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PHYSICALLY-AWARE SYNTHESIS AND MICROARCHITECTURE DESIGN

Vidyasagar Nookala, Ph.D.
Department of Electrical and Computer Engineering

University of Minnesota, Twin Cities, 2007
S. S. Sapatnekar and D. J. Lilja, Advisers

As across-chip interconnect delays can exceed a clock cycle, wire-pipelining becomes

essential in high performance synchronous designs. Although wire-pipelining allows

higher frequencies, it may change the circuit altogether because of the nonuniform in-

crease in the latencies of the paths and cycles of the circuit. More importantly, it can

reduce the delivered performance of a microarchitecture, since the extra flip-flops in-

serted may increase the operation latencies and stall cycles. Furthermore, the addition

of latencies on some wires can have a large impact on the overall throughput while other

wires are relatively insensitive to additional latencies.In addition, the high frequencies,

coupled with high integration densities, have made operating temperature an important

concern due to the nonlinearly increasing cooling costs.

Physical design, which determines the lengths of the multicycle wires and the spatial

distribution of power dissipation sources, plays an important role in determining the

throughput and thermal characteristics of a microarchitecture. Moreover, changes in the

throughput can affect the power consumption levels throughvariations in the activity

patterns.

In this thesis, we examine two problems related to wire-pipelining and operating

temperature, one each at the circuit- and microarchitecture- levels. First, we formulate

a method to automatically correct the functionality of a wire-pipelined circuit. The

proposed method finds the minimal value of the input issue rate slowdown required

for a circuit as it affects the throughput of the circuit. Theformulation may introduce

extra registers into the circuit in the process of correction, and attempts to minimize the

number of extra flip-flops thus added. When experimented on the ISCAS benchmarks,
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the results suggest that wire-pipelining increases the overall throughput in most of the

cases.

The second part of the thesis addresses interactions between microarchitecture and

physical design stages. We propose a strategy for floorplanning that attempts to mini-

mize the throughput loss that comes with wire-pipelining. We employ a statistical de-

sign of experiments strategy, which intelligently uses a limited number of simulations

to rank the importance of the wires, and this information is used by the floorplanner to

optimize the throughput-critical wires by keeping them short. Our results over a num-

ber of SPEC benchmarks show improvements in the overall system performance when

compared with an existing technique. Additionally, we compare a couple of simulation

time reduction techniques that can be used to speed up the simulation strategy.

Next, we extend the throughput-aware floorplanning methodology to incorporate

thermal issues. The approach uses instantaneous dynamic power dissipated in the blocks

of a microarchitecture to find a placement that is optimal on acombination of the thermal

and the throughput attributes. We also model the dependencebetween the throughput

and power, and and uses transient analysis for thermal estimation. The thermal ob-

jectives that we consider are the peak and average temperatures. The results indicate

significant improvements in both the peak and the average over a previously proposed

approach.
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Chapter 1

Introduction

CMOS process scaling has allowed a steady increase in the operating frequencies

of integrated circuits, as predicted by Moore’s Law [Moo65]by enforcing a steady de-

crease in device intrinsic delays; semiconductor industrytrends suggest that the operat-

ing frequencies of leading edge integrated circuits approximately double every process

generation [Bor00], in tune with the projections of Moore’sLaw [Moo65] and the Inter-

national Technology Roadmap for Semiconductors, ITRS [Sem01]. For many years, the

performance of a VLSI circuit was determined solely by the delays of the devices of the

circuit. However, the impact of wire delays on system performance, which was negligi-

ble in earlier technology generations, has been growing steadily due to the mismatch in

the scaling trends of device and interconnect delays over process generations. Although

process scaling causes a considerable decrease in device delays, the same is not true in

the case of interconnect delays.

The main reasons behind this trend are the increasing line resistances and coupling

capacitances due to the decreasing wire cross-section and intra-layer wire spacing, re-

spectively. The impact of the mismatch is more pronounced inthe deep submicron

(DSM) regime, particularly at the nanometer technology nodes, where interconnect de-

lay became a major and dominating contributor to the shrinking clock cycle time. The

increasing criticality of the interconnects has presenteda variety of problems to the re-

search community. Various approaches have been proposed tocounter the interconnect

delay problem, such as:

• The use of copper [EHG+97] to replace aluminum for wiring reduces line resis-

tance of the wires due to its lower resistivity.

• Repeater insertion [vG90], especially for long wires , typically linearizes the de-
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pendence of interconnect delay on its length.

• Appropriate wire sizing [CL95] can reduce wire delays.

Although such techniques helped in keeping the interconnect dominance problem at

bay in the earlier technologies, the high frequencies, typically in the gigahertz range,

projected and employed in the nanometer circuits make design feasibility beyond the

scope of wire delay optimization. The scenario is further aggravated by the fact that die

sizes increase by 7% with every process generation [Bor00],resulting in even longer

wire lengths, and hence longer wire delays. In other words, while techniques such

as [vG90,CL95,EHG+97] work well for small or local interconnects, even the theoreti-

cally best optimizers cannot ensure that the delay of a long global wire does not exceed

a clock period. For instance, even after aggressive optimization, a 2cm global intercon-

nect, a common occurrence in nanometer designs, has a projected delay of 0.67ns in

70nm technology [Con01], placing an upper bound of about 1.5GHz on the operating

frequency, much less than the multigigahertz frequencies projected for that technology.

As pointed out in [SMCK04], the maximum distance a signal cantravel along an opti-

mized interconnect in a clock cycle gradually decreases as the technology further scales

down, indicating an increase in the fraction of the interconnects whose delays exceed a

single clock period.

In addition to the above mentioned interconnect delay problem, another issue that

has become an important concern in deep submicron technologies is the operating tem-

perature, particularly in microprocessor circuits due to the high power densities asso-

ciated with high operating frequencies and integration densities; it has been observed

that the power consumption of cutting-edge microprocessors doubles every four years

[Bor00, GBCH01]. For high power dissipations, the cost of cooling has a nonlinear re-

lationship with power [GBCH01], as shown in Figure 1.1. indicating expensive cooling

solutions.

2
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Figure 1.1: The nonlinearly increasing cooling cost. The plot is taken from [GBCH01]

1.1 Handling multicycle wire delays

The emerging dominance of the across-chip delays over device delays has forced

the designers to embrace alternative design methodologiesthat will enable multicycle

across-chip communication, so that across-chip interconnect is removed from all the

timing constraints, and the chip speed is determined by the most critical intra-block/local

combinational path, in order to continue employing higher operating frequencies. Some

of the approaches which can be used to implement multicycle global communication are

listed below:

1.1.1 Slower clock for the flip-flops latching signals from global wires

In this approach, each of the signals from the global wires whose delay is greater

than the system clock period are latched by the flip-flops clocked by the new, slower

clock network. However, this approach adds new complications in the form of routing

the extra clock network and synchronization between the clock domains. Moreover,

since the slower clock must consider the worst case across-chip wire delay, latching

signals from wires whose delay is considerably smaller thanthe slower clock period

3



degrades the throughput of the circuit.

