated until eitherthe lower bound is reached or a user speci�ed number of iterations are performed, and thebest solution found is reported. Although it may seem arbitrary to use random decisions,our experimental results show that the algorithm gives us good engineering solutions that areclose to the (possibly unachievable) lower bound. Other possible stopping criteria could be (a)having the best result obtained so far be within a given percentage of the lower bound, or (b)obtaining no improvements in the best solution for a given number of iterations, etc. If thereare no gates with conicts, then the LP is the dual of a network ow mincost ow problem,and is solved using a network simplex algorithm of Section 3.3.3. If, however, we have to solvethe general MILP we use the public domain MILP solver, lp solve [6].We present results on the ISCAS89 [7] benchmark suite in Table 4.1. For each circuit, weshow the number of gates jGj, the target clock period P , and the lower bound on the numberof FF's obtained by Minaret �. We also show the minimum number of FF's obtained withequivalent initial state and the execution time Texec (in hours:minutes:seeconds) for all thetasks including solving the LP for all iteration on a HP 9000/777 C110 workstation. In theabsence of initial state values for the benchmark circuits, we present results for four di�erentinitial state assignment. Case A has all FF's initialed to 0, while case B has all initialized to1, case C and D are for random state assignments. As can be seen from the results, for manycircuits the lower bound is achieved in a small number of iterations for almost any initial state.In fact, in almost all of these cases the lower bound � is obtained in the �rst iteration itself. Forsome circuits the lower bound was not reached. This, however, does not imply that the solutionobtained is not optimal since the lower bound is not always achievable with equivalent initialstate. For these circuits, we report the best solution obtained in 50 (5 for s15850.1) iterations.

49Table 4.1 Minarea Initial State RetimingCircuit jGj P � A B C D#FF Texec #FF Texec #FF Texec #FF Texecs27 11 6.0 3 3 0.01s 3 0.00s 3 0.01s 3 0.00ss208.1 105 10.0 8 8 0.02s 8 0.02s 8 0.03s 8 0.03s298 120 6.0 22 22 0.40s 22 0.44s 22 0.44s 22 0.44ss382 159 7.0 23 23 2.59s 23 4.34s 23 4.35s 23 4.45ss386 169 11.0 6 6 0.04s 6 0.03s 6 0.04s 6 0.03ss344 161 14.0 19 19 1.77s 19 1.79s 19 1.77s 19 1.82ss349 162 14.0 19 19 1.62s 19 1.62s 19 1.69s 19 1.62ss526n 195 6.0 30 30 0.95s 30 0.95s 30 2.75s 30 0.97ss510 212 11.0 7 7 0.12s 7 0.12s 7 012s 7 0.12ss420.1 219 12.0 17 17 0.07s 17 0.06s 17 0.07s 17 0.06ss641 380 74.0 19 19 0.11s 19 0.43s 19 0.44s 19 0.43ss713 394 74 19 19 0.18s 19 0.68s 19 0.68s 19 0.69ss967 395 12.0 35 35 28.52s 35 27.21s 35 28.05s 35 27.27ss938 447 16.0 33 33 1.45s 33 1.53s 33 1.49s 33 1.53ss1196 530 24.0 18 18 0.08s 18 0.07s 18 0.08s 18 0.17ss1238 5.09 22.0 18 18 0.08s 18 0.07s 18 0.56s 18 0.08ss1423 658 53.0 76 76 8.77s 76 9.23s 76 8.89s 76 9.31ss1488 654 16.0 7 7 0.11s 7 0.11s 7 0.12s 7 0.11ss1494 648 16.0 7 7 0.13s 7 0.12s 7 0.13s 7 0.12ss3330 1790 14.0 110 110 0.58s 110 0.56s 110 0.59s 110 0.56ss5378 2780 21.0 173 173 3:18s 173 3:19s 173 3:18s 173 3:17ss9234.1 3271 38.0 134 134 21:18s 134 21:19s 134 23:47s 134 21:15ss635 287 66.0 35 42 22.6s 42 22.38s 35 1.08s 39 22.5ss953 396 13.0 27 32 32:02s 32 27:35s 32 31:30s 32 27:2ss1269 570 19.0 84 84 0.26s 85 1:33s 85 1:31s 85 1:4ss1512 781 23.0 70 71 1:51:19s 72 1:52s 1s 72 1:56:23s 70 1:38ss3271 1573 15.0 168 169 16:46s 173 16:5s 170 16:40s 173 16:29sprolog 1602 13.0 122 124 16:40s 125 16:42s 125 16:39s 125 16:29ss3384 1686 27.0 167 168 55:42s 169 1h3:18s 169 1:2:56s 169 51:3ss15850.1 9618 63.0 525 544 3:9:56s 540 4:2:36s 542 3:57:7s 544 3:59:5sThe execution time of our method is considerably higher than the run times for conventionalminarea reported for Minaret, since here we need to solve possibly multiple MILP's, unlikeMinaret which needs to solve only one mincost ow problem. However note that in most caseswhere the lower bound is achieved the execution times are comparable to those of Minaret. Inthe circuits where the lower bound � is not achieved the solution reported by our algorithmis very close to � and therefore corresponds to a good engineering solution. Since the optimalnumber of FF's in a circuit depend on the initial state of the original circuit, some variationin the number of FF's and execution time is obtained for di�erent initial states. For s635,s1269 and s1512 the lower bound was seen to be achieved for only some initial states.

504.5 ConclusionWe have presented a method to obtain minarea retiming of control logic subject to a giventarget clock period and an equivalent initial state. Any minarea retiming algorithm, that doesnot consider initial states will, in general, not give a solution with a valid equivalent state andhence cannot be used for control logic, where initial states are important. Our method, onthe other hand, will always result in a retimed circuit with an equivalent initial state, i.e., theretimed circuit starting in the equivalent initial state will have the same behavior as the originalcircuit starting in its given initial state. Unlike conventional minarea retiming algorithms ourapproach can be used for performance constrained, area optimization of control circuits. Thisapproach also has applications in minarea retiming of circuits that contain di�erent types ofmemory elements that can not be shared with each other, e.g. load enable registers.We provide a simple way to incorporate the constraints for ensuring that the resultingretiming has an equivalent initial state. This is achieved by imposing upper bounds on theretiming variables so that any retiming respecting those bounds will have an equivalent initialstate. This equivalent state can easily be found after the retiming by using the informationstored from the justi�cation phase. The technique also utilizes a new approach that incorpo-rates conditional FF sharing, since the idea of mirror vertices used by Leiserson and Saxe tomodel unconditional FF sharing [59] cannot be extended to the initial state retiming problem.The solution approach searches the justi�cation space for the initial states and for each possiblejusti�cation, solves an LP. The exploration of the justi�cation space can be stopped by theuser at any time, and it was seen that for all circuits tested, good engineering solutions thatwere close to a (possibly unachievable) lower bound were found by the technique after a smallamount of exploration.Minarea initial state retiming can also be performed by extending the approach in [30]. Inthis method conventional minarea retiming is performed �rst. If a conict occurs at a gate whilemoving the FF's to obtain this retiming, then an appropriate bound is placed on the retimingvariable of this gate, and the minarea retiming problem is solved again. This procedure isrepeated until no more conicts are obtained. Thus the �nal circuit has an equivalent initialstate although it may require more FF's than the conventional minarea, since the extra boundsplaced on the retiming variables to ensure equivalent initial states can increase the numberof FF's in the optimal solution. This method can be seen as a \dual" of our approach, sinceit starts from the lower bound and tries to achieve feasibility (equivalent initial state), whilein our approach we start with a feasible solution and try to achieve optimality. However inthis approach the initial state value on the FF's that can be possibly retimed to the fanoutsof a gate is not known before solving the minarea LP. Hence this approach will not be able tomodel the conditional sharing, making the solution suboptimal.The work in [122] showed that backward retiming with equivalent initial states such asthe one in Figure 4.1 can always be obtained if the reset signal is expressed explicitly. This,

51however, requires the addition of a multiplexer before the FF and thus changes the path delaysin the circuit. This may cause the clock period of the circuit to increase and is therefore notconsidered here.

52
5 RETIMING LEVEL-CLOCKED CIRCUITS5.1 IntroductionThe memory elements in a circuit can be either edge-triggered, called ip-ops (FF's) orlevel-sensitive, called latches. Unlike a FF, a latch is transparent during the active period ofthe clock. Even though the transparent nature of latches makes design and analysis of level-clocked circuits (circuits with level-sensitive latches) very complex, they are widely used forhigh performance designs because they o�er more exibility both in terms of the minimumclock period achievable and the minimum number of memory elements required. Optimizinglevel-clocked circuits is therefore a complex but important task, and there is a acute need ofgood automation tools. Several e�orts have been made to retime circuits with level-sensitivelatches based on the Leiserson-Saxe approach, e.g., [96, 70]. Although these algorithms havepolynomial time complexity, their high space and time requirement makes them incapable ofhandling circuits with even a few thousand gates, and the only published results are on circuitswith less than 400 gates. Our goal in this chapter is to able to retime circuits with tens ofthousands of gates in reasonable time, and we present results on circuits with up to 56,000gates.For edge-triggered circuits (circuits with edge-triggered FF's) the delays through all com-binational logic paths must be less than the clock period, hence we must enforce timing con-straints only between FF's connected by a purely combinational path. For level-clocked circuitsthe delay through a combinational logic path can be longer than one clock cycle, as long asit is compensated by shorter path delays in the subsequent cycles. To ensure that the extradelay is compensated we must enforce timing constraints between a latch and every other latchreachable from it (possibly through multiple latches). Consider a linear N stage pipeline withN + 1 memory elements (m0;m1 : : : mN). If these memory elements are edge-triggered FF's,then we need only N timing constraints (mi mi+1; 0 � i � N). However, if these mem-ory elements are level sensitive latches, then we would need N � (N + 1)=2 timing constraints(mi mj 8j > i and 0 � i � N). In presence of feedback paths, timing analysis of level-clockedcircuits becomes even more complex.These traditional methods [96, 70] solve the minperiod retiming problem by performing abinary search over all possible clock periods. At each step of this binary search, the feasibilityof achieving the clock period by retiming is checked by solving a single source shortest path

53problem using the Bellman-Ford algorithm on a constraint graph. This constraint graph con-sists of jGj vertices and edges between every pair of vertices (where jGj is the number of gatesin the circuit), and is obtained by solving a all-pairs shortest path problem on the originalcircuit graph. This graph has to be reconstructed for every binary search point, because asshown in [70, Section VI-A], unlike edge-triggered circuits, critical paths in level-clocked cir-cuits can be di�erent for di�erent clock periods. Therefore the methods in [96] and [70] haveO(jGj2) space requirement and high (although polynomial) time complexity. This complexityof retiming level-clocked circuits arises due to the transparent nature of latches, which forcesus to consider constraints on paths going through multiple latches.In this chapter we present a minperiod retiming algorithm that is capable of retiming verylarge multi-phase circuits with general clock schedules. This is achieved by introducing theconcept of Global Departure Time (GDT) to map the minperiod retiming problem to a skewoptimization problem and thus solving it much like the simpler problem of retiming edge-triggered circuit using the approach of [109]. In each step of the binary search we solve thesingle source shortest path problem on a much smaller constraint graph with only j	j vertices,where j	j is the number of latches in the circuit. This constraint graph contains edges onlybetween latches that have a purely combinational path between them, and therefore is muchsmaller and sparse as compared to the constraint graph in traditional methods. Unlike thetraditional methods that reconstruct the constraint graph for every binary search point, weperform a simple reweighting of the edges. Once the minimum period is obtained, the latchesare relocated to obtain this minimum period.The minarea retiming problem can be formulated as a linear program (LP) [59]. This LP isgenerated by solving an all-pair shortest path problem, and has jGj variables and almost jGj22constraints. This LP can be solved e�ciently by solving its min-cost ow dual [59]. For edge-triggered circuits, the work in [115] presented an e�cient technique for pruning the numberof constraints which also had the bene�cial e�ect of reducing the computation involved ingenerating these constraints. This was achieved by utilizing the observation that in edge-triggered circuits, if a subpath satis�es the timing constraints, then any path containing thissubpath will also satisfy the timing constraints (unfortunately this is not true for level-clockedcircuits due to the transparent nature of latches). Section 3.3 builts on the idea and addse�cient techniques to obtain bounds on the variables of the LP for edge-triggered circuits.These bounds were used to further reduce the size of the LP and the time required to generateit. The concept of GDT presented in this chapter makes it possible for us to apply similartechniques to generate bounds on the variables in the minarea LP for level-clocked circuits,and to use it to reduce the size of this LP. However, due to the transparent nature of latches,unlike edge-triggered circuits, the techniques of [115] and Minaret cannot be used to reducethe time required to generate the minarea LP in level-clocked circuits. This presents a major

54hurdle in retiming large level-clocked circuits for minimum area, because in the absence of anye�ciency-improving techniques, the minarea LP can not be generated in any reasonable time.In this chapter we present new techniques for pruning the minarea LP for level-clocked circuits,and reducing the time required to generate it. Using the techniques presented in this chapter,the entire ISCAS-89 benchmark suite could be retimed for minimum period in seconds, andfor minimum area in minutes.The remainder of this chapter is organized as follows. In Section 5.2, we present some back-ground material, after which in Section 5.3, we discuss a relation between retiming and clockskew optimization for level-clocked circuits. This relation is then utilized for e�cient minimumperiod and minimum area retiming in Section 5.4 and Section 5.5 respectively. Experimentalresults are presented in Section 5.6, followed by concluding remarks in Section 5.7.5.2 BackgroundConsider the simple circuit in Figure 5.1 with unit delay gates and a single-phase clockingscheme with 50% duty cycle. In this thesis we will assume that the data signals are availableat the primary inputs at the falling edge of the clock, and must arrive at the primary outputsbefore the falling edge. For any latch that is not a primary input or primary output, thedata may depart at any time during the active period of the clock. Under this assumption adata signal in this circuit gets exactly two clock periods to reach the primary output from theprimary input.A clock period of 2.0 units is not feasible for the circuit in Figure 5.1. This is because asshown in the �gure the actual arrival time (3.0 units) is one time unit later than the requiredarrival time (2.0 units). Hence the minimum clock period at which this circuit can operatewithout any modi�cations is 3.0 units. However, a clock period of 2.0 units can be achievedby moving the latch L1 across the gate G3. Notice that this is not the only possible locationof memory element L1 that can achieve the clock period of 2.0 units; placing latch L1 at theoutput of gate G1 also achieves the same clock period as shown in Figure 5.3. This is possiblebecause of the transparent nature of the latches which allows the data signal to depart fromthe latch at any time during the active period of the clock.
0 3 41 2

G1 G2

IN

G4

OUT

G3

L1
IN

L1

CLOCK

actual
requiredFigure 5.1 An example circuit.

