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ABSTRACT

The increasing complexity of VLSI systems and shrinking time to market requirments
demand good optimization tools capable of handling large circuits. Retiming is a powerful
transformation that preserves functionality, and can be used to optimize sequential circuits
for a wide range of objective functions by judiciously relocating the memory elements. Leis-
erson and Saxe, who introduced the concept, presented algorithms for period optimization
(minperiod retiming) and area optimization (minarea retiming). The ASTRA algorithm pro-
posed an alternative view of retiming using the equivalence between retiming and clock skew
optimization.

The first part of this thesis defines the relationship between the Leiserson-Saxe and the
ASTRA approaches and utilizes it for efficient minarea retiming of large circuits. The new
algorithm, Minaret, uses the same linear program formulation as the Leiserson-Saxe approach.
The underlying philosophy of the ASTRA approach is incorporated to reduce the number of
variables and constraints in this linear program. This allows minarea retiming of circuits with
over 56,000 gates in under fifteen minutes.

The movement of flip-flops in control logic changes the state encoding of finite state ma-
chines, requiring the preservation of initial (reset) states. In the next part of this work the
problem of minimizing the number of flip-flops in control logic subject to a specified clock
period and with the guarantee of an equivalent initial state, is formulated as a mixed integer
linear program. Bounds on the retiming variables are used to guarantee an equivalent initial
state in the retimed circuit. These bounds lead to a simple method for calculating an equivalent
initial state for the retimed circuit.

The transparent nature of level sensitive latches enables level-clocked circuits to operate
faster and require less area. However, this transparency makes the operation of level-clocked
circuits very complex, and optimization of level-clocked circuits is a difficult task. This thesis
also presents efficient algorithms for retiming large level-clocked circuits. The relationship
between retiming and clock skew optimization for level-clocked circuits is defined and utilized to
develop efficient retiming algorithms for period and area optimization. Using these algorithms
a circuit with 56,000 gates could be retimed for minimum period in under twenty seconds and

for minimum area in under 1.5 hours.



1 INTRODUCTION

With the advances in integrated circuit (IC) technology, more than 10 million devices
can be manufactured on a single chip today. Because of this increase in the complexity,
Very Large Scale Integration (VLSI) circuit designs require sophisticated Electronic Design
Automation (EDA) tools capable of handling large circuits. Due to the increase in complexity
and reduced time to market, designers cannot rely on their intuition to design fast, low power
sequential circuits with minimum area. Thus circuit optimization tools are indispensable for
designers, and much work needs to be done to develop good computer-aided design (CAD)
tools. Most of the traditional circuit optimization techniques operate on combinational sub-
circuits extracted from sequential designs. Thus they have limited capabilities for optimization
and true sequential optimization techniques are needed. This work develops CAD tools for
optimizing large sequential circuits.

Retiming is a powerful transformation that has great potential for sequential circuit op-
timization. It is the concept of moving storage devices across computation nodes to improve
performance without changing the input-output behavior, and can operate at gate level netlists
or higher abstractions (e.g. data flow graphs, communication graphs, processor schedules).

At the circuit level these storage devices are called registers which can be either edge-
triggered flip-flops (or FF’s) or level sensitive latches (or latches), and the computation nodes
are combinational gates. Retiming moves registers across gates without changing the number
of registers in any cycle or on any path from the primary inputs to the primary outputs.
This preserves the input-output latency of the circuit. Since retiming does not directly affect
the combinational part of the circuit the circuit behavior remains unchanged. However since
retiming can change the boundaries of combinational logic, it has the potential to affect the

results of combinational synthesis as well.

1.1 Types of Retiming

Retiming can be performed to improve the circuit behavior with respect to different objec-

tive functions. Some of these objective functions are discussed below.

Clock Period The simplest objective function used in retiming is minimization of the clock
period. Since the clock period in an edge-triggered circuit is given by the maximum

combinational delay, registers can be relocated to reduce the clock period. For the
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Figure 1.1 Effect of retiming on clock period

circuit shown in Figure 1.1 (a), with unit delay gates, the clock period is 3.0 time units.
If we relocate register L1 from the output of gate G3 to its input, we get the circuit in
Figure 1.1 (b), with a clock period of 2.0 units. Thus relocating registers can reduce
the clock period of a circuit, and retiming can be used to minimize the clock period.
Retiming to minimize the clock period is termed minperiod retiming. Notice that
the input-output behavior is not changed by retiming since in both cases the output is
produced after 2 clock cycles. Retiming a circuit to achieve a given target clock period

is a special case of this problem.

Area Since retiming does not affect the combinational part of the circuit, the area overhead
of the combinational part remains constant. Retiming can, however, affect the overall

area of the circuit since it can alter the number of registers in the circuit.
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Figure 1.2 Effect of retiming on number of registers

Gl

Two circuits can have the same input-output behavior and clock period, but require
different number of registers. To illustrate this consider the circuits in Figure 1.2 which
are equivalent under the retiming transformation. The circuit in Figure 1.2 (a) requires

two registers while that in Figure 1.2 (b) requires only one register.

Retiming can therefore be used to minimize the number of registers in the circuit. This

can be done without any constraint on the clock period of the resulting circuit, or subject



to a target clock period. The former is called unconstrained minarea retiming while the

latter is called constrained minarea retiming or simply minarea retiming.

Power The power dissipated in a circuit depends on the product of switching activity and
the load capacitance at the output of a gate, summed over all gates. Since registers can
filter out glitches, relocation of registers will affect the switching activity at gate outputs.
In addition relocating registers also changes the load capacitance seen by gates. Thus
retiming can change the power requirements of a circuit, and can be used for reducing
the power dissipation in sequential circuits by placing registers on interconnections with

high switching activity and high capacitive loads.

Testability Since retiming relocates registers, it changes the state encoding in sequential
circuits, thus affecting the test generation time, and the number of redundant faults. The
repositioning of registers also affects the length of scan chains, required for partial or full
scan designs. Retiming can, therefore, be used to improve the testability of sequential

circuits.

Quality of Logic Optimization Most logic optimization techniques operate on combina-
tional logic within register boundaries. Hence changing these register boundaries (by

retiming the registers) affects the quality of results obtained by logic optimization.

Most of these objective functions have been used for retiming different kinds of circuits. A
brief survey of publications describing these research activities is presented in Section 1.2.
Algorithms for retiming a circuit must address the specific requirements of a circuit, and

the clocking discipline used. Four major classes of circuits are described below.

Edge-triggered Circuits containing only edge-triggered FF’s are called edge-triggered cir-
cuits. In an edge-triggered circuit the clock period is given simply by the largest combi-

national delay. The first publications on retiming addressed this class of circuits.

Level-clocked Circuits using level-sensitive latches are called level-clocked circuits. Latches
are transparent during the period when the clock waveform is active. This transparent
nature of latches give level-clocked circuits the potential to operate at a faster clock pe-
riod, and require less area than the corresponding edge-triggered circuits. Unfortunately
this also complicates the analysis of level-clocked circuits and hence finding an optimal

retiming can be computationaly expensive.

Control Logic Since control logic consists of Finite State Machines (FSM’s), the registers
in the circuit are associated with the FSM states. Retiming changes the locations of
these registers and hence the state encoding of the FSM. Thus issues regarding safe
replaceability become important. In circuits that have a meaningful initial state, it is

important to find a retimed circuit with an equivalent initial state. Not all otherwise



valid retimings of a circuit will have equivalent initial states. Comnsider the circuit in
Figure 1.3 (a). If we wish to move FF A and B across gate G1 (to FF C in Figure 1.3
(b)), we need to find a initial value of FF C which is equivalent to the initial values of
FF A and B. If FF A and B have conflicting values, no such equivalent initial value at
FF C exists. Thus additional constraints have to be imposed to ensure the presence of

an equivalent initial state when retiming control logic.

G1
FFC L

(@ (b)

Figure 1.3 Equivalent initial states in reverse retiming.

FPGA'’s Field Programmable Gate Arrays (FPGA’s) present some different requirements. In
LUT-based FPGA’s the amount of logic is dependent on the number of inputs and not on
the complexity of the logic. Further since FPGA’s have limited resources with memory
elements at fixed locations extra constraints are placed on the movement of memory

elements during retiming.

1.2 Research on Retiming

Since retiming was introduced by Leiserson and Saxe [58, 59] there has been significant
amount of research has been done on retiming both in the academia [10, 21, 28, 53, 92, 93,
103, 104, 111, 112, 121, 40] and in the industry (e.g, IBM, Synopsys and Philips). In this
section we present a brief literature survey of retiming related research. A good survey of
retiming research is also provided in [113]. A good introduction to retiming can also be found
in Section 9.3.1 of [86].

Edge-triggered Circuits Leiserson and Saxe introduced algorithms for minperiod and minarea
retiming of edge-triggered circuits[58]. The circuit is represented by a graph and poly-
nomial time algorithms are presented without any experimental implementations. The
minperiod retiming problem is solved by performing a binary search for the best clock
period. The feasibility of a given clock period is checked by a Bellman-Ford like relax-
ation algorithm. The minarea problem is formulated as a Linear Program (LP). This LP
is the dual of a mincost network flow problem, and thus can be solved efficiently. Details
of this approach, which we call the “LS approach”, are provided in [59] and described
briefly in Section 2.1.



Shenoy and Rudell presented an efficient and clever implementation of the LS algo-
rithms in [115]. Their main contributions include reducing the memory requirements
from O(|G|?) to O(|G|), where |G| is the number of gates in the circuit, and the use of
back pointers to speed up the feasibility check during the binary search for minimum
clock period. A technique for reducing the number of constraints in the minarea LP was

presented in [1].
The ASTRA algorithm [21, 22, 109] exploited the retiming-skew equivalence for fast

minperiod retiming. ASTRA first finds a minimum period achievable by skew optimiza-
tion, and then translates these skews into retiming. Circuits with 20,000 gates could be

retimed in 2 minutes.

Improved Timing Models Both the LS approach and the ASTRA approach assume the
gate delays to be fixed and all FF delays to be equal. Since these are approximations,
much effort has been spent in improving the delay models. Delay models that incor-
porate clock skews, register delays, etc. are presented in [83, 124, 126, 127]. DelaY
[64, 56] provides a mixed integer linear program (MILP) formulation for a model that
has delays associated with interconnects. Constraints are created from each interconnect
to every other interconnect, unlike the traditional LS retiming approach that formulates

constraints between gates.

The work in [51] presents retiming under variable delays, while [118] presents retiming
under variable topology. The work in [57] presents techniques for handling multi-cycle

paths and multiple period clocks for minperiod retiming.

Level-Clocked Circuits A signal that flows through a latch during its transparent phase can
initiate the computation of the next combinational stage before the beginning of the next
clock cycle; this phenomenon is called cycle stealing. Due to cycle stealing, level-sensitive
circuits have a potential to operate faster, and require less area. Algorithms to retime
single phase level-clocked circuits are presented in [114]. Algorithms based on the LS
model for retiming multi-phase level-clocked circuits were presented in [8, 9, 44, 68, 70,
105, 106, 107]. TIM [96] is a comprehensive timing analysis and optimization CAD tool
for level-clocked circuits that is available in public domain. TIM was used to empirically
compare edge-triggered and level-sensitive circuits in [95]. In [46] a polynomial-time
algorithm is presented for pipelining two-phase, level-clocked circuits under a bounded

delay model.

Retiming with Equivalent Initial States Traditional retiming algorithms do not pay any
regard to initial states or power-on states of circuits and are not very useful for control
logic. Control logic usually have s meaningful initial states and any useful retiming must
also find a new initial state for the retimed circuit that is equivalent to the initial state

of the original circuit.



A method for minperiod retiming with equivalent initial states was presented in [130] and
uses only forward retimings. In some cases this approach may require modifications in the
circuit before it can be used. An efficient technique for these modifications is presented in
[122]. Reversed retiming [30, 128] uses minimum number of reverse (backward) retiming

moves and does not require any modifications in the circuit.

Low Power Retiming can alter the amount of switching that takes place in a circuit, and can,
therefore, affect the power consumption of a circuit. The change in the fanout capacitance
due to the motion of FF’s further affects the power consumption. A mechanism for
reducing power by retiming [87], places FF’s on interconnects with high switching activity.
In [55], algorithms to reduce power by retiming only one phase in a two-phase circuit are
presented. The advantage of retiming only one phase is that it preserves the testability

of the circuit. A similar approach is taken in [120] to reduce power in DSP designs.

Testing Retiming can be used both to improve testability of a circuit, and as an aid to
automatic test generation. In the former case the retimed circuit is actually implemented,
while in the later case the retimed circuit is used just by the test generator and the original
circuit is implemented. Some work has been performed to characterize the effect of FF
relocation on the redundancy of faults [18, 23, 135, 136]. In [26], it was shown that
retiming preserves testability with respect to a single stuck-at-fault test set by adding a
prefix sequence of a pre-determined number of arbitrary input vectors. Retiming may
convert sequential redundancies into a combinational redundancies which are easier to
identify, thus improving testability. Retiming can also be used for reducing test lengths
in scan based designs [41, 42, 49], for improving built-in self test (BIST) [50, 60, 62] and

for pseudo-exhaustive testing [61].

Pipelining and Architectural retiming Since retiming preserves the input-output behav-
ior of the circuit, the number of registers on any path from a primary input (PI) to a
primary output (PO) does not change during retiming. A path here refers to a signal
flow through zero or more registers and not to a purely combinational path. Thus the
minimum period possible under retiming is restricted by a critical cycle or 10-path. A
critical cycle is a maximum average delay cycle, i.e., a cycle for which the total delay di-
vided by the number of registers is maximum. A critical IO-path is similarly a maximum

average delay path from any PI to any PO.

Pipelining is a technique that increases the latency, i.e., the number of latches on a PI
to PO path, of a circuit in order to reduce the clock period [101]. Since pipelining can
change the latency, the minimum clock period achievable by pipelining is restricted only
by critical cycles and not by the critical IO-paths. Pipelining can be achieved by adding

one or more registers to all PI’s (or PO’s) and then retiming the circuit. Thus pipelining



has a potential of achieving lower periods than retiming, by changing the latency of the
circuit [46, 82, 101, 116, 125].

Architectural retiming [36, 37, 39, 40] modifies the combinational part of a circuit to
increase the number of registers on a critical cycle or path without increasing the per-
ceived latency. Thus architectural retiming unlike retiming and pipelining is not limited
by a critical cycle in period reduction, however, it changes the circuit structure, and is

difficult to automate.

Verification Issues Research has also been performed on validating the replacement of a
controller circuit by a retimed version [47, 102, 123]. The work in [123] shows that while
an accurate logic simulation may distinguish a retimed circuit from the original circuit, a
conservative three-valued simulator cannot do so. Techniques for verification of retimed
circuits are presented in [35, 85, 104]. The work in [43] uses an ATPG based approach

for verifying retimed circuits.

Other Applications Retiming has been used during the technology mapping step in FPGA
synthesis [15, 16, 91, 129, 133], to improve circuit partitioning [66], for scheduling in
high level synthesis [12, 132] and in multiprocessor scheduling [11]. Other approaches for
retiming for system level throughput optimization include [89, 134]. Retiming has been
combined with other logic synthesis techniques in [4, 63, 65, 80, 81, 90, 99]. Retiming
has also been used extensively in DSP applications [27, 34, 97, 98, 100]. The work
in [84] presents techniques to handle enable registers. Other work on retiming include
[13, 19, 20, 25, 29, 32, 33, 48, 64, 69, 88, 94, 117, 119, 137].

1.3 Organization of this Thesis

This thesis focuses on the issue of efficient retiming of large circuits. Efficient retiming
algorithms capable of handling large edge-triggered and level-clocked circuits are presented for
delay and area optimization. Parts of this research have been published in [72, 73, 74, 75, 76,
77, 78, 79]. The remainder of the thesis is organized as follows

Background In this chapter we briefly describe the minperiod and minarea retiming methods
given by Leiserson and Saxe in [59], and the ASTRA approach to minperiod retiming in
[109]. The minimum clock periodis obtained by perfoming a binary search on the clock

period. The minarea retiming problem is formulated as a Linear Program (LP).

Minarea Retiming Since minperiod retiming may significantly increase the number of FF’s
in the circuit, minarea retiming is a important problem. However, traditional algorithms
have had a high computational expense, which has limited its use. In Chapter 3 we
present an efficient algorithm for delay constrained minimum area retiming of large cir-

cuits with edge-triggered FF’s. This algorithm is called Minaret and it performs minarea



retiming through an amalgamation of the Leiserson-Saxe approach and the ASTRA ap-
proach. The minarea retiming problem is formulated as an LLP and the ASTRA approach
is used to find tight bounds on the retiming variables. These bounds then help us re-
duce both the number of variables and the number of constraints in the problem without
any loss in accuracy. By spending a small amount of additional CPU time on the AS-

TRA runs, this method leads to significant reductions in the total execution time of the

minarea retiming problem. The reduction in the problem size also reduces the memory

requirements, thus enabling retiming of large circuits.

Retiming Control Logic In control logic the initial state of a circuit is an integral part of
the behavior. Hence any retimed circuit must have an equivalent initial state in order to
have the same behavior as the original circuit. In Chapter 4 we present an algorithm for
minarea retiming with a guarantee of equivalent initial states, we call this problem the

minarea initial state retiming problem.

There are two basic problems in minarea initial state retiming: firstly to ensure equiv-
alent initial state, and secondly to correctly model the conditional sharing of FF’s at
the outputs of a gate. We guarantee an equivalent initial state by allowing only those
backward moves that have an equivalent initial value. This is achieved by enforcing a

bound on the retiming variables.

Unfortunately the unconditional sharing model of [59] is not valid for minarea initial
state retiming, where FF’s have initial states associated with them, and hence these
initial states need to be taken into account in modeling FF sharing. We present a new
0/1 MILP formulation for modeling this conditional latch sharing of FF’s at the output

of a gate.

Retiming Level Clocked Circuits Level-clocked circuits have the potential to operate faster
and require less area. However due to the transparent nature of latches the timing analysis
and hence optimization of level-clocked circuits is a hard problem. Although polynomial
time algorithms for retiming level-clocked circuits are known, they can not handle large
circuits. In Chapter 5 we first present the equivalence between retiming and skew op-
timization for level-clocked circuits, then we utilize this relation for efficient minperiod

and minarea retiming of large level-clocked circuits.

We use a two phase solution for the minperiod retiming problem for general multi-phase
clock schedules. In Phase A we solve a clock skew optimization problem efficiently, to
obtain the relocation needed for each latch, in order to achieve the optimal clock period
under a given schedule. In Phase B the latches are relocated across gates to achieve
this target clock period. Since latches can absorb some skew (equal to the active period
of the clock), we can stop relocating latches as soon as the skew is small enough to be

completely absorbed.



In minarea retiming of level-clocked circuits, the number of constraints is very high since
we may have constraints through multiple latches. We use the retiming-skew relation
to obtain bounds on the retiming variables. These bounds are then used to reduce the
number of variables, and the number of constraints. We also use additional pruning

techniques to further reduce the number of constraints, and for their efficient generation.

Conclusion In this chapter we conclude this thesis and present a number of open problems
which need to be solved before retiming can become widely accepted. We also present
some ideas and thoughts on these problems. The problems disscuesed include limtation
on design styles, verification issues, combining retiming with logic synthesis and improved

delay models for retiming.
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2 BACKGROUND

We now briefly describe the LS approach, details of which can be found in [58, 59]. We
will then describe relationship between clock skew and retiming, and the ASTRA approach
[21, 22, 109].

2.1 The Leiserson-Saxe Approach

2.1.1 Notation

A sequential circuit can be represented by a directed graph G(V, E, d, w), where each vertex
v corresponds to a gate, and a directed edge e,, represents a connection from the output of
gate u to the input of gate v, through zero or more registers. Each edge has a weight w(ey,),
which is the number of registers between the output of gate u and the input of gate v. Each
vertex has a fixed delay d(v), that does not change during the retiming process. A special
vertex, the host vertex, is introduced in the graph, with edges from the host vertex to all
primary inputs of the circuit, and edges from all primary outputs to the host vertex.

A retiming is a labeling of the vertices r : V. — Z, where Z is the set of integers. The

weight of an edge e, after retiming, denoted by w,(e,,) is given by

wy(€yy) = 7(v) + w(ew) — r(u) (2.1)

The retiming label r(v) for a vertex v represents the number of registers that have been
moved from its outputs to its inputs. Retiming can also be viewed as an assignment of a lag
r(v) to every vertex v in the circuit. One may define the weight of any path p originating at
vertex u and terminating at vertex v (represented as u - v), w(p), as the sum of the weights
on the edges on p, and its delay d(p) as the sum of the weights of the vertices on p. A path
with w(p) = 0 corresponds to a purely combinational path with no registers on it; therefore,

the clock period can be calculated as

¢=, max {d(p)} (2.2)

Another important concept used in the Leiserson-Saxe approach is that of the W and D
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matrices that are defined as follows:

W) = gmin {w(p)} (2.3
D(u,v) = max {d(p)} (2.4)
V paurv and w(p)=W (uv)

The matrices are defined for all pairs of vertices (u,v) such that there exists a path p:u - v
that does not include the host vertex. W (u,v) denotes the minimum latency, in clock cycles,
for the data flowing from u to v and D(u,v) gives the maximum delay from u to v for the

minimum latency.

2.1.2 The Minperiod Retiming Algorithm

The minimum period obtainable under retiming is found by performing a binary search
over all possible clock periods. At each step in the binary search, an attempt is made to retime
the circuit for the current value of the clock period. The smallest period for which retiming
succeeds is returned as the best clock period.

The following O(|V||E|)-time algorithm is used for obtaining a retiming for a given clock

period.

Algorithm FEAS
Given a synchronous circuit G = (V,E,d,w), and a desired clock period ¢, return
a retiming r of (G such that the clock period of the retimed circuit ®(G,) > c.
{

1. For each vertex v € V, set r(v) + 0.

2. Repeat the following |V|—1 times

2.1 Compute graph G, with existing values of r.

2.2 Run Algorithm CP on the graph G, to determine A(v) for each vertex v e V.

2.3 For each v such that A(v) > ¢, set r(v) < r(v) + 1.
3. Run Algorithm CP on the circuit G,. If ®(G,) > ¢, then no

feasible retiming exists. Otherwise, r is the desired retiming.