1.1.2 Globally Asynchronous Locally Synchronous (GALS) design

methodology

This approach, proposed in [Cha84], advocates an asynchronous style design for

hiding the effects of global interconnect delays. The basicidea is to alter a circuit

such that it works under the assumption of zero-delay inter-block connections. The

communication between the synchronous subsystems (or blocks) of a circuit, each of

which can have a different clock, is based on a full handshakeprotocol. For this purpose,

each block of the circuit is wrapped around by an asynchronous interface. Several other

works have been proposed based on this approach, such as [Sei94,BC97]. However, the

overhead for the asynchronous interface may affect both theperformance and the area

of the design.

1.1.3 Elastic systems

An elastic design or a latency insensitive design [CKG06, CMSV01] is similar to a

GALS system in that each block of a circuit is surrounded by a wrapper that commu-

nicates with the neighboring blocks. However, the difference is that an elastic system

uses a synchronous framework for global communication unlike GALS, which relies

on handshake protocols. In such a paradigm, each block of thecircuit is required to

be “stallable”, which is accomplished by encapsulating theblocks of the circuit with

wrappers and connect them through internally pipelined elements called elastic con-

trollers in [CKG06] and relay stations in [CMSV01], which comprise memory elements

such as flip-flops and some control logic. All of the wrappers and relay stations/elastic

controllers comply with a formally defined protocol, which forms the basis for a correct-

by-construction methodology. Like GALS, the disadvantageof this approach is the area

overhead accrued due to the relay stations, in addition to the shells. A further limitation
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is that every communication channel must be provided with a couple of additional con-

trol signals, such as “valid/void” to identify valid data and “stop” to implement the back-

pressure or feedback mechanism, which may add up to the totalwiring requirements,

increasing the already critical wire congestion. Althoughthe authors of [CM04a], who

used the software pipelining based approach of [BASB01] to stall the blocks of the cir-

cuit, alleviated some of the aforementioned problems by reducing the complexity of

relay stations and eliminating the “valid/void” and “stop”signals, elastic systems (and

GALS) have yet to find widespread use, partly due to the lack ofadequate CAD support.

1.1.4 Wire pipelining

The delay of an interconnect is distributed over several clock cycles by inserting flip-

flops along the interconnect. As an example, consider the case where a chip has a 2cm

wire, with a projected delay of 0.67ns in 70nm technology, which puts an upper bound

of 1.5GHz on the operating frequency. To operate the chip at afrequency of 3GHz

(corresponding to a clock period of 0.33ns), the delay of the2cm wire can be spread

over two clock cycles by inserting a couple of flip-flops on thewire. This approach is

analogous to classical hardware pipelining, where the logic of a circuit is spread over

multiple stages in order to employ a higher clock frequency.In addition,wire-pipelining

can be treated as an extension to the repeater insertion, where some of the repeaters

inserted on a wire, while optimizing its delay, are clocked,i.e., memory elements such

as flip-flops.

Though it complicates the clock network routing, wire-pipelining, besides allowing

higher operating frequencies, enables designers to remainin the purview of the tra-

ditional VLSI design methodology, and therefore has becomea popular approach to

realize multicycle global communication in the nanometer process technologies. For

instance, Intel used wire-pipelining in the Itanium processor to realize an operating fre-

quency of up to 1.7GHz in 180nm technology [MLH+00].
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In this thesis, we focus on wire pipelining and propose solutions to a few issues as-

sociated with the technique that are outlined in the next section. In addition, we assume

that all of the flip-flops are edge-triggered.

1.2 Issues with wire-pipelining

Although pipelining the interconnects having multicycle delays in a circuit permits

higher operating frequencies, there are several issues associated with the wire-pipelining

scheme:

• Functional correctness:The nonuniform introduction of extra flip-flops into a

circuit can alter its cycle level behavior, requiring correction. Specifically, the

number of latencies inserted on two different paths from a pair of blocks can be

different depending upon the lengths of wires of the paths.

• Throughput reduction:The increase in the number of clock cycles required for

each computation can result in reduced throughput.

The throughput reduction is dictated by the amount of pipelining required by the

wires that form loops or cycles in the circuit. At the circuit-level, this is clearly

determined as the ratio of the post- and pre- wire-pipelining latencies of the cy-

cles of the circuit. This concept, which we callslowdownis dealt in detail in

section 2.2.

However, at the microarchitecture-level, the throughput reduction can be thought

as the increase in the number of clock cycles to execute an instruction. For in-

stance, inserting a flip-flop on the wire connectingissueand adder units of a

microprocessor increases the latency ofaddoperation by one clock cycle, which

prolongs the execution of the program run on the microprocessor.
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1.3 Research contributions

In this thesis, we address two problems, one each at the circuit- and microarchitecture-

levels. The two problems are detailed in Sections 1.3.1 and 1.3.2, respectively.

1.3.1 Functional correction

We present an approach for correcting the functionality of wire-pipelined circuits.

Given a circuit and a wire-pipelined version of the circuit,which may be functionally

incorrect, we formulate a method to correct the functionality of the wire-pipelined cir-

cuit. The technique provides a minimum area solution to the problem, to minimize the

number of additional flip-flops that are required to be inserted on some wires of the cir-

cuit to maintain functional equivalence. The method also ensures that the throughput

slowdown described in the previous section is kept at the minimum possible level.

1.3.2 Microarchitecture-aware floorplanning

A typical microprocessor design methodology, shown in Figure 1.2, can be broadly

classified into the following three steps:

• Microarchitecture design: In this step, the basic functionality issues of the design

are dealt. The step determines the Instruction Set Architecture (ISA) of the archi-

tecture and the high-level implementation details such as pipelining, cache sizes,

etc.

• Compiler design: This step involves translating text and applications written in a

programming language such as C into assembly instructions for the ISA.

• Circuit design: The objective of this step is to transform the high-level description

of the processor into a transistor-level circuit. The step includes routines such as
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logic design, where the high-level description is translated into a network of tran-

sistors and wires, and physical design that determines a placement of the network

on the chip layout. The circuit design step is followed by layout generation, and

finally a silicon implementation of the circuit.

Compiler design

Microarchitecture design

Circuit design

Figure 1.2: An abstract view of microprocessor design flow.

The total execution time,Texec, of a program on a microprocessor can be expressed

as the product of three terms [Lil00], as shown below:

Texec = Ninst · CPI · Tclk (1.1)

WhereNinst is the number of executed instructions, typically the instruction count of the

program, CPI is the average number of instructions per cycleandTclk is the clock period.

The throughput of the microprocessor, measured as the average number of instructions

per clock cycle (IPC), is the reciprocal of CPI.

It can be observed that the execution time can be reduced by decreasing either of the

three terms. In a typical design flow, optimizing for the number of instructionNinst and

CPI has been solely in the hands of the microarchitecture andcompiler design stages.

The job of circuit design has been to minimize the clock cycletime Tclk, subject to the

design specification passed on from the microarchitecture design step.

As noted in Section 1.2, wire pipelining can cause a reduction in the throughput of

the circuit, i.e., increase in CPI, due to the increase in thenumber of clock cycles per

computation. In addition, the amount of pipelining required by the wires of a circuit is
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typically determined at the physical design step, particularly, at the higher stages such as

floorplanning, i.e., block-level placement. This indicates that circuit design can impact

the throughput of a microarchitecture, through the routines of the physical design stage.