55
IN

OUT

L1

CLOCK

0 3 41 2

G3 G4G1 G2

IN L1 OUT

Figure 5.2 Retiming for clock period optimization.
IN

OUT

L1

CLOCK

0 3 41 2

G3 G4G1

IN OUT

G2

L1

Figure 5.3 Alternate retiming for clock period optimization.We use the term right to denote the direction of the signal ow and left to indicate thedirection against the signal ow. Thus retiming a latch by moving it to the right across agate implies removing a latch from each of the fanins of that gate and adding one to all ofthe fanouts of that gate. Similarly retiming a latch left across a gate implies removing a latchfrom each of its fanouts and adding one to each of the fanins. The set of latches in the givencircuit is denoted by 	.5.2.1 Clock ModelIn this chapter, we have adopted the clock model of Sakallah, Mudge and Olukotun [107],and we describe it here for completeness. A k-phase clock is a set of k periodic signals,� = f�1 : : : �kg where �i is referred to as phase i of the clock �. All of the �i's have thesame clock period T�, and each phase i has an active interval of duration T�i and a passiveinterval of duration (T� � T�i). Each latch i 2 	 is clocked by exactly one phase of the clock�, which is denoted by p(i). The latches controlled by a clock phase are enabled during theactive interval and disabled during the passive interval. When the clock period, T�, is changed,the active intervals of each phase are scaled proportionately. The term \clocking scheme" isused to indicate the relative ratios and duty cycles of the individual phases. Thus a clockingscheme together with a clock period T�, de�ne a \clock schedule" �.Associated with each phase i is a local time zone, shown in Figure 5.4, such that the passiveinterval starts at time 0, the enabling edge occurs at time (T� � T�i), and the latching edge

56occurs at time T�. Phases are ordered so that e1 � e2 : : : � ek�1 � ek = T�, and are numberedmodulo-k, i.e., �k+1 = �1 and �1�1 = �k. There is also a global time reference and ei denotesthe time when the phase �i ends, relative to this global time reference.
- T)(T

Passive Inverval Active Interval

T0
iΦ φ

Latching EdgeEnabling Edge

Φ

φiphaseFigure 5.4 Phase i of a k-phase clock (all times in local time zone).A phase shift operator Ei;j, shown in Figure 5.5, is de�ned as follows:Ei;j = ((ej � ei) for i < j(T� + ej � ei) for i � j (5.1)Note that Ei;j takes on positive values, and when subtracted from a time point in the currenttime zone of �i, it changes the frame of reference to the next local time zone of �j.
i

φphase

φjphase
e

T

T

i,j

φ

φ

e

j

i

i

j

EFigure 5.5 The phase shift operator.5.2.2 Timing Constraints for Level-Clocked CircuitsWe now enumerate the set of timing constraints, that dictate the correct operation of alevel-clocked circuits. We neglect to consider latch setup and hold times here, since they canbe incorporated easily by including the setup times in the path delays and the hold time inthe clock periods.Each latch i also has an associated latest arrival time Ai, and a latest departure time Di,in its local time zone. Due to the transparent nature of the latches, a signal can depart froma latch i any time during the active interval of the phase p(i), i.e.,T� � T�p(i) � Di � T�However, a signal cannot depart from a latch before it has arrived at that latch, i.e.,Ai � DiThe arrival time at a latch j of a signal departing from another latch i connected by a purelycombinational path (denoted as i ,! j) of delay dij must satisfy the following relationDi + dij �Ep(i);p(j)) � Aj

57Combining the above relations we can obtain the timing constraints for properly clockingof level clocked circuits, considering only long path constraints1 asDi + dij �Ep(i);p(j) � Dj 8 i ,! j j i; j 2 	T� � Tp(i) � Di � T� 8 i 2 	 (5.2)5.3 Relation Between Retiming and SkewClock skew at any latch is de�ned as the time by which the clock is delayed in arriving atthe latch, with respect to a �xed reference (the arrival time of the clock at the primary inputs).Clock skews have traditionally been considered to be a liability and various techniques to geta skew-free clocking network have been proposed [131, 14, 24]. An alternative approach viewsclock skews as a manageable resource rather than a liability, and intentionally introduces skewsto improve the performance of the circuit [31]. Consider the circuit in Figure 5.1 where theclock period of 2.0 units is not feasible since the actual arrival time (3.0 units) is one timeunit after the required arrival time (2.0 units). However, as shown in Figure 5.6 if a skew of+1.0 unit is applied to the clock at latch L1, the required arrival time at latch L1 becomes 3.0time units, and the data is properly clocked at latch L1. The circuit can now run with a clockperiod of 2.0 units. Thus clock skews can be used to improve the performance of a circuit.
G1 G2

IN

G4

OUT

G3

L1
IN

OUT

L1

DelayClk

CLOCK

0 3 41 2Figure 5.6 Using clock skew to reduce clock period.To derive timing constraints in presence of skews we now augment the Sakallah-Mudge-Olukotun model with our own notation. We associate a skew Si with every latch i 2 	.Note that the skew values here are not physical skews to be applied to the �nal circuit, butconceptual ideas that will eventually help us to achieve a retiming solution. Therefore norestrictions are placed on the value of Si, i.e. �1 � Si � 1.We de�ne a latch shift operator Li;j, shown in Figure 5.7, much like the phase shift operator.This operator converts time from the local time zone of latch i to the local time zone of latch1We do not consider short path constraints here, and rely on Theorem 1 in [70], which assures us that forvalid clock schedules [70], there will be no short path violations. In this thesis we consider only valid clockschedules.

58
Sj

S i

Tφp(j)

Tφp(i)

i,jL

ep(j)

p(i)e+iS

jS +Figure 5.7 The latch shift operator.j, taking into account their skews. It is de�ned asLi;j = ((Sj + ep(j))� (Si + ep(i)) for i < jT� + (Sj + ep(j))� (Si + ep(i)) for i � jwhich can be rewritten in terms of the phase shift operator asLi;j = (Sj � Si) + Ep(i);p(j) (5.3)In presence of skews at latches, the timing constraints in relation (5.2), must be modi�ed byusing the latch shift operator instead of the phase shift operator. Thus the timing constraintsfor a level clocked circuit to be properly clocked by a clock schedule �, in presence of skewsare Di + dij � Li;j � Dj 8 i ,! j j i; j 2 	T� � Tp(i) � Di � T� 8 i 2 	These timing constraints can be rewritten as(Si + Di) + dij �Ep(i);p(j) � (Sj + Dj) 8 i ,! j j i; j 2 	T� � Tp(i) � Di � T� 8 i 2 	�1 � Si � 1 8 i 2 	To make the discussion simpler we subtract T� from both sides of the �rst relation, andsubstitute Xi = (Si +Di � T�) (5.4)We refer to Xi as the Global Departure Time (GDT). This gives usXi + dij �Ep(i);P (j) � Xj 8 i ,! j j i; j 2 	�1 � Xi � 1 8 i 2 	These can be written as the following set of di�erence constraints.Xi �Xj � Ep(i);p(j) � dij 8 i ,! j j i; j 2 	 (5.5)�1 � Xi � 1 8 i 2 	

59As shown earlier, both skew and retiming can modify the circuit in Figure 5.1 to operateat a faster clock period of 2.0 units. In fact, both achieve this objective by the same basicprinciple of borrowing time from one cycle and lending it to another. Therefore retiming andskew optimization can be considered to be related to each other. A formal presentation of thisrelationship is given in [109], for edge triggered FF's. A FF can be conceptualized as a levelsensitive latch with a very small active interval.The physical meaning of GDT is as follows. If we can apply arbitrary skews at latches, wecan adjust the skew, Si, of a latch so as to force Di = T�, which is same as a negative edgetriggered FF. Since Xi = Si +Di � T�, setting Di = T� gives Si = Xi. Hence, we can look atXi for latches in the same way as we look at skews for FF's.The di�erence constraint between GDT values of two latches given in relation (5.5) issimilar to the di�erence constraints between skews at FF's in [109]. Therefore we suggest arelation between retiming and GDT values of level-sensitive latches, similar to the one givenin [109] between retiming and skews for edge triggered FF's. This relation will allow us todevelop e�cient techniques for retiming level-clocked circuits. We now state a theorem similarto Theorem 1 in [109]; the proof of this theorem is similar to the one given in [109].Theorem 2 In a level-clocked circuit, retiming a latch by moving it to the right [left] acrossa gate with delay d1 is equivalent to increasing [decreasing] its GDT by d1.
Tφi

Tφi

Tφi

TΦ TφiDi = -’

TΦD i
 =

Si
’ = 0

Tφi

Tφi

Tφi

(a)

(b)
’ = -X

X i
 =

Si =-

-

Figure 5.8 The ability of a latch to absorb some skew.Note that in reality, we are not compelled to set Di = T�, and that we can reduce Diby as much as T�i and increase Si by the same amount, while keeping Xi constant. Sinceonly GDT's (Xi's) appear in the timing constraint of relation (5.5), keeping them constantkeeps the clock period constant. Consider Figure 5.8 (a) where Si = �T�i and Di = T�, thusXi = �T�i . We can increase the skew to zero (S0i = 0), without changing the GDT as shown inFigure 5.8 (b), by reducing the departure time by the same amount D0i = T��T�i , leaving theGDT unchanged (X 0i = Xi = �T�i). Therefore, we can absorb a skew of up to �T�i in the Diwithout violating the long path constraint. Thus a GDT value between �T�i and 0 is allowedand this range will be referred to as the allowable range. If di�erent phases have di�erentactive interval then this allowable GDT range of a latch will depend on its phase. Therefore

60in our model, level-sensitive latches can be conceptualized as FF's that have the capacity toabsorb some skew.At this time, we also note the relation between the GDT, Xi, of a latch i and the corre-sponding minimum magnitude skew, Si:Si = 8>><>>: Xi if Xi � 00 if �T�i � Xi � 0Xi + T�i if �T�i > Xi (5.6)5.4 Minimum Period RetimingGiven a circuit and a clocking scheme, minimum period (minperiod) retiming �nds theminimum possible clock period T�, for which there exists a retimed circuit that will be properlyclocked by � (the clock schedule for the given clocking scheme and clock period T�), and theretiming that makes this clock schedule possible. As mentioned in Section 5.1, the traditionaltechniques of [96, 70] are unable to handle large level-clocked circuits in a reasonable time. Weutilize the relationship between GDT and retiming presented in Section 5.3 to map the problemof retiming level-clocked circuits for minimum period to the simpler problem of retiming edge-triggered circuits for minimum period as solved in [109]. This mapping motivates the followingtwo-phase method of retiming for minimum clock period under a given clocking scheme.Phase A: Find the minimum clock period and a set of GDT values that will achieve thisperiod.Phase B: Relocate latches across gates to get all the GDT values to be within allowablerange.As mentioned later in Section 5.4.1, in Phase A of this method we construct a small andsparse graph only once, unlike the traditional methods [96, 70] which construct multiple largeand dense graphs. In Phase B we perform fast local transforms to obtain the retiming solution.Therefore using this two phase method we can retime large level-clocked circuits very e�ciently.As in [109] it must be noted that since gate delays take on discrete values, it cannot beguaranteed that the GDT at every latch can be reduced to be within the allowable rangethrough retiming operations. After the GDT values have been reduced as much as possible,the retimed circuit may be implemented either by applying the requisite (remaining) skewsat a latch (to get the optimal clock period achievable by skew optimization), or by setting allskews to zero to get a clock period that is, as will be shown in Section 5.4.4, no more than a�xed bound above the optimal period with skews. Note, however, that this is not necessarilysuboptimal since the minimum clock period using skews may not be achievable using retimingalone, since retiming allows cycle-borrowing only in discrete amounts (corresponding to gatedelays), while skew is a continuous cycle-borrowing optimization [31]. As will be shown in

61Section 5.4.4, if the maximum gate delay is less than the least T�i , we can always achieve theoptimal skew optimization period by retiming alone.We �rst describe the two phases of minperiod retiming, followed by the special case ofretiming a circuit for a given clock period. We then present the bound on the di�erencebetween the optimal skew optimization period and the clock period obtained by our method.5.4.1 Phase A: Clock Period OptimizationThe problem of minimizing the clock period, T�, for a given clocking scheme can be repre-sented as the following linear program:minimize T�subject to Xi �Xj � Ep(i);p(j) � dij i ,! j j i; j 2 	 (5.7)Solving the above linear program we obtain the minimum clock period and the GDT'scorrespond to it. Our strategy is to transform the GDT solution to a retiming solution toachieve the minimum clock period.For a given circuit, dij is constant and for a given clock schedule that has a �xed T�, Ep(i);p(j)is constant. Therefore, the constraint matrix reduces to a system of di�erence constraints. Afeasible solution to the constraint matrix exists if the corresponding constraint graph containsno positive cycles [17]. Thus we can solve the, linear program by performing a binary searchon the clock period T�. The minimum clock period corresponds to the smallest value of T� atwhich no positive cycle exists.The constraint graph has a vertex for each latch in the circuit and one for the host noderepresenting the primary inputs and outputs. There is a edge (i; j) from vertex i to vertex jif there is a purely combinational path from latch i to latch j. The weight on this edge is afunction of the clock period T� and is given by dij�Ep(i);p(j). The Bellman Ford algorithm [17]is applied as in [109] using the same speedup techniques which provide a fast implementation.The GDT's at all primary inputs and primary outputs are assumed to be zero. The values ofdij 's are obtained e�ciently by using the method in [108].Notice that number of variables in this constraint graph is equal to the number of latchesj	j in the circuit, and the constraints are only between latches with a purely combinationalpath between them. Therefore this constraint graph is much smaller and sparse as comparedto the traditional constraint graphs of [96, 70], which have one variable for every gate andconstraints to all reachable gates. Further unlike the traditional methods of [96, 70], whichneed to construct the larger and denser constraint graph for every binary search point (bysolving an all-pair shortest path problem), our constraint graph needs to be constructed onlyonce. At each point in the binary search the constraint graph can be obtained by a simplereweighting of the graph edges. Therefore the complexity of this binary search is much lessthan that of the traditional methods.