Algorithm CP
This algorithm computes the clock period ®((G) for a synchronous circuit
G=(V,E,d,w).
{
1. Let G be the subgraph of G with contains precisely those edges e
with register count w(e) =0.
2. Perform a topological sort on Gy, totally ordering its vertices

so that if there is an edge from vertex u to vertex v in Gy,
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then u precedes v in the total order.
3. Go through the vertices in the order defined by the topological sort.
On visiting each vertex v, compute the quantity A(v) as follows:
a. If there is no incoming edge to v, set A(v) + d(v).
b. Otherwise, set A(v) < d(v) + maz{A(u) : u- v and w(e) = 0.
4. The clock period ®(G) is maxycv A(v).

2.1.3 The Minarea Retiming Algorithm

The minarea retiming problem for a target period P can be formulated as the following
LP:

minimize Y, oy [(|FI(v)] — [FO()]) - r(v)] (2.5)
subject to r(u) —r(v) < wey) Veuy € E
r(u) —r(v) < W(u,v) —1 VD(u,v) > P
—oo < r(u) < oo Vu € (VUM)

where FI(v) and FO(v) represent the fanin and fanout sets of the gate v.
The significance of the objective function and the constraints is as follows (the reader is
referred to [59] for details).

e The objective function represents the number of registers added to the retimed circuit in

relation to the original circuit.

e The first constraint ensures that the weight e, of each edge (i.e., the number of registers
between the output of gate v and the input of gate v) after retiming is nonnegative. We

will refer to these constraints as circuit constraints.

e The second constraint ensures that after retiming, each path whose delay is larger than
the clock period has at least one register on it. These constraints, being dependent on

the clock period, are often referred to as period constraints.

It is pointed out in [59] that the dual of this problem is an instance of a minimum cost network

flow problem. Hence the LP can be solved efficiently by solving this dual.

2.1.4 A More Accurate Area Model

The cost function in the LP’s of Equation (2.5) assumes that each FF has exactly one
fanout. However, in practice a FF can have multiple fanouts, allowing the FF’s on different
fanout edges of a gate to be shared. This sharing must be taken into account for an accurate

area model. For example, consider gate A in Figure 2.1 with three fanouts B, C, and D having
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Figure 2.1 Unconditional register sharing at multiple fanouts.

three, two and two FF’s respectively. The LP in Equation (2.5) will model the total number of
FF’s as seven as shown in Figure 2.1(a). However the FF’s can be merged or shared as shown
in Figure 2.1(b) resulting in a total cost of only three FF’s.

To model the maximal FF sharing' the work in [59] introduces a mirror vertex m; for each
gate ¢ that has more than one fanout, as shown in Figure 2.2. Further details of this maximal
latch sharing model can be found in [111]. Every edge e;;, in addition to having a weight
w(e;;), now also has a width f(e;;). In Figure 2.2, the edge weights are shown above the edges
while the edge widths are shown below the edges. Consider a gate u with k fanouts to gates
vj, 7 = 1---k. To model the maximum sharing of FF’s, an extra edge is added from each
fanout gate v; to the mirror vertex, m,, with weight w(e,;m,) = w(maz,) — w(ey,,), where
w(maty,) = maxXyepo(u)(w(ey:)) is the maximum weight on any fanout edge of gate u. Each
of the edges from the gate 4 to its fanouts j, and from the fanouts to the mirror vertex has a
width of 1/k, i.e.,

Blew;) = 1/k and Bley,m,) = 1/k for j=1---k.

The original LP in Equation (2.5) is modified to include the effect of register sharing as

follows:
min Y {( > Blejo) = Y. /B(evj)) 'T(U)-I
ve(VUM) L VjeFI(v) VjEFO(v) J
subject to r(u) —r(v) < wey) Veuw, € E (2.6)
r(u) —r(v) < W(u,v) —1 VD(u,v) > P
r(j) — r(m;) < w(maz;) — w(ejm;) Y(m;) € M and Vj € FO(i)
—00 < r(u) < oo Vu € (VUM)

where M = {m,|lv € V and |[FO(v)| > 1} is the set of all the mirror vertices, and additional
constraints due to the mirror vertices are called the mirror constraints. For simplicity we can

rewrite the above LP as follows

min Z [( Z Blejv) — Z ,B(evj))-r(v)]
(v)

ve(VUM) VjeFI(v) VjeFO

'This model is valid only for unconditional sharing of FF’s. In Section 4.3 we will present a model for
conditional sharing of FF’s.
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Figure 2.2 Model for maximum register sharing at multiple fanouts.

subject to  r(u) —7(v) < cyy V(u,v) €C (2.7)
—o0o<r(u) <oo VYu € (VUM)

where C = C, U C. U (), is the constraint set of the LP in Equation (2.6), and includes the
period constraint set (C)), the circuit constraint set (C.) and the mirror constraint set (C,).

A constraint (7,7) in the constraint set C' is of the form

r(t) —r(j) < v(i.j) €
where Cij = w(ei;) V(i,j) € Cc, ie,ej; € F
Cij = Wi(i,j) —1 V(i,j) € Cp, ie., D(i,5) > P 8)
Cij = w(maz;) — w(ejm;) V(i,j) € Cp,ie, mij € M and Vj € FOE )

The objective function of the LP in Equation (2.7) now denotes the increase in the number
of FF’s assuming maximal sharing of FF’s at the output of all gates. The weights on all paths
from gate u to its mirror vertex m, are the same before retiming, i.e., w(eyy,) + w(ey;m,) =
w(mazx;) 1 <i <k, and therefore the weights on all paths from gate u to its mirror vertex m,,
must be equal after retiming. Since the mirror vertex m, is a sink in the graph, the register
count on one of the edge from the fanout nodes to m,, will be zero, i.e., 3i |w(ey; m,) = 0. Thus
the weight on all paths from gate u to mirror vertex m, after retiming will be w,(max,) =
maXyjepo(u) (Wr(€yj)). Since there are k paths, each with width 1/k, the total cost of all paths
will be w,(max,) as desired. Like the LP in Equation (2.5) the LP in Equation (2.7) is also

the dual of a minimum cost network flow problem.
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We now present an alternate view of this model. The change in cost function due to adding
or removing FF’s from the fanout junction of gate u is modeled by two retiming variables: one
for the gate, r(u) and other for the mirror vertex, r(m,). Any change in the cost function due
to FF’s moving across the multi-fanout gate itself are modeled by r(u), while any change due
to FF motion across its fanout gates v;, 1 <i <k is modeled by the mirror variable r(m,,).

The change in the number of FF’s in the circuit, under maximal sharing obtained by
retiming a gate u by one unit can be calculated as follows. The decrease in the cost function
obtained by removing a FF from each of the fanouts of a gate is one unit, even for multiple
fanout gates since the FF’s on all the fanouts were shared. The increase in the cost function
from adding a FF to all the inputs of a gate u is equal to the number of fanins of u that have
only one fanout, since any FF added to a fanin j of gate u that has more than one fanout
(|FO(j)] > 1) is already modeled by the mirror variable of that fanin gate m;. Thus the
cost contribution of any single fanout gate u is given by (|FI'(u)| — 1) - r(u), while that of a
multi-fanout gate is given by (|FI'(u)| — 1) - r(u) + r(my), where FI'(u) is the set of fanins
that have only a single output, i.e., FI'(u) = {v|v € FI(u) AND |FO(v)| = 1}.

2.2 The ASTRA Approach

2.2.1 The Relationship Between Clock Skew and Retiming

In a sequential VLSI circuit, due to differences in interconnect delays on the clock distri-
bution network, clock signals do not arrive at all of the FF’s at the same time. Thus, there
is skew between the clock arrival times at different FF’s. In a single-phase clocked circuit, in
the case where there is no clock skew, the designer must ensure that each input-output path
of a combinational circuit block has a delay that is less than the clock period. In the presence
of skew, however, the relation grows more complex, as one must compensate for this effect in
ensuring that the combinational blocks meet the timing requirements.

The basis of the ASTRA approach is the equivalence between clock skew and retiming, as
illustrated by the following example. Let us first consider the use of intentional clock skews
for improving the circuit performance. In Figure 2.3, assume the delays of the inverters to be
1.0 unit each. The delays of the first and second combinational blocks are 3.0 and 1.0 units,
respectively, and therefore, the fastest allowable clock has a period of 3.0 units. However, if a
skew of +1.0 unit is applied to the clock line to FF L1, as shown in Figure 2.4, the circuit can
run with a clock period of 2.0 units. This approach was formalized in the work by Fishburn
[31], where the clock skew optimization problem was formulated as a linear program (LP) that
may be solved to find the optimal clock period.

However, it is easy to see that for the given circuit, the period can also be minimized to 2.0
units by retiming, i.e., by relocating the FF L1 to the left across the inverter G3. This results

in both the combinational blocks having delays of 2.0 units each as seen in Figure 2.5.
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Figure 2.3 An example circuit.
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Figure 2.4 Using clock skew to reduce clock period.

This leads us to conclude that in each case, one unit of time is borrowed by the first
combinational block from the second; the manner in which cycle-borrowing occurs may either

be by the vehicle of clock skew or via retiming.

2.2.2 Minperiod Retiming Algorithm

The details of the ASTRA algorithm for minperiod retiming are provided in [21, 109];
a brief description is presented here for completeness. The relationship between skew and

retiming motivates the following two-phase solution to the retiming problem:

Phase A: The clock skew optimization problem is solved to find the optimal value of the

skew at each FF, with the objective of minimizing the clock period, or to satisfy a given

CLOCK
IN L1 ouT IN
I N 1 | I L1
‘ Gl ‘ G2 u ‘ G3 ‘ G4
ouT
o0 1 2 3

Figure 2.5 Retiming for clock period optimization.
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(feasible) clock period. This involves the (possibly repeated) application of the Bellman-
Ford algorithm [17] on a constraint graph [109].

Phase B: The skew solution is translated to retiming and some FF’s are relocated across
gates in an attempt to set the values of all skews to be as close to zero as possible. We
attempt to move each positive skew FF opposite to the direction of signal propagation,
and each negative skew FF in the direction of signal propagation to reduce the magnitude
of its skew. A formal rationalization is provided in [109], but the example in Figure 2.5

should suffice to explain the intuition.

After Phase B, any skews that could not be set exactly to zero are forced to zero. This
could cause the clock period to increase from Phase A; however, it is shown that this increase
will be no greater than the maximum gate delay. Note, however, that this is not necessarily
suboptimal since the minimum clock period using skews may not be achievable using retiming,
since retiming allows cycle-borrowing only in discrete amounts (corresponding to gate delays),

while skew is a continuous cycle-borrowing optimization [31].
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3 RETIMING FOR MINIMUM AREA

3.1 Introduction

For digital design the interesting problem is of delay constrained area optimization, and
constrained minimum area retiming is one way to solve this problem. However, the high
computational expense of this optimization has limited its use. In this chapter, we approach
the problem of constrained minarea retiming for circuits with edge-triggered FF’s through an
amalgamation of the Leiserson-Saxe approach and the ASTRA approach. By utilizing the
merits of both approaches we develop an efficient algorithm for constrained minarea retiming
which is also capable of handling very large circuits. The basic idea of the approach is to use
the ASTRA approach to find tight bounds on the retiming variables. These bounds help us
reduce both the number of variables and the number of constraints in the problem without
any loss in accuracy. By spending a small amount of additional CPU time on the ASTRA
runs, this method leads to significant reductions in the total execution time of the minarea
retiming problem. The reduction in the problem size also reduces the memory requirements,
thus enabling retiming of large circuits.

The chapter is organized as follows. In Section 3.2, we show the relationship between these
two, and utilize it to efficiently solve the minarea retiming problem. Section 3.3 describes our
minarea retiming algorithm. Experimental results are presented in Section 3.4 followed by

concluding remarks in Section 3.5.

3.2 Reducing the Problem Size

In practical circuits, it is found that the number of period constraints is phenomenally large.
For a circuit with n gates the number of period constraints is O(n?). However, it is also true
that a large fraction of these constraints are redundant as they are implied by some of the other
constraints. Any algorithm with pretensions to practicality must use techniques for pruning
these redundant constraints. Note that the exactness of the solution is not sacrificed in doing
s0, since none of the essential constraints are removed. Our approach is to find tight bounds
on the variable values, and to use these bounds to avoid generating the redundant constraints.
By appropriate application of these bounds, we expect not only to prune the constraint set but

also to reduce the number of variables. In this way, we simplify the problem and enable the
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LP to be solved more efficiently. We are also able to generate this set of reduced constraints

efficiently.

3.2.1 The Concept of Restricted Mobility

A modification of the procedure used in ASTRA can be used to identify how far FF’s may
possibly be moved. For the circuit in Figure 3.1, to achieve the minimum clock period of 4.0
units, one must move one copy of FF B to the output of gate G4. The possible locations
for FF’s along the other path to FF C are at the input to gate G8, or at the output of gate
G8, or the inputs of gates (G9,G10) or the outputs of gates (G9,G10); no other locations are

permissible

INPUT FFB/\ OUTPUT
>—> .

Figure 3.1 Possible FF locations after retiming.

Therefore, it can be seen that the FF’s cannot be sent to just any location in the circuit;
rather, there is a restricted range of locations into which each FF may be moved, and the
mobility of each FF is restricted. This restricted mobility may be used to reduce the search
space, and hence the number of constraints.

This range of motion of FF’s can be derived from the skews calculated by the Bellman-
Ford procedure (which calculates the minimum allowable skew value at each FF) [109], and the
corresponding slacks in the constraint graph. The idea in this chapter is that the skew values
can be used to reduce the search space for the minarea retiming algorithm using restricted
mobility. This is seen to translate to a smaller LP.

We will now show the relation between the Leiserson-Saxe approach and the ASTRA ap-
proach, and how a modified version of ASTRA can be used to derive bounds on the r variables
in the Leiserson-Saxe method. Next, we show how these bounds can be used to prune the

number of constraints in minarea Leiserson-Saxe retiming. Finally, we present an example to
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illustrate the method.

3.2.2 Deriving Bounds for the r Variables

The concept of restricted mobility is related to the “nearest” and “farthest” location that
any FF can occupy under the target clock period. This is relatively easy to map on to the
clock skew optimization problem. To understand this, we provide a brief review of the clock
skew optimization problem. Given a pair of FF’s, ¢ and j, if the maximum delay of any purely

combinational path connecting them is D;;, then the following long-path constraint must hold:
T; + Dij <xz;+ P (3.1)

where z; and z; are the clock skews at FF’s 7 and j, respectively, and P is the target clock
period. For a specified clock period, this may be written as a difference constraint [17] as

follows:
.’I,‘j — Ty 2 P — Dij (32)

Note that the right hand side of the above equation is a constant, since the clock period is
a specified value. For a given circuit, one may build a set of difference constraints with one
such constraint for every pair of FF’s that have a purely combinational path connecting them,
and these difference constraints may be represented by a constraint graph. The Bellman-Ford
algorithm may be applied to this graph to find the longest path in the graph. The final value
associated with each vertex provides the required skew at that vertex and gives one possible
set of skews that can achieve the clock period P. Note that this is not the only allowable
set of skews, since slacks [109] in the arcs of the constraint graph can lead to other allowable
solutions. Therefore, the first order of business is to determine bounds on the allowable skews
at each FF.

ASTRA initializes all skews to 0 to achieve the minimum range of skews. To obtain the
bounding skews we need to initialize all skews to —oo. Now when the the Bellman-Ford
algorithm [17] is applied to the constraint graph for a specified clock period, the as-late-as-
possible! (ALAP) skews are calculated for the network. The as-soon-as-possible (ASAP) skews
can be obtained by running the Bellman-Ford algorithm on the transpose of this constraint
graph [17] (i.e., a graph with the same vertex set as the original graph, but with the edge
directions reversed).

These ASAP/ALAP skews can be translated to ASAP/ALAP locations for FF’s. These lo-
cations can be used to obtain bounds on the retiming variables of the Leiserson-Saxe approach,
r, associated with the gates in the circuit as illustrated by the following example. Here we

use the terms “ASAP locations” to refer to the case when all FF’s are as close to the primary

'The calculation of ASAP and ALAP times is a technique that is routinely used in scheduling in high-level
synthesis; see, for example, [86] .
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input as possible. Similarly the set of ALAP locations has all FF’s as close to the primary
output as possible. For ASAP locations any available slacks are used to avoid moving a FF
in the direction of signal flow, while for ALAP locations they are used to avoid FF motion

against the direction of signal flow.

Example: For the circuit in Figure 3.1, the locations for the FF’s in the retimed circuit
corresponding to the ASAP and ALAP skew solutions are shown in Figure 3.1 (a) and (b),
respectively. This implies that during retiming, no FF will move across gates G1, G2, G5,
G6, G7, G11 and G12; one FF each will move from the input to the output of gates G3 and
G4, and either 0 or 1 FF will move from the input to the output of gates G8, G9 and G10.
Referring to Section 2.1 for the definition of the r variables, this implies that one may set the
following bounds on the r variables.
(1) r(u) =0 for u € {G1,G2,G5,G6,G7,G11,G12}
(2) r(u) = —1 for u € {G3,G4}, and
(3) =1 <r(u) <0 for u € {G8,GY9, G10}. A
As explained in [109], FF’s that have positive skews are moved in the direction opposite to
the signal flow direction, and FF’s with negative skews are relocated in the direction of signal
flow (see Section 2.2 for a brief explanation). The procedure for finding the ASAP and ALAP
locations proceeds along the same lines as in [109], with a few variations described below.
During this procedure, we also generate the bounds on the r variables.
When we consider the ASAP locations for the retimed FF’s, the aim is to push the FF’s as
far as possible in a direction opposite to the direction of signal propagation. Therefore, each
positive skew FF is moved as far as possible in the direction opposite to the signal flow, and

each negative skew FF is moved as little as possible in the direction of signal flow. Therefore,

(1) for a FF with positive skew s that is being moved across a single-fanout gate p against
the direction of signal propagation, the skew value after the relocation at input 7 of p is
set to s — delay(p). If this value is non-positive, then the ASAP location has been found.

For gates with multiple fanouts, s = min where s; is the skew of the FF

all outputs(si)7
at the i'" output, as shown in Figure 3.2(a).

(2) for a FF with negative skew s that is being moved across a single-fanin gate p in the
direction of signal propagation, the skew value after the relocation at output 7 of p is set
to s + delay(p) + slack(i), where slack(i) is the slack associated with the output ¢. This
slack is defined as the amount by which the delay at output ¢ may be increased before
it becomes the critical output of p; by definition, the critical output has a slack of 0. If
the new skew is nonnegative, then the ASAP location has been found. For gates with

multiple fanins, s = max (s;), where s; is the effective skew of the FF at the ™"

all inputs
output, as shown in Figure 3.2(b).



22

/—\ Skew max(sL,s2)+ d(p) + slackl
-7
/\%Wm ‘

Skew sl <0

|
Skew s2< 0 L.
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Figure 3.2 Effective skews at FF’s after ASAP retiming across a gate.

The ALAP locations can be found similarly with positive skew FF’s being moved as little
as possible in the direction opposite to the signal flow direction, and negative skew FF’s being
moved as much as possible in the signal flow direction.

While moving the FF’s to ASAP and ALAP locations, subject to the specified clock period
P, we count the number of FF’s that traverse each gate; these lead us to upper and lower
bounds, respectively, on the r variables for each gate. A FF moving from the inputs to the
output of a gate decrements the count by one, while one moving from the output to the inputs
increments it by one.

For the ASAP case, we move FF’s as far as possible against the direction of signal prop-
agation. In other words, we relocate the largest number of FF’s possible from the output to
the inputs of a gate. By the definition of the r variables, this gives us an upper bound on r
for the gates.

Similarly, the ALAP times are used to relocate the largest number of FF’s that can move
from the inputs of a gate towards its output, and this gives us a lower bound on the r values
for the gates in the circuit. Therefore, this procedure provides upper and lower bounds on the

r variable corresponding to each gate y of the form.
Ly <r(y) <U, (3.3)

We will refer to L, as the lower bound for gate y and to Uy as the upper bound of gate y.
Like the ASAP and ALAP retimings, these bounds are with reference to a fixed host vertex,
ie, Ly =Uy =0. U, =L, =k, we say that gate u is If Uy = L, = k, we say that gate
y is fized or immobile since r(y) = k, is not really a variable any more. On the other hand if
U, # L, we say that gate y is flexible or mobile. Thus we can reduce the variable set V' of the

Leiserson-Saxe model to V' C V, the variable set of Minaret where
V' ={veV|U, # L,} (3.4)

Bounds on the mirror vertices, introduced to model the maximal latch sharing can be

obtained directly from the bounds on fanout gates (as given by Theorem 1). The mirror
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variable set M is also reduced to M’ C M the mirror variable set of Minaret where
M' ={m e M|U,, # Ly} (3.5)

Theorem 1 The bounds on the r value of a mirror vertex m; of gate 1 in Figure 2.2 can easily

be derived from the bounds on the fanout gates and are given by

Un, = erenFE‘L())((i)(Uj +w(e;;)) — w(maz;)
Ly, = erenFE‘L())((i) (Lj + w(eij)) — w(maz;) (3.6)

Proof: After optimal retiming the weight on at least one of the edges to the mirror vertex

(see Figure 2.1) will be zero [59] hence

min ((ejn)) = 0
min (wlegm) + 7lm) () = 0
e min (wlegn) ~ () = —r(m)
e r(m) = max (715) ~ wlegm)
Since r(j) < U; Vje FO(i)
we have vjrengg(.)(r(j) w(ejm;)) < ngnlgg(i)(UrW(eg'mi))
Therefore r(m;) < erenlgg(z’)(Uj — w(€jm;))
Thus the upper bound is
Uni = max_(U; +w(ey)) — wlmaz)

VjEFO(i)

After retiming all edge weights including edges to mirror vertices must be nonnegative,

that is
wy(ejm,) > 0 Vje FO(i)
or w(ejm,;) +r(m;) —r(j) > 0 Vje FO(i)
Le., r(mi) > r(j) —wlejm;) Vj€FO()
ie, r(m;) > r(j)+wlei;) —w(maz;) Vje€ FO(i)
i > ] ii)) — AT
ovr(m) > max (1(5) + wlery) — w(ma)
Therefore the lower bound is
Ly, = max (L; +w(e;;)) — w(max;)

VieFO(i)
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3.2.3 Eliminating Unnecessary Constraints

In this section, we illustrate how the addition of bounds (derived previously) to the LP of
Equation (2.7) in Section 2.1.4 may be used to reduce the constraint set by dropping redundant
constraints. It can be seen from the bounds on r(7) and r(j) in Equation (3.3) that (i) —r(j) <
U; — L;. Therefore, if U; — Lj < ¢;; then r(i) —r(j) < ¢;; is also true, and the constraint (¢, 5)
can be dropped. Thus the Leiserson-Saxe constraint set C' can be reduced to the Minaret

constraint set C' C C where
C' = {(’l,j) S C| U, — Lj > Cij} (3.7)

Notice that constraints associated with fixed or immobile gates can be treated as bounds and
need not be included in C’. Like the Leiserson-Saxe constraints, the Minaret constraints also
where C! is the

consists of circuit, period and mirror constraints, i.e., C' = C, U C) U Oy,

reduced circuit constraint set, C; is the reduced period constraint set, and C!, is the reduced

mirror constraint set.