Under such a scenario, traditional physical design methodology, which focuses only

on minimizing the clock period and topological aspects suchas area and aspect ratio,

can result in processors that are suboptimal in throughput.Specifically, the impact of

inserting additional flip-flops can vary across the buses/wires of the microprocessor,

depending upon the instruction mix executed. For better throughput, it is imperative to

minimize the amount of pipelining required by performance critical wires by keeping

them short.

On the similar lines, the thermal characteristics of a chip are determined by not

only the power consumption but also the placement of the devices on the chip layout

through various mechanisms of heat transfer that take placein the chip. Therefore, for a

better thermal solution, microarchitecture optimizations, which typically involve power

minimization and other similar procedures, must go hand in hand with the placement

strategy.

Such a scenario asks for interaction between the microarchitecture and lower design

phases, particularly physical design, in order to achieve better performance or thermal

characteristics. In this thesis, we propose methodologiestowards introducing microar-

chitecture awareness in floorplanning, an early physical design stage that has a major

share in determining global wire delays. We first propose a technique for throughput-

aware floorplanning and then extend it to include operating temperature in the optimiza-

tion objectives. We apply the methodology on two different architectures, namely, the

DLX [HP97] and the Pentium (P6) [HP96] machines.

As is typical with microarchitecture optimizations, the methodology requires cycle-

accurate simulations on a set of benchmarks to evaluate the throughput and power con-

sumption of a microarchitecture. Due to the exponential number of floorplan configu-

rations possible, it is impractical to use simulations for each candidate floorplan that is
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evaluated during optimization. We employ a statistical design of experiments (DOE)

based approach [Mon00] to reduce the number of cycle-accurate simulations required

from exponential to a manageable limit.

1.4 Techniques for wire-pipelining

In case of the Itanium processor, wire-pipelining was performed manually: the

global wires violating the clock cycle time were identified,and flip-flops were manually

inserted into the RTL description by the designer. Until recently, there have been few,

if any, methods for automated wire-pipelining, and severalmethods have been proposed

in the last couple of years, some of which are explained in thenext few paragraphs.

It is reasonable to assume that the delay of an optimally buffered interconnect varies

linearly with its length [She95]. If we can determine the maximum length of a wire

whose delay is within a clock period, calledcritical sequential lengthin [SMCK04],

then the number of clock cycles required by a signal traveling the length of a particular

wire can be estimated as the ratio of its length to the critical sequential length. The

authors of [LZKC02] use this idea to pipeline an interconnect for a given clock cycle

time. The approach uses the Elmore delay model [Elm48] to analytically compute the

minimal number of buffers required to optimize the delay of awire of a certain length,

and from this, estimate the critical sequential length.

In addition, the work identifies the feasible regions for inserting each of the esti-

mated number of flip-flops and buffers on a wire, without violating the clock period

requirements.

Two other recent works [Coc02,HAT02] approach wire-pipelining at the global rout-

ing level. The technique of [Coc02] finds a wire-pipelining solution to optimize a given

interconnect topology such as a Steiner tree [She95]. This approach extends the dynamic

programming based buffer insertion algorithm of [vG90] by augmenting the buffer li-

brary with flip-flops. Given a Steiner tree, target clock period, required times at each
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of the destinations, candidate buffer/flip-flops insertionlocations, a buffer and flip-flop

library, the algorithm finds an optimal assignment of flip-flops and buffers on the buffer

locations, which minimizes the number of flip-flops between the source and the lat-

est destination of the net. Another work [SZH04] extends themethod of [Coc02] for

pipelining using latches, instead of edge-triggered flip-flops.

In [HAT02], wire-pipelining is handled in conjunction withglobal routing. The

approach, based on the fast path algorithm [ZLA00], is to simultaneously route and

insert buffers and flip-flops to optimize a two pin wire. The algorithm transforms the

chip area into a grid graph, where the edges and vertices corresponding to the given

blockages are deleted, and finds a minimal latency route fromthe source to the sink

of the net. The solution involves the propagation of wave-front from a vertex to its

neighbors, similar to maze routing [She95]. Both of the approaches use distributed

Elmore wire delay models, and keep track of multiple partialsolutions at every step and

use techniques to prune inferior solutions to decrease the search space.

1.5 Thesis organization

The remainder of the thesis is organized as follows. Chapter2 introduces the func-

tional correctness problem in wire-pipelined circuits in detail and presents a solution

for regaining the functionality. Chapter 3 details some background information on su-

perscalar processors and other preliminaries associated with the content of the next few

chapters. A methodology for throughput-aware floorplanning along with a comparison

of various simulation time reduction techniques is provided in Chapter 4. Chapter 5

applies the methodology of Chapter 4 for the Pentium architecture. In Chapter 6, the

floorplanning flow is extended to incorporate temperature issues into optimization. Fi-

nally, Chapter 7 presents conclusions of this thesis and some future directions.
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Chapter 2

Functional correction of wire-pipelined circuits

In this chapter, we propose a minimum area solution to the functional correction

problem introduced in Section 1.3.1. The solution is formulated as an Integer Linear

Program (ILP).

The chapter is organized as follows. Section 2.1 overviews some related work on

wire-pipelining, which is followed by Section 2.2, which describes the problem and an

intuition behind the solution. Section 2.3 introduces the terminology used in this pa-

per, while a mathematical formulation for the problem solution and area minimization

is developed in Section 2.4. Section 2.5 presents the implementation details and experi-

mental results, while Section 2.6 addresses a few related ideas. We finally conclude the

chapter in section 2.7.

A preliminary version of the work has been published as the Masters thesis [Noo04]

of the author. The new contributions include optimization of the the ILP run time and

an analysis of power dissipation in the context of wire-pipelining.

2.1 Related work

There have been some attempts to address wire-pipelining atcircuit-level in the re-

cent few years, most of them use the technique of retiming [LRS83] as the underlying

framework. The works of [LZ03, CYTD03] extend retiming by including the intercon-

nect delays, in addition to the gate delays, for pipelining the wires of a circuit. Another

work [TTBN00] combines retiming at floorplanning level withmodule selection to con-

sider wire latencies. The objective is to find a floorplan, with module selection, that

minimizes the area of the floorplan subject to a lower bound oneach wire latency. The

advantage of such (retiming-based) implementations is that the functionality of the cir-
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cuit is not altered, due to the use of retiming as the underlying framework. On the other

hand, since retiming preserves the latencies of the cycles and input-output paths of the

circuit, there is a lower bound on the achievable clock cycletime.

2.2 Problem description

A typical design flow may proceed as follows. After the blocksand modules of

the circuit are designed subject to a clock frequency, a block-level placement of the

circuit is performed. Wire pipelining is then carried out onthe global wires of the

circuit, sometimes concurrently with routing [HAT02], or sometimes after routing is

done [Coc02], and this may insert flip-flops on a wire if the delay of the wire exceeds a

clock cycle. After the wires of a circuit are pipelined, the following two problems must

be resolved:

• Increase in the latencies of the cycles of the circuit.

• Nonuniform increase in the latencies of different paths toa block from the inputs

of the circuit.

    

(b)(a)

aa

bb

yy

zz

CC

FF

ckti cktp

B0B0 B1 B1

Figure 2.1: A circuit with two inputsa andb. Signalsy andz are the input ports of

the blockB0. (a) The circuit before pipelining its wires (ckti). (b) The circuit after

pipelining its wires (cktp).