62This optimal clock period with skews is called Ps, and it is same as the maximum delay-to-register ratio of [93]. Both are lower bounds on clock period obtainable via retiming. However,instead of using it, just as a lower bound (as in [93]), we use it to obtain the amount by whicheach latch is required to move in order to satisfy the clock period. This amount is then usedto obtain a retiming solution as described next.5.4.2 Phase B: GDT MinimizationIn Phase B, we reduce the GDT values obtained in Phase A by applying retiming trans-formations using Theorem 2. This procedure relocates the latches with nonzero GDT's acrosslogic gates, while maintaining the optimal clock period previously found. Because of the free-dom provided to Di by the active interval of clock phase p(i) (which allows Di to be set to anyvalue between T� � T�p(i) and T�), Si = 0 can be achieved if �T�p(i) � Xi � 0. If Si cannotbe set to zero, we try to bring Xi as close to 0 or �T�p(i) as possible so as to minimize themagnitude of the �nal skew Si.Although the method for FF relocation presented in [109] can be modi�ed to work forlatches, we present a equivalent yet conceptually simpler method of GDT minimization bylatch relocation. A gate can be retimed in forward [backward] direction if it has latches onall of its inputs [outputs], this retiming will result in removing one latch from all its inputs[outputs] and adding one latch to all its outputs [inputs].We maintain two sets one for the gates that are to be forward retimed and one for thegates that are to be backward retimed. The forward retiming set F is initialized to contain allgates that have at least one latch on all their inputs. Similarly the backward retiming set B isinitialized with gates that have at least one latch on all their outputs. We than process thesesets by taking a gate from the set and retiming it, if the skew on the latches can be reducedby this retiming. After every retiming the sets are updated. The pseudo code for this is givenbelow as the function retime() below:retime()f F = fvjv 2 V and w(euv) � 1 8u 2 FI(v)g /* initialize F */B = fvjv 2 V and w(evu) � 1 8u 2 FO(v)g /* initialize B */while(9 u 2 F) do forward retime(u; F);while(9 u 2 B) do backward retime(u;B);g The functions forward retime(gate,set) and backward retime(gate,set) retime thegate if needed, and update the respective sets, their pseudo code is given below.forward retime(v; F)

63f F F � v; /* remove gate v from F */Xi = maximum GDT at the inputs of gate v;X 0i = Xi + d(v);Si = GDT to skew(Xi);S0i = GDT to skew(X 0i);if (jS0ij < jSij) dof /* retime gate v */for 8u 2 FI(v) do fw(euv) w(euv)� 1g;/* delete a latch from each input */for 8u 2 FO(v) do fw(evu) w(evu) + 1g;/* add a latch with GDT = X 0i on all outputs */for 8u 2 FO(v) doif (w(ewu) � 1 8w 2 FI(u)) do F F [u; /* update F */ggbackward retime(v;B)f B B � v; /* remove gate v from B */Xi = minimum GDT at the outputs of gate v;X 0i = Xi � d(v);Si = GDT to skew(Xi);S0i = GDT to skew(X 0i);if (jS0ij < jSij) dof /* retime gate v */for 8u 2 FO(v) do fw(evu) w(evu)� 1g;/* delete a latch from each output */for 8u 2 FI(v) do fw(euv) w(euv) + 1g;/* add a latch with GDT = X 0i on all inputs */for 8u 2 FI(v) doif (w(euw) � 1 8w 2 FO(u)) do B B [u; /* update B */gg The function GDT to skew(GDT) converts a GDT value to the corresponding minimummagnitude skew using relation (5.6). For forward retiming of a gate v the e�ective GDTbefore retiming, Xi is given by the maximum GDT at its inputs, while the e�ective GDT after

64retiming X 0i is given by X 0i = Xi + d(v). For backward retiming the e�ective GDT beforeretiming Xi is given by the minimum GDT at its outputs, and the GDT after retiming X 0i isgiven by X 0i = Xi � d(u). In either case the gate is retimed only if magnitude of the e�ectiveskew after retiming S0i is less than the magnitude of the e�ective skew before retiming Si. Asmentioned earlier a gate v is forward [backward] retimed by removing a latch from each of itsinputs [outputs] and adding a latch with GDT X 0i to all its outputs [inputs]. If after forward[backward] retiming a gate v, any of its fanout [fanin] gate w now has at least one latch on allits fanins [fanouts], then we add gate w to the forward [backward] set F [B].Retiming a latch forward across a gate u a�ects the edge weights on only its own fanoutsand not the edge weights on fanouts of any other gate. Therefore forward retiming a gate ucannot enable the backward retiming of any other gate that could not be previously retimed inthe backward direction. Since we forward retime a gate u only if the e�ective skew magnitudereduces by this retiming, and not if it remains the same, a gate u cannot be backward retimedafter it has been forward retimed once (even though it may have latches on all its fanouts),because this backward retiming will increase the skew magnitude. Therefore a gate can neverbe retimed in both the forward and backward direction. Thus forward retimings have no e�ecton backward retimings and both types of retimings can be carried out independently. Due tothis reason we do have to process the forward set again after it has been processed once.5.4.3 Retiming for a Target PeriodRetiming a circuit for a given target clock period is a special case of the minperiod retimingproblem. In this problem we are given a circuit and a clock schedule � that has a �xed T�. Ifthe given clock schedule is feasible, the method should return a retimed circuit that is properlyclocked. If the clock schedule is not feasible the method should indicate so. For this problemwe do not need to perform the binary search in Phase A. The constraint graph is constructedas earlier and the Bellman-Ford algorithm is applied on it to obtain the set of required GDT's.If the Bellman-Ford algorithm detects a positive cycle the clock scheme is not feasible, and isreported as such, otherwise Phase B is performed.Due to the exibility in the non-critical part of the circuit, and the transparent natureof the latches, retiming for a given clock period is not unique, and di�erent retimed circuitscan be obtained all of which satisfy the target clock period. As an example for the circuit inFigure 5.1, two di�erent retimings are shown in Figure 5.2 and Figure 5.3 for the same targetclock period of 2.0 units. Our objective in minperiod retiming is to �nd one of these possiblesolutions e�ciently, with as few retiming moves as possible. As in [109], we initialize the GDT'sto 0 in the Bellman-Ford algorithm, and take advantage of the slacks to minimize the numberof moves. For minperiod retiming of the circuit in Figure 5.1, our method will generate thecircuit in Figure 5.2, since it requires less latch motions than the circuit in Figure 5.3.

655.4.3.1 The ALAP and ASAP RetimingsOut of the set of all possible retimings for the given clock scheme, two are of particularinterest. We can obtain a retiming such that all latches move as far as possible to the left.This is called \as soon as possible (ASAP)" retiming. Similarly, the retiming that moves allthe latches as far as possible to the right is referred to as the \as late as possible (ALAP)"retiming. Both ASAP and ALAP retiming assume no latch is moved across the host node (H).As in Section 3.3 these ASAP and the ALAP locations can be seen as the extreme locations oflatches in the circuit for the given clock scheme, and will be utilized, in Section 5.5 for e�cientminarea retiming. For the circuit in Figure 5.1 the ALAP and ASAP retimings are shown inFigure 5.2 and Figure 5.3 respectively. As in Section 3.2.2 these ASAP and ALAP retimingscan be obtained by modifying the minperiod retiming algorithm.Unlike retiming for a given period, in ALAP retiming, our objective is to move the latchesto the right, as much as possible. For this we initialize all GDT's to �1, before applying thelongest path Bellman-Ford algorithm to the constraint graph. In Phase B we use the allowablerange of GDT's to move a latch to the right as much as possible, i.e., if the new GDT aftermoving a latch to the right is still within the allowable range, we move the latch to the right.Notice that this is done even if the original GDT was within the allowable range.In ASAP retiming we obtain the GDT's by running the Bellman-Ford algorithm on thetranspose[17] of the original constraint graph (i.e., a graph with the same vertex set as theoriginal graph, but with the edge directions reversed) with all latches initialized to �1. Sinceall the edge directions where reversed the longest path values for all latches must undergo asign reversal to obtain the correct GDT values.5.4.4 A Bound on the Clock Period of the Retimed CircuitTheorem 3 At the end of the retiming procedure in Phase B, the magnitude of skew at eachlatch i, is no more than p(i) = max 0; M � T�p(i)2 ! (5.8)where M is the maximum delay of any gate in the circuit.Proof: We have two casesCase A : M � T�p(i) If the maximum gate delay is less than the active duration of theclock, we need to prove that at the end of Phase B, all latches will have zero skew.We will prove this by contradiction, assuming that a latch i has nonzero skew Si atthe end of Phase B. We have two sub cases.Case 1: Si > 0 In this case the GDT of latch i is Xi = Si. The new GDT of thelatch after it is moved left across a gate of delay d1 is given by X 0i = Xi � d1.

66Since d1 � M � T�p(i) we have X 0i � �T�p(i) , thus the e�ective skew S0i afterthis possible move is either zero (if T�p(i) � X 0i � 0), or jS0ij < jSij. In eithercase the latch i can be moved left across the gate and have its skew reduced.This contradicts the assumption that Phase B is complete.Case 2: Si < 0 If Si < 0 then the GDT of latch i is negative, i.e., Xi = Si�T�p(i) ,and the proof is similar to case 1.
X i

X i

Tφp(i)

i|S |i|S |

’

’

d1

Figure 5.9 Worst-case situation for remaining skew.Case B: M > T�p(i) If the maximum gate delay is more than the active duration ofthe clock, we need to prove that for any latch i, at the end of Phase B the skewmagnitude is less than p(i). Phase B is complete only when for every latch i wehave jS0ij � jSij, where Si is the current skew and S0i is the skew after a possiblemove across a gate with delay d1. As shown in Figure 5.9 the largest possible �nalskew magnitude corresponds to the situation when jSij = jS0ij. In this case we haved1 = 2 � jSij+ T�p(i) and hence jSij � d1�T�p(i)2 . Since M is the maximum gate delaythis implies that jSij � M�T�p(i)2 .Theorem 4 If, in a k phase circuit at the end of the retiming procedure all skews are set tozero, then the �nal clock period (Pr) satis�es the following conditionPr � Ps + kXi=1 max(0;M � T�i)where Ps is the optimal clock period with skews found in Phase A, and M is the maximumdelay of any gate in the circuit.Proof : Each di�erence constraint for the optimal clock period (with skews) is of the formXi �Xj � Ep(i);p(j) � dij :Theorem 3 guarantees us that at the end of Phase B jXij and jXj j are within p(i) andp(j) of their optimal values respectively. Therefore the actual value of Xi � Xj afterPhase B must lie within (p(i) + p(j)) of the required value of Xi � Xj in Phase A.