3.2.4 Reduced Linear Program

We use the Equations (3.4), (3.5) and (3.7) to reduce the LP in Equation (2.7) to the
following LP in Minaret

min Y K > Ble) X ﬂ(em)-r(v)} (3.8)
(v)

ve{V'UM'} VjeFI(v) vjeFO

subject to  r(u) —r(v) < cyy Y(u,v) € C’
L, <r(u)<U, Yu € (VIUM')

3.2.5 An Example

The following example illustrates the method and shows how the number of constraints
can be reduced using our approach.

Consider the circuit example shown in Figure 3.3. As in the previous examples, we make
the assumption that the gates have unit delays. We consider two possible clock periods of 2

units and 3 units in this example.

I>RR>I
aVbVCd

IN FF1 ouT

Figure 3.3 Example illustrating the approach.
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3.2.5.1 When P = 2 units

For a clock period of two units, the list of constraints generated by the approach in [115]

is listed below.

Circuit constraints r(h) —r(a) <1
r(a) —r(b) <0

r(b) —r(c) <0

r(c)—r(d) <0

r(d) —r(h) <0

0

( )

( (h)
Period constraints r(h) —r(c) <

( (¢)

( )

Note that

(a) the delay associated with the host node is zero, and

(b) the value of r(h) is set to zero as a reference, so that it is not really a variable.
Therefore, this is a problem with four variables and eight linear constraints (of which three act
as simple bounds).

In our approach, for a clock period of 2, we first find the bounding skews. The FF’s at
the input and output may not be moved, and therefore, the only movable FF is FF1, which
is assigned a skew of -2 units. The correctness of this skew value is easy to verify since the
only feasible location of FF1 under ¢ = 2 is two delay units to the right of its current location.

Therefore, we find that by using the concept of restricted mobility,

—1<r(a)<—-1 =r(a)=-1
-1<rb)<-1 =rd)=-1
0<r(c) <0 =r1r(c)=0
0<r(d)<0 =r(d=0

Since all nodes are fixed, and all the constraints can be dropped, all of the constraints and

variables have been eliminated!
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3.2.5.2 When P = 3 units

With the clock period is set to 3 units, the list of constraints is

Circuit constraints r(h) —r(a) <1
r(a) —r(b) <0
r(b) —r(c) <0
r(c)—r(d) <0
r(d) —r(h) <0

Period constraints r(h) —r(d) <0
r(a) —r(d) <-1,

As before, r(h) = 0 is set as a reference, giving a problem with four variables (as before) and
seven linear constraints (of which three act as simple bounds).
Under our approach, the relocated FF can reside either at the input of gate b, the output

of gate b, or the output of gate c¢. Therefore, we have

—1<r(a) < =r(a) = -1
-1<rb) <0
-1<r(e) <0

0<r(d) <0 =r(d=0

Using these bounds we drop all constraints but
r(b) —r(c) <0

Therefore, we have reduced the problem complexity to two variables, each with fixed upper
and lower bounds and one linear constraint. (Note that upper/lower bound constraints are
typically much easier to handle in LP’s than general linear constraints; in fact, in many cases,

upper and lower bounds are actually helpful in solving the LP.)

3.3 Minarea Retiming Using Minaret

The ideas described so far have been encapsulated in Minaret (MINimum Area RETiming),
a minimum area retiming algorithm for large sequential circuits. Minaret consists of three
phases of finding the bounds, generating the LP and solving it. Each of these is described in

detail in this section.

3.3.1 Deriving Bounds on the r Variables

As described in Section 3.2.2 the bounds are derived by finding the ASAP and ALAP
locations of the FF’s, using a modified form of ASTRA. An efficient method for calculating
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all FF-to-FF delays (D;;’s) required by ASTRA, presented in [108], is used in Minaret. If the
initial locations of FF’s satisfy the target clock period all lower bounds must be nonpositive
and all upper bounds must be nonnegative (i.e., L; < 0 and U; > 0 Vi), since r(i) =0V i is
a feasible solution. However, if the target clock period is smaller than the initial period, we
may be forced to move a FF from the inputs of a gate to its outputs to obtain any feasible
(including the ASAP) locations. Thus it is possible to have a negative upper bound. Similarly
it is possible to have a positive lower bound if the target clock period is smaller than the initial
period. The bounds on the mirror vertices for all gates with more than one fanout are derived

from the circuit graph using Theorem 1.

3.3.2 Generating the Linear Program

Using the alternative description of the maximal FF sharing in Section 2.1.4 the objective
function coefficients are obtained by inspection of the circuit, without explicitly adding the
mirror vertices. The circuit and the mirror constraints in C’ are obtained from direct inspection
of the circuit graph using Equation (3.7). Because the bounds on the mirror vertices can also
be obtained directly from the bounds on the gate vertices, we do not need to explicitly add
the mirror vertices to the circuit graph. Since every multi-fanout gate has a mirror vertex, this
gives us important savings in terms of the space and time requirements. We now describe how
to obtain the period constraints in C’.

For large circuits (with tens of thousand gates) O(|V]?) memory required by the Leiserson
and Saxe method of generating period constraints [59] is not practical, therefore, we use the
method from [115], which requires only O(|V|) memory. We take advantage of the bounds
obtained in Section 3.3.1 to modify this method to run faster, generating only the reduced
constraint set C’.

The algorithm in [115] uses a combination of the Dijkstra’s algorithm and the Bellman-Ford
algorithm. The algorithm works by generating one (s'") row of the W and the D matrix at a
time. An ordered pair (w(e;;), —d(i)), denoted by (a;,b;), is associated with each edge e;; and
is used to compute the shortest distance from vertex a source vertex s. A heap is maintained
for each distinct value of a; and is indexed by this value. Until all heaps are empty, we extract
the node u at the top of the minimum index heap using the function pop-min(heap index).
The fanouts of u are added to the appropriate heaps if their a, or b, values are updated
(Bellman-Ford relaxation). At the end of this procedure D(s,u) = —b, and W (s,u) = ay.

Note that to satisfy a clock period P, all we have to do is to ensure that each path whose
delay is greater than P has at least one FF on it. The number of FF’s on any path is monotonic
with the path length because negative edge weights are not allowed. Due to the monotonicity
of edge weights, if we ensure at least one FF on any sub-path, we are assured to have at least
one FF on all paths containing this sub-path. This strategy can be used to prune the number

of constraints generated as well as the gates examined.
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Adding a period constraint from s to u is one way to ensure at least one FF on all paths
from s to u. This observation presented by Leiserson-Saxe was used in [115] to prune the
constraint set. The idea was to add a period edge to only the vertex v, reachable from s, that

satisfies the following:
D(s,v) > P and D(s,u) < PVYuons-FI(v) (3.9)

where s - FI(v) is a path from s to a fanin of v. Thus if the period constraint is added, the
fanouts of u need not be relaxed. Similarly if the bounds on the r variables guarantee us at
least one FF on any sub-path, we need not process any path containing this sub-path.

At the end of the ASTRA run for obtaining the lower bounds all FF’s are in the ALAP
locations. If the delay of all the gates is not the same, it is possible that retimed circuit
obtained by ASTRA with FF’s in the ALAP locations may have some purely combinational
paths with delays that are greater than the target clock period P. However in practice, most
of the other paths satisfy the target clock period. We will use this observation to further speed
up the constraint generation process.

Consider a fixed gate a in the circuit at the end of the ALAP run. Now if none of the
combinational paths starting at this gate violate the clock period, we have Wxypap(a,i) > 1
if D(a,i) > P Vi. Since Wurap(a,i) = W(a,i) + L; — Ly we have L, — L; < W (a,i) — 1,
or Lq — L; < ¢q. Since gate a is fixed U, = L,, we obtain U, — L; < ¢,; Vi € V, which is
guaranteed to be true, and hence all constraints starting from fixed gate a are redundant, and
we do not need to generate them. Thus we must generate period constraints only from those
fixed gates which have at least one purely combinational path starting from it with delay more
than the clock period. Let us call this set V.

The pseudo code presented bellow explains how we use the bounds on the r variables to

generate the reduced constraint set C' efficiently.

P = target clock period;
L <r(i) <U; VieV;
Sp= the k' heap;
Lypin = min(L;) Vi € V;
Vs e V'uv”
{
s = current vertex;
Yv e V,a, =00 and b, = 0;
So={s}, as =0, and by = —d(s);
k = current register weight;
do {
k=min{p | 8, # 0};
if(k > Us — Lyyin + 1) break;
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u = pop-min(Sg) ;
if(Us — L, <k —1) continue;
if(—=b, > P)
add a period edge c(s,u) with weight a, — 1
else {
Vo € FO(u) {
if( k-Us+ L, <1)
if ((ay,by) > (ay + Sup, by — d(v)))
heap-insert (Sy(u)4s, ., V) ;
}

}
} while(3p| S, # 0

3.3.3 Solving the Linear Program

Like Equation (2.7), the LP in Equation (3.8) is also a dual of a minimum cost network flow
problem. We found that it could be solved very efficiently using the network simplex algorithm
from [5]. The network simplex method is a graph based adaptation of the LP simplex method
which exploits the network structure to achieve very good efficiency. The upper and lower
bounds on the r variables provide a initial feasible spanning tree. This tree has two levels only,
with the host node as the root and all other nodes as leaves. To prevent cycling we construct
the initial basis to be strongly feasible by using the appropriate bound (upper or lower) to
connect a node to the root (host node). It is easy to maintain strongly feasible trees during
the simplex operations, and details are given in [5].

Using the first eligible arc pivot rule with a wraparound arc list from [3] (page 417) gave us
significant improvements in the run time. The dual variables (r variables) are directly available
from the min cost flow solution. We could solve problems with more than 57,000 variables and

3.6 Million constraints in about 2.5 minutes.

3.4 Experimental Results

We now present area minimization results on circuits in the ISCAS89 [7] benchmark suite,
subject to a given clock period. We assume that all gates have a unit delay, although we
emphasize that the algorithm is applicable when gates have non-unit delays. The target clock
period is set to be the minimum achievable clock period for the circuit under retiming and is
calculated using ASTRA. Therefore the results show the smallest number of FF’s for the best

clock period for all circuits. Since we did not have access to large circuits (> 20,000 gates) we
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created some large circuits (myex1 through myex5) by combining circuits from the ISCAS89
benchmark suite.

We present the results in two tables. Table 3.1 presents measures of the quality of minimum
area retiming in the circuits. For each circuit, the number of gates |G|, the target clock period
P, the final number of FF’s in the circuit from both ASTRA and Minaret, and the CPU time
in seconds Teye. of Minaret are shown. Also shown are two metrics on the circuits: Fy;, the
percentage of gates found to be fixed and M,,,, the average mobility, i.e., the average value
of (U, — L,) over all gates in the circuit. Since U, — L, gives the range in possible values
(or mobility) of 7(y), Mayy is a measure of the average mobility in the circuit. The number
of FF’s both in ASTRA and Minaret are obtained under the more accurate area model of
Section 2.1.4, after taking into account the maximum sharing of FF’s at all nodes (including
primary inputs) in the circuit. The execution times are in seconds on a DEC AXP system
3000/900 workstation, and include the time spent in getting the bounds, generating the LP
and solving it.

For most ISCAS89 circuits M,,, was less than unity and the average over all ISCAS89
circuits was about 0.7. The percentage of fixed nodes Fy, varied from being as high as 95% to
being below 1% (for s38417). We observed that circuits that have a small critical part (perhaps
a cycle in the retiming graph) with most gates being off the critical paths in the timing graph,
result in high values of M,,,. We note that these circuits are not very well suited for retiming
since the small critical parts of the circuit restrict the rest of the circuit from achieving better
clock periods. The CPU time Teye. depends on the the number of gates in the circuit |G|, the
average mobility M, and Fj,.

In [115] the circuit s38584 needed 38 hours of CPU time, while Minaret could retime it in
about one minute. We point out, though, that such a comparison is not entirely fair since (a)
the results are generated on different platforms and (b) the circuits used in [115] are modified
ISCAS89 benchmarks and have a much smaller number of gates. For example s38584 has 7882
gates in [115] while it has 19,253 gates in this work.

In Table 3.2, we compare the size of the LP for Minaret and the original problem by
presenting the number of variables and constraints for both methods. The number of variables
include both the gate and mirror variables. The number of constraints for Minaret includes
the upper and lower bounds, while that for the original method are obtained by using the
pruning strategy suggested in [59], and implemented in [115]. The reduction in the number
of constraints in Minaret depends on the average mobility M,,, and Fy,. However, since the
original constraints are generated after some pruning them self, the reduction is affected by
other factors as well. Table 3.2 also presents the breakup of the CPU time (in seconds) in
terms of the time spent in using ASTRA to arrive at the bounds for the r variables (73), the
time spent in generating the LP of Equation (3.8) (7j) and the time needed to solve this LP
by the network simplex method (7T5).
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Table 3.1 Minarea Retiming Using Minaret

Circuit ‘G| P # FFs Ffz Ma,'ug Tezec
ASTRA | Minaret
s27 10 | 6.0 3 3 || 86.67% | 0.13 0.00s
s208.1 104 | 10.0 27 9 || 66.09% | 0.36 0.01s
s298 119 | 6.0 36 22 || 34.38% | 0.75 0.01s
s382 158 | 7.0 33 23 || 32.93% | 0.67 0.02s
s386 159 | 11.0 6 6 || 90.75% | 0.09 0.01s
s344 160 | 14.0 22 19 || 11.11% 1.24 0.04s
s349 161 | 14.0 22 19 11.05% 1.24 0.04s
s444 181 | 7.0 49 28 || 31.05% | 0.69 0.03s
s526n 194 | 6.0 41 30 || 42.36% | 0.59 0.02s
s510 211 | 11.0 8 7| 42.62% | 0.62 0.07s
s420.1 218 | 12.0 57 17 || 60.76% | 0.41 0.03s
s635 286 | 66.0 35 35 || 68.17% | 0.32 0.04s
s641 379 | 74.0 19 19 || 70.55% | 0.29 0.05s
s713 393 | 74.0 19 19 || 67.85% | 0.32 0.08s
s967 394 | 12.0 41 35 || 12.24% | 0.88 0.22s
s953 395 | 13.0 44 27 8.99% 0.93 0.26s
s838.1 446 | 16.0 117 33 || 53.01% | 0.51 0.14s
s938 446 | 16.0 117 33 || 53.01% | 0.51 0.14s
s1196 529 | 24.0 18 18 || 81.33% | 0.19 0.03s
s1238 508 | 22.0 18 18 || 81.53% | 0.19 0.03s
s1269 569 | 19.0 111 84 || 54.77% | 0.49 0.11s
s1494 647 | 16.0 20 71 93.47% | 0.07 0.05s
s1488 653 | 16.0 17 7 95.44% | 0.05 0.05s
s1423 657 | 53.0 76 76 || 28.13% | 0.83 0.59s
s1512 780 | 23.0 84 70 || 18.55% | 0.99 1.05s
s3271 1,572 | 15.0 306 168 || 49.38% | 0.81 0.25s
prolog 1,601 | 13.0 358 122 || 49.77% | 0.55 0.27s
s3384 1,685 | 27.0 438 167 || 14.31% | 3.15 2.44s
$3330 1,789 | 14.0 331 110 || 63.46% | 0.39 0.22s
s4863 2,342 | 30.0 201 138 || 28.46% | 0.97 5.24s
s5378 2,779 | 21.0 555 173 || 36.12% | 0.85 1.28s
s6669 3,080 | 26.0 719 305 || 40.02% | 0.76 2.20s
$9234.1 3,270 | 38.0 205 134 || 14.62% 1.55 6.18s
s13207.1 7,791 | 51.0 629 446 || 21.49% | 2.96 10.38s
s15850.1 9,617 | 63.0 571 525 || 24.15% 1.52 38.81s
$35932 16,065 | 27.0 1,729 1,729 || 55.27% | 0.54 7.56s
s38584.1 | 19,253 | 48.0 1,428 1,427 || 14.22% | 2.13 65.07s
s38417 21,370 | 32.0 1,616 1,370 0.88% 4.35 146.92s
myexl | 25,717 | 42.0 5,146 2,293 || 4.75% | 2.51 || 169.10s
myex2 | 28,946 | 45.0 5,655 2,022 || 8.73% | 2.26 | 160.47s
myex3 35,353 | 35.0 8,052 3,279 5.22% 2.65 489.52s
myex4 40,661 | 35.0 11,591 2,803 1.80% 4.12 421.50s
myex5d 56,751 | 47.0 11,488 3,378 4.95% 3.98 799.64s
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Table 3.2 Reduction in Number of Variables and Constraints in Minaret

Circuit # Variables # Constraints Ty T. T,
Minaret | Original | Froq Minaret | Original | Froq
s27 5 20 | 75.00% 10 35 | 71.43% 0.00s 0.00s 0.00s
s208.1 54 144 | 62.50% 239 540 | 55.74% 0.00s 0.00s 0.00s
5298 117 163 | 28.22% 628 1,471 | 57.31% 0.01s 0.00s 0.00s
382 157 217 | 27.65% 1,005 2,146 | 46.83% 0.01s 0.01s 0.00s
s386 22 200 | 89.00% 73 2,903 | 97.94% 0.01s 0.01s 0.00s
s344 201 221 9.05% 1,722 2,117 | 18.66% 0.01s 0.03s 0.00s
s349 203 223 8.97% 1,581 1,847 | 14.40% 0.01s 0.03s 0.00s
s444 177 256 | 30.86% 1,430 3,121 | 54.18% 0.01s 0.02s 0.00s
sH26n 167 258 | 35.27% 1,097 4,674 | 76.53% 0.01s 0.01s 0.00s
sH510 183 311 | 41.16% 2,303 7,331 | 68.59% 0.01s 0.06s 0.00s
s420.1 123 296 | 58.45% 553 609 9.19% 0.01s 0.02s 0.00s
s635 157 416 | 62.26% 478 1,283 | 37.26% 0.02s 0.02s 0.00s
s641 158 496 | 68.15% 521 1476 | 64.70% 0.02s 0.03s 0.00s
s713 191 532 | 64.10% 663 2,373 | 72.06% 0.02s 0.07s 0.00s
s967 527 583 9.61% 9,223 13,929 | 33.79% 0.02s 0.18s 0.02s
s953 554 593 6.58% 10,918 12,585 | 13.24% 0.02s 0.22s 0.03s
s838.1 296 600 | 50.67% 1,235 2,482 | 50.24% 0.03s 0.11s 0.00s
s938 296 600 | 50.67% 1,235 2,484 | 50.24% 0.03s 0.11s 0.00s
s1196 184 713 | 74.19% 570 1,686 | 66.19% 0.02s 0.01s 0.00s
s1238 182 702 | 74.07% 565 1,781 | 68.28% 0.02s 0.01s 0.00s
s1269 371 765 | 51.50% 1,363 20,250 | 93.27% 0.03s 0.08s 0.00s
s1494 50 751 | 93.34% 247 32,215 | 99.24% 0.02s 0.03s 0.00s
s1488 37 757 | 95.11% 154 33,277 | 99.54% 0.03s 0.03s 0.00s
s1423 647 860 | 24.77% 2,359 16,266 | 85.50% 0.05s 0.54s 0.01s
s1512 823 983 | 16.28% 24,331 52,346 | 53.52% 0.04s 0.98s 0.03s
s3271 1,079 2,038 | 47.06% 5,492 43,506 | 87.38% 0.07s 0.16s 0.02s
prolog 1,039 1,992 | 47.84% 5,304 37,319 | 85.79% 0.08s 0.17s 0.02s
s3384 1,870 2,166 | 13.67% 47,916 49,487 3.17% 0.12s 2.07s 0.25s8
$3330 858 2,212 | 61.21% 4,595 30,409 | 84.84% 0.08s 0.12s 0.01s
s4863 2,170 2,995 | 27.55% 92,873 597,323 | 84.45% 0.11s 4.80s 0.34s
sh378 2,385 3,664 | 34.91% 19,170 168,530 | 88.63% 0.11s 1.04s 0.13s
s6669 2,639 4,100 | 38.07% 20,041 341,750 | 94.14% 0.17s 1.89s 0.14s
s9234.1 3,366 3,893 | 13.54% 54,610 137,962 | 60.42% 0.18s 5.65s 0.35s
s13207.1 7,303 9,180 | 20.45% 38,630 491,561 | 92.14% 0.63s 8.74s 1.01s
s15850.1 8,740 11,332 | 22.87% 38,318 1,046,108 | 96.34% 0.99s 36.32s 1.50s
$35932 10,306 21,716 | 52.54% 53,087 389,647 | 86.38% 1.13s 4.55s 1.88s
s38584.1 20,486 23,390 | 12.42% 97,268 | 11,450,472 | 99.18% 2.23s 54.40s 8.44s
38417 25,731 | 25,923 | 0.74% || 1,507,162 | 1,628,544 | 7.45% || 2.93s | 91.60s | 52.38s
myex1 31,476 | 32,922 | 4.39% || 812,872 | 3,275,567 | 75.18% || 3.41s | 146.3ds | 19.36s
myex2 31,704 34,493 8.09% 398,697 | 17,185,252 | 97.68% 4.26s | 131.83s 24.38s
myex3 42,604 44,812 4.93% || 5,693,689 | 16,978,788 | 66.46% 5.01s | 403.84s 80.66s
myex4 48,415 | 49,214 | 1.62% || 2,635,127 | 8,186,340 | 67.81% || 6.47s | 311.51s | 103.52s
myexd 57,488 60,241 4.57% 3,600,681 | 24,316,717 | 85.20% 10.33s | 637.84s | 151.47s
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T, depends on the number of gates and FF’s in the circuit, |G| and the average mobility,
M4, of the circuit. Phase A of ASTRA is dependent on the number of gates for obtaining the
FF to FF delays and on the number of FF’s for the Bellman-Ford runs. The CPU time taken
for phase B of ASTRA depends on M,,,, since M, gives a measure of how many retiming
(or movement of FF’s across gates) are performed in phase B.