Consider Figure 2.1, which depicts a circuit comprising twocombinational logic

blocksB0 andB1, which also form the cycleC, before and after pipelining the wires
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of the circuit. The two scenarios are labeledckti andcktp, as shown in Figures 2.1(a)

and 2.1(b), respectively. The insertion of an extra flip-flopon the cycleC increases its

latency to 2 incktp from 1 in ckti. Hence, the output of each block ofC propagates

back to itself after 1 clock cycle inckti, whereas it takes an extra clock cycle incktp,

thus altering the original functionality of the cycle. Moreover, with the insertion of an

extra flip-flop betweena andy, the inputsa andb reachy andz, respectively, after an

equal number of clock cycles incktp, which is not the case inckti. Hence,ckti andcktp

are not functionally equivalent.

  a

b

y

z

CB0 B1

Figure 2.2: A solution to the problem shown in Figure 2.1. We refer to this circuit as

cktf .

Wire-pipelining can therefore result in a totally different microarchitecture. This

is not the desired result and therefore, must be corrected, and this thesis proposes a

method for doing so. The solution lies in ensuring that everyblock receives its inputs

at the correct clock cycle. For increased cycle latencies, we use an approach similar to

thec-slowconcept mentioned in [LRS83]. The idea is toslowdownthe input issue rate1

of the circuit by some factorρ, i.e., inputs are allowed to change only everyρth clock

cycle. The issue rate of the initial circuitckti is assumed to be 1.

For instance, the cycleC of cktp will be functionally equivalent to the cycleC

of ckti, if the inputsa andb are permitted to change only every other clock cycle in

cktp. As a result,cktp computes its outputs only every 2 clock cycles, which indicates

a reduction in the throughput of the circuit. In addition, the latency difference between

1The issue rate is defined as the number of clock cycles betweensuccessive input changes.
An issue rate of 1 indicates that the inputs can change every clock cycle.
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any two paths to a block from the inputs of a circuit must also be maintained in its

wire-pipelined version. Going by this argument, since the latency difference between

the pathsb → z anda → y is 1 in ckti, and 0 incktp, one extra flip-flop must be

inserted on the pathb → z in cktp to make it functionally equivalent tockti. However,

the slowdown has implications on the path latencies of a wire-pipelined circuit. For

example, the latency difference of the pathsa → y andb → z in ckti must be amplified

by a factor ofρ = 2 in cktp, since it receives its inputs only every 2 clock cycles.

Therefore, 2 extra flip-flops must be inserted on the pathb → z in cktp, as shown in

Figure 2.2.

Our work finds the minimal value of slowdown required for a circuit as this directly

affects its throughput and also minimizes the increase in area due to the insertion of

extra flip-flops in the process of correction.

2.3 Preliminaries

In the example in section 2.2, it was assumed that all blocks were purely combina-

tional. In general, a circuit may have sequential as well as combinational blocks, i.e.,

the blocks may have internal flip-flops and/or cycles. The existence of cycles in a circuit

may require that extra flip-flops be inserted within a sequential block of the circuit. For

instance, consider a scenario where there are two paths froman input of a sequential

block to one of its outputs. If the two paths have different latencies, and if the circuit

requires a slowdownρ > 1, then the solution will require that the difference of latencies

be increased by a factor ofρ. Therefore, all of the wires of the block must be considered

for the insertion of extra flip-flops. However, in most cases,the blocks are internally un-

defined blocks at an early stage of design, or IP cores, and therefore, arbitrary insertion

of extra flip-flops on the wires within the blocks is not desirable. To avoid this, we use

an abstract model for a sequential block that decomposes it into a set of combinational

sub-blocks, interconnected by wires having flip-flops. Thisensures that for any sequen-
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tial block, only those interconnections that have flip-flopson them are considered for

insertion of extra flip-flops. Figure 2.3 shows a sequential block and the abstract model

of the block. The block is modeled as two combinational sub-blocks,S1 andS2, with

flip-flops on the interconnections between them.

a

b
c

d
e

f

FF

FF

S2S1

Figure 2.3: A sequential block and its abstracted model.

For a general circuit, we will consider three scenarios: theinitial circuit , a wire-

pipelinedversion of the initial circuit, and acorrected wire-pipelinedversion of the

initial circuit. Flip-flops and repeaters apart, each of thethree circuits consists of the

same placed and routed combinational block level or sub-block level netlist. Each net of

the circuits is a routed tree that connects the output of a block/sub-block (source) to the

inputs of other blocks/gates (sinks) through branch pointssuch as Steiner points [She95].

We use three edge weighted directed graphs, each of which is simply referred to as

“graph” henceforth, to model the three scenarios. The graphs have the same vertex and

edge sets, represented asV andE, respectively. The vertex setV of the graphs models

the blocks/sub-blocks, the inputs, the outputs and the branch points of the circuit. The

setE is the collection of the nets of the circuit. The graphs are described below:

• The graphGi = 〈V, E, wi〉 represents theinitial circuit , which may not satisfy the

frequency requirements. The weightwi(e), ∀e ∈ E is the number of flip-flops

along the wire modeled bye in Gi.
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• The graphGp = 〈V, E, wp〉 represents thewire-pipelinedversion of the initial

circuit Gi, obtained using some wire pipelining method such as [Coc02,HAT02].

AlthoughGp satisfies the timing constraints, it may not be functionallyequivalent

to Gi. The weightwp(e), ∀e ∈ E is the number of flip-flops along the wire

modeled bye in Gp. We assume that the weightwp(e) is the lower bound on

the required number of flip-flops by the wire modeled bye in order to satisfy the

target clock period requirements.

• The graphGf = 〈V, E, wf〉 represents thecorrected wire-pipelinedcircuit, ob-

tained after alteringGp to make it functionally correct. Hence,Gf satisfies the

timing constraints, and is also functionally equivalent toGi. The weightwf(e), ∀e ∈

E is the number of flip-flops along the wire modeled bye in Gf .

It can be noticed that the circuit model used is similar to that of retiming formulation

[LRS83]. In addition,ρ is the amount of input issue rate slowdown required so thatGf

is functionally equivalent toGi. For the example discussed in section 2.2, the graphs

Gi, Gp andGf model the circuits of Figures 2.1(a), 2.1(b) and 2.2, respectively. This

thesis acceptsGi andGp as inputs and presents a method to obtainGf andρ. The input

issue rate ofGi is assumed to be 1, i.e., inputs of the initial circuit can be changed every

clock cycle.

We extend the weight functionswi, wp andwf to (simple) paths and (simple) cycles

of the graphs. The weight of a path/cycle is defined as the sum of weights of all edges on

the path/cycle. For the graphsGi andGp to have a physical meaning, the edge weights

(and consequently path weights)wi andwp must be nonnegative, as they represent the

number of registers along the wires of the circuits. Moreover, since the graphs represent

synchronous systems, every cycle in the graphs must have a strictly positive weight, i.e.,

at least one edge of each cycle must have a weight greater thanzero, in bothGi andGp.

The weights of any edge, path and cycle inGf cannot be less than the corresponding

weights inGp, as we do not wish tounpipelinethe wires ofGp. However, the weights
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wp can be less than the corresponding weightswi in Gi, indicating the presence of more

than necessary number of flip-flops required to meet the frequency constraints. Thus, for

any edge or path in the graphs, the weightwf in Gf can be less than2 the corresponding

weight wi in the graphGi. To indicate thate is an edge fromu andv in the graphs,

we will use the notationu
e
→ v. We will also use the terms “graph” and “circuit”

interchangeably.