67This implies that the inequality that de�nes the di�erence constraint can be maintain byincreasing Ep(i);p(j) by no more than (p(i) + p(j)). Since each Ei;j increases by no morethan (p(i) + p(i)), the clock period T� = Pki=1 Ep(i);p(j) will increase by no more thanPki=1(2 � i) or Pki=1 max(0;M � T�i).5.5 Minimum Area RetimingAlthough the minperiod retiming algorithms can achieve signi�cant improvement in theclock period, they pay no regard to the number of latches in the circuit. As a result min-period retiming can signi�cantly increase the number of latches in the circuit, and hence thecircuit area and power. To contain this increase, we perform constrained minarea retiming.Performing a constrained minarea retiming with the target period set to the period obtainedby minperiod retiming, will give us the fastest circuit with least area overhead.The minarea retiming problem can be modeled as a LP [59]. Unfortunately, under generalclock schedules with unequal phases, the minarea retiming problem must be modeled as ageneral integer linear program of the type given in [67], while restricting the clock schemeto a symmetric multi-phase clock enables us to model the minarea retiming problem as ane�ciently solvable LP (dual of min-cost ow problem) [96]. Therefore in this thesis we willconsider only symmetric clock schemes. As the LP presented in [96] has almost jGj22 constraintsfor a circuit with jGj gates, minarea retiming of large circuits is not feasible. In this section wepresent an e�cient method for minarea retiming of large level-clocked circuits. Our approachis to improve the e�ciency of minarea retiming by(a) reducing the size of the LP,(b) generating this LP faster, and(c) solving the LP e�ciently.Reducing the size of the LP reduces the space requirement of minarea retiming making itfeasible for large circuits. E�cient techniques for generating the LP are essential to retime largecircuits in reasonable times. Lastly since the size of even the reduced LP will be signi�cant,highly e�cient algorithms for solving it are imperative.In this section we �rst present the LP formulation of minarea retiming. We then reducethe size of this LP, both in terms of number of variables and constraints, without sacri�cingany optimality. Finally we present e�cient techniques for generating and solving this LP.5.5.1 The Minarea Linear ProgramThe minarea retiming LP for level-clocked circuits is similar to the LP for edge-triggeredcircuits given in Equation (2.7). The decision variables of this LP are the r variables of thegates, and the objective function represents the number of latches added to the retimed circuitin relation to the original circuit. Since the latches at the output of a gate can be combined

68or shared, we use the mirror vertex model of Section 2.1.4 to take into account maximal latchsharing.Like the minarea LP of Equation (2.7), the minarea LP for level-clocked circuit also con-tains circuit constraints, period constraints and mirror constraints. The circuit and mirrorconstraints are de�ned in the same way as in Section 2.1.4. Since the timing constraints inlevel-clocked circuits are di�erent than those in edge-triggered circuit, the period constraintsare derived as followsFor a k phase symmetric clock we have T�i = T� 8i = 1 � � � k and � = T�k . For a level-clocked circuit to be properly clocked the delay on any path should be less than the timeavailable, i.e., d(p) � (wr(p) + 1) � � + T� 8 p : u v (5.9)This constraint can be rewritten after substitution of Equation (2.1) asr(u)� r(v) � w(p)� d(p)� + 1 + T�� 8 p : u v (5.10)Clearly if there are multiple paths from u to v, only the tightest constraint (one with minimumright hand side) is irredundant. We denote the minimum value of hw(p)� d(p)� i over all pathsfrom u to v by �(u; v), i.e., �(u; v) = min8p:u v�w(p)� d(p)� � (5.11)Let us de�ne �(u; v) as �(u; v) = ��(u; v) + T�� + 1� (5.12)Since the retiming variables r(u) and r(v) are integers, we can rewrite relation (5.10) as theperiod constraints r(u)� r(v) � �(u; v) 8 p : u v (5.13)We now have the constrained minarea retiming LP as:minimize Pv2V [M h�P8j2FI(v) �(ejv)�P8j2FO(v) �(evj)� � r(v)isubject to r(u)� r(v) � cuv 8(u; v) 2 C (5.14)�1 � r(u) � 1 8u 2 (V [M)where C = Cp [Cc [Cm is the constraint set of the LP, and includes the period constraint set(Cp), the circuit constraint set (Cc) and the mirror constraint set (Cm). A constraint (i; j) inthe constraint set C isr(i)� r(j) � cij 8(i; j) 2 Cwhere cij = w(eij) 8(i; j) 2 Cc, i.e., eij 2 Ecij = �(i; j) 8(i; j) 2 Cp, i.e., i 2 V and j 2 Vcij = w(maxi)� w(ejmi) 8(i; j) 2 Cm, i.e., mi 2M and 8j 2 FO(i)(5.15)

695.5.2 Reducing the Linear ProgramTo reduce the space requirements of minarea LP, it is imperative that we have some tech-niques to prune the constraints as they are generated, rather than after all the constraints havebeen generated. In this section we will take advantage of the relationship between retiming andGDT presented in Section 5.3 to reduce the size of the LP by using bounds on the r variables.As in Section 3.2.2, the ALAP and ASAP retimings described in Section 5.4.3.1 give usbounds on the r variables, of the formLu � r(u) � Uu 8v 2 V (5.16)These bounds give us a reduced variable set V 0 � V asV 0 = fv 2 V jUv 6= Lvg (5.17)We use Theorem 1 to obtain bounds on the mirror variables and thus obtain the reduced mirrorvariable set M 0 = fv 2M jUv 6= Lvg.Example: For the circuit in Figure 5.1, the ASAP location for the latch L1 is at the outputof gate G1 as shown in Figure 5.3. The number of latches moved across each gate in arrivingat this ASAP location, and hence the upper bounds are: UG1 = 0, UG2 = 1, UG3 = 1, andUG4 = 0. The ALAP location of latch L1 as shown in Figure 5.2, is at the output of gate G2.The number of latches moved across each gate in arriving at this ALAP location, and hencethe lower bounds are: LG1 = 0, LG2 = 0, LG3 = 1, and LG4 = 0, i.e.V = fG1; G2; G3; G4gV 0 = fG2gThe presence of the bounds obtained in Equation (5.16) makes a large number of constraintsredundant, i.e., these constraints are implied by the bounds. We now present a rule to identifythese redundant constraints.Rule 5 Any constraint (i; j) of the form r(i)� r(j) � cij is redundant in the presence of thebounds of Equation (5.16) and can be dropped if Ui � Lj � cij.Proof : It can be seen from the bounds on r(i) and r(j) in Equation (5.16) thatr(i)� r(j) � Ui � LjTherefore, if Ui � Lj � cij then r(i)� r(j) � cij must also be true. Thus any constraint(i; j) is redundant and can be dropped if Ui � Lj � cij .To obtain the reduced constraint set C 0 � C we accept only those constraints from C thatare not dropped by the application of Rule 52. ThusC 0 = f(i; j) 2 CjUi � Lj > cijg (5.18)2Some additional techniques to prune redundant period constraints are presented later in Section 5.5.3.3

70Thus the original LP in Equation (5.14) is reduced to a much smaller yet equivalent LPgiven belowminimize Pv2V 0[M 0 h�P8j2FI(v) �(ejv)�P8j2FO(v) �(evj)� � r(v)i (5.19)subject to r(u)� r(v) � cuv 8(u; v) 2 C 0Lu � r(u) � Uu 8u 2 V 05.5.3 Generating the Reduced Linear ProgramA major portion of the e�ort in retiming a level-clocked circuit for minimum area is spentin generating the period constraints set C 0p. We now describe e�cient techniques for generatingthis set C 0p. The generation of period constraints requires computation of � values for all-pairsof gates in the circuit. However if the ALAP retiming satis�es the target clock period3, thenwe need to compute � values only from exible gates, as stated in the following theorem.Theorem 6 If the ALAP retiming satis�es the target clock period, any period constraint froma �xed node a (i.e., Ua = La) is redundant in the presence of the bounds of Equation (5.16)and need not be generated.Proof : Since ALAP positions are feasible solutions the following holds for all constraints inCp. Li � Lj � �(i; j) 8 (i; j) 2 Cp (5.20)Consider any period constraint (a; b) 2 Cp from a �xed gate a, to any other gate b of theform r(a)� r(b) � �(a; b). By relation (5.20) La�Lb � �(a; b), and by Equation (5.16)r(a)� r(b) � Ua�Lb. Because gate a is �xed Ua = La, therefore r(a)� r(b) � La�Lb ��(a; b). Thus the constraint (a; b) is redundant and can be dropped. Since this is truefor any period constraint from gate a, we do not need to generate any period constraintfrom a �xed gate, as they will all be redundant.5.5.3.1 Computing the � ValuesThe � values can be obtained by re-weighting each edge eij with w0(eij) = hw(eij)� d(i)� iand computing all-pair shortest paths. We use Johnson's algorithm [17] which has O(jV j)memory requirement, since O(jV j2) memory is not practical for large circuits with tens of3Notice that if the maximum gate delay in the circuit is more than the active period T�, it is possible forALAP retiming to violate the target clock period even if the target clock period is feasible by retiming alone.This is because the method of �nding ALAP retiming converts a (continuous) skew optimization solution to a(discrete) retiming solution. This, however, does not imply that these ALAP bounds are wrong, but merelythat they are not tight enough. In level clocked circuits, due to the exibility o�ered by the transparent natureof latches it is very unlikely that the ALAP retiming will violate the target clock period, and in our experimentsno ALAP retiming violated the target clock period.

71thousand gates. Johnson's algorithm �rst re-weights all edges to ensure nonnegative edgeweights. The shortest paths between all pair of gates are then computed by running Dijkstra'salgorithm for each gate as source.Let us consider a particular run of Dijkstra's algorithm with gate a as the source, and letb be a gate to which the shortest path �(a; b) has been obtained. Let c be any other gate inthe circuit, reachable from gate a.By de�nition, r(a)� r(b) � Ua � LbIf Ua � Lb � �(a; b);then r(a)� r(b) � �(a; b): (5.21)From relation (5.10) and (5.11)r(b)� r(c) � �(b; c) + T�� + 1;which when combined with relation (5.21) givesr(a)� r(c) � �(a; b) + �(b; c) + T�� + 1 (5.22)If the shortest path from gate a to gate c does not go through gate b, then �(a; b) + �(b; c) ��(a; c) and we do not need to process the fanouts of gate b to obtain �(a; c). On the other hand,if the shortest path from gate a to gate c is indeed through gate b then �(a; b)+�(b; c) = �(a; c)and relation (5.22) is same as the period constraint r(a)� r(c) � �(a; c). If Ua � Lb � �(a; b)then this period constraint is redundant. In either case we need not process the fanouts ofgate b. Since this is true for any c, reachable from gate a, and we are interested only in gatesreachable from gate a, we get the following rule.Rule 7 If during the shortest path calculations from source a using the Dijkstra's algorithm,for any gate b we have Ua � Lb � �(a; b), we do not need to process the fanouts of gate b.We take advantage of the bounds on r variables to speed up the computations, by applyingTheorem 6 to compute � values only from the exible gates, and using Rule 7 to reduce thecomputation for the � values actually computed. We found that this signi�cantly improvedthe time taken to generate the period constraints.5.5.3.2 Reusing � ComputationsWe now describe how to reuse some of the computations performed in obtaining the �values to further speed up the generation of period constraints. The idea is motivated by thefact that in most practical circuits (e.g., ISCAS-89) a high percentage of gates are single-fanoutgates. Consider one such single-fanout gate a with fanout b. For the gate a, the shortest pathsto all other gates must be via gate b, which implies that �(a; c) = w0(eab) + �(b; c). Therefore

72we can obtain the shortest paths from gate a by simply adding w0(ea;b) to the shortest pathsfrom gate b. Thus if we somehow ensure that shortest paths from gate b are obtained justbefore those from gate a, we will save one complete execution of Dijkstra's algorithm for gatea as source. We call this approach \chaining" and the set of gates for which only one set of �computations is performed as \chains". We now de�ne a simple chaining technique that stores� values from only one source, hence we call it \1-chaining".For 1-chaining a graph G(V;E) we preprocess it to get a set of chains
 = f!1; !2 : : : !j
jgsuch that every vertex in the graph is included in exactly one chain, i.e.,!i \ !j = ; 8i 6= j and !1 [!2 [: : : !j
j = VEach chain !i itself is a ordered list (of size j!ij) of vertices in the graph, i.e., !i =<!i1; !i2 : : : !ij!ij >. Thus !ij is the jth gate in the ith chain. The �rst gate !i1 in a chain !iis called its head, and all gates in a chain except the head must have only one fanout, i.e.,jFO(!ij)j = 1 8i and 8 j > 1. The gates in a chain are ordered such that any fanin of a gateappears after it in the chain, i.e.,e!ij+1!ij 2 E 8i and 1 � j < j!ijWe only need to obtain the � values from the gates that are at the head of a chain, i.e.,we only need to compute the values �(!i1; u) 8u 2 V and 1 � i � j
j. For all other gates the �values can be obtained by adding the re-weighted edge weight to the � values from its fanouts,i.e., �(!ij+1; u) = �(!ij ; u) +w0(e!ij+1!ij) 8u 2 V and 1 � j < j!ij and 1 � i � j
jNotice that for a gate that is not at the head of any chain we obtain the � values by asimple addition, instead of a full run of Dijkstra's algorithm. Since we need to run Dijkstra'salgorithm only for gates at the head of a chain we need to perform only j
j single-sourceshortest path computations (j
j � jV j). Thus our goal in obtaining these chain is to reducethere number, i.e., minimize j
j. In the worst case where every gate in the circuit has morethan one fanout, each chain contains only one gate, and j
j = jV j, then we need to perform thecomplete Johnson's algorithm. The idea of chaining can be further generalized. Conceptuallythere are two extremes of chaining:� No information about the � values is stored, e.g., repeated single-source shortest pathsalgorithms like Johnson's algorithm with O(jV j) memory requirements.� All information about the � values is stored, e.g., direct all-pairs shortest path algorithmslike Floyd Warshall algorithm [17] with O(jV j2) memory requirements.The 1-chaining described above is an intermediate method in which we save � values from onlyone source. Conceptually we can de�ne k-chaining as a method that stores � values from k