Ty is most strongly influenced by the number of flexible gates, i.e., (1 — Fy;) - |G|, which is
equal to the number of rows of W and D matrices we need to generate. It is also influenced by
M,4 in that it determines the number of gates processed for each row of W and D matrices.

T depends on the size of the LP in terms of the number of variables and constraints.

3.5 Conclusion

In this chapter we presented a fast algorithm for minarea retiming of large circuits. The
contributions of this chapter are twofold. First, it reconciles the Leiserson-Saxe algorithm
with the ASTRA algorithm and shows the relation between these two. Second, it utilizes this
relationship to good purpose by modifying the ASTRA algorithm to make available information
from the skew-retiming equivalence that is of great benefit in solving the minarea retiming
problem under the Leiserson-Saxe framework.

Experimental results on benchmark circuits in the ISCAS89 benchmark suite have been
presented, and the procedure is seen to give good benefits. The number of variables and
constraints where dramatically reduced in most cases. The entire ISCAS89 benchmark suite
could be retimed in minutes. This chapter shows that it is possible to perform minarea retiming
on large circuits in a reasonable amount of time.

Even though the average mobility M., is high and the fraction of fixed gates F, is low
for the large circuits we created, we are still able to retime them in a reasonable amount of
time. Because of the various pruning techniques used in Minaret, the number of constraints
in practical circuits grows at a far slower rate than O(|G|?).

Minaret also has a reduced memory requirement since a significant number of constraints
are not stored. We found that for large circuits having constraints in millions, the memory
requirement becomes a bottleneck. The reduction in the number of constraints also reduces
both the problem generation and the problem solution time.

To the best of our knowledge, no other retiming algorithm incorporates pruning methods to
reduce the number of variables. This reduction in the number of variables significantly reduces
the problem generation time. Notice that due to the presence of mirror vertices, the number
of variables can be up to twice the number of gates in the circuit. Hence the reductions in
the number of variables and constraints provided by Minaret are important to retime large

circuits.
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4 RETIMING CONTROL LOGIC

4.1 Introduction

A major problem associated with the application of retiming to control logic, is the preser-
vation of the initial (reset) state of a circuit, which is determined by the initial values of the
registers in the circuits. In the synthesis of control logic, the initial state of the circuit is an
integral part of its behavior therefore, it is necessary to find an equivalent initial state for the
retimed circuit. An initial state in the retimed circuit is equivalent to that in the original
circuit if for any input sequence applied to both the circuits, with the original circuit started
in the initial state and the retimed circuit started in the equivalent initial state, the same

sequence of outputs is produced [30].

I
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Figure 4.1 (a) Original circuit. (b) Retimed circuit

It is not always possible to find an equivalent initial state for the retimed circuit without
modifying it. For example, consider the circuit in Figure 4.1 taken from [130]. If the initial
value of FF’s A and B are 1 and 0, respectively, then the retimed circuit cannot be initialized
to have the same behavior as the original circuit since an equivalent initial value of FF C in the
retimed circuit cannot be found. Techniques for finding a retiming with an equivalent initial

state were proposed in [30, 130].

—a

—(f— retiming by -1 ——(f)— f(ab)

(o)

Figure 4.2 Forward retiming of a combinational logic node
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As shown in Figure 4.2, an equivalent initial state can always be found for forward motion
of FF’s (referred to as “negative retimings” using the notation of Leiserson and Saxe). Thus,
one way to ensure that an equivalent initial state can always be found, is to permit only
forward retiming moves. This concept was used by Touati and Brayton in [130] to compute
initial states of retimed circuits. In their approach, FF’s may be removed from all the primary
inputs and inserted at all the primary outputs, corresponding to a motion across the host node
(defined in Section 2.1). The problem is then reduced to determining the initial values for
the FF’s inserted at the primary inputs. If £ FF’s are inserted at the primary inputs then
a sequence of k£ input values is required. This sequence is obtained from the state transition
diagram extracted from the circuit. Such a sequence exists if the initial state is reachable
from any other state in k transitions; otherwise the circuit has to be modified by incorporating
additional logic to obtain such a sequence. This logic increases the circuit area and may also
increase the minimum achievable clock period [30].

Permitting only forward moves is too restrictive because some backward moves have equiv-
alent initial states. For example, if in the circuit in Figure 4.1, both FF A and B have the same
initial value, then the backward move across gate G1 is possible while maintaining equivalent
initial state. Hence another retiming requiring some backward moves may exist, that enables
one to find an equivalent initial state without any modifications to the circuit, even for cir-
cuits where the method of [130] required circuit modifications. Reverse retiming [30, 128] finds
this retiming by disallowing FF moves across the primary outputs and by minimizing their
backward motion.

For digital circuit design, the most useful objective function is that of constrained minarea
retiming. However none of the above methods considers the area penalty during retiming to
achieve the target clock period since they perform minperiod retiming rather than minarea
retiming. The standard minarea algorithms, e.g., [59, 115] or Minaret pay no regard to the
initial states, and while they have applications in datapaths where the initial state is unim-
portant, they cannot be used to optimize control logic since an equivalent initial state is not
guaranteed to exist in the retimed circuit.

We believe that this thesis is the first to target the problem of minarea retiming for control
logic guaranteeing equivalent initial states. As in [130], we use the phrase retiming an initial
state to mean finding a retiming (with a initial state) such that the original circuit and the
retimed circuit have the same behavior when started in their respective initial states. We
use the term minarea initial state retiming to refer to retiming an initial state with minimum
number of FF’s.

In this chapter we use bounds on the retiming variables to allow backward motion of FF’s
only if an equivalent initial value exits. Therefore, any retiming thus obtained will have an
equivalent initial state. There may be multiple sets of these bounds, and all of them must

be explored to obtain an optimal minarea initial state retiming. However the number of FF’s
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obtained by standard minarea retiming can be used as a lower bound to prune this exploration.

This chapter also provides a new formulation that takes into account the initial value of
the FF’s while modeling the sharing of FF’s at the output of a multi-fanout gate. The method
presented here is applicable for retiming of any circuit which has more than one type of memory
elements (e.g., FF’s with load enables) such that memory elements of different types can not
be merged together.

The rest of the chapter is organized as follows: In Section 4.2 we present an method to en-
sure the existence of an equivalent initial state, followed by the FF sharing model in Section 4.3.

We present experimental results in Section 4.4 and conclude the chapter in Section 4.5.

4.2 Ensuring Equivalent Initial States

The requirement of initial state equivalence imposes restrictions in addition to those in the
conventional minarea retiming problem. Thus the number of FF’s obtained by the conventional
minarea retiming is a lower bound on the number of FF’s obtainable by a minarea equivalent

state retiming. We call this lower bound I'.
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Figure 4.3 Conventional minarea retiming
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Figure 4.4 Example of variation in the number of FF’s with initial state

However it is not always possible to achieve this lower bound. As an example, consider
the circuit shown in Figure 4.3(a), and the conventional minarea retiming (without regard to
initial state) shown in Figure 4.3(b) requiring only one FF. If the initial value for FF A through

D is as shown, then the retimed circuit in Figure 4.3(b) does not have an equivalent initial
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Figure 4.5 Another example of variation in the number of FF’s with initial
state

state. Further, there is no possible retiming with one FF that has an equivalent initial state.
However, if the initial value for each FF in the circuit is 0 and FF D is 0, then the retiming
obtained in Figure 4.3(b) is feasible in terms of initial state equivalence. Therefore, depending
on the initial state, it may or may not be possible to achieve the lower bound I'.

Additionally, the optimal number of FF’s with equivalent initial state depends on the initial
state of the original circuit. As shown in Figure 4.4, if initial value of FF’s are {A=0, B=0,
C=1, D=0} then the minimum number of FF’s possible is 3. It can readily be verified that
if the initial value of FF’s are {A=0, B=0, C=1, D=1} then the minimum number of FF’s is
two, as shown in Figure 4.5.

In this chapter, we will attempt to find the minarea equivalent state retiming for a given
circuit topology, and a given set of initial values. To ensure the existence of an equivalent
initial state in the retimed circuit we allow only those retiming moves that have an equivalent
initial state. This includes all forward retimings except across host node (r(H) = 0), and
backward retiming moves with equivalent initial states. We forbid retiming across the host
vertex because it requires a sequence of initial values for the primary inputs to be obtained
from the state transition diagram extracted from the circuit and, in addition could require

modifications to the original circuit [130].
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Figure 4.6 An example circuit where lower bound I' is achievable
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As an example, consider the circuit in Figure 4.6 and its retimed version in Figure 4.7.
If the initial values of FF’s are {A=0, B=1, C=1}, then there is no equivalent set of initial
values for the retimed FF’s D and E in Figure 4.7. Figure 4.8 presents a alternative retiming

of the original circuit requiring the same number of FF’s, but in this case an initial value
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Figure 4.7 A minarea retiming without equivalent initial state

o 3

Figure 4.8 A minarea retiming with equivalent initial state

of 0 at FF I and 1 at FF H is equivalent to the original initial state. Note that performing
conventional minarea retiming without regard to initial states could result in either of these
retimings. Therefore, even if the lower bound I' is achievable, there is no guarantee that an
algorithm that ignores the initial state will find it.

To understand why some retimings have equivalent initial states and others do not, we
observe that the fundamental reason for being unable to achieve an equivalent initial state
for retiming is the presence of conflicting values at the fanouts of a gate. For example, in
Figure 4.6 if we try to move the FF’s in the original circuit backwards to obtain the retiming
in Figure 4.7 we get FF’s at the output of gate G1 with values 1 and 0, which cannot be moved
to the input of gate G1 while maintaining an equivalent initial state. We refer to this situation
as a conflict, and it is the reason why the lower bound I' is not always achievable.

To see how we perform initial state retiming in the presence of conflicts, consider the circuit
of Figure 4.6. If we do not allow any backward motion of FF’s across gate G1, than we can be
assured that every retiming has an equivalent initial state. Backward motion across G1 can
be prohibited by forcing an upper bound of 0 on the r variable of gate G1. It can be seen that
any retiming with 7(G1) < 0 and r(H) = 0 has an initial state equivalent to the initial state
of the original circuit.

Thus one way to ensure that any obtained retiming has an equivalent initial state, is to
update the upper bounds U, in the LP of Equation (3.8) so that conflicting FF’s at the fanouts
of a gate are never retimed to its inputs. This will ensure a valid equivalent state in the retimed
circuit. This new upper bound on gate v that ensures a valid equivalent state is called B,. Since
we want a retiming that has an equivalent state and satisfies the target clock period we need to

enforce r(v) < B, and r(v) < U,. If we define justification upper bound as J, = min(B,,U,),
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then we only need to ensure r(v) < J,. A set of such justification upper bounds denoted by
A" = {Ji| Yu € V}. Since forward retiming moves always have equivalent initial values, the
lower bounds from Equation (3.8) for conventional minarea retiming are still valid for minarea

initial state retiming. Thus we obtain the following modified LP

minimize Y, oy [(|FI(v)| — [FO(v)]) - r(v)] (4.1)
subject to r(u) —r(v) < cyy Ve(u,v) € C
Ly <r(u) < Jy Vu €V

Any solution to this LP will have an initial state that is equivalent to the initial state in
the original circuit and will satisfy the target clock period. The techniques of Section 3.2.4 can

be applied to further reduce the size of the LP in Equation (4.1).

4.2.1 Obtaining the Justification Bounds

We will now describe a method for obtaining these new justification upper bounds .J, for
a gate v. The procedure consists of two steps: a justification step, where an equivalent initial
state is found, and a bound computation step, where the bounds J, on each gate under that
equivalent initial state are calculated.

With every FF we associate a three valued (1,0,X) logic. We define compatibility as follows:
a logic value of 0 is compatible with both 0 and X, but logic values 0 and 1 are not compatible
with each other!. A gate can only be retimed if it has FF’s with compatible logic values at all
of its fanouts. A gate is retimed in the backward direction by removing a FF from each of its
fanouts, and adding one to each of its inputs. A gate is called output-ready if it has a FF on
each of its fanouts and the logic value on each such FF is compatible with the values on the
others. The procedure maintains a list of gates that can be retimed. A gate is taken from the
list and retimed, and the list is updated. As the gates are retimed, a procedure similar to the
one in Section 3.2.2 is used to compute the bounds. The upper bounds, .J, are obtained by
moving FF’s as far backwards, as possible without violating the period constraints. The count
of the FF’s moved across any gate gives its upper bound on the r variable of the gate.

Each time FF’s are moved from the outputs of a gate to its inputs, we must assign logic
values to the new FF’s added at the inputs. These logic values must be equivalent to the original
value at the output of the gate in order to obtain a initial state retiming. This assignment,
in general, may not be unique and is similar to the phase of justification in the process of
automatic test pattern generation [2]. We classify these output ready gates into the following

two categories.

Unique Justification If there is only a unique mapping of the logic value at the output to the

logic values at the inputs, then we do not have to make any choices. These justifications

'For circuits with multiple types of memory elements that cannot be combined, compatibility can be defined
similarly.
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are maintained in a unique justification queue, U. The following cases are examples of

unique justifications:

e A single input gate such as inverter or buffer.

e A logic value of X at the output: in this case all inputs can be assigned a logic value
of X.

e A logic value of 0 at the output of an OR (NAND) gate: in this case we assign all

inputs to logic value 0 (1).

e A logic value of 1 at the output of an AND (NOR) gate: in this case we assign all

inputs to logic value 1 (0).

Nonunique Justification If there are multiple mappings possible for the logic value at the
output to the logic values at the inputs, then we must make a choice or a decision in this
case. These decisions are maintained in a decision queue, D. Since the solution to the
LP in Equation (4.1) depends on the set A’ which in turn depend on these decision we
make here, we may have to revisit these decisions. The following cases are examples of

non-unique justifications:

e A logic value of 1 at the output of an OR (NAND) gate: in this case we assign any

one input to logic value 1 (0) and the rest to logic value X.

e A logic value of 0 at the output of an AND (NOR) gate: in this case we assign any

one input to logic value 0 (1) and the rest to logic value X.

4.2.2 Searching for the Optimal Solution

() f

Figure 4.9 Effect of justification of on the number of FF

Different justification decisions may lead to a different number of FF’s obtained after
minarea retiming. As an example, consider the circuit shown in Figure 4.9(a), with a FF
with value 0 at the output of an AND gate, leading to two possible choices shown in Fig-
ures 4.9(b) and 4.9(c). The corresponding decisions lead to retimed circuits with three and

two FF’s, respectively.
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Under nonunique justifications, a number of different allowable justifications are possible.
Let us define a set of one such possible justification as A’. Each such A’ will give us a set
(one for each gate) of justification upper bounds A* = {Ji| Vo € V} that is used to solve
the minarea LP. If the number of FF’s so obtained is not equal to the minarea lower bound
I, we must backtrack and obtain another set of justifications A7 that leads to a different
AJ. This process is repeated until we either achieve the minarea lower bound I', or no more
justifications exist. Since a complete exploration will be computationally expensive, one may
halt the exploration of the search space at any time and take the best solution obtained so far.

Thus the process of minarea initial state retiming can be given by the following pseudocode.

The procedure returns the minarea retiming with an equivalent initial state.

1 Obtain minarea lower bound T

2 j = 0;

3 Best = o0;

4 while (true)

5 {

6 while (U #0 OR D # ()

7 {

8 if (U # () do_unique_justification

9 if (D # () = do_decision_justification

10 }

11 /* This gives us a justification set AJ. x/

12 /* which corresponds to a set of justification upper bounds AN %/
13 Obj = 1lp_solve(A7); /* solve LP in Equation (4.1) */

14 If(0bj == I') return(Obj); /* lower bound obtained */

15 If(Best > Obj) Best = 0bj; /* store best result */

16 B = backtrack(AY);

17 If(B == Infeasible) return(Best); /* all justifications explored */
18 }

The function backtrack changes the last decision that has a yet unexplored choice, and
is similar to one used in automatic test pattern generation (see for example [52]). The period
constraints need be generated only once during the entire procedure since they do not depend
on the justification process. This is helpful since the period constraint generation is a very
computationally intensive process.

The theoretical upper bound on the number of possible justification sets A¥’s in the worst
case is |F'F|-T[yyey |F1(v)|, where |[FI(v)]| is the number of fanins of the gate v, and |F F| is the
number of FF’s in the original circuit. This upper bound is due to the fact that in the worst

case, each FF in the circuit may move across every gate and every such move may require
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a decision. This bound is clearly exponential and thus the problem of finding all possible
justification sets for a general circuit is NP-hard, as in the case of the justification phase of
automatic test pattern generation [52].

However in practical circuits the number of feasible justifications will be much less than

this theoretical upper bound due to the following reasons

e As shown in Section 3.4 the mobility of FF’s is very limited in practice and hence all

FF’s cannot move across all gates as assumed by the theoretical bound above.

e Due to conflicts at the gate fanouts the FF’s may not be able to move towards the inputs
of that gate, and this further restricts the mobility of the FF’s.

e Some FF’s moving across gates have unique justifications.

e Every time a decision is made in case of a nonunique justification, all fanins but one are
assigned logic value X. This logical X moves backward through unique justification until

it is forced to a 0 or 1.

e As soon as the lower bound of I" is achieved we do not need any more justification sets.
In our experimental results we founds that in many circuits this lower bound is achieved

in the first few iterations.

e Only backward moves need justification, while forward moves have a unique mapping of

logic values and hence do not add to the number of A%’s.

Figure 4.10 An example of a pruning technique

The number of justification sets can be further reduced by pruning suboptimal A%’s. Con-
sider the circuit in Figure 4.10 with the logic values of FF A and FF B equal to 0. Since the
output of the AND gate G1 is at logic value 0 we have two possible mappings for the equivalent
values at the inputs a and b. However the choice of setting input a¢ to X and input b to 0 is
better than the choice of @ = 0 and b = X. This is because in the presence of FF B with logic
value 0, the X on input b will be forced to a 0, effectively setting the choice to a = 0 and b = 0.
This is suboptimal to the choice of @ = X and b = 0, since X on input a can move further back

than a 0.
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4.3 Conditional FF sharing

The LP of Equation (2.7) in Section 2.1.4 assumes that a FF can be combined with any
other FF, and hence is not applicable to minarea initial state retiming where FF’s have logic
values associated with them, and a FF with logic value 1 can not be shared with one that
has logic value 0. For example, consider the circuit in Figure 2.1(a) with initial state values
as shown in Figure 4.11(a). With these initial values, the sharing given by the mirror vertex
model of Section 2.1.4 is shown in Figure 2.1(b); this is not valid for the given initial values.
Instead, the maximal sharing is as shown in Figure 4.11(b) and requires a total of six FF’s.
The reason is that only two FF’s, shown in the dashed box in Figure 4.11(a), can be shared.
The situation is further complicated by the fact that two FF’s can be shared only if the FF’s
at their fanins (if any) are also shared. For example, consider the circuit in Figure 4.11(b),
the FF’s on output C and D cannot be shared, although both have an initial state value of 1,

because their fanins are not shared.

@ (b)

Figure 4.11 Conditional register sharing at multiple fanouts

Thus we need a way to model the conditional sharing when FF’s have initial values asso-
ciated with them. This conditional sharing is also required for circuits having more than one
type of FF’s that can not be shared with each other. We will now present the modifications
required to model the conditional sharing by a 0/1-MILP formulation. This modification is
used for all gates with conflicts at their fanouts, and for all other gates the simpler model of
Section 2.1.4 is used. This combination keeps the number of integer variables within a small
fraction of the total number of variables. We will first present the model and then illustrate it
through an example.

The justification process of Section 4.2 determines the logic values of all FF’s that can
possibly be retimed backwards to arrive at the fanout of a given gate. There is a sequence of
these “possible” FF’s that may arrive at every fanout of every gate, and possibly be retimed
across the gate, or remain at the gate output; the final retiming may contain only a subsequence
of this possible sequence. The logic values of these possible FF’s at the fanouts of a gate u
are represented by a table T}, with |[FFO(u)| rows as shown in Figure 4.12. Since a maximum
of J, FF’s can be moved backwards across gate v to its fanins, and w(ey,) FF’s already exist

between gate u and gate v, the maximum number of FF’s possible between gate u and gate v
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Figure 4.12 An example of FF sharing

is J, + w(eyy). Therefore each row, v € FO(u), has J, + w(ey,) entries, each of which is either
aloral.

The value in the v"* row and k' column of the table is denoted by T, (v, k). We define a
sharing class? S; to contain a set of values that can be shared, and represent the set of sharing
classes for the fanouts of gate u by N,. Two values T,(p,q) and T,(r, s) can be shared (i.e.,
belong to the same sharing class) only if ¢ = s and T,(p,i) = Ty(r,i) for i = 0,--- ;s — 1.
A function class(T,(v,k)) gives the index of the sharing class for entry (v, k) in table T,
€.8., Sclass(Tu(v,k)) 18 the sharing class containing the k" FF between gate u and its fanout v
(counting from u). All the FF’s in a sharing class can be shared with each other, and hence
require only one physical FF. Each sharing class S; is represented in the MILP by a variable
a; € {0,1}. If a; = 1 in the optimal solution of the MILP, then the FF’s of sharing class S;
share a physical FF and the sharing class S; is said to be active. FF’s moved forward across
gate u to its fanouts can be shared unconditionally and will be handled later.