We have seen in section 2.2 that any attempt to correct the functionality of Gp to

obtainGf may involve the insertion of extra flip-flops, thus resultingan increase in the

area. The proposed method also minimizes the area increase due to the insertion of extra

flip-flops, which is detailed in section 2.4. To accurately model the area, we define two

nonnegative weight functions onE, as shown below:

• The weightrp(e), ∀e ∈ E represents the number of repeaters along the wire

modeled bye in Gp.

• The weightrf (e), ∀e ∈ E represents the number of repeaters along the wire

modeled bye in Gf .

We assume that all repeaters are identical and therefore have equal area. We make a

similar assumption for the flip-flops as well, i.e., each flip-flop has equal area. If extra

flip-flops are to be inserted along a wire, in going fromGp to Gf , some or all of the

repeaters along the wire inGp can be replaced with flip-flops, without violating any

timing constraints. The repeaters ofGi are ignored in our model since they do not have

any role in area minimization.

2This not true for a cycle though. For any cyclec, wf (c) ≥ wi(c), sinceρ(c) ≥ 1.
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2.4 Solution technique

2.4.1 Obtaining the optimalρ

As explained in section 2.2, the concept of slowing down the input issue rate (by

a factor ofρ) can be used to correct the functionality of a cycle in the wire-pipelined

circuit Gp. By restricting inputs to be allowed to change only everyρ clock cycles, we

are providing “extra” clock cycles to the cycle inGp to complete its computations. In

other words, slowdown (of the input issue rate) can be thought of as a compensating

factor for increased cycle latencies inGp, at the expense of decreased throughput, since

the circuit computes its outputs only everyρ clock cycles.

Let c be any cycle of the graphs, whose latencies inGi andGp are given bywi(c)

andwp(c), respectively. Consider a block on the cycle, and suppose ithas an inputy, not

belonging to the cycle3. By the time the output computed by the block propagates back

to itself through the other blocks of the cycle, the number oftimes the signal seen aty

may have changed is equal towi(c) in Gi, andwp(c) in Gp. For functional equivalence

of the two circuits, the number of input changes seen aty must be identical in both

circuits, equal towi(c). Since inputs can change every clock cycle inGi, this can be

achieved if the inputy is permitted to change only everywp(c)
wi(c)

clock cycles inGp. This

ratio gives the slowdownρ(c) required for the cyclec in Gp. Applying this idea to the

cycle C of Figure 2.1, wherewi(C) = 1 andwp(C) = 2, we have,ρ(C) = 2
1

= 2.

However, ifwi(c) does not dividewp(c), then the weightwp(c) must be increased to the

next higher multiple ofwi(c), as we can only have an integral slowdown. For instance,

if the values ofwi(c) andwp(c) are 2 and 5, respectively, then a slowdown ofρ(c) = 3

is required forc in Gp and the weightwp(c) must be increased toρ · wi(c) = 6.

In general, a circuit may have more than one cycle and each of these may require a

different slowdown. The critical cycle is the cycle which requires the maximum value of

3An example of such a situation is illustrated by inputy in Figure 2.1.
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slowdown. The slowdown required for this cycle is the lower bound for the slowdown

required for the entire circuitGf , since the latencies of other cycles can be increased

to match this slowdown. If̂ρ(Gf), or ρ̂ in short denotes the minimal (also optimal)

slowdown required byGf to exhibit correct behavior, then we have

ρ̂ = max
c∈C

{⌈

wp(c)

wi(c)

⌉}

whereC is the set of cycles of the graphs.

The equation shown above represents amaximum cycle ratio problem(MCRP) [Law66]

on the graphsGi andGp, where the time and cost of each edgee ∈ E is given by the

weightswp(e) andwi(e), respectively. One method of obtaininĝρ was proposed by

Lawler in [Law66]. The idea is to iteratively apply the Bellman-Ford algorithm [CLR89]

to find the longest paths in the graphGl = 〈V, E, wl〉, where the edge weightswl are

defined as:

wl(e) = wp(e) − ρ̂ · wi(e) ∀e ∈ E (2.1)

If there is no cycle inGl (C = ∅), thenρ̂ is 1, i.e., inputs can be issued every clock

cycle in acyclic circuits. Otherwise, a binary search is performed to find the minimal

value ofρ̂ for which there is no positive cycle inGl. The presence of a positive cycle in

Gl indicates that for some cyclec in Gl, ρ̂ · wi(c) < wp(c), i.e., the slowdown required

for c is greater than̂ρ. The complexity of Lawler’s method isO(|V ||E|log(|V |wmax)),

wherewmax = maxe∈E wi(e). Several other more efficient ways of solving the MCRP

have been proposed in the literature [DIG99].
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Figure 2.4: Illustration of the solution technique on the circuit shown in Figure 2.1. The

numbers shown with the edges in the graphs correspond to the weights of the edges.

(a) The initial circuit (Gi) depictingckti. (b) The wire pipelined circuit (Gp), depicting

cktp. (c) The corresponding graphGl. The optimal slowdown,̂ρ is 2. The number

shown above each vertex inGl is thex value for that vertex. (d) A Solution (Gf ). The

weightswf shown with the edges are obtained by using (2.5).

2.4.2 Obtaining a solution toGf

A feasible solution

Let q andq′ be any two distinct paths from the inputs of the circuits to any vertex

v ∈ V . Since the inputs are issued only everyρ̂ clock cycles in the circuitGf , to

compensate for the increased cycle latencies, if the difference of weights ofq andq′ in

Gi is k, then the corresponding difference inGf must beρ̂ · k. For example, since the

difference of weights of the pathsa → y andb → z in the circuitGi shown in Figure

2.1(a) is 1, the corresponding difference must be 2 (sinceρ̂ = 2 for the circuit) in the

circuit Gf shown in Figure 2.2. From this observation, we have

wf(q) − wf(q
′) = ρ̂ · (wi(q) − wi(q

′))

⇒ wf(q) − ρ̂ · wi(q) = wf(q
′) − ρ̂ · wi(q

′) (2.2)

If Qv is the set of all paths from the inputs tov in the graphs, then from (2.2), the

difference of the termswf andρ̂ · wi must be equal∀q ∈ Qv. We introduce a variable

x(v) ∀v ∈ V such that
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x(v) = wf(q) − ρ̂ · wi(q) ∀q ∈ Qv (2.3)

Let qu be any path starting from the inputs of the circuits, ending at vertexu. For

u
e
→ v, we can form a pathqv ending atv by addinge to qu. The weights ofqu andqv

can be related as follows:

wp(qv) = wp(qu) + wp(e)

wi(qv) = wi(qu) + wi(e)

and wf(qv) = wf(qu) + wf(e) (2.4)

From (2.3) and (2.4), we have

wf(qv) = x(v) + ρ̂ · wi(qv)

⇒ wf(qu) + wf(e) = x(v) + ρ̂ · (wi(qu) + wi(e))

⇒ wf(e) = x(v) − (wf(qu) − ρ̂ · wi(qu)) + ρ̂ · wi(e)

= (x(v) − x(u)) + ρ̂ · wi(e) (2.5)

In (2.5), the weightswf are expressed in terms ofx values and̂ρ. We also have

wf(e) ≥ wp(e) for all e ∈ E. From this and (2.5), the following can be deduced:

wp(e) ≤ (x(v) − x(u)) + ρ̂ · wi(e)

⇒ x(v) ≥ x(u) + (wp(e) − ρ̂ · wi(e)) (2.6)

From (2.6), it is evident thatx(v) is the weight of the longest path tov in Gl, de-

fined in the previous section, while discussing about Lawler’s method of solving MCRP.