73appropriately chosen sources. This k-chaining in general will require O(k � jV j) memory andcareful selection of the k sources, and is not considered in this thesis.We now describe a simple preprocessing technique to obtain 1-chaining. This preprocessingstep �rst assigns a label to each gate which indicates the number of gates that can reuse its� computation. All the gates have their labels initialized to 0. These labels are updatedby a relaxation step, in which every single-fanout gate relaxes the label of its fanout gateby increasing it (to its own label plus one). Since multiple-fanout gates can not reuse �computations of their fanout gates in 1-chaining, they do not relax the labels of their fanoutgates. This relaxation process is �nite because we cannot have cycles containing only single-fanout gates. The chains are then formed by initializing a queue with all multiple-fanout gates.Every gate in this queue starts a new chain. For the gate at the end of the chain, we processthe fanin gates, adding the single-fanout gate with the highest label (amongst the fanins) tothe chain; all other gates in the fanin are added to the queue. The fanins of the gate now atthe end of the chain are processed similarly, until no more gates can be added to this chain.This procedure is repeated until the queue is empty.We found that, on an average we could reduce the time spent in generating the periodconstraints by about 50% using the simple 1-chaining technique described above. The timespent in preprocessing to obtain 1-chaining is very small, making it a useful procedure even ifonly a small number of gates have single fanout. As a side note, Rule 7 must be modi�ed foruse with chaining to ensure it is holds for all gates that reuse the � computation.5.5.3.3 Additional Constraint Pruning TechniquesWe now present some more techniques to remove redundant period constraints. Considerthree gates a, b and c, such that gate b lies on the path from gate a to gate c.If gate b is a fanin of gate c then we haveC1 : r(a)� r(b) � �(a; b)C2 : r(b)� r(c) � w(ebc)C3 : r(a)� r(c) � �(a; c)If �(a; b) +w(ebc) � �(a; c) then constraint C3 is redundant and can be dropped. This leadsus to the following ruleRule 8 If b and c are two gates reachable from gate a, such that gate b is a fanin of gate cand �(a; b)+w(ebc) � �(a; c) then the period constraint from gate a to c is redundant and canbe dropped.Since we generate the period constraints from one gate (say gate a) at a time, both �(a; b)and �(a; c) are available in the same iteration. Further because gate b is a fanin of gate c thevalue w(ebc) is available directly from the circuit graph. Therefore Rule 8 can be e�ciently

74applied to drop redundant period constraints as they are generated. This reduces the space(memory) requirement of the period constraints.If gate b is a fanout of gate a then we haveC4 : r(a)� r(b) � w(eab)C5 : r(b)� r(c) � �(b; c)C6 : r(a)� r(c) � �(a; c)If w(eab) + �(b; c) � �(a; c) then constraint C6 is redundant and can be dropped. This leadsus to the following rule.Rule 9 If gate b is a fanout of gate a and gate c is some gate reachable from gate b, then ifw(eab) + �(b; c) � �(a; c) then the period constraint from gate a to c is redundant and can bedropped.To apply Rule 9 we require the value of �(b; c) and �(a; c). Since we generate period constraintsfrom one gate at a time, the period constraints to a gate (c) from two di�erent sources (gate aand b) cannot be e�ciently accessed. Thus it would appear that Rule 9 cannot be e�cientlyapplied. However because of the reuse of � computation described in Section 5.5.3.2, Rule 9can be e�ciently applied if gate a has only one fanout (gate b). This is possible because �(a; c)is derived from �(b; c), and hence both are available when the period constraint from a to cis being generated. Thus we can drop redundant period constraints from gate a as they aregenerated.Rule 5 is valid only in presence of the bounds and it prunes the constraint sets becausethe information in these bounds make some constraints redundant. Rule 8 and Rule 9 on theother hand do not depend on bounds and, they prune the period constraint set because of thediscrete nature of the � values. Rule 8 and Rule 9, can be generalized to include implication bymore than two constraints; these generalized rules will, however, be computationally expensiveto apply.5.5.4 Solving the Linear ProgramLike Equation (3.8), the LP in Equation (5.19) is also the dual of a min-cost ow problem,and we use the network simplex algorithm described in Section 3.3.3 to solve the dual. Usingthis method we could solve a mincost ow problems with 70,000 variables and 8.2 millionconstraints in about 9 minutes.5.6 Experimental ResultsWe performed retiming on the complete ISCAS-89 benchmark suite, but present resultsonly on the larger circuits. Due to unavailability of large circuits, we combine circuits from

75Table 5.1 Quality of Retiming for Single Phase CircuitsCircuit jGj Period # Latches CPU timePi Ps Pr Rperiod j	ij j	pj j	aj Rarea Tperiod Tareas3384 1,685 84.0 38.5 38.5 54.2% 183 326 164 10.4% 0.23s 2.34ss4863 2,342 116.0 59.0 59.0 49.1% 104 254 114 -9.6% 0.22s 4.94ss5378 2,779 48.0 48.0 48.0 0.0% 179 263 143 20.1% 0.21s 2.99ss6669 3,080 118.7 49.0 49.0 58.7% 239 472 278 -16.3% 0.56s 4.09ss13207.1 7,791 127.0 120.0 120.0 5.5% 627 890 446 28.9% 1.09s 13.94ss15850.1 9,617 187.0 147.0 147.0 21.4% 527 869 533 -1.1% 1.84s 38.26ss35932 16,065 77.0 71.0 71.0 7.8% 1728 2076 1795 -3.9% 2.81s 63.21ss38584.1 19,253 125.0 118.0 118.0 5.6% 1426 3298 1427 -0.1% 4.10s 1:49.76ss38417 21,370 68.7 56.0 56.0 18.5% 1564 2436 1360 13.0% 4.20s 5:28.60smyex1 28,946 256.0 216.0 216.0 15.6% 1953 4332 1958 -0.3% 8.75s 5:32.08smyex2 40,661 104.0 97.0 97.0 6.7% 2990 6197 2763 7.6% 9.28s 23:14.83smyex3 56,751 137.0 119.0 119.0 13.1% 4718 8918 4533 3.9% 14.24s 1:2:22.48sTable 5.2 Quality of Retiming for Two Phase CircuitsCircuit jGj Period # Latches CPU timePi Ps Pr Rperiod j	ij j	pj j	aj Rarea Tperiod Tareas3384 1,685 126.0 38.5 38.5 69.4% 366 638 337 7.9% 0.40s 2.56ss4863 2,342 117.0 59.0 59.0 49.6% 208 473 234 -12.5% 0.29s 5.36ss5378 2,779 48.0 48.0 48.0 0.0% 358 480 286 20.1% 0.29s 3.22ss6669 3,080 178.0 49.0 49.0 72.5% 478 960 542 -13.4% 0.76s 6.17ss13207.1 7,791 127.0 120.0 120.0 5.5% 1,254 1,795 890 29.0% 1.48s 18.61ss15850.1 9,617 187.0 147.0 147.0 21.4% 1,054 1,777 1,041 1.2% 2.53s 45.82ss35932 16,065 77.0 71.0 71.0 7.8% 3,456 4,144 3,523 -1.9% 3.98s 67.26ss38584.1 19,253 125.0 118.0 118.0 5.6% 2,852 7,558 2,852 0.0% 5.02s 1:57.52ss38417 21,370 103.0 56.0 56.0 45.6% 3,128 4,938 2,766 11.6% 30.45s 6:26.99smyex1 28,946 256.0 216.0 216.0 15.6% 3,906 9,065 3,891 0.4% 10.08s 6:37.48smyex2 40,661 128.0 97.0 97.0 24.2% 5,980 13,820 5,551 7.2% 11.25s 31:16.52smyex3 56,751 137.0 119.0 119.0 13.1% 9,436 17,019 9,041 4.2% 17.46s 1:19:43.07sthe ISCAS-89 benchmark suite to obtain circuits (myex1 through myex3) with up to 56,000gates. We present results for both minarea and minperiod retiming on single phase and twophase circuits. These results are for a duty cycle and phase ratio of 50%. In absence of delayinformation in the ISCAS-89 circuits, we assign random delay values (between 1.0 and 20.0units) to each gate. As in [96] we convert the edge-triggered circuits in ISCAS-89 benchmarkto a k phase level-clocked circuits by replacing each FF by k latches.Table 5.1 and Table 5.2 present the quality of retiming for single phase and two phasecircuits respectively. For each circuit the number of gates jGj, the initial clock period Pi, theoptimal clock period with skews at end of Phase A Ps, the �nal clock period after retimingPr, and the percentage decrease in clock period Rperiod = Pi�PrPi are shown. Retiming is ableto achieve the same clock period as skew optimization in all the cases. This is possible due tothe transparent nature of the latches and underscores the usefulness of retiming level-clockedcircuits. Retiming is also able to achieve signi�cant reduction in the clock period, on an averagethe clock period is reduced 21.5% for single phase circuits, and 27.52% for two-phase circuits.

76Table 5.3 Reduction in the Size of LP for Single Phase CircuitsCircuit Gfx Favg # Variables # ConstraintsMinaret-L Original Rvariables Minaret-L Original Rconstraintss3384 9.18% 2.59 1,988 2,166 8.22% 33,103 761,365 95.65%s4863 17.28% 1.21 2,497 2,995 16.63% 32,880 5,481,911 99.40%s5378 25.50% 1.09 2,728 3,664 25.55% 17,121 4,595,645 99.63%s6669 26.38% 0.98 3,089 4,100 24.66% 14,267 1,923,524 99.25%s13207.1 19.97% 3.00 7,449 9,180 18.86% 45,563 22,908,799 99.80%s15850.1 23.46% 1.88 8,813 11,332 22.23% 64,283 39,493,334 99.84%s35932 8.43% 2.66 20,071 21716 7.58% 145,978 130,080,328 99.89%s38584.1 14.21% 2.20 20,501 23,390 12.35% 118,771 293,482,797 99.96%s38417 1.51% 4.66 25567 25,923 1.37% 1,289,378 149,492,588 99.14%myex1 13.27% 2.32 30,287 34,417 12.00% 142,525 504,055,977 99.97%myex2 4.25% 4.34 47,409 49,214 3.67% 1,608,132 819,701,299 99.80%myex3 1.36% 5.19 69,546 70,414 1.23% 3,608,210 1,624,913,333 99.78%We also show the area cost in terms of number of latches in the initial circuit j	ij, thecircuit after minperiod retiming j	pj, and the circuit after constrained minarea retiming withPr as the target period j	aj. The percentage decrease in number of latches from the initialcircuit is given by Rarea = j	ij�j	ajj	ij . For almost all circuits, minarea retiming reduces thenumber of latches j	aj in the circuit by a factor of two to three as compared to minperiodretiming j	pj, even though both retime the circuit for the same clock period Pr. This showsthe importance of minarea retiming.The execution time in seconds on a DEC AXP system 3000/900 workstation, with 256MRAM is shown for both minarea retiming Tarea and minperiod retiming Tperiod, and highlightthe e�ciency of our techniques. The minperiod retiming presented here is more e�cient thanthe one for edge-triggered circuits in [109] because it uses the simpler procedure presented inSection 5.4.2 for Phase B latch relocation. The CPU time for minarea timing Tarea was heavilydominated (> 90% for large circuits) by the time required to generate the LP, this emphasizesthe importance of our use of e�ciency-enhancing techniques (chaining, Rule 7, and Theorem 6)while generating the LP.As can be seen from the results, retiming (minperiod + minarea) can obtain signi�cantreduction in the clock period with no or little area overhead. For example in two phase clocking,for most circuits (except s4863, s6669 and s35932) the clock period is reduced with no areaoverhead; in fact the area is also reduced (in some cases signi�cantly, e.g., 29% for s13207.1).For the other circuits the area overhead is small compared to the gain in clock speed, e.g., fors6669 a 13.4% area overhead can reduce the clock period by 72.5%.Table 5.3 provides a closer look at the reduction in the size of LP for minarea retiming forsingle phase circuits, while Table 5.4 has results for two phase circuits. The size of the LP isshown in terms of the number of variables and the number of constraints. Original represents

77Table 5.4 Reduction in the Size of LP for Two Phase CircuitsCircuit Gfx Favg # Variables # ConstraintsMinaret Original Rvariables Minaret Original Rconstraintss3384 8.15% 5.22 2,006 2,166 7.39% 55,980 761,365 92.65%s4863 10.51% 2.30 2,706 2,995 9.65% 72,451 5,481,911 98.68%s5378 19.32% 2.23 2,970 3,664 18.94% 31,765 4,595,645 99.31%s6669 10.04% 1.92 3,735 4,100 8.90% 20,841 1,923,524 98.92%s13207.1 17.57% 6.25 7,656 9,180 16.60% 55,395 22,908,799 99.76%s15850.1 21.60% 3.81 9,013 11,332 20.46% 69,142 39,493,334 99.83%s35932 7.27% 5.07 20,264 21,716 6.69% 189,068 130,080,328 99.85%s38584.1 13.78% 4.39 20,590 23,390 11.97% 127,488 293,482,797 99.96%s38417 0.87% 9.43 25,735 25,923 0.73% 2,446,798 149,492,588 98.36%myex1 12.63% 4.70 30,489 34,417 11.41% 154,603 504,055,977 99.97%myex2 1.52% 8.72 48,560 49,214 1.33% 3,638,182 819,701,299 99.56%myex3 0.67% 10.41 70,000 70,414 0.59% 8,207,036 1,624,913,333 99.50%the traditional LP of Equation (5.14) used in [96] while Minaret-L represents the reduced LPof Equation (5.19). Rvariables and Rconstraints give the percentage reduction in the number ofvariables and constraints respectively, due to the pruning techniques presented in this chapter.Also presented are two metrics on the circuits: Gfx the number of gates found to be �xed andFavg the average exibility, i.e., the average values of (Uy � Ly) over all gates in the circuits.The number of variables include both gate and mirror variables and hence the reduction invariables can be di�erent from Gfx which does not include mirror vertices. High Gfx and lowFavg indicates less mobility or exibility in the circuit, yielding higher percentage reduction inthe number of constraints, and faster minarea retiming. It can be seen that up to three ordersof magnitude reduction is obtained in the number of constraints by using Minaret-L, e.g., forone phase circuit myex3 the number of constraints reduce from about 1.6 billion to only 3.6million. The number of unpruned constraints grow at the rate of O(jGj2) and our pruningtechniques reduce this rate of growth signi�cantly. Although the bounds on the r variableshelp signi�cantly in reducing the CPU time for minarea retiming, the time spent in obtainingthese bounds is a insigni�cant fraction (less than half a percent) of the total CPU time forminarea retiming. Amongst single phase and two phase circuits the single phase circuits haveless exibility, and a much smaller LP than two phase circuits.5.7 ConclusionE�cient algorithms for both minperiod and minarea retiming of large level-clocked circuitshave been presented. The entire ISCAS-89 benchmark suite could be retimed in minutes. Thechief reason for the e�ciency of this minperiod algorithm is that it uses the retiming skewrelation to map the problem of retiming level-clocked circuits to the much simpler problem ofretiming edge-triggered circuit. This enabled us to greatly speed up the process of performing