To ensure that the k" FF retimed across gate v activates its own sharing class vari-
able Qgg5(T, (0,k)), We require that the variable aqs1, (0,5)) be active before the variable

Qelass(Ty(v,k+1))- Lhis is achieved by adding the following constraint
Cclass(Ty (v,k)) 2 CQclass(Ty (v,k+1)) Vv € FO(U) and 1 <k < J, + w(euv) -1

For every multi-fanout gate u we also define a integer variable p, < 0, which models the
forward retiming. This is required because unlike backward retiming, FF’s introduced at the
fanouts by forward retiming across gate u can be unconditionally shared since all of them
have the same logic value. Thus the « variables model the backward retiming and p models
the forward retimings. Notice that this is different from the unconditional sharing model
of Section 2.1.4 where the mirror variable r(m,,) modeled FF’s moved by both forward and
backward retimings since all FF’s could be unconditionally shared. Requiring the « variables
to be nonnegative, o; > 0 ensures that they model only forward (positive) retiming moves,

while the condition p, < 0, ensures that p, models only backward (negative) retiming moves.

2Sharing classes for circuits with different types of FF’s can be defined similarly.
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4.3.1 Modifications in the Objective Function

To model the conditional sharing represented by the sharing classes, the objective function

term for a gate w that has a conflict at its fanouts is modified to

(IF I (w)] = 1) - r(u) + pu + Lien, (4.2)

This expression counts the number of FF’s that settle at the output of gate u after retiming

and the significance of each term is as follows:

e The first term (|FI'(u)| — 1) - r(u) in Equation (4.2) models the increase in the number
of FF’s when gate u is retimed by one unit, and is similar to the model in [59]. As
earlier FI'(u) is the set of fanins that have only a single output, i.e., FI'(u) = {vjv €
FI(u) AND |FO(v)| = 1}. It assumes a shared cost of one at the fanouts of gate u for
any set of FF’s retimed in either direction across gate u. In forward retiming, all FF’s
inserted at the outputs of a gate have the same logic values, and therefore the shared cost
at fanouts of gate u in forward retiming is one. Since a gate can be retimed backwards
only if all FF’s at its output have the same logic values, the shared cost at the outputs
before retiming is also one, as modeled by this term. The bound r(u) < J,, ensures that
no set of FF’s, with shared cost greater than one, is ever retimed backwards across gate

u.

e The second term p, < 0 is a correction factor applied to correctly model the situation
in which a set of FF’s moves forward across gate u and all its fanouts. It is active only
during forward retiming steps, and models the number of FF’s moved across the fanout
junction of gate u by forward retiming. Since a negative value of p, denotes forward

retiming, it reflects a cost saving in the objective function.

e Asmentioned earlier ;; = 1 implies that the sharing class S; is active, therefore >y ;o @;
denotes the number of active sharing classes at the fanouts of gate u. Since each active
sharing class requires one FF, the number of active sharing classes is also the number
of physical FF’s required at the fanouts of gate u. The minimization of the objective
function will force the maximal sharing at the outputs of gate u. The first FF in a
sharing class S; that arrives at the fanout junction activates the sharing class variable
«;, incurring a cost of one in the objective function. The remaining FF’s in that sharing

class can then arrive without incurring any extra cost in the objective function.

4.3.2 Additional Constraints

The number of FF’s between gate u and its fanout v is given by wy(ey,) = w(eyy) +

r(v) —r(u). The cost of the FF’s between u and v is given by Z,g’:lw(e“”) Qelass(Ty (v,k))> Out of

which r(u) FF’s are removed by backward retiming across gate u and —p,, FF’s are removed by
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forward (negative) retiming across the fanouts. The conditional sharing of FF’s is automatically
modeled by the sharing of the « variables amongst the fanouts. Since the cost of FF’s should

be same as the number of actual FF’s, we get

J’u+w(euv)
w(euv) + T(U) - r(u) = Z Cclass(Ty(v,k))  — T(U) + pu Voe FO(U) (43)
k=1
which can be rewritten as
Jv+w(euv)
w(euv) + 7”(’1)) = Py + Z Cclass(Ty (v,k)) Vve FO(U) (44)
k=1

Since the right hand side of Equation (4.4) is being minimized in the objective function, we
can relax the equality to the following inequality

Jv+w(euv)

w(euv) + 7”(’1)) < put Z CQelass(Ty(v,k)) Voe FO(U) (45)
k=1

4.3.3 An Example

Consider the circuit with the sharing classes in its table of logic values, as shown in Fig-
ure 4.12. The MILP for this circuit is

Minimize : —r(b) —r(c) —r(d) + a1 + s + a3 + aq + as + ag + pq
subject to  7(b) < ay + as + as + p,
r(c) < o1+ aq+ pa
r(d) < as + ag + pa
o1 2> Qg 2> ag
a1 2 0y 5 05 2 Qg
po <0; a; € {0,1} Vi

Backward Retiming: Suppose we want to model the sharing for r(a) = 0, r(b) = 3, r(c) = 1

and r(d) = 2. Then the optimal objective function value of the above LP is -1, which gives
the correct increase in the number of FF’s from the original circuit in Figure 4.13(a) to the
retimed circuit in Figure 4.13(b).

Forward retiming: Now suppose we want to model the sharing for r(a) = —2, r(b) = —2,

r(¢) = —1 and r(d) = —1. Then the optimal objective function value is 3, which is the
increase in the number of FF’s from the original circuit in Figure 4.14(a) to the retimed circuit
in Figure 4.14(b). As can be seen one FF is shared for the edges e,. and e,q even though
they where not in the same sharing class. This is possible because the FF’s moved forward
to the outputs of gate a hence they all have same logic value without regard to the sharing
class which are defined for backward movements. Thus these FF’s can be shared and our

formulation correctly models the cost.
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Figure 4.13 Example of positive retiming
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Figure 4.14 Example of negative retiming

4.3.4 FF Sharing with Don’t Cares

Since every nonunique justification decision generates an X, the actual problem of FF
sharing is to find the optimal sharing between 0, 1 and X, FF’s. The logic value X can
be shared with either 0 or 1 and hence presents additional modeling problems. Particularly
difficult are the cases when X’s are followed by 0’s and 1’s in a sequence, since the choice of
merging X with 0 or 1 influences sharing of the remaining sequence.

As an example consider the following values at the output of a gate.

01
X
0

The X can only be shared with 0 and hence should be converted to 0. However it is not always
possible to uniquely determine the possible values a X may take. Consider the following values
at the output of a gate.

Here the X may be converted to either 0 or 1. If all 6 FF’s arrive, then it is beneficial to merge
X with 0; however, if only the first X and 1 arrive then X should be merged with 1. The values
in the table show the FF’s that can potentially arrive at this junction by reverse retiming, but
not all of these FF’s are required to arrive at the junction. In fact, due to the constraints and
the objective function any combination of these FF’s may arrive, and this makes it difficult

to model the sharing in presence of X’s. To avoid this problem, we convert all X’s to either
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0
X |1
110

0 or 1. If the X can be shared with only 0 (or a 1) then it is converted to a 0 (or a 1). For
optimal solution both possibilities need to be explored, however, in our implementation we use

a random assignment to convert X’s to 0 or 1.

4.4 Experimental Results

We implemented a initial state minarea retiming based on the presentation in this chapter.
Since obtaining an optimal solution requires complete exploration of the problem, it implies
generating all the possible justification sets A;’s, and solving the corresponding LP’s. Since this
is a NP-hard problem, it is not likely to be computationally feasible. Hence, we implement a
justification algorithm that makes random choices whenever there is a non-unique justification.
The LP is then solved for the corresponding A;. If the lower bound I' is not achieved, then
we perform another random decision based justification. This process is repeated until either
the lower bound is reached or a user specified number of iterations are performed, and the
best solution found is reported. Although it may seem arbitrary to use random decisions,
our experimental results show that the algorithm gives us good engineering solutions that are
close to the (possibly unachievable) lower bound. Other possible stopping criteria could be (a)
having the best result obtained so far be within a given percentage of the lower bound, or (b)
obtaining no improvements in the best solution for a given number of iterations, etc. If there
are no gates with conflicts, then the LP is the dual of a network flow mincost flow problem,
and is solved using a network simplex algorithm of Section 3.3.3. If, however, we have to solve
the general MILP we use the public domain MILP solver, Ip_solve [6].

We present results on the ISCAS89 [7] benchmark suite in Table 4.1. For each circuit, we
show the number of gates |G|, the target clock period P, and the lower bound on the number
of FF’s obtained by Minaret I'. We also show the minimum number of FF’s obtained with
equivalent initial state and the execution time Ty, (in hours:minutes:seeconds) for all the
tasks including solving the LP for all iteration on a HP 9000/777 C110 workstation. In the
absence of initial state values for the benchmark circuits, we present results for four different
initial state assignment. Case A has all FF’s initialed to 0, while case B has all initialized to
1, case C and D are for random state assignments. As can be seen from the results, for many
circuits the lower bound is achieved in a small number of iterations for almost any initial state.
In fact, in almost all of these cases the lower bound I' is obtained in the first iteration itself. For
some circuits the lower bound was not reached. This, however, does not imply that the solution
obtained is not optimal since the lower bound is not always achievable with equivalent initial

state. For these circuits, we report the best solution obtained in 50 (5 for s15850.1) iterations.
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Table 4.1 Minarea Initial State Retiming

Circuit |G| pP r A B C D

#FFE | Tewee || #FF | Tewee || #FF | Tevee || #FF | Tevee
s27 11 6.0 3 3 0.01s 3 0.00s 3 0.01s 3 0.00s
s208.1 105 10.0 8 8 0.02s 8 0.02s 8 0.03s 8 0.03
s298 120 6.0 22 22 0.40s 22 0.44s 22 0.44s 22 0.44s
s382 159 7.0 23 23 2.59s 23 4.34s 23 4.35s 23 4.45s
s386 169 11.0 6 6 0.04s 6 0.03s 6 0.04s 6 0.03s
s344 161 14.0 19 19 1.77s 19 1.79s 19 1.77s 19 1.82s
s349 162 14.0 19 19 1.62s 19 1.62s 19 1.69s 19 1.62s
$526n 195 6.0 30 30 0.95s 30 0.95s 30 2.75s 30 0.97s
s510 212 11.0 7 7 0.12s 7 0.12s 7 012s 7 0.12s
s420.1 219 12.0 17 17 0.07s 17 0.06s 17 0.07s 17 0.06s
s641 380 74.0 19 19 0.11s 19 0.43s 19 0.44s 19 0.43s
s713 394 74 19 19 0.18s 19 0.68s 19 0.68s 19 0.69s
s967 395 12.0 35 35 28.52s 35 27.21s 35 28.05s 35 27.27s
5938 447 16.0 33 33 1.45s 33 1.53s 33 1.49s 33 1.53s
s1196 530 | 24.0 18 18 0.08s 18 0.07s 18 0.08s 18 0.17s
s1238 5.09 | 22.0 18 18 0.08s 18 0.07s 18 0.56s 18 0.08s
s1423 658 53.0 76 76 8.77s 76 9.23s 76 8.89s 76 9.31s
51488 654 16.0 7 7 0.11s 7 0.11s 7 0.12s 7 0.11s
s1494 648 16.0 7 7 0.13s 7 0.12s 7 0.13s 7 0.12s
s3330 1790 | 14.0 110 110 0.58s 110 0.56s 110 0.59s 110 0.56s
sH378 2780 | 21.0 173 173 3:18s 173 3:19s 173 3:18s 173 3:17s
s9234.1 3271 | 38.0 134 134 21:18s 134 21:19s 134 23:47s 134 21:15s
s635 287 66.0 35 42 22.6s 42 22.38s 35 1.08s 39 22.5s
s953 396 13.0 27 32 32:02s 32 27:35s 32 31:30s 32 27:2s
51269 570 19.0 84 84 0.26s 85 1:33s 85 1:31s 85 1:4s
s1512 781 23.0 70 71 | 1:51:19s 72 | 1:52s 1s 72 | 1:56:23s 70 1:38s
s3271 1573 | 15.0 168 169 16:46s 173 16:5s 170 16:40s 173 16:29s
prolog 1602 | 13.0 122 124 16:40s 125 16:42s 125 16:39s 125 16:29s
s3384 1686 | 27.0 167 168 55:42s 169 1h3:18s 169 1:2:56s 169 51:3s
s15850.1 | 9618 | 63.0 || 525 544 3:9:56s 540 4:2:36s 542 3:57:7s 544 | 3:59:5s

The execution time of our method is considerably higher than the run times for conventional
minarea reported for Minaret, since here we need to solve possibly multiple MILP’s, unlike
Minaret which needs to solve only one mincost flow problem. However note that in most cases
where the lower bound is achieved the execution times are comparable to those of Minaret. In
the circuits where the lower bound I' is not achieved the solution reported by our algorithm
is very close to I' and therefore corresponds to a good engineering solution. Since the optimal

number of FF’s in a circuit depend on the initial state of the original circuit, some variation

in the number of FF’s and execution time is obtained for different initial states. For s635,

51269 and s1512 the lower bound was seen to be achieved for only some initial states.
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4.5 Conclusion

We have presented a method to obtain minarea retiming of control logic subject to a given
target clock period and an equivalent initial state. Any minarea retiming algorithm, that does
not consider initial states will, in general, not give a solution with a valid equivalent state and
hence cannot be used for control logic, where initial states are important. Our method, on
the other hand, will always result in a retimed circuit with an equivalent initial state, i.e., the
retimed circuit starting in the equivalent initial state will have the same behavior as the original
circuit starting in its given initial state. Unlike conventional minarea retiming algorithms our
approach can be used for performance constrained, area optimization of control circuits. This
approach also has applications in minarea retiming of circuits that contain different types of
memory elements that can not be shared with each other, e.g. load enable registers.

We provide a simple way to incorporate the constraints for ensuring that the resulting
retiming has an equivalent initial state. This is achieved by imposing upper bounds on the
retiming variables so that any retiming respecting those bounds will have an equivalent initial
state. This equivalent state can easily be found after the retiming by using the information
stored from the justification phase. The technique also utilizes a new approach that incorpo-
rates conditional FF sharing, since the idea of mirror vertices used by Leiserson and Saxe to
model unconditional FF sharing [59] cannot be extended to the initial state retiming problem.
The solution approach searches the justification space for the initial states and for each possible
justification, solves an LP. The exploration of the justification space can be stopped by the
user at any time, and it was seen that for all circuits tested, good engineering solutions that
were close to a (possibly unachievable) lower bound were found by the technique after a small
amount of exploration.

Minarea initial state retiming can also be performed by extending the approach in [30]. In
this method conventional minarea retiming is performed first. If a conflict occurs at a gate while
moving the FF’s to obtain this retiming, then an appropriate bound is placed on the retiming
variable of this gate, and the minarea retiming problem is solved again. This procedure is
repeated until no more conflicts are obtained. Thus the final circuit has an equivalent initial
state although it may require more FF’s than the conventional minarea, since the extra bounds
placed on the retiming variables to ensure equivalent initial states can increase the number
of FF’s in the optimal solution. This method can be seen as a “dual” of our approach, since
it starts from the lower bound and tries to achieve feasibility (equivalent initial state), while
in our approach we start with a feasible solution and try to achieve optimality. However in
this approach the initial state value on the FF’s that can be possibly retimed to the fanouts
of a gate is not known before solving the minarea LP. Hence this approach will not be able to
model the conditional sharing, making the solution suboptimal.

The work in [122] showed that backward retiming with equivalent initial states such as

the one in Figure 4.1 can always be obtained if the reset signal is expressed explicitly. This,
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however, requires the addition of a multiplexer before the FF and thus changes the path delays
in the circuit. This may cause the clock period of the circuit to increase and is therefore not

considered here.
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5 RETIMING LEVEL-CLOCKED CIRCUITS

5.1 Introduction

The memory elements in a circuit can be either edge-triggered, called flip-flops (FF’s) or
level-sensitive, called latches. Unlike a FF, a latch is transparent during the active period of
the clock. Even though the transparent nature of latches makes design and analysis of level-
clocked circuits (circuits with level-sensitive latches) very complex, they are widely used for
high performance designs because they offer more flexibility both in terms of the minimum
clock period achievable and the minimum number of memory elements required. Optimizing
level-clocked circuits is therefore a complex but important task, and there is a acute need of
good automation tools. Several efforts have been made to retime circuits with level-sensitive
latches based on the Leiserson-Saxe approach, e.g., [96, 70]. Although these algorithms have
polynomial time complexity, their high space and time requirement makes them incapable of
handling circuits with even a few thousand gates, and the only published results are on circuits
with less than 400 gates. Our goal in this chapter is to able to retime circuits with tens of
thousands of gates in reasonable time, and we present results on circuits with up to 56,000
gates.

For edge-triggered circuits (circuits with edge-triggered FF’s) the delays through all com-
binational logic paths must be less than the clock period, hence we must enforce timing con-
straints only between FF’s connected by a purely combinational path. For level-clocked circuits
the delay through a combinational logic path can be longer than one clock cycle, as long as
it is compensated by shorter path delays in the subsequent cycles. To ensure that the extra
delay is compensated we must enforce timing constraints between a latch and every other latch
reachable from it (possibly through multiple latches). Consider a linear N stage pipeline with
N + 1 memory elements (mg,m ... my). If these memory elements are edge-triggered FF’s,
then we need only N timing constraints ( m; - m;jy1, 0 <4 < N). However, if these mem-
ory elements are level sensitive latches, then we would need N - (N + 1)/2 timing constraints
(mi -m; VY5 >iand 0 <i < N). In presence of feedback paths, timing analysis of level-clocked
circuits becomes even more complex.

These traditional methods [96, 70] solve the minperiod retiming problem by performing a
binary search over all possible clock periods. At each step of this binary search, the feasibility

of achieving the clock period by retiming is checked by solving a single source shortest path



93

problem using the Bellman-Ford algorithm on a constraint graph. This constraint graph con-
sists of |G| vertices and edges between every pair of vertices (where |G| is the number of gates
in the circuit), and is obtained by solving a all-pairs shortest path problem on the original
circuit graph. This graph has to be reconstructed for every binary search point, because as
shown in [70, Section VI-A], unlike edge-triggered circuits, critical paths in level-clocked cir-
cuits can be different for different clock periods. Therefore the methods in [96] and [70] have
O(|G|?) space requirement and high (although polynomial) time complexity. This complexity
of retiming level-clocked circuits arises due to the transparent nature of latches, which forces
us to consider constraints on paths going through multiple latches.

In this chapter we present a minperiod retiming algorithm that is capable of retiming very
large multi-phase circuits with general clock schedules. This is achieved by introducing the
concept of Global Departure Time (GDT) to map the minperiod retiming problem to a skew
optimization problem and thus solving it much like the simpler problem of retiming edge-
triggered circuit using the approach of [109]. In each step of the binary search we solve the
single source shortest path problem on a much smaller constraint graph with only | U] vertices,
where || is the number of latches in the circuit. This constraint graph contains edges only
between latches that have a purely combinational path between them, and therefore is much
smaller and sparse as compared to the constraint graph in traditional methods. Unlike the
traditional methods that reconstruct the constraint graph for every binary search point, we
perform a simple reweighting of the edges. Once the minimum period is obtained, the latches
are relocated to obtain this minimum period.

The minarea retiming problem can be formulated as a linear program (LP) [59]. This LP is
generated by solving an all-pair shortest path problem, and has |G| variables and almost @
constraints. This LP can be solved efficiently by solving its min-cost flow dual [59]. For edge-
triggered circuits, the work in [115] presented an efficient technique for pruning the number
of constraints which also had the beneficial effect of reducing the computation involved in
generating these constraints. This was achieved by utilizing the observation that in edge-
triggered circuits, if a subpath satisfies the timing constraints, then any path containing this
subpath will also satisfy the timing constraints (unfortunately this is not true for level-clocked
circuits due to the transparent nature of latches). Section 3.3 builts on the idea and adds
efficient techniques to obtain bounds on the variables of the LP for edge-triggered circuits.
These bounds were used to further reduce the size of the LP and the time required to generate
it.

The concept of GDT presented in this chapter makes it possible for us to apply similar
techniques to generate bounds on the variables in the minarea LP for level-clocked circuits,
and to use it to reduce the size of this LP. However, due to the transparent nature of latches,
unlike edge-triggered circuits, the techniques of [115] and Minaret cannot be used to reduce

the time required to generate the minarea LP in level-clocked circuits. This presents a major
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hurdle in retiming large level-clocked circuits for minimum area, because in the absence of any
efficiency-improving techniques, the minarea LP can not be generated in any reasonable time.
In this chapter we present new techniques for pruning the minarea LP for level-clocked circuits,
and reducing the time required to generate it. Using the techniques presented in this chapter,
the entire ISCAS-89 benchmark suite could be retimed for minimum period in seconds, and
for minimum area in minutes.

The remainder of this chapter is organized as follows. In Section 5.2, we present some back-
ground material, after which in Section 5.3, we discuss a relation between retiming and clock
skew optimization for level-clocked circuits. This relation is then utilized for efficient minimum
period and minimum area retiming in Section 5.4 and Section 5.5 respectively. Experimental

results are presented in Section 5.6, followed by concluding remarks in Section 5.7.

5.2 Background

Consider the simple circuit in Figure 5.1 with unit delay gates and a single-phase clocking
scheme with 50% duty cycle. In this thesis we will assume that the data signals are available
at the primary inputs at the falling edge of the clock, and must arrive at the primary outputs
before the falling edge. For any latch that is not a primary input or primary output, the
data may depart at any time during the active period of the clock. Under this assumption a
data signal in this circuit gets exactly two clock periods to reach the primary output from the
primary input.

A clock period of 2.0 units is not feasible for the circuit in Figure 5.1. This is because as
shown in the figure the actual arrival time (3.0 units) is one time unit later than the required
arrival time (2.0 units). Hence the minimum clock period at which this circuit can operate
without any modifications is 3.0 units. However, a clock period of 2.0 units can be achieved
by moving the latch L1 across the gate G3. Notice that this is not the only possible location
of memory element L1 that can achieve the clock period of 2.0 units; placing latch L1 at the
output of gate G1 also achieves the same clock period as shown in Figure 5.3. This is possible
because of the transparent nature of the latches which allows the data signal to depart from

the latch at any time during the active period of the clock.