When there are no positive cycles inGl, longest paths are well defined and the Bellman-

Ford algorithm outputs thex values of the vertices. Therefore, solving the MCRP by
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Lawler’s method also finds thex values, along witĥρ. The weightswf can then be de-

termined from thex values using (2.5). To summarize, the following steps are involved

in obtaining a functionally correct wire-pipelined circuit Gf .

1. Solve the MCRP to obtain̂ρ and thex values.

2. From theρ̂ and thex values computed in step 1, determine the weightswf of Gf

using (2.5).

Lemma 1 Let (Gf = 〈V, E, wf〉, ρ ≥ ρ̂) be a solution to〈Gi, Gp〉. Then for any cycle

c in the circuit, we have

wf(c) = ρ · wi(c)

Proof: Suppose cycle c is composed of vertices and edgesv0
e0−→ v1

e0−→ · · ·
en−1

−→

vn, v0 = vn. Then

wf (c) =

n−1
∑

i=0

wf(ei)

=

n−1
∑

i=0

(x(vi+1) − x(vi) + ρ · wi(ei))

=
n−1
∑

i=0

ρ · wi(ei) +
n−1
∑

i=0

(x(vi+1) − x(vi))

= ρ · wi(c)

Lemma 1 indicates that all cycle latencies are increased by afactor ofρ in Gf . This

shows thatGf represents a pipelined version ofGi, retaining its functionality if the

inputs are issued only everyρ clock cycles. It computes outputs everyρ clock cycles.
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We demonstrate the solution technique on the circuit shown in Figure 2.1. Figures

2.4(a) and (b) show the graph modelsGi andGp, for the circuitsckti andcktp, shown

in Figures 2.1(a) and (b), respectively. The blocksB0 andB1, and the inputsa and

b are modeled as the verticesv0, v1, va, vb, respectively. The graphs have one cycle

C = v0 → v1 → v0. We have seen at the beginning of this section that the optimal

slowdown required for the circuit is 2, i.e.,̂ρ = 2. Figure 2.4(c) shows the graphGl

obtained by computing the edge weights using (2.1). Forρ̂ = 2, it can be observed that

the weight ofC in Gl is 0, which indicates that the longest paths are well defined in Gl.

Thex values of the vertices are shown in Figure 2.4(c). The solution obtained by using

thex values from Figure 2.4(c) is shown in Figure 2.4(d). It can beseen that the graph

Gf of Figure 2.4(d) is identical to the circuitcktf of Figure 2.2.

A minimum area solution

The solution technique presented in the previous section only finds a feasible so-

lution, and does not consider minimization of the area increase, incurred due to the

possible insertion of extra flip-flops, while obtaining a solution. In this section, we will

extend the solution technique to incorporate area minimization and formulate the prob-

lem as an Integer Linear Program (ILP) and then describe a method to solve the ILP

efficiently. We will consider two flexibilities for area minimization here.

Formulation as an ILP

One way of minimizing the number of extra flip-flops is to retime some or all of the

extra flip-flops out of the wires of the circuit, as illustrated in Figure 2.5. In section 2.4.2,

thex values are computed as the longest path weights inGl. However, the slacks in the

longest path constraints (henceforth referred to as latency constraints) (2.6) allow a range

of permissible values forx. This flexibility enables the movement of flip-flops across

vertices, which is exploited for area minimization.
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(a) (b)

B0B0

B1B1

B2B2

Extra FFs

Figure 2.5: Illustration of area minimization on a portion of a circuit by retiming the

extra flip-flops. (a) A solution to the problem requires one extra flip-flop each on the

outgoing edges ofB1 andB2, respectively. (b) The two flip-flops are moved over the

blocksB1 andB2 to the outgoing edge ofB0, which reduces the flip-flop count by one.

(a)                                                                    (b)

B0B0 B1B1

Repeater

Figure 2.6: Illustration of area minimization on a wire of a circuit by replacing a repeater

with the extra flip-flop. (a) A solution to the problem requires one extra flip-flop on the

wire betweenB0 andB1. (b) A repeater is replaced with the extra flip-flop.

The second degree of freedom we will explore is as follows. Inthe event of adding

extra flip-flops to the edgee, some or all of the repeaters present alonge in Gp can be

replaced with flip-flops. We assume that each extra flip-flop can replace one repeater

from the edge, as demonstrated in Figure 2.6.

Insertion of an extra flip-flop can be thought as making one of the existing repeaters

on the wire “clocked”. Inserting an extra flip-flop on a wire eases the timing constraints

on the wire, and therefore the wire actually requires lessernumber of repeaters. Hence

removing a repeater from the wire does not lead to any timing violation. The available

25



number of slots, i.e., repeaters along the edgee in Gp is given byrp(e) and the number of

extra flip-flops to be added along the edgee in Gf is given byextra(e) = wf (e)−wp(e).

If extra(e) exceedsrp(e), then all of therp(e) repeaters alonge in Gp will be replaced

with flip-flops. In such a scenario, the number of repeaters along e in Gf , given by

rf(e), will be 0. Otherwise,rf(e) will be equal to the remaining number of repeaters on

e of Gp, after some of them were replaced by extra flip-flops. Therefore, rf(e) can be

expressed as the following piecewise linear (PWL) function:

rf (e) = max{rp(e) − (wf(e) − wp(e)), 0} (2.7)

We define the area of the edgee in the circuitGf , af(e), as the area of the repeaters

and flip-flops alonge in Gf . If area is the total area of the repeaters and flip-flops of

Gf , andwa andra are the areas of a single flip-flop and repeater, respectively, then for

anyρ ≥ ρ̂,

af(e) = wf(e) · wa + rf(e) · ra ∀e ∈ E

= (x(v) − x(u) + ρ · wi(e)) · wa + rf(e) · ra

and area =
∑

e∈E

af(e) (2.8)

Integer Linear Program

The minimum area solution can be formulated as an Integer Linear Program (ILP)

shown below, by expressing the PWL function (2.7) as two linear constraints. The

constraint set of the ILP includes the latency constraints (2.6) and the two linear repeater

constraints (2.9) and (2.10) deduced from (2.7). The objective is to minimizearea given

by (2.8).
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Minimize

area =
∑

e∈E

{(x(v) − x(u) + ρ · wi(e)) · wa + rf(e) · ra}

Subject to

∀e ∈ E s.t. u
e
→ v

rf(e) ≥ rp(e) + wp(e) − (x(v) − x(u) + ρ · wi(e)) (2.9)

rf(e) ≥ 0 (2.10)

x(v) ≥ x(u) + wp(e) − ρ · wi(e)

Solving the ILP

Solving an ILP is generallyNP–complete, unless the problem exhibits integral poly-

tope structure [BJS90], which means that all of the extremalpoints of the polytope

formed by the constraint set of the ILP have purely integral components. Unfortunately,

the ILP of previous section in the described form does not have an integral polytope, and

is therefore hard to solve. The hardness of the problem comesfrom the repeater con-

straints (2.9) and (2.10). In this section, we will reformulate the ILP as an instance of the

dual of the Minimum Cost Network Flow (MCF) problem [BJS90],which exhibits in-

tegral polytope structure, and therefore can be efficientlysolved. This is accomplished

by finding a closed form expression for the repeater countrf , which can be used to

eliminate repeater constraints from the ILP.

e

(a)                                           (b)

uu vv
e1 e2

de

Figure 2.7: Insertion of a dummy nodede on an edgee ∈ E.