78binary search for the optimal clock period. This is possible because we create a small andsparse constraint graph, only once rather than in each step of the binary search as done bytraditional methods [96, 70]. The second phase of minperiod retiming is fast because latchesdo not have to be moved across a large numbers of gates during retiming.The minarea retiming algorithm is made practical for large circuits by utilizing the retiming-skew relation, and several other pruning techniques (Rule 5, Rule 8 and Rule 9) to reducethe LP in Equation (5.14) to a much smaller LP in Equation (5.19), without sacri�cing anyoptimality. A reduction of two to three orders of magnitudes in the number of constraints isobtained for most circuits. The use of Theorem 6, Rule 7, and chaining, greatly speed up theperiod constraint generation making the overall algorithm very e�cient.In summary, the contributions of this chapter, which applies retiming-skew relation for fastminarea and minperiod retiming for level-clocked circuits are the following:� It handles level sensitive latches like edge triggered FF's, thus avoiding a complicatedformulation that is forced to handle critical path propagation over several latches. Thisalso avoids the need of generating the constraint graph for every point in the binarysearch, which is necessitated by the fact that critical paths change with the clock period[70].� It provides a conceptually simpler technique than [109] for reducing the GDT's in PhaseB of minperiod retiming which can also be applied to edge-triggered circuits.� It provides e�cient techniques for generating and pruning the minarea LP.� It shows that retiming can optimize large level-clocked circuits for high performance withlittle or no area overhead.The algorithms presented in this chapter can also be used to solve the interesting problemof optimizing edge-triggered circuits which allow some skew (less than a given maximum skewmagnitude) at the FF's. Some design methodologies may allow a small amount of skew at theFF's. The method presented in this chapter can take advantage of this skew to yield betteroptimization.

79
6 CONCLUSION6.1 ConclusionIn this thesis we presented e�cient techniques for delay and area optimization of sequentialcircuits via retiming. Retiming relocates the memory elements in a circuit without changingits behavior. Our techniques can handle large circuits (with tens of thousands of gates) usingeither edge-triggered FF's or level-sensitive latches.In Chapter 3 we presented the Minaret algorithm, which solves the problem of con-strained minarea retiming for circuits with edge-triggered FF's through an amalgamation ofthe Leiserson-Saxe approach and the ASTRA approach. By utilizing the merits of both ap-proaches an e�cient algorithm for constrained minarea retiming, capable of handling verylarge circuits, has been developed. The basic idea is to use the ASTRA approach to �nd tightbounds on the retiming variables. These bounds then helped us reduce both the number ofvariables and the number of constraints in the problem without any loss in accuracy. On anaverage Minaret obtained a 30% reduction in the number of variables and an 80% reductionin the number of constraints. Minaret could retime a circuit with more than 56,000 gates inunder 15 minutes. In contrast the best results published before ours [115] take about 39 hoursfor a 8,000 gate circuit.In Chapter 4 we addressed the problem of minarea retiming with a guarantee of equivalentinitial states, and called it minarea initial state retiming. In control logic the initial stateof a circuit is an integral part of the behavior, and hence any retiming must also generatean equivalent initial state for the retimed circuit in order for it to have the same behavioras the original circuit. The presence of an equivalent initial state was guaranteed by adding\justi�cation upper bounds" on the retiming variables. These bounds also helped in obtainingthe equivalent initial state by a simple method. To obtain an accurate estimate of the numberof FF's it is essential to correctly model the sharing of FF's with reset values at the outputof a gate. We presented a 0/1 MILP formulation to model this conditional FF sharing. Thismodel is also useful for performing minarea retiming of circuits that contain more than onekind of FF's, such that di�erent kinds of FF's cannot be shared with each other. Althoughthe formulation requires us to solve an MILP, our experimental results showed that practicalsize circuits can be handled in reasonable time. This is achieved by ensuring that the numberof integer variables in the LP is small.

80In Chapter 5 we presented the equivalence between retiming and skew optimization forlevel-clocked circuits. We also showed that by using the concept of Global Departure Time(GDT), one can treat latches like FF's with the ability to absorb some skew, where the GDTfor a latch corresponds to skews in the case of a FF. This equivalence was then utilized toachieve fast retiming for large multi-phase level-clocked circuits.We presented delay and area optimization results on the entire ISCAS benchmark suitefor both single phase and two phase clocks. We obtained an average 27.52% improvement inthe clock period, while also reducing the area by 4.48% on an average. In many cases theclock period is reduced signi�cantly without any area overhead, while in other cases, the areaoverhead is small as compared to the gain in clock speed, e.g. for s6669 13.4% area increasecould reduce the clock period by 72.5%.The advantages of utilizing the retiming-skew equivalence are more signi�cant in level-clocked circuits than in edge-triggered circuits. The algorithms presented are very e�cient,and are able to retime a circuit with more than 56,000 gates in about 15 seconds for minimumperiod and 1.5 hours for minimum area. In contrast the only published results [54] are forcircuits with less than 400 gates. The reduction in the number of constraints for level-clockedcircuits was as much as three orders of magnitude, and the constraints for a 56,000 gate circuitwere reduced from 1.6 billion to 3.6 million.6.2 Directions for Further ResearchAlthough a signi�cant amount of research has been performed on retiming, some key issuesneed to be addressed before retiming is widely accepted by the design community. We nowpresent some of these issues, and our thoughts on them.6.2.1 Restriction on Design StylesThe traditional retiming methods impose severe design style restrictions on the circuitsthey can handle. Many of these styles are very popular in high performance designs, and theserestrictions need to be relaxed before retiming can be applied to a large section of designs.Some of these restrictions areGated clocks Many low power designs contain gated clocks. A gated clock can be modeled bya MUX at the latch input with a feed back loop. This will enable retiming to treat gatedclock latches as ordinary latches, but this may result in a structure that is not recognizableas a gated clock after retiming, and hence may not be desired by the designers. If thegated clock latches are marked as latches that cannot be moved, then the gated clockstructure is preserved; however, optimality may be sacri�ced. A better approach can beobtained by developing the techniques in [45].

81Multi-cycle paths Traditional retiming techniques do not handle designs containing pathson which data is allowed to propagate for more than one clock cycle. Multi-cycle pathscan be handled for speci�ed-period retiming by using either the techniques of [57] or[109]. However, performing minarea retiming on these circuits is a much harder problem.Registers with logic Most retiming algorithms assume that all registers have only one datainput and one data output. Many design libraries contain registers with some logic, e.g,AOI latches. This requires retiming techniques to handle library binding issues, suchas �nding logic in the fanin cone of the register to be merged with it. Minimum arearetiming becomes more complex since the combinational part of the circuit is changedby register relocation under this scenario.Mix of register types Designs containing more then one type of register are di�cult toretime. In minperiod retiming, di�erent types of registers can be handled by a post-processing phase. However, incorporating di�erent types of registers in minarea retimingis harder. One method is to formulate the minarea LP assuming that all registers are ofthe same type and then use a post-processing step to ensure that registers of di�erenttypes are not merged or shared together; however, the solution so obtained would notbe optimal. The MILP formulation in Section 4.3 can be used for minarea retiming ofcircuits with di�erent register types, although at a higher computational cost.Don't Care timing assertions Some design contains paths for which timing is not impor-tant, i.e, with don't care timing assertions (e.g. scan chain for testing or clock networkpaths). These paths should not limit the clock period of the retimed circuit, but validretimings must consider these paths when performing register moves. While the ASTRAapproach can probably be modi�ed to handle these paths during minperiod retiming,handling these paths in minarea retiming appears to be harder problem.6.2.2 Veri�cationOne of the main road-blocks in the use of retiming is the problem of verifying the correctnessof retimed circuits. Retiming changes the number and location of memory elements in thecircuit, hence for FSM's it changes both the encoding of the states and the number of states.Sequential veri�cation is therefore required to verify retimed circuits. Unfortunately sequentialveri�cation is a hard problem, however, it is hoped that verifying circuits that are just retimedversions of each other is possible and preliminary e�orts in this direction include [104, 85].Enough information about the register movement during retiming can be produced bya retiming tool to possibly enable Boolean equivalency checks on the combinational partseven though latch boundaries have changed. However this method would not yield a trueindependent veri�cation, which is the goal of the veri�cation process. One simple sanity check

82on retiming tools is to perform a structural veri�cation by verifying that the number of latcheson all cycles are the same [113].6.2.3 Position in Design FlowRetiming is a very general transform that can be applied at various levels of abstraction.Retiming can be used during high-level synthesis to improveschedules, and has been used atthe data ow graph levels for digital signal processing applications. Gate level retiming can beused at almost any stage during logic synthesis, and �nding the best point in the design owat which to perform retiming is a problem for further research. The ability to verify retimedcircuits is a major factor in determining the place of retiming in the design ow.Retiming can be applied early during the technology independent stage, since the �xeddelay model used by retiming is better suited for this stage. It could also be applied near theend of the synthesis process because the sequential nature of retiming makes it hard for thedesigner to recorgnize the retimed circuit.6.2.4 Improved Delay ModelsAs mentioned earlier, one of the the main drawbacks of the current retiming algorithms isthat they assume constant gate delays. Even in research that uses a more general delay modelsuch as [54, 127], the delay of a gate does not depend on the number of its fanouts. Althoughretiming does not change the topology of a circuit, the sharing of FF's at the output of a gatecan change the number of fanouts for that gate.For the circuits shown in Figure 6.1, let the delay of a gate or a FF be equal to the numberof its fanouts. Di�erent FF placements can lead to di�erent delay distributions as shown inFigure 6.1, e.g, f5,5,5,5g, f4,4,4,4g, f5,5,5,3g. Thus any retiming algorithm using a fanoutdependent delay model must also explore these delay distribution options.Iterating an appropriately modi�ed ASTRA may be able to obtain good approximate solu-tions to this problem. An exact solution will, however, most likely require constraints betweenall pairs of edges as in [54]. This would make the method incapable of handling large circuits.Modi�cations in the Minaret approach may be able to prune this constraint set.Retiming techniques with better delay models can be combined with transistor sizing [71,110] for area and delay optimization. While one way is to iterate between retiming and sizing,a more integrated approach is likely to provide better results.6.2.5 Retiming and Logic SynthesisRetiming is a simple yet powerful sequential transform, which operates over the completesequential circuits, unlike most other logic optimization techniques, which operate only oncombinational sub-circuits. The sequential nature of retiming makes it possible to improve

83
A delay = 5

B delay = 5

1

1

1

1 D delay = 5

C delay = 5

I

A delay = 5

B delay = 5

C delay = 5

D delay = 5

41I

3

1

A delay = 5

B delay = 5

C delay = 5

D delay = 3

2I

2

2

A delay = 4

B delay = 4

C delay = 4

D delay = 4

I 2

(a) (b)

(c) (d)Figure 6.1 Di�erent path delays in a fanout dependent delay model.the quality of results obtained by subsequent combinational logic optimization. In general,there are multiple valid retiming solutions that may have di�erent e�ects on subsequent logicoptimization. The retiming transform can possibly be modi�ed to give a di�erent yet optimalsolution every time so that retiming's e�ect on other logic optimization transforms is betterexplored. However, this approach will make application of incremental logic optimizationdi�cult.Most logic optimization transforms are rather localized and heuristic based combinationaltransforms. Retiming, on the other hand, is a global sequential transform which is optimalunder its assumptions. One way to use retiming is to add it to the \bag of tricks" used by alogic optimization tool as in [33]. Another way is to use retiming in a more systematic way atprede�ned points in the process.Preliminary e�orts at iterating between standard retiming and combinational synthesishave not resulted in signi�cant improvements [38]. We believe that a better way to combineretiming with other logic optimization techniques is to retime a circuit so as to give the largestpossible combinational sub-circuits. Our approach is to perform a modi�ed minarea retimingcalled mincut retiming, where the objective is to minimize the number of edges that containone or more FF's on them. The justi�cation for this objective function is that, when convertinga sequential circuit to combinational sub-circuits, every edge with at least one FF on it is cutby adding a primary output and a primary input. Hence the objective should be to minimizethese cuts, i.e., edges with one or more FF on them, and not the total number of FF's in the

84circuit. This problem can be formulated as the following MILPminimize Pv2V z(v) (6.1)subject to w(euv) + r(v)� r(u) � F � z(u) 8euv 2 Er(u)� r(v) � w(euv) 8euv 2 Ez(v) 2 f0; 1g 8v 2 Vwhere z(u) is a 0/1 integer variable, if there is at least one FF at the fanout of gate u thenz(u) = 1, otherwise z(u) = 0. F is a large constant such that no edge can have more than Fnumber of FF's after retiming, i.e, F = jFF j. This MILP can be modi�ed to include peripheralretiming [81] by removing the circuit constraints corresponding to the peripheral edges.The optimal solution of this MILP is used to retime the circuit, which is then converted tocombinational sub-circuits. Each of these sub-circuits are then separately optimized, and thefull circuit recreated by recombining these sub-circuits. The sequential circuit thus obtainedis again retimed for the desired clock period.