CLOCK
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IN L1 ouT
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‘ Gl ‘ G2 ‘ G3 u ‘ G4 *
required actual

Figure 5.1 An example circuit.
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Figure 5.2 Retiming for clock period optimization.
CLOCK
IN L1 our N —
H L | | I L1 |
Gl u ‘ G2 ‘ G3 ‘ G4
ouT -
0 1 2 3 4

Figure 5.3 Alternate retiming for clock period optimization.

We use the term right to denote the direction of the signal flow and left to indicate the
direction against the signal flow. Thus retiming a latch by moving it to the right across a
gate implies removing a latch from each of the fanins of that gate and adding one to all of
the fanouts of that gate. Similarly retiming a latch left across a gate implies removing a latch
from each of its fanouts and adding one to each of the fanins. The set of latches in the given

circuit is denoted by W.

5.2.1 Clock Model

In this chapter, we have adopted the clock model of Sakallah, Mudge and Olukotun [107],
and we describe it here for completeness. A k-phase clock is a set of k periodic signals,
O = {¢1...¢r} where ¢; is referred to as phase i of the clock ®. All of the ¢;’s have the
same clock period Ty, and each phase 4 has an active interval of duration T, and a passive
interval of duration (T — Tp,). Each latch ¢ € U is clocked by exactly one phase of the clock
®, which is denoted by p(i). The latches controlled by a clock phase are enabled during the
active interval and disabled during the passive interval. When the clock period, T, is changed,
the active intervals of each phase are scaled proportionately. The term “clocking scheme” is
used to indicate the relative ratios and duty cycles of the individual phases. Thus a clocking
scheme together with a clock period Tg, define a “clock schedule” ®.

Associated with each phase ¢ is a local time zone, shown in Figure 5.4, such that the passive

interval starts at time 0, the enabling edge occurs at time (Te — T},), and the latching edge
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occurs at time Tg. Phases are ordered so that e; < ey... <ep_1 < e = Tg, and are numbered
modulo-k, i.e., ¢pr1 = ¢ and ¢;_; = ¢i. There is also a global time reference and e; denotes

the time when the phase ¢; ends, relative to this global time reference.

Enabling Edge \ Latching Edge
~€—passive Inverval 4>’<* Active Interval 4»'
phasecq \ 1 |

Figure 5.4 Phase i of a k-phase clock (all times in local time zone).

A phase shift operator E; j, shown in Figure 5.5, is defined as follows:

{ (ej —ei) fori<j
iaj =

5.1
(To + €; — e) fori>j 51)

Note that Fj; ; takes on positive values, and when subtracted from a time point in the current

time zone of ¢;, it changes the frame of reference to the next local time zone of ¢;.

ei
phaseq, = T
I
| Eij |
e ——

€

Figure 5.5 The phase shift operator.

5.2.2 Timing Constraints for Level-Clocked Circuits

We now enumerate the set of timing constraints, that dictate the correct operation of a
level-clocked circuits. We neglect to consider latch setup and hold times here, since they can
be incorporated easily by including the setup times in the path delays and the hold time in
the clock periods.

Each latch 7 also has an associated latest arrival time A;, and a latest departure time D,
in its local time zone. Due to the transparent nature of the latches, a signal can depart from

a latch 7 any time during the active interval of the phase p(i), i.e.,
To —Ty,, < Di <To
However, a signal cannot depart from a latch before it has arrived at that latch, i.e.,
A <D

The arrival time at a latch j of a signal departing from another latch 7 connected by a purely

combinational path (denoted as i — j) of delay d;; must satisfy the following relation

Di + dij — Ep(i) p(j)) < A
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Combining the above relations we can obtain the timing constraints for properly clocking

of level clocked circuits, considering only long path constraints' as

Di+dij — Epiypy < Dj Vi—jlijevw
Te *Tp(i) < D, < Ty Vi €U (52)

5.3 Relation Between Retiming and Skew

Clock skew at any latch is defined as the time by which the clock is delayed in arriving at
the latch, with respect to a fixed reference (the arrival time of the clock at the primary inputs).
Clock skews have traditionally been considered to be a liability and various techniques to get
a skew-free clocking network have been proposed [131, 14, 24]. An alternative approach views
clock skews as a manageable resource rather than a liability, and intentionally introduces skews
to improve the performance of the circuit [31]. Consider the circuit in Figure 5.1 where the
clock period of 2.0 units is not feasible since the actual arrival time (3.0 units) is one time
unit after the required arrival time (2.0 units). However, as shown in Figure 5.6 if a skew of
+1.0 unit is applied to the clock at latch L1, the required arrival time at latch L1 becomes 3.0
time units, and the data is properly clocked at latch L1. The circuit can now run with a clock

period of 2.0 units. Thus clock skews can be used to improve the performance of a circuit.

CLOCK

Clk ouT 1 2 3

Figure 5.6 Using clock skew to reduce clock period.

To derive timing constraints in presence of skews we now augment the Sakallah-Mudge-
Olukotun model with our own notation. We associate a skew S; with every latch ¢ € W.
Note that the skew values here are not physical skews to be applied to the final circuit, but
conceptual ideas that will eventually help us to achieve a retiming solution. Therefore no
restrictions are placed on the value of S;, i.e. —00 < §; < o00.

We define a latch shift operator L; j, shown in Figure 5.7, much like the phase shift operator.

This operator converts time from the local time zone of latch 4 to the local time zone of latch

"We do not consider short path constraints here, and rely on Theorem 1 in [70], which assures us that for
valid clock schedules [70], there will be no short path violations. In this thesis we consider only valid clock
schedules.
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Figure 5.7 The latch shift operator.

j, taking into account their skews. It is defined as
o { (Sj + ep(j)) — (Si + ep(i)) fori < g
i = S
I Te + (Sj + ep(j)) — (S + ep(i)) fori >

which can be rewritten in terms of the phase shift operator as
Li,j = (Sj — Sz) + Ep(i),p(j) (5.3)

In presence of skews at latches, the timing constraints in relation (5.2), must be modified by
using the latch shift operator instead of the phase shift operator. Thus the timing constraints
for a level clocked circuit to be properly clocked by a clock schedule @, in presence of skews

are

Di +dij — Li;
TfD_Tp(i) < D;, < Ty Vi eV

IN

D Vi—jli,jevw

These timing constraints can be rewritten as

(Si + Di) + dij — By p(s)

T<I>*Tp(i) <D, < Ty Vi €evw

A
o
+
S

Vi—jli,jel¥

A
=N
A
8
<
m
<

— 00

To make the discussion simpler we subtract Te from both sides of the first relation, and

substitute
Xi=(Si+D; —Ts) (5.4)
We refer to X; as the Global Departure Time (GDT). This gives us
Xi+dij — By pyy < Xj Vi—jlijevw
-0 < X; < oo Vievw

These can be written as the following set of difference constraints.

Xi— X SEp(i),p(j)_dij Vi—jli,jeUv (5.5)
-0 < X; < o Vievw
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As shown earlier, both skew and retiming can modify the circuit in Figure 5.1 to operate
at a faster clock period of 2.0 units. In fact, both achieve this objective by the same basic
principle of borrowing time from one cycle and lending it to another. Therefore retiming and
skew optimization can be considered to be related to each other. A formal presentation of this
relationship is given in [109], for edge triggered FF’s. A FF can be conceptualized as a level
sensitive latch with a very small active interval.

The physical meaning of GDT is as follows. If we can apply arbitrary skews at latches, we
can adjust the skew, S;, of a latch so as to force D; = Tg, which is same as a negative edge
triggered FF. Since X; = S; + D; — T, setting D; = Tg gives S; = X;. Hence, we can look at
X; for latches in the same way as we look at skews for FF’s.

The difference constraint between GDT values of two latches given in relation (5.5) is
similar to the difference constraints between skews at FF’s in [109]. Therefore we suggest a
relation between retiming and GDT values of level-sensitive latches, similar to the one given
in [109] between retiming and skews for edge triggered FF’s. This relation will allow us to
develop efficient techniques for retiming level-clocked circuits. We now state a theorem similar

to Theorem 1 in [109]; the proof of this theorem is similar to the one given in [109].

Theorem 2 In a level-clocked circuit, retiming a latch by moving it to the right [left] across

a gate with delay dy is equivalent to increasing [decreasing] its GDT by d;.

X i: 'T(pi
D,=To
(a) S = -T(pi T(pl
Di=To- Ty
S-0 m—
(b)
Ty, X'=Ty,

Figure 5.8 The ability of a latch to absorb some skew.

Note that in reality, we are not compelled to set D; = T, and that we can reduce D;
by as much as Ty, and increase S; by the same amount, while keeping X; constant. Since
only GDT’s (X;’s) appear in the timing constraint of relation (5.5), keeping them constant
keeps the clock period constant. Consider Figure 5.8 (a) where S; = —T}, and D; = Tg, thus
X; = —Ty,. We can increase the skew to zero (S; = 0), without changing the GDT as shown in
Figure 5.8 (b), by reducing the departure time by the same amount D; = Ty — Ty,, leaving the
GDT unchanged (X; = X; = —Ty,). Therefore, we can absorb a skew of up to —Ty, in the D;
without violating the long path constraint. Thus a GDT value between —Ty, and 0 is allowed
and this range will be referred to as the allowable range. If different phases have different

active interval then this allowable GDT range of a latch will depend on its phase. Therefore
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in our model, level-sensitive latches can be conceptualized as FF’s that have the capacity to
absorb some skew.
At this time, we also note the relation between the GDT, X;, of a latch ¢ and the corre-

sponding minimum magnitude skew, S;:

X; it X; >0
S; = 0 if Ty, < X; <0 (5.6)
X, + T¢i if *T¢i > X;

5.4 Minimum Period Retiming

Given a circuit and a clocking scheme, minimum period (minperiod) retiming finds the
minimum possible clock period Ty, for which there exists a retimed circuit that will be properly
clocked by @ (the clock schedule for the given clocking scheme and clock period Tg), and the
retiming that makes this clock schedule possible. As mentioned in Section 5.1, the traditional
techniques of [96, 70] are unable to handle large level-clocked circuits in a reasonable time. We
utilize the relationship between GDT and retiming presented in Section 5.3 to map the problem
of retiming level-clocked circuits for minimum period to the simpler problem of retiming edge-
triggered circuits for minimum period as solved in [109]. This mapping motivates the following

two-phase method of retiming for minimum clock period under a given clocking scheme.

Phase A: Find the minimum clock period and a set of GDT values that will achieve this
period.

Phase B: Relocate latches across gates to get all the GDT values to be within allowable

range.

As mentioned later in Section 5.4.1, in Phase A of this method we construct a small and
sparse graph only once, unlike the traditional methods [96, 70] which construct multiple large
and dense graphs. In Phase B we perform fast local transforms to obtain the retiming solution.
Therefore using this two phase method we can retime large level-clocked circuits very efficiently.

As in [109] it must be noted that since gate delays take on discrete values, it cannot be
guaranteed that the GDT at every latch can be reduced to be within the allowable range
through retiming operations. After the GDT values have been reduced as much as possible,
the retimed circuit may be implemented either by applying the requisite (remaining) skews
at a latch (to get the optimal clock period achievable by skew optimization), or by setting all
skews to zero to get a clock period that is, as will be shown in Section 5.4.4, no more than a
fixed bound above the optimal period with skews. Note, however, that this is not necessarily
suboptimal since the minimum clock period using skews may not be achievable using retiming
alone, since retiming allows cycle-borrowing only in discrete amounts (corresponding to gate

delays), while skew is a continuous cycle-borrowing optimization [31]. As will be shown in
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Section 5.4.4, if the maximum gate delay is less than the least Ty,, we can always achieve the
optimal skew optimization period by retiming alone.

We first describe the two phases of minperiod retiming, followed by the special case of
retiming a circuit for a given clock period. We then present the bound on the difference

between the optimal skew optimization period and the clock period obtained by our method.

5.4.1 Phase A: Clock Period Optimization

The problem of minimizing the clock period, T, for a given clocking scheme can be repre-

sented as the following linear program:

minimize Ts

subject to X; — X; < Ep(i),p(j) —dij 1= |i,7 €U (5.7)

Solving the above linear program we obtain the minimum clock period and the GDT’s
correspond to it. Our strategy is to transform the GDT solution to a retiming solution to
achieve the minimum clock period.

For a given circuit, d;; is constant and for a given clock schedule that has a fixed T, Ey, ;) (5
is constant. Therefore, the constraint matrix reduces to a system of difference constraints. A
feasible solution to the constraint matrix exists if the corresponding constraint graph contains
no positive cycles [17]. Thus we can solve the, linear program by performing a binary search
on the clock period Ty. The minimum clock period corresponds to the smallest value of Ty at
which no positive cycle exists.

The constraint graph has a vertex for each latch in the circuit and one for the host node
representing the primary inputs and outputs. There is a edge (7,j) from vertex i to vertex j
if there is a purely combinational path from latch i to latch j. The weight on this edge is a
function of the clock period T and is given by d;; — Ey ;) »(j)- The Bellman Ford algorithm [17]
is applied as in [109] using the same speedup techniques which provide a fast implementation.
The GDT’s at all primary inputs and primary outputs are assumed to be zero. The values of
d;;’s are obtained efficiently by using the method in [108].

Notice that number of variables in this constraint graph is equal to the number of latches
|| in the circuit, and the constraints are only between latches with a purely combinational
path between them. Therefore this constraint graph is much smaller and sparse as compared
to the traditional constraint graphs of [96, 70], which have one variable for every gate and
constraints to all reachable gates. Further unlike the traditional methods of [96, 70], which
need to construct the larger and denser constraint graph for every binary search point (by
solving an all-pair shortest path problem), our constraint graph needs to be constructed only
once. At each point in the binary search the constraint graph can be obtained by a simple
reweighting of the graph edges. Therefore the complexity of this binary search is much less
than that of the traditional methods.
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This optimal clock period with skews is called Py, and it is same as the maximum delay-to-
register ratio of [93]. Both are lower bounds on clock period obtainable via retiming. However,
instead of using it, just as a lower bound (as in [93]), we use it to obtain the amount by which
each latch is required to move in order to satisfy the clock period. This amount is then used

to obtain a retiming solution as described next.

5.4.2 Phase B: GDT Minimization

In Phase B, we reduce the GDT values obtained in Phase A by applying retiming trans-
formations using Theorem 2. This procedure relocates the latches with nonzero GDT’s across
logic gates, while maintaining the optimal clock period previously found. Because of the free-
dom provided to D; by the active interval of clock phase p(i) (which allows D; to be set to any
value between Tg — T¢p(i) and Tg), S; = 0 can be achieved if 7T¢p(i) < X; <0. If S; cannot
be set to zero, we try to bring X; as close to 0 or Ty, as possible so as to minimize the
magnitude of the final skew S;.

Although the method for FF relocation presented in [109] can be modified to work for
latches, we present a equivalent yet conceptually simpler method of GDT minimization by
latch relocation. A gate can be retimed in forward [backward] direction if it has latches on
all of its inputs [outputs], this retiming will result in removing one latch from all its inputs
[outputs] and adding one latch to all its outputs [inputs].

We maintain two sets one for the gates that are to be forward retimed and one for the
gates that are to be backward retimed. The forward retiming set F' is initialized to contain all
gates that have at least one latch on all their inputs. Similarly the backward retiming set B is
initialized with gates that have at least one latch on all their outputs. We than process these
sets by taking a gate from the set and retiming it, if the skew on the latches can be reduced
by this retiming. After every retiming the sets are updated. The pseudo code for this is given

below as the function retime () below:

retime ()

{
F ={vlveV and w(ey) >1VYu e FI(v)} /* initialize F */
B ={vlv €V and w(ey,) > 1Vu € FO(v)} /* initialize B */
while(du € F) do forward_retime(u, F');
while(du € B) do backward retime(u, B);

The functions forward retime(gate,set) and backward retime(gate,set) retime the

gate if needed, and update the respective sets, their pseudo code is given below.

forward retime (v, F')
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F++ F—v; /* remove gate v from F x/
X; = maximum GDT at the inputs of gate wv;
X! =X, +d(v);
S; = GDT_to_skew(X;);
S; = GDT_to_skew(X]);
if (|S]| < |Si]) do
{ /* retime gate v */
for Yu € FI(v) do {w(eyy) + w(ew) — 1};
/* delete a latch from each input */
for Yu € FO(v) do {w(eyy) < w(eyy) +1};
/* add a latch with GDT = X, on all outputs */
for Yu € FO(v) do
if (w(eyy) > 1Vw € FI(u)) do F < FUu; /* update F */

backward _retime (v, B)
{
B < B —w; /* remove gate v from B */
X; = minimum GDT at the outputs of gate wv;
X, =X; —d(v);
S; = GDT_to_skew(X;);
S; = GDT_to_skew(X]);
if (S]] < |Si]) do
{ /* retime gate v */
for Yu € FO(v) do {w(eyy) ¢ w(eyw) — 1};
/* delete a latch from each output */
for Yu € FI(v) do {w(euy) < w(ew) + 1};
/* add a latch with GDT = X on all inputs */
for Yu € FI(v) do
if (w(eyw) > 1Vw € FO(u)) do B+ BUu; /* update B */

The function GDT_to_skew(GDT) converts a GDT value to the corresponding minimum
magnitude skew using relation (5.6). For forward retiming of a gate v the effective GDT

before retiming, X; is given by the maximum GDT at its inputs, while the effective GDT after
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retiming X is given by X; = X; + d(v). For backward retiming the effective GDT before
retiming X; is given by the minimum GDT at its outputs, and the GDT after retiming X is
given by X; = X; — d(u). In either case the gate is retimed only if magnitude of the effective
skew after retiming S; is less than the magnitude of the effective skew before retiming S;. As
mentioned earlier a gate v is forward [backward| retimed by removing a latch from each of its
inputs [outputs] and adding a latch with GDT X/ to all its outputs [inputs]. If after forward
[backward] retiming a gate v, any of its fanout [fanin] gate w now has at least one latch on all
its fanins [fanouts|, then we add gate w to the forward [backward] set F' [B].

Retiming a latch forward across a gate u affects the edge weights on only its own fanouts
and not the edge weights on fanouts of any other gate. Therefore forward retiming a gate u
cannot enable the backward retiming of any other gate that could not be previously retimed in
the backward direction. Since we forward retime a gate u only if the effective skew magnitude
reduces by this retiming, and not if it remains the same, a gate u cannot be backward retimed
after it has been forward retimed once (even though it may have latches on all its fanouts),
because this backward retiming will increase the skew magnitude. Therefore a gate can never
be retimed in both the forward and backward direction. Thus forward retimings have no effect
on backward retimings and both types of retimings can be carried out independently. Due to

this reason we do have to process the forward set again after it has been processed once.

5.4.3 Retiming for a Target Period

Retiming a circuit for a given target clock period is a special case of the minperiod retiming
problem. In this problem we are given a circuit and a clock schedule ® that has a fixed T. If
the given clock schedule is feasible, the method should return a retimed circuit that is properly
clocked. If the clock schedule is not feasible the method should indicate so. For this problem
we do not need to perform the binary search in Phase A. The constraint graph is constructed
as earlier and the Bellman-Ford algorithm is applied on it to obtain the set of required GDT'’s.
If the Bellman-Ford algorithm detects a positive cycle the clock scheme is not feasible, and is
reported as such, otherwise Phase B is performed.

Due to the flexibility in the non-critical part of the circuit, and the transparent nature
of the latches, retiming for a given clock period is not unique, and different retimed circuits
can be obtained all of which satisfy the target clock period. As an example for the circuit in
Figure 5.1, two different retimings are shown in Figure 5.2 and Figure 5.3 for the same target
clock period of 2.0 units. Our objective in minperiod retiming is to find one of these possible
solutions efficiently, with as few retiming moves as possible. As in [109], we initialize the GDT’s
to 0 in the Bellman-Ford algorithm, and take advantage of the slacks to minimize the number
of moves. For minperiod retiming of the circuit in Figure 5.1, our method will generate the

circuit in Figure 5.2, since it requires less latch motions than the circuit in Figure 5.3.
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5.4.3.1 The ALAP and ASAP Retimings

Out of the set of all possible retimings for the given clock scheme, two are of particular
interest. We can obtain a retiming such that all latches move as far as possible to the left.
This is called “as soon as possible (ASAP)” retiming. Similarly, the retiming that moves all
the latches as far as possible to the right is referred to as the “as late as possible (ALAP)”
retiming. Both ASAP and ALAP retiming assume no latch is moved across the host node (H).
As in Section 3.3 these ASAP and the ALAP locations can be seen as the extreme locations of
latches in the circuit for the given clock scheme, and will be utilized, in Section 5.5 for efficient
minarea retiming. For the circuit in Figure 5.1 the ALAP and ASAP retimings are shown in
Figure 5.2 and Figure 5.3 respectively. As in Section 3.2.2 these ASAP and ALAP retimings
can be obtained by modifying the minperiod retiming algorithm.

Unlike retiming for a given period, in ALAP retiming, our objective is to move the latches
to the right, as much as possible. For this we initialize all GDT’s to —oo, before applying the
longest path Bellman-Ford algorithm to the constraint graph. In Phase B we use the allowable
range of GDT’s to move a latch to the right as much as possible, i.e., if the new GDT after
moving a latch to the right is still within the allowable range, we move the latch to the right.
Notice that this is done even if the original GDT was within the allowable range.

In ASAP retiming we obtain the GDT’s by running the Bellman-Ford algorithm on the
transpose[17] of the original constraint graph (i.e., a graph with the same vertex set as the
original graph, but with the edge directions reversed) with all latches initialized to —oo. Since
all the edge directions where reversed the longest path values for all latches must undergo a

sign reversal to obtain the correct GDT values.

5.4.4 A Bound on the Clock Period of the Retimed Circuit

Theorem 3 At the end of the retiming procedure in Phase B, the magnitude of skew at each

latch i, is no more than

M —To,
Yp(i) = max | 0, — (5.8)

where M is the mazimum delay of any gate in the circuit.