We use the following transformation to achieve this. For each edgee ∈ E, where

u
e
→ v, a dummy vertexde is added to split the edge into two edges,e1 ande2, such that
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u
e1→ de andde

e2→ v, as shown in Figure 2.7. The edgee1 models the case where the

extra flip-flops to be inserted one replace the repeaters ofe. Inserting a flip-flop one1

increases the area ofe by wa − ra. The edgee2 models the case where more thanrp(e)

extra flip-flops are to be inserted one. Inserting an extra flip-flop one2 increases the

area ofe by wa. To minimize area, the ILP fillse1 first before assigning any flip-flop to

e2. The firstrp(e) extra flip-flops to be inserted one are assigned toe1 and the rest are

inserted one2. Therefore, the number of flip-flops inserted one2, given bywf(e2), will

be strictly positive only when the number of extra flip-flops exceedsrp(e). From this,

We have,

wf(e) = wf (e1) + wf(e2)

wf(e1) ≤ rp(e) + wp(e) (2.11)

rf(e) = rp(e) − (wf(e1) − wp(e)) (2.12)

Equation (2.12) represents a closed form expression for therepeater countrf in Gf ,

which can be used to eliminate therf variables from the ILP. In addition, the following

latency constraints one1 ande2 can be inferred from the above equations.

x(de) ≥ x(u) + (wp(e) − ρ · wi(e)) (wf(e1) ≥ wp(e))

x(v) ≥ x(de) (wf(e2) ≥ 0)

x(de) ≤ x(u) + (rp(e) + wp(e) − ρ · wi(e)) (from (2.11))

It can be observed that the first two inequalities above sum upto obtain the constraint

(2.6) one. The last constraint places an upper bound ofrp(e) on the number of extra

flip-flops that can be inserted one1 part of the edgee. With all the above equations, we

obtain a new expression forarea, as shown below:
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af (e) = wf(e) · wa + (rp(e) + wp(e) − wf(e1)) · ra

= (x(v) − x(u)) · wa − (x(de) − x(u)) · ra + ρ · const.

= x(v) · wa − x(u) · (wa − ra) − x(de) · ra + ρ · const.

area =
∑

v∈V
S

Vd

(kv · x(v)) + ρ · const. (2.13)

whereVd is the set of dummy vertices, and ifFO(v) andFI(v) are the number of

outputs and inputs ofv ∈ V , respectively,

kv =







FI(v) · wa − FO(v) · (wa − ra) : v ∈ V

−ra : v ∈ Vd

Equation (2.13) indicates thatarea is a linear function ofx variables and the slow-

down factorρ. The reformulated ILP for the minimum area solution toGf is shown

below.

Minimize area =
∑

v∈V
S

Vd

(kv · x(v)) + ρ · const

∀e ∈ E s.t. u
e
→ v

x(u) − x(de) ≤ ρ · wi(e) − wp(e)

x(de) − x(v) ≤ 0

x(de) − x(u) ≤ rp(e) + wp(e) − ρ · wi(e)

For a constantρ, the constraint set of the preceding ILP is a set of difference con-

straints involvingx variables, and the objective is a linear function ofx variables. An

ILP of this structure represents an instance of the dual of the minimum cost flow prob-

lem, which can be efficiently solved by several methods such as the network simplex

method [BJS90]. As before, the weightswf can be computed using (2.5). In addition,
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Figure 2.8: Optimal̂ρ may not mean minimum area. It is assumed that the circuits do

not have repeaters. The number shown with each edge in the graphs denotes the flip-flop

count of the edge. (a) Initial circuit. (b) Wire-pipelined circuit. (c) A minimum area

solution forρ = ρ̂ = 2: number of flip-flops = 10. (d) A minimum area solution for

ρ = 4: number of flip-flops = 8.

there is a minimum area solution for each value ofρ ≥ ρ̂. Moreover, the minimum area

solution for ρ̂ may not be a global minimum solution, as demonstrated in Figure 2.8.

However, in most cases, maximizing throughput (or minimizingρ) is the primary objec-

tive, rather than minimizing area. In such a scenario, the ILP is solved forρ = ρ̂, which

is determined by solving the MCRP, as detailed in section 2.4. The resultant solution

represents a maximal throughput minimum area solution toGf .

2.5 Experimental Results

2.5.1 Set up

The ideal application of the proposed technique is in the area of System on Chip

design methodology, where several IP blocks are connected by long across-chip in-

terconnects. However, the lack of appropriate SoC benchmarks makes experimen-

tation a difficult task. The authors of the latency insensitive design methodologies

of [CMSV01, CM04a] use a small MPEG circuit for their experimentations. In con-

trast, the wire retiming approaches proposed in [LZ03, CYTD03], the architectural re-

timing technique of [TTBN00] that were described in Section2.1, a more recent work

on concurrent systems [JCK06] address this issue by projecting the gate level circuits,
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specifically those of the ISCAS benchmark suite [BBK89], as large SoC circuits, where,

in most cases, each logic gate is treated as a large IP block, and with an input to output

latency of one in [CMSV01,CM04a].

We use ISCAS benchmarks for our experimentation, just as is done in [LZ03,CYTD03,

TTBN00, JCK06], where each circuit is scaled into a large SoCcircuit consisting of IP

blocks. The results are presented in Section 2.5.2.

In addition, we also present another potential applicationof the proposed solution

technique at the circuit- or logic- level for frequency constrained circuits. Specifically,

for designs that have a strict frequency constraint, one solution is to pipeline the circuit,

i.e., increase the latencies of the paths that violate the clock period constraint. This pro-

cess may be different from the SoC problem discussed in the previous paragraphs, since

the wires of the circuit can have small delays and the overalllogic must be considered

during pipelining, unlike individual wires in the SoC scenario. We use the same ISCAS

benchmark circuits for this purpose and demonstrate the results in Section 2.5.3.