85
BIBLIOGRAPHY[1] A. van der Werf, J. L. Van Meerbergen, E. H. L. Aarts, W. F. J. Verhaegh, and P.E.R.Lippens. E�cient timing constraint derivation for optimally retiming high speed pro-cessing units. In International Symposium on High Level Synthesis, pages 48{53, 1994.[2] M. Abramovici, M. A. Breuer, and A. D. Friedman. Digital Systems Testing and TestableDesign. W. H. Freeman and Company, New York, NY, 1990.[3] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows Theory, Algorithms andApplications. Prentice Hall, Englewood Cli�s, NJ, 1993.[4] A. Balakrishnan and S. Chakradhar. Retiming with logic duplication transformation:Theory and an application to partial scan. In Proceedings of the International Conferenceon VLSI Design, pages 296{302, 1996.[5] M. S. Bazaraa, J. J. Javis, and H.D. Sherali. Linear Programming and Network Flows.John Wiley, New York, NY, 1977.[6] M.R.C.M. Berkelaar. LP SOLVE User's Manual. Eindhoven University of Technology,Eindhoven, The Netherlands, 1992.[7] F. Brglez, D.Bryan, and K. Kozminski. Combinational pro�les of sequential benchmarkcircuits. In Proceedings of the IEEE International Symposium on Circuits and Systems,pages 1929{1934, 1989.[8] T. M. Burks and K. A. Sakallah. Optimization of critical paths in circuits withlevel-sensitive latches. In Proceedings of the IEEE/ACM International Conference onComputer-Aided Design, pages 468{473, 1994.[9] T. M. Burks, K. A. Sakallah, and T. N. Mudge. Critical paths in circuits with level-sensitive latches. IEEE Transactions on VLSI Systems, 3(2):273{291, June 1995.[10] L. F. Chao. Scheduling and Behavioral Transformations for Parallel Systems. PhD thesis,Princeton University, Princeton, NJ, 1993.[11] L. F. Chao and E. H.-M. Sha. Unfolding and retiming data-ow DSP programs for RISCmultiprocessor scheduling. In IEEE International Conference on Acoustics, Speech andSignal Processing, pages 565{568, 1992.

86[12] L. F. Chao and E. H.-M. Sha. E�cient retiming and unfolding. In IEEE InternationalConference on Acoustics, Speech and Signal Processing, pages 421{424, 1993.[13] L. F. Chao and E. H.-M. Sha. Retiming and clock skew for synchronous systems. InProceedings of the IEEE International Symposium on Circuits and Systems, pages 1.283{1.286, 1994.[14] T. H. Chao, Y. C. Hsu, and J. M. Ho. Zero-skew clock net routing. In Proceedings ofthe ACM/IEEE Design Automation Conference, pages 518{523, 1992.[15] Y.P. Chen and D. F. Wong. On retiming for FPGA logic module minimization. InProceedings of the IEEE International Conference on Computer Design, pages 394 {397,1994.[16] J. Cong and C. Wu. An improved algorithm for performance optimal technology mappingwith retiming in LUT-based FPGA design. In Proceedings of the IEEE InternationalConference on Computer Design, pages 572{578, 1996.[17] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. McGraw-Hill, New York, NY, 1990.[18] D. K. Das and B. B. Bhattacharya. Does retiming a�ect redundancy in sequentialcircuits ? In Proceedings of the International Conference on VLSI Design, pages 260{263, 1996.[19] G. De Micheli and T. Klein. Algorithms for synchronous logic synthesis. In Proceedingsof the IEEE International Symposium on Circuits and Systems, pages 756{761, 1989.[20] T. C. Denk and K. K. Parhi. A uni�ed framework for characterizing retiming andscheduling solutions. In Proceedings of the IEEE International Symposium on Circuitsand Systems, pages 568{571, 1997.[21] R. B. Deokar. Clock period minimization using skew optimization and retiming. Master'sthesis, Iowa State University, Ames IA, 1994.[22] R. B. Deokar and S. S. Sapatnekar. A fresh look at retiming via clock skew optimization.In Proceedings of the ACM/IEEE Design Automation Conference, pages 310{315, 1995.[23] S. Dey and S. Chakradhar. Retiming sequential circuits to enhance testability. In Pro-ceedings of the IEEE VLSI Test Symposium, pages 28{33, 1994.[24] M. Edahiro. An e�cient zero-skew routing algorithm. In Proceedings of the ACM/IEEEDesign Automation Conference, pages 375{380, 1994.

87[25] D. Eisenbiegler, R. Kumar, and C. Blumenrohr. A constructive approach towards cor-rectness of synthesis- application within retiming. In Proceedings of the European Designand Test Conference, pages 427{431, 1997.[26] A. El-Maleh, T. Marchok, J. Rajski, and W. Maly. On test set preservation of retimedcircuits. In Proceedings of the ACM/IEEE Design Automation Conference, pages 176{182, 1995.[27] P. Duncan et al. HI-PASS: A computer-aided synthesis system for maximally paralleldigital signal processing ASICS. In IEEE International Conference on Acoustics, Speechand Signal Processing, pages V{605{608, 1992.[28] G. Even. Design of VLSI circuits using retiming. PhD thesis, Israel Insistitute of Tech-nology, Hai�a, Israel, 1994.[29] G. Even and A. Litman. Overcomming chip-to-chip delays and clock skew. In Proceedingof International Conference on Application Speci�c Systems, pages 199{208, 1996.[30] G. Even, I. Y. Spillinger, and L. Stok. Retiming revisited and reversed. IEEE Trans-actions on Computer-Aided Design of Integrated Circuits and Systems, 15(3):348{357,March 1996.[31] J. P. Fishburn. Clock skew optimization. IEEE Transactions on Computers, 39(7):945{951, July 1990.[32] E. G. Friedman. The application of localized clock distribution design to improving theperformance of retimed circuits. In Proceedings of IEEE Asia-Paci�c Conference onCircuits and Systems (APCCAS), 1992.[33] G. De Micheli. Synchronous logic synthesis: Algorithms for cycle time minimiza-tion. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,10(1):63{73, January 1991.[34] C. H. Gebotys. Throughput optimized architectural synthesis. IEEE Transactions onVLSI Systems, 1:254{261, 1993.[35] M. Genoe, L. Claesen, and H. De Man. A parallel method for functional veri�cation ofmedium and high throughput DSP synthesis. In Proceedings of the IEEE InternationalConference on Computer Design, pages 460{463, 1994.[36] S. Hassoun and C. Ebeling. Architectural retiming: An overview. In Workshop Notes,International Workshop on Timing Issues in the Speci�cation and Synthesis of DigitalSystems, pages 27{38, 1996.

88[37] S. Hassoun and C. Ebeling. Architectural retiming: Pipelining latency-constrained cir-cuits. In Proceedings of the ACM/IEEE Design Automation Conference, pages 708{713,1996.[38] S. Hassoun and C. Ebeling. Experiments in the iterative application of resynthesis andretiming. In Workshop Notes, International Workshop on Timing Issues in the Speci�-cation and Synthesis of Digital Systems, pages 164{169, 1997.[39] S. Hassoun and C. Ebeling. An overview of prediction-based architectural retiming.In Workshop Notes, International Workshop on Timing Issues in the Speci�cation andSynthesis of Digital Systems, pages 39{48, 1997.[40] Soha Hassoun. Architectural Retiming: A Technique for Optimizing Latency-ConstrainedCircuits. PhD thesis, University of Washington, Seattle, WA 1997.[41] Y. Higami, S. Kajihara, and K. Kinoshita. Test sequence compaction by reduced scanshift and retiming. In Proceedings of the IEEE Asian Test Symposium, pages 169{175,1995.[42] Y. Higami, S. Kajihara, and K. Kinoshita. Partially parallel scan chain for test length re-duction by using retiming technique. In Proceedings of the IEEE Asian Test Symposium,pages 94{99, 1996.[43] S. Y. Huang, K. T. Cheng, and K. C. Chen. On verifying the correctness of retimedcircuits. In Proceedings of the Great Lake Symposium on VLSI, pages 277{280, 1996.[44] A. Ishii, C. E. Leiserson, and M. C. Papaefthymiou. Optimizing two-phase, level-clockedcircuitry. In Advanced Research in VLSI and Parallel Systems: Proceedings of the 1992Brown/MIT Conference, pages 246{264, 1992.[45] A. T. Ishii. Retiming gated-clocks and precharged circuit structures. In Proceedings ofthe IEEE/ACM International Conference on Computer-Aided Design, pages 300{307,1993.[46] A. T. Ishii and M. C. Papaefthymiou. E�cient pipelining of level-clocked circuits withmin-max propagation delays. In Workshop Notes, International Workshop on TimingIssues in the Speci�cation and Synthesis of Digital Systems, pages 39{51, 1996.[47] B. Iyer and M. Ciesielski. Metamorphosis: State assignment by retiming and re-encoding.In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design,pages 614{617, 1996.[48] D. Kagaris and S. Tragoudas. Partial scan with retiming. In Proceedings of theACM/IEEE Design Automation Conference, pages 249{254, 1993.

89[49] D. Kagaris and S. Tragoudas. Retiming algorithm with application to VLSI testability.In Proceedings of the Great Lake Symposium on VLSI, pages 216{221, 1994.[50] D. Kagaris, S. Tragoudas, and D. Bhatia. Pseudo-exhaustive BIST for sequential circuits.In Proceedings of the IEEE International Conference on Computer Design, pages 523{527, 1993.[51] I. Karkowski and R.H.J.M. Otten. Retiming synchronous circuitry with imprecise delays.In Proceedings of the ACM/IEEE Design Automation Conference, pages 322{326, 1995.[52] S. Kundu, L. Huisman, I. Nair, V. Iyengar, and L. Reddy. A small test generator forlarge designs. In Proceedings of the IEEE International Test Conference, pages 30{40,1992.[53] K. N. Lalgudi. Architecural-Level Design of High-Performance, Energey-E�cient VLSISystems. PhD thesis, Yale University, New Haven, CT, 1996.[54] K. N. Lalgudi and M. Papaefthymiou. DELAY: An e�cient tool for retiming with realisticdelay modeling. In Proceedings of the ACM/IEEE Design Automation Conference, pages304{309, 1995.[55] K. N. Lalgudi and M. Papaefthymiou. Fixed-phase retiming for low power. In Proceedingsof the International Symposium of Low Power Electronic Devices, pages 259{264, 1996.[56] K. N. Lalgudi and M. C. Papaefthymiou. E�cient retiming under a general delay model.In Advanced Research in VLSI : the 1995 MIT/UNC-Chapel Hill Conference, 1995.[57] C. Legl, P. Vanbekbergen, and A. Wang. Retiming of edge-triggered circuits with multipleclocks and load enables. In Workshop Notes, International Workshop on Logic Synthesis,1997.[58] C. Leiserson, F. Rose, and J. B. Saxe. Optimizing synchronous circuitry by retiming. InProceedings of the 3rd Caltech Conference on VLSI, pages 87{116, 1983.[59] C. E. Leiserson and J. B. Saxe. Retiming synchronous circuitry. Algorithmica, 6:5{35,1991.[60] S. Lejmi, B. Kaminska, and B. Ayari. Retiming for BIST-sequential circuits. In Proceed-ings of the IEEE International Symposium on Circuits and Systems, pages 1740{1742,1995.[61] S. Lejmi, B. Kaminska, and B. Ayari. Retiming, resynthesis, and partitioning for thepseudo-exhaustive testing of sequential circuits. In Proceedings of the IEEE VLSI TestSymposium, pages 434{439, 1995.

90[62] S. Lejmi, B. Kaminska, and B. Ayari. Synthesis and retiming for the pseudo-exhaustiveBIST of synchronous sequential circuits. In Proceedings of the IEEE International TestConference, pages 683{692, 1995.[63] S. Lejmi, B. Kaminska, and E. Wagneur. Resynthesis and retiming of synchronoussequential circuits. In Proceedings of the IEEE International Symposium on Circuits andSystems, pages 1674{1677, 1993.[64] S. Lejmi, B. Kaminska, and E. Wagneur. Retiming for the global optimization of syn-chronous sequential circuits. In Proceedings of the IEEE International Conference onComputer Design, pages 398{401, 1994.[65] B. Lin. Restructuring of synchronous logic circuits. In Proceedings of the EuropeanDesign Automation Conference, pages 205{209, 1993.[66] L.-T. Liu, M. Shih, N.-C. Chou, C.-K. Cheng, and W. Ku. Performance-driven parti-tioning using retiming and replication. In Proceedings of the IEEE/ACM InternationalConference on Computer-Aided Design, pages 296{299, 1993.[67] B. Lockyear and C. Ebeling. Optimal retiming of level-clocked circuits using symmetricclock schedules. Technical Report UW-CSE-91-10-01, Department of Computer Scienceand Engineering, University of Washington, Seattle, WA, 1991.[68] B. Lockyear and C. Ebeling. Optimal retiming of multi-phase level-clocked circuits. InAdvanced Research in VLSI and Parallel Systems: Procedings of the 1992 Brown/MITConference, pages 265{280, 1992.[69] B. Lockyear and C. Ebeling. The practical application of retiming to the design of high-performance systems. In Proceedings of the IEEE/ACM International Conference onComputer-Aided Design, pages 288{295, 1993.[70] B. Lockyear and C. Ebeling. Optimal retiming of level-clocked circuits using symmetricclock schedules. IEEE Transactions on Computer-Aided Design of Integrated Circuitsand Systems, 13(9):1097{1109, September 1994.[71] N. Maheshwari and S. S. Sapatnekar. Gate size optimization for row-based layouts. InProceedings of the 38th Midwest Symposium on Circuits and Systems, pages 777{800,1995.[72] N. Maheshwari and S. S. Sapatnekar. A practical algorithm for retiming level-clockedcircuits. In Proceedings of the IEEE International Conference on Computer Design, pages440{445, 1996.