Proof: We have two cases

Case A : M < Ty, If the maximum gate delay is less than the active duration of the
clock, we need to prove that at the end of Phase B, all latches will have zero skew.
We will prove this by contradiction, assuming that a latch ¢ has nonzero skew S; at

the end of Phase B. We have two sub cases.

Case 1: S; > 0 In this case the GDT of latch i is X; = S;. The new GDT of the
latch after it is moved left across a gate of delay d; is given by X; = X; — d;.
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Since dy < M < Ty, we have X| > —Tp thus the effective skew S; after
this possible move is either zero (if Ty, < X; < 0), or |5j| < [5;|. In either
case the latch 7 can be moved left across the gate and have its skew reduced.
This contradicts the assumption that Phase B is complete.

Case 2: §5; <0 If S; <0 then the GDT of latch 7 is negative, i.e., X; = §; — Ty,

and the proof is similar to case 1.

X X.

d;

e

Figure 5.9 Worst-case situation for remaining skew.

Case B: M > T, . If the maximum gate delay is more than the active duration of
the clock, we need to prove that for any latch ¢, at the end of Phase B the skew
magnitude is less than v,;). Phase B is complete only when for every latch i we
have |S!| > |S;|, where S; is the current skew and S! is the skew after a possible
move across a gate with delay d;. As shown in Figure 5.9 the largest possible final
skew magnitude corresponds to the situation when |S;| = |S!|. In this case we have

ATy
di = 2-[5i| + Ty, and hence |S;| < w. Since M is the maximum gate delay

e M-Ty
this implies that |S;| < —522.

Theorem 4 If, in a k phase circuit at the end of the retiming procedure all skews are set to

zero, then the final clock period (P,) satisfies the following condition

k
P, < Py+ ) max(0,M —Ty,)
i=1

where Py is the optimal clock period with skews found in Phase A, and M is the mazimum
delay of any gate in the circuit.
Proof : Each difference constraint for the optimal clock period (with skews) is of the form

Xi = Xj < By p(g) — dij-

Theorem 3 guarantees us that at the end of Phase B |X;| and | X;| are within v,y and
Yp(j) of their optimal values respectively. Therefore the actual value of X; — X after

Phase B must lie within (v,3) + vp(;)) of the required value of X; — X; in Phase A.
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This implies that the inequality that defines the difference constraint can be maintain by
increasing F ;) ,(j) by no more than (v,(;) + v,(;j))- Since each F; ; increases by no more
than ('yp(i) + ’yp(i)), the clock period Tp = le E, iy p(j) will increase by no more than
E (2 y) or TE max(0,M — T,).

5.5 Minimum Area Retiming

Although the minperiod retiming algorithms can achieve significant improvement in the
clock period, they pay no regard to the number of latches in the circuit. As a result min-
period retiming can significantly increase the number of latches in the circuit, and hence the
circuit area and power. To contain this increase, we perform constrained minarea retiming.
Performing a constrained minarea retiming with the target period set to the period obtained
by minperiod retiming, will give us the fastest circuit with least area overhead.

The minarea retiming problem can be modeled as a LP [59]. Unfortunately, under general
clock schedules with unequal phases, the minarea retiming problem must be modeled as a
general integer linear program of the type given in [67], while restricting the clock scheme
to a symmetric multi-phase clock enables us to model the minarea retiming problem as an
efficiently solvable LP (dual of min-cost flow problem) [96]. Therefore in this thesis we will
consider only symmetric clock schemes. As the LP presented in [96] has almost @ constraints
for a circuit with |G| gates, minarea retiming of large circuits is not feasible. In this section we
present an efficient method for minarea retiming of large level-clocked circuits. Our approach
is to improve the efficiency of minarea retiming by
(a) reducing the size of the LP,

(b) generating this LP faster, and

(c) solving the LP efficiently.

Reducing the size of the LP reduces the space requirement of minarea retiming making it
feasible for large circuits. Efficient techniques for generating the LP are essential to retime large
circuits in reasonable times. Lastly since the size of even the reduced LP will be significant,
highly efficient algorithms for solving it are imperative.

In this section we first present the LP formulation of minarea retiming. We then reduce

the size of this LP, both in terms of number of variables and constraints, without sacrificing

any optimality. Finally we present efficient techniques for generating and solving this LP.

5.5.1 The Minarea Linear Program

The minarea retiming LP for level-clocked circuits is similar to the LP for edge-triggered
circuits given in Equation (2.7). The decision variables of this LP are the r variables of the
gates, and the objective function represents the number of latches added to the retimed circuit

in relation to the original circuit. Since the latches at the output of a gate can be combined



68

or shared, we use the mirror vertex model of Section 2.1.4 to take into account maximal latch
sharing.

Like the minarea LP of Equation (2.7), the minarea LP for level-clocked circuit also con-
tains circuit constraints, period constraints and mirror constraints. The circuit and mirror
constraints are defined in the same way as in Section 2.1.4. Since the timing constraints in
level-clocked circuits are different than those in edge-triggered circuit, the period constraints
are derived as follows

For a k phase symmetric clock we have Ty, = T, Vi = 1---k and 7 = 7];—‘1’ For a level-
clocked circuit to be properly clocked the delay on any path should be less than the time

available, i.e.,
dlp) < (wr(p)+1)-7m+Ty Vp:u-v (5.9)

This constraint can be rewritten after substitution of Equation (2.1) as
r(u) — r(v) Sw(p)f@—l-l—l—% Vp:u-v (5.10)
Clearly if there are multiple paths from u to v, only the tightest constraint (one with minimum
) -2

right hand side) is irredundant. We denote the minimum value of [w(p over all paths

from u to v by d(u,v), i.e.,

5(u,v) = min (w(p) _ @> (5.11)

Vp:u-v ™

Let us define A(u,v) as
T
A(u,v) = {5(11,1)) +22 4 1J (5.12)
s

Since the retiming variables r(u) and r(v) are integers, we can rewrite relation (5.10) as the

period constraints
r(u) —r(v) < A(u,v) Vp:u-v (5.13)
We now have the constrained minarea retiming LP as:
minimize > ,cyunm [(ZVjEFI(v) Bleju) — ZVjeFO(v) ﬁ(evj)) ‘7”(”)]
subject to r(u) —r(v) < cyy V(u,v) € C (5.14)
—o00 < r(u) < oo Yu € (VUM)

where C' = C, UC. U C,, is the constraint set of the LP, and includes the period constraint set
(Cp), the circuit constraint set (C.) and the mirror constraint set (Cy,). A constraint (i, ) in

the constraint set C is
r(@) —r(j) < o v(4,

where Cij = w(e;) V(i
V(i
(i

Cij = u)(ma.’l,‘i) — ’w(ejmi) v(i,

1, ECc,le ei; € B
€Cpie,ie€VandjeV

15
€ Cp,ie., m; €M and Vj € F ())

|
>
—_
“N.
<
SN—

Cij 1,

j) €
7)
7)
7)
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5.5.2 Reducing the Linear Program

To reduce the space requirements of minarea LP, it is imperative that we have some tech-
niques to prune the constraints as they are generated, rather than after all the constraints have
been generated. In this section we will take advantage of the relationship between retiming and
GDT presented in Section 5.3 to reduce the size of the LP by using bounds on the r variables.

As in Section 3.2.2, the ALAP and ASAP retimings described in Section 5.4.3.1 give us

bounds on the r variables, of the form

L,<r(u)<U, YveV (5.16)
These bounds give us a reduced variable set V! C V as

V'={v e VU, # L,} (5.17)

We use Theorem 1 to obtain bounds on the mirror variables and thus obtain the reduced mirror
variable set M' = {v € M|U, # L,}.

Example: For the circuit in Figure 5.1, the ASAP location for the latch L1 is at the output
of gate G'1 as shown in Figure 5.3. The number of latches moved across each gate in arriving
at this ASAP location, and hence the upper bounds are: Ug; = 0, Ugo = 1, Ugz = 1, and
Uggs = 0. The ALAP location of latch L1 as shown in Figure 5.2, is at the output of gate G2.
The number of latches moved across each gate in arriving at this ALAP location, and hence

the lower bounds are: Lgy =0, Lgo =0, Lgz =1, and Lgg =0, i.e.
V = {G1,G2,G3,G4}
vV = {G2}
The presence of the bounds obtained in Equation (5.16) makes a large number of constraints

redundant, i.e., these constraints are implied by the bounds. We now present a rule to identify

these redundant constraints.

Rule 5 Any constraint (i,j) of the form r(i) —r(j) < c;j is redundant in the presence of the
bounds of Equation (5.16) and can be dropped if U; — Lj < ¢;j.

Proof : It can be seen from the bounds on (i) and r(j) in Equation (5.16) that
r(t) —r(j) <Ui— L;

Therefore, if U; — Lj < ¢;; then r(i) — r(j) < ¢;; must also be true. Thus any constraint

(¢,7) is redundant and can be dropped if U; — L; < ¢;;.

To obtain the reduced constraint set C' C C we accept only those constraints from C' that

are not dropped by the application of Rule 52. Thus

C'={(i,j) € ClU; = Lj > ¢;5} (5.18)

2Some additional techniques to prune redundant period constraints are presented later in Section 5.5.3.3
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Thus the original LP in Equation (5.14) is reduced to a much smaller yet equivalent LP

given below

minimize 3, evroar | (Svjeri) Blem) — Lvierow Bler)) - 1(v)] (5.19)
subject to r(u) —r(v) < cup V(u,v) € C'
Ly <7(u) < Uy Vu €V’

5.5.3 Generating the Reduced Linear Program

A major portion of the effort in retiming a level-clocked circuit for minimum area is spent
in generating the period constraints set CI'). We now describe efficient techniques for generating
this set Cz,r The generation of period constraints requires computation of ¢ values for all-pairs
of gates in the circuit. However if the ALAP retiming satisfies the target clock period?, then

we need to compute § values only from flexible gates, as stated in the following theorem.

Theorem 6 If the ALAP retiming satisfies the target clock period, any period constraint from
a fized node a (i.e., U, = Lg) is redundant in the presence of the bounds of Equation (5.16)

and need not be generated.

Proof : Since ALAP positions are feasible solutions the following holds for all constraints in

C,.
Li-Lj < A(ij) V(i.j)€C, (5.20)

Consider any period constraint (a,b) € C, from a fixed gate a, to any other gate b of the
form r(a) —r(b) < A(a,b). By relation (5.20) L, — Ly < A(a,b), and by Equation (5.16)
r(a) —r(b) < U, — L. Because gate a is fixed U, = Ly, therefore r(a) —r(b) < L, — Lj <
A(a,b). Thus the constraint (a,b) is redundant and can be dropped. Since this is true
for any period constraint from gate a, we do not need to generate any period constraint

from a fixed gate, as they will all be redundant.

5.5.3.1 Computing the § Values

The § values can be obtained by re-weighting each edge e;; with w'(e;;) = [w(eij) - @}

s

and computing all-pair shortest paths. We use Johnson’s algorithm [17] which has O(|V])

memory requirement, since O(|V|?) memory is not practical for large circuits with tens of

*Notice that if the maximum gate delay in the circuit is more than the active period Ty, it is possible for
ALAP retiming to violate the target clock period even if the target clock period is feasible by retiming alone.
This is because the method of finding ALAP retiming converts a (continuous) skew optimization solution to a
(discrete) retiming solution. This, however, does not imply that these ALAP bounds are wrong, but merely
that they are not tight enough. In level clocked circuits, due to the flexibility offered by the transparent nature
of latches it is very unlikely that the ALAP retiming will violate the target clock period, and in our experiments
no ALAP retiming violated the target clock period.
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thousand gates. Johnson’s algorithm first re-weights all edges to ensure nonnegative edge
weights. The shortest paths between all pair of gates are then computed by running Dijkstra’s
algorithm for each gate as source.

Let us consider a particular run of Dijkstra’s algorithm with gate a as the source, and let
b be a gate to which the shortest path 6(a,b) has been obtained. Let ¢ be any other gate in

the circuit, reachable from gate a.

By definition, r(a) —7(b) < U, — Ly
It U, L, < dab),
then r(a) —r(b) < d(a,b). (5.21)

From relation (5.10) and (5.11)
T,
r(b) —r(c) <o(be)+ =2 +1,
™
which when combined with relation (5.21) gives
Ty
r(a) —r(c) < d(a,b) +d(b,c) + — +1 (5.22)
™

If the shortest path from gate a to gate ¢ does not go through gate b, then d(a,b) + 6(b,c) >
d(a, c) and we do not need to process the fanouts of gate b to obtain d(a,c). On the other hand,
if the shortest path from gate a to gate c is indeed through gate b then §(a,b)+d(b,c) = d(a,c)
and relation (5.22) is same as the period constraint r(a) —r(c) < A(a,¢). If U, — Ly < 6(a,b)
then this period constraint is redundant. In either case we need not process the fanouts of
gate b. Since this is true for any ¢, reachable from gate a, and we are interested only in gates

reachable from gate a, we get the following rule.

Rule 7 If during the shortest path calculations from source a using the Digkstra’s algorithm,

for any gate b we have U, — Ly < d(a,b), we do not need to process the fanouts of gate b.

We take advantage of the bounds on r variables to speed up the computations, by applying
Theorem 6 to compute § values only from the flexible gates, and using Rule 7 to reduce the
computation for the § values actually computed. We found that this significantly improved

the time taken to generate the period constraints.

5.5.3.2 Reusing § Computations

We now describe how to reuse some of the computations performed in obtaining the §
values to further speed up the generation of period constraints. The idea is motivated by the
fact that in most practical circuits (e.g., ISCAS-89) a high percentage of gates are single-fanout
gates. Consider one such single-fanout gate a with fanout b. For the gate a, the shortest paths

to all other gates must be via gate b, which implies that d(a,c) = w'(eq) + (b, ¢). Therefore
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we can obtain the shortest paths from gate a by simply adding w'(e,p) to the shortest paths
from gate b. Thus if we somehow ensure that shortest paths from gate b are obtained just
before those from gate a, we will save one complete execution of Dijkstra’s algorithm for gate
a as source. We call this approach “chaining” and the set of gates for which only one set of §
computations is performed as “chains”. We now define a simple chaining technique that stores
0 values from only one source, hence we call it “1-chaining”.

For 1-chaining a graph G(V, E) we preprocess it to get a set of chains Q = {w',w?...w!?}

such that every vertex in the graph is included in exactly one chain, i.e.,
wNw =0 Vi #£ j and w' Uw?U .. 0=V

Each chain w’ itself is a ordered list (of size |w’|) of vertices in the graph, i.e., w' =<

wl,CU2 A w‘wl‘

>. Thus wé- is the j gate in the i'" chain. The first gate w{ in a chain
is called its head, and all gates in a chain except the head must have only one fanout, i.e.,
|F0(w§-)| =1Viand V j > 1. The gates in a chain are ordered such that any fanin of a gate
appears after it in the chain, i.e.,

o € Yiand 1<) < |w'|

(&

We only need to obtain the § values from the gates that are at the head of a chain, i.e.,
we only need to compute the values §(w},u) Yu € V and 1 < i < [Q|. For all other gates the §
values can be obtained by adding the re-weighted edge weight to the § values from its fanouts,

ie.,
§(whiq,u) = 6(w§-,u) —|—w'(ew;_+1w;_) VueVand 1 <j<|w'|and1<i<|Q

Notice that for a gate that is not at the head of any chain we obtain the § values by a
simple addition, instead of a full run of Dijkstra’s algorithm. Since we need to run Dijkstra’s
algorithm only for gates at the head of a chain we need to perform only Q| single-source
shortest path computations (|2] < |V]). Thus our goal in obtaining these chain is to reduce
there number, i.e., minimize |Q|. In the worst case where every gate in the circuit has more
than one fanout, each chain contains only one gate, and |Q2| = |V/|, then we need to perform the
complete Johnson’s algorithm. The idea of chaining can be further generalized. Conceptually

there are two extremes of chaining:

e No information about the § values is stored, e.g., repeated single-source shortest paths

algorithms like Johnson’s algorithm with O(|V|) memory requirements.

e All information about the § values is stored, e.g., direct all-pairs shortest path algorithms

like Floyd Warshall algorithm [17] with O(]V |2) memory requirements.

The 1-chaining described above is an intermediate method in which we save § values from only

one source. Conceptually we can define k-chaining as a method that stores § values from k
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appropriately chosen sources. This k-chaining in general will require O(k - |V|) memory and
careful selection of the k sources, and is not considered in this thesis.

We now describe a simple preprocessing technique to obtain 1-chaining. This preprocessing
step first assigns a label to each gate which indicates the number of gates that can reuse its
0 computation. All the gates have their labels initialized to 0. These labels are updated
by a relaxation step, in which every single-fanout gate relaxes the label of its fanout gate
by increasing it (to its own label plus one). Since multiple-fanout gates can not reuse ¢
computations of their fanout gates in 1-chaining, they do not relax the labels of their fanout
gates. This relaxation process is finite because we cannot have cycles containing only single-
fanout gates. The chains are then formed by initializing a queue with all multiple-fanout gates.
Every gate in this queue starts a new chain. For the gate at the end of the chain, we process
the fanin gates, adding the single-fanout gate with the highest label (amongst the fanins) to
the chain; all other gates in the fanin are added to the queue. The fanins of the gate now at
the end of the chain are processed similarly, until no more gates can be added to this chain.
This procedure is repeated until the queue is empty.

We found that, on an average we could reduce the time spent in generating the period
constraints by about 50% using the simple 1-chaining technique described above. The time
spent in preprocessing to obtain 1-chaining is very small, making it a useful procedure even if
only a small number of gates have single fanout. As a side note, Rule 7 must be modified for

use with chaining to ensure it is holds for all gates that reuse the d computation.

5.5.3.3 Additional Constraint Pruning Techniques

We now present some more techniques to remove redundant period constraints. Consider
three gates a, b and ¢, such that gate b lies on the path from gate a to gate c.

If gate b is a fanin of gate ¢ then we have

Cl: r(a) —r() < Aa,b)

If A(a,b) +w(epe) < Ala,c) then constraint C'3 is redundant and can be dropped. This leads

us to the following rule

Rule 8 Ifb and c are two gates reachable from gate a, such that gate b is a fanin of gate c
and A(a,b) +w(ep.) < A(a, ) then the period constraint from gate a to ¢ is redundant and can

be dropped.

Since we generate the period constraints from one gate (say gate a) at a time, both A(a,b)
and A(a,c) are available in the same iteration. Further because gate b is a fanin of gate ¢ the

value w(ep.) is available directly from the circuit graph. Therefore Rule 8 can be efficiently
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applied to drop redundant period constraints as they are generated. This reduces the space
(memory) requirement of the period constraints.

If gate b is a fanout of gate a then we have

Cd: r(a) —r(b) < wleqw)
C5: r(b)—r(c) < A(bc)
C6: r(a) —r(c) < Ala,c)

If w(eq) + A(b,¢) < A(a,c) then constraint C6 is redundant and can be dropped. This leads

us to the following rule.

Rule 9 If gate b is a fanout of gate a and gate c is some gate reachable from gate b, then if
w(eqy) + A(b,¢) < A(a,c) then the period constraint from gate a to c is redundant and can be

dropped.

To apply Rule 9 we require the value of A(b, ¢) and A(a, ¢). Since we generate period constraints
from one gate at a time, the period constraints to a gate (¢) from two different sources (gate a
and b) cannot be efficiently accessed. Thus it would appear that Rule 9 cannot be efficiently
applied. However because of the reuse of § computation described in Section 5.5.3.2, Rule 9
can be efficiently applied if gate a has only one fanout (gate b). This is possible because A(aq, ¢)
is derived from A(b,c), and hence both are available when the period constraint from a to ¢
is being generated. Thus we can drop redundant period constraints from gate a as they are
generated.

Rule 5 is valid only in presence of the bounds and it prunes the constraint sets because
the information in these bounds make some constraints redundant. Rule 8 and Rule 9 on the
other hand do not depend on bounds and, they prune the period constraint set because of the
discrete nature of the A values. Rule 8 and Rule 9, can be generalized to include implication by

more than two constraints; these generalized rules will, however, be computationally expensive

to apply.

5.5.4 Solving the Linear Program

Like Equation (3.8), the LP in Equation (5.19) is also the dual of a min-cost flow problem,
and we use the network simplex algorithm described in Section 3.3.3 to solve the dual. Using
this method we could solve a mincost flow problems with 70,000 variables and 8.2 million

constraints in about 9 minutes.