91[73] N. Maheshwari and S. S. Sapatnekar. An improved algorithm for minimum-area retiming.In Proceedings of the ACM/IEEE Design Automation Conference, pages 2{7, 1997.[74] N. Maheshwari and S. S. Sapatnekar. Minimum area retiming with equivalent initialstates. In Proceedings of the IEEE/ACM International Conference on Computer-AidedDesign, pages 216{219, 1997.[75] N. Maheshwari and S. S. Sapatnekar. Retiming level-clocked circuits for latch countminimization. In Workshop Notes, International Workshop on Timing Issues in theSpeci�cation and Synthesis of Digital Systems, pages 135{140, 1997.[76] N. Maheshwari and S. S. Sapatnekar. E�cient minarea retiming for large level-clockedcircuits. In Proceedings of the Conference on Design Automation and Test in Europe,pages 840{845, 1998.[77] N. Maheshwari and S. S. Sapatnekar. E�cient retiming of large circuits. IEEE Trans-actions on VLSI Systems, pages 74{83, March 1998.[78] N. Maheshwari and S. S. Sapatnekar. Optimizing large multi-phase level-clocked circuits.submitted to IEEE Transactions on Computer-Aided Design of Integrated Circuits andSystems, 1998.[79] N. Maheshwari and S. S. Sapatnekar. Retiming control logic. submitted to IEEE Trans-actions on Computer-Aided Design of Integrated Circuits and Systems, 1998.[80] S. Malik, E. M. Sentovich, R. K. Brayton, and A. Sangiovanni-Vincentelli. Retimingand resynthesis: Optimizing sequential networks with combinational techniques. In Pro-ceedings of the 23rd Anual Hawaii International Conference on System Sciences, pages397{406, 1990.[81] S. Malik, E. M. Sentovich, R. K. Brayton, and A. Sangiovanni-Vincentelli. Retimingand resynthesis: Optimizing sequential networks with combinational techniques. IEEETransactions on Computer-Aided Design of Integrated Circuits and Systems, 10(1):74{84,January 1991.[82] S. Malik, K. J. Singh, R. K. Brayton, and A. Sangiovanni-Vincentelli. Performanceoptimization of pipelined circuits. In Proceedings of the IEEE International Conferenceon Computer-Aided Design, pages 410{413, 1990.[83] H.-G. Martin. Retiming by combination of relocation and clock delay adjustment. InProceedings of the European Design Automation Conference, pages 384{389, 1993.[84] H.-G. Martin. Retiming for circuits with enable registers. In Proceedings ofEUROMICRO-22, pages 275{280, 1996.

92[85] A. Mets. Formal veri�cation of sequential circuits using implicit state enumeration.Master's thesis, Eindhoven University of Technology, Netherlands, 1994.[86] G. De Micheli. Synthesis and Optimization of Digital Circuits. McGraw-Hill, New York,NY, 1994.[87] J. Monteiro, S. Devadas, and A. Ghosh. Retiming sequential circuits for low power.In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design,pages 398{402, 1993.[88] M. Moonen, I.K. Proudler, J. G. McWhirter, and G. Hekstra. On the formal derivation ofa systolic array for recursive least square estimation. In IEEE International Conferenceon Acoustics, Speech and Signal Processing, pages II{477{480, 1994.[89] A. Munzner and G Hemme. Converting combinational circuits into pipelined data paths.In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design,pages 368{371, 1991.[90] P. Pan. Continuous retiming: Algorithms and applications. In Proceedings of the IEEEInternational Conference on Computer Design, 1997.[91] P. Pan and C.L. Liu. Optimal clock period technology mapping for FPGA circuits. InProceedings of the ACM/IEEE Design Automation Conference, pages 720{725, 1995.[92] M. C. Papaefthymiou. On retiming synchronous circuitry and mixed-integer optimiza-tion. Master's thesis, Massachusetts Institute of Technology, Cambridge, MA, 1990.[93] M. C. Papaefthymiou. A Timing Analysis and Optimzation System for Level-ClockedCircuitry. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, 1993.[94] M. C. Papaefthymiou. Understanding retiming through maximum average delay cycles.In Mathematical Systems Theory, pages 27:65{84, 1994.[95] M. C. Papaefthymiou and K. H. Randall. Edge-triggered vs. two-phase level-clocking.In Research on Integrated Systems: Proceedings of the 1993 Symposium, March 1993.[96] M. C. Papaefthymiou and K. H. Randall. Tim: A timing package for two-phase, level-clocked circuitry. In Proceedings of the ACM/IEEE Design Automation Conference,pages 497{502, 1993.[97] N. L. Passos and E.H.-M. Sha. Achieving full parallelism using multidiemnsional retim-ing. IEEE Transactions on Parallel and Dsitributed Systems, 7:1150{1163, November1996.

93[98] N. L. Passos, E.H.-M. Sha, and S. C. Bass. Optimizing DSP ow graphs via schedule-based multidimensional retiming. IEEE Transactions on Signal Processing, 44:150{155,January 1996.[99] M. Potkonjak and J. Rabaey. Optimizing resource utilization using transformations.In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design,pages 88{91, 1991.[100] M. Potkonjak and J. Rabaey. Fast implementation of recursive programs using transfor-mations. In IEEE International Conference on Acoustics, Speech and Signal Processing,pages 304{308, 1992.[101] M. Potkonjak and J. Rabaey. Pipelining: Just another transformation. In Proceedings ofthe International Conference on Application Speci�c Array Processors, pages 163{175,1992.[102] S. Qadeer, R. K. Brayton, V. Singhal, and C. Pixley. Latch redundancy removal withoutglobal reset. In Proceedings of the IEEE International Conference on Computer Design,pages 432{439, 1996.[103] K. H. Randall. Edge-triggered vs. level-clocking. Bachelor's thesis, Massachusetts Insti-tute of Technology, Cambridge, MA, 1993.[104] R. Ranjan. Design and Implementation Veri�cation of Finite State Systems. PhD thesis,University of California, Berkeley, CA, 1997.[105] K. A. Sakallah, T. N. Mudge, and O. A. Olukotun. Analysis and design of latch-controlledsynchronous digital circuits. In Proceedings of the ACM/IEEE Design Automation Con-ference, pages 111{117, 1990.[106] K. A. Sakallah, T. N. Mudge, and O. A. Olukotun. checkTc and minTc: Timing ver-i�cation and optimal clocking of synchronous digital circuits. In Proceedings of theIEEE/ACM International Conference on Computer-Aided Design, pages 552{555, 1990.[107] K. A. Sakallah, T. N. Mudge, and O. A. Olukotun. Analysis and design of latch-controlledsynchronous digital circuits. IEEE Transactions on Computer-Aided Design of IntegratedCircuits and Systems, 11(3):322{333, March 1992.[108] S. S. Sapatnekar. E�cient calculation of all-pair input-to-output delays in synchronoussequential circuits. In Proceedings of the IEEE International Symposium on Circuits andSystems, pages IV520{IV523, 1996.[109] S. S. Sapatnekar and R. B. Deokar. Utilizing the retiming skew equivalence in a practicalalgorithm for retiming large circuits. IEEE Transactions on Computer-Aided Design ofIntegrated Circuits and Systems, 15(10):1237{1248, October 1996.

94[110] S. S. Sapatnekar and S. M. Kang. Design Automation for Timing-Driven Layout Syn-thesis. Kluwer Academic Publishers, Boston, MA, 1993.[111] J. B. Saxe. Decomposable Searching Problems and Circuit Optimization by Retiming:Two Studies in General Transformations of Computational Structures. PhD thesis,Carnegie-Mellon University, Pittsburgh, PA, 1985.[112] N. Shenoy. Timing Issues in sequential circuits. PhD thesis, University of California,Berkeley, CA, 1993.[113] N. Shenoy. Retiming: Theory and practice. Integration, the VLSI Journal, 22(1):1{21,January 1997.[114] N. Shenoy, R. K. Brayton, and A. Sangiovanni-Vincentelli. Retiming of circuits withsingle phase transparent latches. In Proceedings of the IEEE International Conferenceon Computer Design, pages 86{89, 1991.[115] N. Shenoy and R. Rudell. E�cient implementation of retiming. In Proceedings of theIEEE/ACM International Conference on Computer-Aided Design, pages 226{233, 1994.[116] N. V. Shenoy, R. K. Brayton, and A. L. Sangiovanni-Vincentelli. Resynthesis of multi-phase pipelines. In Proceedings of the ACM/IEEE Design Automation Conference, pages490{496, 1993.[117] S. Simon, E. Bernard, M. Sauer, and J. A. Nossek. A new retiming algorithm for circuitdesign. In Proceedings of the IEEE International Symposium on Circuits and Systems,pages 35{38, 1994.[118] S. Simon, R. Bucher, and J. A. Nossek. Retiming of synchronous circuits with variabletopology. In 8th International Conference on VLSI Design, New Delhi, India, pages130{134, January 1995.[119] S. Simon and J. Hofner. Retiming algorithms for multiplexer circuits. Technical Re-port TUM-LNS-TR-94-8, Institute of Network Theory and Circuit Design, TechnicalUniveristy of Munuch, 1994.[120] S. Simon, C. V. Schimpe, M. Wroblewski, and J. A. Nossek. Retiming of latches forpower reduction of DSP design. In Proceedings of the IEEE International Symposium onCircuits and Systems, pages 2168{2171, 1997.[121] V. Singhal. Design Replacements for Sequential Circuits. PhD thesis, Department ofComputer Science and Engineering, University of California, Berkeley, March 1996.

95[122] V. Singhal, Sharad Malik, and R. K. Brayton. The case for retiming with explicit resetcircuitry. In Proceedings of the IEEE/ACM International Conference on Computer-AidedDesign, pages 618{625, 1996.[123] V. Singhal, C. Pixley, R. L. Rudell, and R. K. Brayton. The validity of retiming sequentialcircuits. In Proceedings of the ACM/IEEE Design Automation Conference, pages 316{321, 1995.[124] T. Soyata and E. G. Friedman. Retiming with non-zero clock skew, variable registerand interconnect delay. In Proceedings of the IEEE/ACM International Conference onComputer-Aided Design, pages 234{241, 1994.[125] T. Soyata and E. G. Friedman. Synchronous performance and reliability improvementin pipelined ASICs. In Proceedings of the IEEE ASIC Conference, pages 383{390, 1994.[126] T. Soyata, E. G. Friedman, and J. H. Mulligan, Jr. Integration of clock skew and registerdelays into a retiming algorithm. In Proceedings of the IEEE International Symposiumon Circuits and Systems, pages 1483{1486, 1993.[127] T. Soyata, E. G. Friedman, and J. H. Mulligan, Jr. Incorporating internconnect, registerand clock distribution delays into the retiming process. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 16(1):165{120, January 1997.[128] I. Y. Spillinger, L. Stok, and G. Even. Improving initialization through reversed retiming.In Proceedings of the European Design and Test Conference, pages 150{154, 1995.[129] H. Touati, N. V. Shenoy, and A. L. Sangiovanni-Vincentelli. Retiming for table-lookup�eld programmable gate arrays. In FPGA, pages 89{94, 1992.[130] H. J. Touati and R. K. Brayton. Computing the initial states of retimed circuits. IEEETransactions on Computer-Aided Design of Integrated Circuits and Systems, 12(1):157{162, January 1993.[131] R.-S. Tsay. Exact zero skew. In Proceedings of the IEEE International Conference onComputer-Aided Design, pages 336{339, 1991.[132] N. Wehn, J. Biesenack, T. Langmaier, M. Munch, M. Pilsl, S. Rumler, and P. Duzy.Scheduling of behavioral VHDL by retiming techniques. In Proceedings of the EuropeanDesign Automation Conference, 1994.[133] U. Weinmann and W. Rosenstiel. Techology mapping for sequential circuits based onretiming techniques. In Proceedings of the European Design Automation Conference,pages 318{323, 1993.

96[134] Y.G. DeCastelo-Vide-e-Souza, M Potkonjak, and A parker. Optimal ILP-based approachfor throughput optimization using simultaneous algorithm/architecure matching and re-timing. In Proceedings of the ACM/IEEE Design Automation Conference, pages 113{118,1995.[135] H. Yotsuyanagi, S. Kajihara, and K. Kinoshita. Resynthesis for sequential circuits de-signed with a speci�ed initial state. In Proceedings of the IEEE VLSI Test Symposium,pages 152{157, 1995.[136] H. Yotsuyanagi, S. Kajihara, and K. Kinoshita. Synthesis for testablity by sequentialredundancy removal using retiming. In International Symposium on Fault Tolerent Com-puting, pages 33{40, 1995.[137] Y. Zhang, M. Yu, and Y. Ye. A new retiming algorithm for cycle-time minimization insynchronous logic synthesis. In Proceedings on the 4th International Conference on SolidState and IC Technology, Beijing, pages 631{633, 1995.

97
BIOGRAPHICAL SKETCHNaresh Maheshwari received the Bachelor of Engineering degree in Electronics Engineeringfrom Motilal Nehru Regional Engineering College, Allahabad, India in 1992; the Master ofTechnology degree in Computer Science and Engineering from Indian Institute of Technology,Delhi in 1994; and the Doctor of Philosophy degree in Computer Engineering from Iowa StateUniversity in 1998. He worked at the IBM Thomas J. Watson Research Center, YorktownHeights, NY in summer of 1996, and at IBM's AS/400 Division, Rochester, MN in summerof 1997. His research interests include high level and logic synthesis, timing analysis andoptimization, and formal veri�cation. He has published several technical papers in the area ofcircuit optimization, and he is a recipient of best paper award at the 1997 Design AutomationConference, and Lucent Technologies DAC Graduate Scholarship. He received a researchexcellence award for his doctoral work at Iowa State University.