5.6 Experimental Results

We performed retiming on the complete ISCAS-89 benchmark suite, but present results

only on the larger circuits. Due to unavailability of large circuits, we combine circuits from
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Table 5.1 Quality of Retiming for Single Phase Circuits

Circuit |G Period # Latches CPU time

Pi | Ps | PT‘ | Rperiod ‘\le‘ | ‘\Tlp‘ | ‘\Tla‘ | Rarea Tperiod | Ta’fea
53384 1,685 84.0 38.5 38.5 54.2% 183 326 164 10.4% 0.23s 2.34s
54863 2,342 116.0 59.0 59.0 49.1% 104 254 114 -9.6% 0.22s 4.94s
56378 2,779 48.0 48.0 48.0 0.0% 179 263 143 20.1% 0.21s 2.99s
s6669 3,080 118.7 49.0 49.0 58.7% 239 472 278 -16.3% 0.56s 4.09s
s13207.1 7,791 127.0 | 120.0 | 120.0 5.5% 627 890 446 28.9% 1.09s 13.94s
515850.1 9,617 187.0 | 147.0 | 147.0 21.4% 527 869 533 -1.1% 1.84s 38.26s
535932 16,065 77.0 71.0 71.0 7.8% 1728 | 2076 | 1795 -3.9% 2.81s 63.21s
538584.1 19,253 125.0 | 118.0 | 118.0 5.6% 1426 | 3298 | 1427 -0.1% 4.10s 1:49.76s
538417 21,370 68.7 56.0 56.0 18.5% 1564 | 2436 | 1360 13.0% 4.20s 5:28.60s
myex1 28,946 256.0 | 216.0 | 216.0 15.6% 1953 | 4332 | 1958 -0.3% 8.75s 5:32.08s
myex2 40,661 104.0 97.0 97.0 6.7% 2990 | 6197 | 2763 7.6% 9.28s 23:14.83s
myex3 56,751 137.0 | 119.0 | 119.0 13.1% 4718 | 8918 | 4533 3.9% 14.24s | 1:2:22.48s

Table 5.2 Quality of Retiming for Two Phase Circuits

Circuit |G| Period # Latches CPU time

Pi | Ps | PT | Rperio(i ‘\I}z‘ | ‘\IIP‘ | ‘\I}a‘ | Ra.rea Tperio(i | Ta.rea
53384 1,685 126.0 38.5 38.5 69.4% 366 638 337 7.9% 0.40s 2.56s
54863 2,342 117.0 59.0 59.0 49.6% 208 473 234 -12.5% 0.29s 5.36s
s5378 2,779 48.0 48.0 48.0 0.0% 358 480 286 20.1% 0.29s 3.22s
56669 3,080 178.0 49.0 49.0 72.5% 478 960 542 -13.4% 0.76s 6.17s
513207.1 7,791 127.0 | 120.0 | 120.0 5.5% 1,254 1,795 890 29.0% 1.48s 18.61s
515850.1 9,617 187.0 | 147.0 | 147.0 21.4% 1,054 1,777 1,041 1.2% 2.53s 45.82s
535932 16,065 77.0 71.0 71.0 7.8% 3,456 4,144 3,523 -1.9% 3.98s 67.26s
s38584.1 | 19,253 125.0 | 118.0 | 118.0 5.6% 2,852 7,558 2,852 0.0% 5.02s 1:57.52s
538417 21,370 103.0 56.0 56.0 45.6% 3,128 4,938 2,766 11.6% 30.45s 6:26.99s
myex|1 28,946 256.0 | 216.0 | 216.0 15.6% 3,906 9,065 3,891 0.4% 10.08s 6:37.48s
myex2 40,661 128.0 97.0 97.0 24.2% 5,980 | 13,820 | 5,551 7.2% 11.25s 31:16.52s
myex3 56,751 137.0 | 119.0 | 119.0 13.1% 9,436 | 17,019 | 9,041 4.2% 17.46s | 1:19:43.07s

the ISCAS-89 benchmark suite to obtain circuits (myex1 through myex3) with up to 56,000
gates. We present results for both minarea and minperiod retiming on single phase and two
phase circuits. These results are for a duty cycle and phase ratio of 50%. In absence of delay
information in the ISCAS-89 circuits, we assign random delay values (between 1.0 and 20.0
units) to each gate. As in [96] we convert the edge-triggered circuits in ISCAS-89 benchmark
to a k phase level-clocked circuits by replacing each FF by k latches.

Table 5.1 and Table 5.2 present the quality of retiming for single phase and two phase
circuits respectively. For each circuit the number of gates |G|, the initial clock period P;, the

optimal clock period with skews at end of Phase A P;, the final clock period after retiming
Pi—P,
P

P, and the percentage decrease in clock period Ryeriog = are shown. Retiming is able
to achieve the same clock period as skew optimization in all the cases. This is possible due to
the transparent nature of the latches and underscores the usefulness of retiming level-clocked
circuits. Retiming is also able to achieve significant reduction in the clock period, on an average

the clock period is reduced 21.5% for single phase circuits, and 27.52% for two-phase circuits.
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Table 5.3 Reduction in the Size of LP for Single Phase Circuits

Circuit Gre | Faug # Variables # Constraints

Minaret-L | Original | Ryariabies || Minaret-L | Original | Reonstraints
s3384 9.18% | 2.59 1,988 2,166 8.22% 33,103 761,365 95.65%
s4863 17.28% | 1.21 2,497 2,995 16.63% 32,880 5,481,911 99.40%
sb378 25.50% | 1.09 2,728 3,664 25.55% 17,121 4,595,645 99.63%
s6669 26.38% | 0.98 3,089 4,100 24.66% 14,267 1,923,524 99.25%
s13207.1 | 19.97% | 3.00 7,449 9,180 18.86% 45,563 22,908,799 99.80%
s15850.1 | 23.46% | 1.88 8,813 11,332 22.23% 64,283 39,493,334 99.84%
$35932 8.43% | 2.66 20,071 21716 7.58% 145,978 130,080,328 99.89%
s38584.1 | 14.21% | 2.20 20,501 23,390 12.35% 118,771 293,482,797 99.96%
s38417 1.51% | 4.66 25567 25,923 1.37% 1,289,378 149,492,588 99.14%
myex1 13.27% | 2.32 30,287 34,417 12.00% 142,525 504,055,977 99.97%
myex2 4.25% | 4.34 47,409 49,214 3.67% 1,608,132 819,701,299 99.80%
myex3 1.36% | 5.19 69,546 70,414 1.23% 3,608,210 | 1,624,913,333 99.78%

We also show the area cost in terms of number of latches in the initial circuit |¥;], the
circuit after minperiod retiming |¥,|, and the circuit after constrained minarea retiming with
P, as the target period |¥,|. The percentage decrease in number of latches from the initial

. o . 0 |— |
circuit is given by Rgreq = %
1

For almost all circuits, minarea retiming reduces the
number of latches |¥,| in the circuit by a factor of two to three as compared to minperiod
retiming |W,|, even though both retime the circuit for the same clock period P.. This shows
the importance of minarea retiming.

The execution time in seconds on a DEC AXP system 3000/900 workstation, with 256 M
RAM is shown for both minarea retiming 7}, and minperiod retiming 7}¢,ioq, and highlight
the efficiency of our techniques. The minperiod retiming presented here is more efficient than
the one for edge-triggered circuits in [109] because it uses the simpler procedure presented in
Section 5.4.2 for Phase B latch relocation. The CPU time for minarea timing 7y,., was heavily
dominated (> 90% for large circuits) by the time required to generate the LP, this emphasizes
the importance of our use of efficiency-enhancing techniques (chaining, Rule 7, and Theorem 6)
while generating the LP.

As can be seen from the results, retiming (minperiod + minarea) can obtain significant
reduction in the clock period with no or little area overhead. For example in two phase clocking,
for most circuits (except s4863, s6669 and s35932) the clock period is reduced with no area
overhead; in fact the area is also reduced (in some cases significantly, e.g., 29% for s13207.1).
For the other circuits the area overhead is small compared to the gain in clock speed, e.g., for
§6669 a 13.4% area overhead can reduce the clock period by 72.5%.

Table 5.3 provides a closer look at the reduction in the size of LP for minarea retiming for
single phase circuits, while Table 5.4 has results for two phase circuits. The size of the LP is

shown in terms of the number of variables and the number of constraints. Original represents
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Table 5.4 Reduction in the Size of LP for Two Phase Circuits

Circuit Gfe | Faug # Variables # Constraints

Minaret | Original | Roariables Minaret | Original | Reonstraints
$3384 8.15% | 5.22 2,006 2,166 7.39% 55,980 761,365 92.65%
s4863 10.51% | 2.30 2,706 2,995 9.65% 72,451 5,481,911 98.68%
sh378 19.32% 2.23 2,970 3,664 18.94% 31,765 4,595,645 99.31%
s6669 10.04% | 1.92 3,735 4,100 8.90% 20,841 1,923,524 98.92%
s13207.1 | 17.57% | 6.25 7,656 9,180 16.60% 55,395 22,908,799 99.76%
s15850.1 | 21.60% 3.81 9,013 11,332 20.46% 69,142 39,493,334 99.83%
$35932 7.27% | 5.07 20,264 21,716 6.69% 189,068 130,080,328 99.85%
s38584.1 | 13.78% | 4.39 20,590 23,390 11.97% 127,488 293,482,797 99.96%
s38417 0.87% 9.43 25,735 25,923 0.73% 2,446,798 149,492 588 98.36%
myexl | 12.63% | 4.70 30,480 | 34,417 11.41% 154,603 | 504,055,977 99.97%
myex?2 1.52% | 8.72 48,560 49,214 1.33% || 3,638,182 819,701,299 99.56%
myex3 0.67% | 10.41 || 70,000 | 70,414 0.59% || 8,207,036 | 1,624,913,333 99.50%

the traditional LP of Equation (5.14) used in [96] while Minaret-L represents the reduced LP
of Equation (5.19). Ryariabies and Reonstraints give the percentage reduction in the number of
variables and constraints respectively, due to the pruning techniques presented in this chapter.
Also presented are two metrics on the circuits: Gy, the number of gates found to be fixed and
Fyy4 the average flexibility, i.e., the average values of (U, — L,) over all gates in the circuits.
The number of variables include both gate and mirror variables and hence the reduction in
variables can be different from G, which does not include mirror vertices. High G, and low
F,y4 indicates less mobility or flexibility in the circuit, yielding higher percentage reduction in
the number of constraints, and faster minarea retiming. It can be seen that up to three orders
of magnitude reduction is obtained in the number of constraints by using Minaret-L, e.g., for
one phase circuit myex3 the number of constraints reduce from about 1.6 billion to only 3.6
million. The number of unpruned constraints grow at the rate of O(]G|?) and our pruning
techniques reduce this rate of growth significantly. Although the bounds on the r variables
help significantly in reducing the CPU time for minarea retiming, the time spent in obtaining
these bounds is a insignificant fraction (less than half a percent) of the total CPU time for
minarea retiming. Amongst single phase and two phase circuits the single phase circuits have

less flexibility, and a much smaller LP than two phase circuits.

5.7 Conclusion

Efficient algorithms for both minperiod and minarea retiming of large level-clocked circuits
have been presented. The entire ISCAS-89 benchmark suite could be retimed in minutes. The
chief reason for the efficiency of this minperiod algorithm is that it uses the retiming skew
relation to map the problem of retiming level-clocked circuits to the much simpler problem of

retiming edge-triggered circuit. This enabled us to greatly speed up the process of performing
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binary search for the optimal clock period. This is possible because we create a small and
sparse constraint graph, only once rather than in each step of the binary search as done by
traditional methods [96, 70]. The second phase of minperiod retiming is fast because latches
do not have to be moved across a large numbers of gates during retiming.

The minarea retiming algorithm is made practical for large circuits by utilizing the retiming-
skew relation, and several other pruning techniques (Rule 5, Rule 8 and Rule 9) to reduce
the LP in Equation (5.14) to a much smaller LP in Equation (5.19), without sacrificing any
optimality. A reduction of two to three orders of magnitudes in the number of constraints is
obtained for most circuits. The use of Theorem 6, Rule 7, and chaining, greatly speed up the
period constraint generation making the overall algorithm very efficient.

In summary, the contributions of this chapter, which applies retiming-skew relation for fast

minarea and minperiod retiming for level-clocked circuits are the following:

e It handles level sensitive latches like edge triggered FF’s, thus avoiding a complicated
formulation that is forced to handle critical path propagation over several latches. This
also avoids the need of generating the constraint graph for every point in the binary
search, which is necessitated by the fact that critical paths change with the clock period
[70].

e It provides a conceptually simpler technique than [109] for reducing the GDT’s in Phase

B of minperiod retiming which can also be applied to edge-triggered circuits.
e [t provides efficient techniques for generating and pruning the minarea LP.

e It shows that retiming can optimize large level-clocked circuits for high performance with

little or no area overhead.

The algorithms presented in this chapter can also be used to solve the interesting problem
of optimizing edge-triggered circuits which allow some skew (less than a given maximum skew
magnitude) at the FF’s. Some design methodologies may allow a small amount of skew at the
FF’s. The method presented in this chapter can take advantage of this skew to yield better

optimization.
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6 CONCLUSION

6.1 Conclusion

In this thesis we presented efficient techniques for delay and area optimization of sequential
circuits via retiming. Retiming relocates the memory elements in a circuit without changing
its behavior. Our techniques can handle large circuits (with tens of thousands of gates) using
either edge-triggered FF’s or level-sensitive latches.

In Chapter 3 we presented the Minaret algorithm, which solves the problem of con-
strained minarea retiming for circuits with edge-triggered FF’s through an amalgamation of
the Leiserson-Saxe approach and the ASTRA approach. By utilizing the merits of both ap-
proaches an efficient algorithm for constrained minarea retiming, capable of handling very
large circuits, has been developed. The basic idea is to use the ASTRA approach to find tight
bounds on the retiming variables. These bounds then helped us reduce both the number of
variables and the number of constraints in the problem without any loss in accuracy. On an
average Minaret obtained a 30% reduction in the number of variables and an 80% reduction
in the number of constraints. Minaret could retime a circuit with more than 56,000 gates in
under 15 minutes. In contrast the best results published before ours [115] take about 39 hours
for a 8,000 gate circuit.

In Chapter 4 we addressed the problem of minarea retiming with a guarantee of equivalent
initial states, and called it minarea initial state retiming. In control logic the initial state
of a circuit is an integral part of the behavior, and hence any retiming must also generate
an equivalent initial state for the retimed circuit in order for it to have the same behavior
as the original circuit. The presence of an equivalent initial state was guaranteed by adding
“justification upper bounds” on the retiming variables. These bounds also helped in obtaining
the equivalent initial state by a simple method. To obtain an accurate estimate of the number
of FF’s it is essential to correctly model the sharing of FF’s with reset values at the output
of a gate. We presented a 0/1 MILP formulation to model this conditional FF sharing. This
model is also useful for performing minarea retiming of circuits that contain more than one
kind of FF’s, such that different kinds of FF’s cannot be shared with each other. Although
the formulation requires us to solve an MILP, our experimental results showed that practical
size circuits can be handled in reasonable time. This is achieved by ensuring that the number

of integer variables in the LP is small.
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In Chapter 5 we presented the equivalence between retiming and skew optimization for
level-clocked circuits. We also showed that by using the concept of Global Departure Time
(GDT), one can treat latches like FF’s with the ability to absorb some skew, where the GDT
for a latch corresponds to skews in the case of a FF. This equivalence was then utilized to
achieve fast retiming for large multi-phase level-clocked circuits.

We presented delay and area optimization results on the entire ISCAS benchmark suite
for both single phase and two phase clocks. We obtained an average 27.52% improvement in
the clock period, while also reducing the area by 4.48% on an average. In many cases the
clock period is reduced significantly without any area overhead, while in other cases, the area
overhead is small as compared to the gain in clock speed, e.g. for 6669 13.4% area increase
could reduce the clock period by 72.5%.

The advantages of utilizing the retiming-skew equivalence are more significant in level-
clocked circuits than in edge-triggered circuits. The algorithms presented are very efficient,
and are able to retime a circuit with more than 56,000 gates in about 15 seconds for minimum
period and 1.5 hours for minimum area. In contrast the only published results [54] are for
circuits with less than 400 gates. The reduction in the number of constraints for level-clocked
circuits was as much as three orders of magnitude, and the constraints for a 56,000 gate circuit

were reduced from 1.6 billion to 3.6 million.

6.2 Directions for Further Research

Although a significant amount of research has been performed on retiming, some key issues
need to be addressed before retiming is widely accepted by the design community. We now

present some of these issues, and our thoughts on them.

6.2.1 Restriction on Design Styles

The traditional retiming methods impose severe design style restrictions on the circuits
they can handle. Many of these styles are very popular in high performance designs, and these
restrictions need to be relaxed before retiming can be applied to a large section of designs.

Some of these restrictions are

Gated clocks Many low power designs contain gated clocks. A gated clock can be modeled by
a MUX at the latch input with a feed back loop. This will enable retiming to treat gated
clock latches as ordinary latches, but this may result in a structure that is not recognizable
as a gated clock after retiming, and hence may not be desired by the designers. If the
gated clock latches are marked as latches that cannot be moved, then the gated clock
structure is preserved; however, optimality may be sacrificed. A better approach can be

obtained by developing the techniques in [45].
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Multi-cycle paths Traditional retiming techniques do not handle designs containing paths
on which data is allowed to propagate for more than one clock cycle. Multi-cycle paths
can be handled for specified-period retiming by using either the techniques of [57] or

[109]. However, performing minarea retiming on these circuits is a much harder problem.

Registers with logic Most retiming algorithms assume that all registers have only one data
input and one data output. Many design libraries contain registers with some logic, e.g,
AOI latches. This requires retiming techniques to handle library binding issues, such
as finding logic in the fanin cone of the register to be merged with it. Minimum area
retiming becomes more complex since the combinational part of the circuit is changed

by register relocation under this scenario.

Mix of register types Designs containing more then one type of register are difficult to
retime. In minperiod retiming, different types of registers can be handled by a post-
processing phase. However, incorporating different types of registers in minarea retiming
is harder. One method is to formulate the minarea LP assuming that all registers are of
the same type and then use a post-processing step to ensure that registers of different
types are not merged or shared together; however, the solution so obtained would not
be optimal. The MILP formulation in Section 4.3 can be used for minarea retiming of

circuits with different register types, although at a higher computational cost.

Don’t Care timing assertions Some design contains paths for which timing is not impor-
tant, i.e, with don’t care timing assertions (e.g. scan chain for testing or clock network
paths). These paths should not limit the clock period of the retimed circuit, but valid
retimings must consider these paths when performing register moves. While the ASTRA
approach can probably be modified to handle these paths during minperiod retiming,

handling these paths in minarea retiming appears to be harder problem.

6.2.2 Verification

One of the main road-blocks in the use of retiming is the problem of verifying the correctness
of retimed circuits. Retiming changes the number and location of memory elements in the
circuit, hence for FSM’s it changes both the encoding of the states and the number of states.
Sequential verification is therefore required to verify retimed circuits. Unfortunately sequential
verification is a hard problem, however, it is hoped that verifying circuits that are just retimed
versions of each other is possible and preliminary efforts in this direction include [104, 85].

Enough information about the register movement during retiming can be produced by
a retiming tool to possibly enable Boolean equivalency checks on the combinational parts
even though latch boundaries have changed. However this method would not yield a true

independent verification, which is the goal of the verification process. One simple sanity check
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on retiming tools is to perform a structural verification by verifying that the number of latches

on all cycles are the same [113].

6.2.3 Position in Design Flow

Retiming is a very general transform that can be applied at various levels of abstraction.
Retiming can be used during high-level synthesis to improveschedules, and has been used at
the data flow graph levels for digital signal processing applications. Gate level retiming can be
used at almost any stage during logic synthesis, and finding the best point in the design flow
at which to perform retiming is a problem for further research. The ability to verify retimed
circuits is a major factor in determining the place of retiming in the design flow.

Retiming can be applied early during the technology independent stage, since the fixed
delay model used by retiming is better suited for this stage. It could also be applied near the
end of the synthesis process because the sequential nature of retiming makes it hard for the

designer to recorgnize the retimed circuit.

6.2.4 Improved Delay Models

As mentioned earlier, one of the the main drawbacks of the current retiming algorithms is
that they assume constant gate delays. Even in research that uses a more general delay model
such as [54, 127], the delay of a gate does not depend on the number of its fanouts. Although
retiming does not change the topology of a circuit, the sharing of FF’s at the output of a gate
can change the number of fanouts for that gate.

For the circuits shown in Figure 6.1, let the delay of a gate or a FF be equal to the number
of its fanouts. Different FF placements can lead to different delay distributions as shown in
Figure 6.1, e.g, {5,5,5,5}, {4,4,4,4}, {5,5,5,3}. Thus any retiming algorithm using a fanout
dependent delay model must also explore these delay distribution options.

Iterating an appropriately modified ASTRA may be able to obtain good approximate solu-
tions to this problem. An exact solution will, however, most likely require constraints between
all pairs of edges as in [54]. This would make the method incapable of handling large circuits.
Modifications in the Minaret approach may be able to prune this constraint set.

Retiming techniques with better delay models can be combined with transistor sizing [71,
110] for area and delay optimization. While one way is to iterate between retiming and sizing,

a more integrated approach is likely to provide better results.

6.2.5 Retiming and Logic Synthesis

Retiming is a simple yet powerful sequential transform, which operates over the complete
sequential circuits, unlike most other logic optimization techniques, which operate only on

combinational sub-circuits. The sequential nature of retiming makes it possible to improve
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Figure 6.1 Different path delays in a fanout dependent delay model.

the quality of results obtained by subsequent combinational logic optimization. In general,
there are multiple valid retiming solutions that may have different effects on subsequent logic
optimization. The retiming transform can possibly be modified to give a different yet optimal
solution every time so that retiming’s effect on other logic optimization transforms is better
explored. However, this approach will make application of incremental logic optimization
difficult.

Most logic optimization transforms are rather localized and heuristic based combinational
transforms. Retiming, on the other hand, is a global sequential transform which is optimal
under its assumptions. One way to use retiming is to add it to the “bag of tricks” used by a
logic optimization tool as in [33]. Another way is to use retiming in a more systematic way at
predefined points in the process.

Preliminary efforts at iterating between standard retiming and combinational synthesis
have not resulted in significant improvements [38]. We believe that a better way to combine
retiming with other logic optimization techniques is to retime a circuit so as to give the largest
possible combinational sub-circuits. Our approach is to perform a modified minarea retiming
called mincut retiming, where the objective is to minimize the number of edges that contain
one or more FF’s on them. The justification for this objective function is that, when converting
a sequential circuit to combinational sub-circuits, every edge with at least one FF on it is cut
by adding a primary output and a primary input. Hence the objective should be to minimize

these cuts, i.e., edges with one or more FF on them, and not the total number of FF’s in the
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circuit. This problem can be formulated as the following MILP

minimize > ey 2(v) (6.1)
subject to  w(eyy) +r(v) —r(u) < F-2z(u) Vey € E
r(u) —r(v) < wlew) Veu, € E
z(v) € {0,1} YoeV

where z(u) is a 0/1 integer variable, if there is at least one FF at the fanout of gate u then
z(u) = 1, otherwise z(u) = 0. F is a large constant such that no edge can have more than F
number of FF’s after retiming, i.e, ¥ = |F'F'|. This MILP can be modified to include peripheral
retiming [81] by removing the circuit constraints corresponding to the peripheral edges.

The optimal solution of this MILP is used to retime the circuit, which is then converted to
combinational sub-circuits. Each of these sub-circuits are then separately optimized, and the
full circuit recreated by recombining these sub-circuits. The sequential circuit thus obtained

is again retimed for the desired clock period.
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