2.5.2 Wire-pipelined SoC circuits

An operating frequency of 3GHz is chosen for the system and the target technology

chosen has a feature size of 65nm. After finding a placement using Capo [CKM], the

area of the circuits was scaled to 4cm2 to mimic the layout of a realistic chip. For smaller

layouts, the wire lengths are not long enough to be pipelined. The dimensions of the

circuits were scaled accordingly. Each gate in the originalcircuit is assumed to be a

combinational functional block. The block propagation delays are randomly generated

using a quantitative scale of 1–10, where 10 corresponds to the system clock period,

which turns out to be 0.33ns (corresponding to a frequency of3GHz). In addition,

the output signal of each block is assumed to be latched immediately, after it leaves

the block, and these flip-flops are the only memory elements inthe (initial) circuit,

indicating that each wire has a latency of 1, similar to the approach used in [CMSV01],
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Circuit |V | |E| Gp Gf ρ̂ Time

Rptrs Flops Rptrs Flops (sec)

s27 15 18 21 19 18 22 1 0.1

s344 110 210 265 229 198 333 2 0.1

s349 114 215 238 227 174 329 2 0.1

s1196 360 836 1864 1111 1606 1446 1 1

s1238 389 925 1519 963 1267 1277 1 1

s1423 449 913 1134 1028 752 1540 2 1

s1494 364 1104 3083 1592 2572 2231 2 1

s13207 2014 3759 4843 4094 3354 5976 2 1

s15850 3504 7215 9166 7787 6231 11382 2 2

s38417 8029 17646 29717 0947 3131 29837 2 14

s38584 9616 22515 35777 6093 6628 37446 2 24

Table 2.1: Experimental results for ISCAS benchmarks.

where each IP block has a latency of one. In this way, each wire, along with the delay

of the block that it feeds data to, can be considered for pipelining independently without

addressing the other parts of the circuit.

For the wire delays, the projections for a 2cm global wire made in [Con01] were

used, where the delay of an optimized 2cm wire in 70nm technology is projected to be

0.67ns. The delays of the wires of the test circuits were determined by assuming a linear

relationship between the delay of a wire and its length, which is reasonable for buffered

interconnects. It is also assumed that a 2cm wire has 10 repeaters, and accordingly the

repeater counts of the wires of the circuit were determined.Finally, the area of a flip-flop

was assumed to be twice that of a repeater.

First, the optimal slowdown,̂ρ was obtained for each circuit by solving the MCRP, as

explained in section 2.4.1. Later, the ILP, which is an instance of the dual of minimum
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Circuit MaxFreq SGp
ρ̂ SGf

(GHz)

s27 2.48 1.21 1 1.21

s344 1.86 1.61 2 0.80

s349 2.13 1.42 2 0.71

s1196 1.42 2.11 1 2.11

s1238 1.35 2.20 1 2.20

s1423 1.24 2.42 2 1.21

s1494 1.49 2.01 2 1.01

s13207 1.10 2.73 2 1.36

s15850 1.57 1.92 2 0.96

s38417 1.03 2.89 2 1.45

s38584 1.19 2.51 2 1.26

Table 2.2: Performance issues with wire-pipelining.

cost network flow problem, was solved using the network simplex implementation of

[Loe] to obtain a minimum area solution subject to the slowdown of ρ̂ obtained for each

circuit. The experiments were performed on a 2.4GHz Pentium4 machine with 1GB

RAM. The results obtained for different benchmarks are shown in Table 2.1. The labels

Rptrs andFlops denote the number of repeaters and flip-flops, respectively,listed for

both circuitsGp andGf . It can be observed from the table that the number of repeaters,

Rptrs, decreases inGf , since some of the repeaters inGp are replaced by flip-flops in

Gf . In addition, for circuits such as s1238 and s1196, a slowdown of 1 indicates that

none of the wires forming cycles in those circuits were long enough to be pipelined. The

run times are in the order of a few seconds, as shown in the table.

Table 2.2 captures the speedup obtained by wire-pipelining. In particular, we com-

pare the results with those obtained by utilizing conventional retiming that also consid-
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ers wire delays. Our (wire) retiming implementation is based on the algorithm proposed

in [LZ03]. Column 2 of Table 2.2 lists the upper bound on the operating frequency,

achieved by retiming, ofGi for each benchmark. The column labeled SGp
shows the

frequency speedup obtained by performing wire-pipeliningonGi for a clock frequency

of 3GHz. However, the frequency speedup of the wire-pipelined circuit,Gp (which

may be functionally incorrect) may not entirely translate into the throughput speedup

obtained for the corrected wire-pipelined circuit,Gf , since the possibility of increased

cycle latencies inGp will enforce a slowdown of̂ρ in the input issue rate inGf . The

column SGf
shows the actual throughput speedup achieved byGf , where SGf

= SGp
/ρ̂.

It can be observed from Table 2.2 that for most circuits, the actual speedup achieved

is greater than one, as compared to retiming, which indicates that wire-pipelining has

indeed improved the performance. However, some circuits such as s344, the through-

put speedup achieved is less than one, suggesting that wire-pipelining has resulted in

throughput degradation for these circuits.

Table 2.3 depicts the area and power consumption issues associated with wire-

pipelining. The column labeledArea Incr lists the percentage increase in the area

of the repeaters and flip-flops inGf . The area is calculated as the sum of the areas of

the flip-flops and repeaters, which are normalized to 2 and 1, respectively. The last two

columns demonstrate the dynamic power consumption4of repeaters and flip-flops, ob-

tained using SIS [SSL+92], in circuitsGp andGf , respectively. It can be observed that

the repeater-FF dynamic power shows the same trends as the actual speedup,Gf
of Table

2.2, as depicted by the final column, which shows the ratios ofSGf
andGf repeater-FF

dynamic power for each of the benchmarks. We are unable to generate results for some

of the large benchmarks (as SIS was not able to handle large input sizes), and this is

4Normalized to that of the initial circuit,Gi. ForGi, the maximum frequency bounds
shown in Table 2.2 are assumed, while a frequency of 3GHz is used in power computa-
tions forGp andGf . The slowdown factor is taken care by scaling the node switching
activity values by the corresponding amount ofρ̂.
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Circuit Area Incr Power SGf

Pow(%) Gp Gf

s27 5.1 1.27 1.41 0.86

s344 19.5 0.86 1.21 0.66

s349 20.2 0.73 1.02 0.70

s1196 10.1 2.61 3.24 0.65

s1238 10.9 2.67 3.37 0.66

s1423 20.1 1.30 1.85 0.65

s1494 12.2 1.34 1.79 0.56

s13207 17.5 1.45 2.04 0.67

s15850 17.2 1.01 1.42 0.68

s38417 15.6 1.63 - -

s38584 15.4 - - -

Table 2.3: Repeater area and dynamic power.

indicated by the “-” entries in the table.

Although wire-pipelining causes a degradation in performance for some circuits,

there could be several system-wide reasons for having a higher clock frequency. Typ-

ically, decision on the frequency is made at the system leveland is handed down to

the designer to implement, who tries to ensure best possibleperformance under this

decision. The amount of slowdown required can be reduced by using better objective

functions in placement, which will attempt to place blocks which form, in particular, the

critical cycle closer to each other. The authors of [CM04b] try this idea at the floorplan-

ning level by including the slowdown factor as part of the floorplanning objective.
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2.5.3 Frequency constrained logic circuits

The previous section assumes that each gate of the ISCAS benchmarks as a logic

block and projects the area to 4cm2. In this section, we directly use the gate-level de-

scription of the benchmarks to pipeline the circuits for a target frequency. For this

purpose, we use a SPICE generated library consisting of five logic gates, namely, an

inverter, two- and three-input nand and nor gates, and an edge-triggered flip-flop. The

gates along with the delays are shown in Table 2.4. After mapping the benchmarks using

SIS [SSL+92], we employ Capo to find a placement of the circuits.

The next step is to pipeline the circuits for the target clockperiod. We choose the

same frequency of 3GHz that is used in the previous section. As mentioned in Sec-

tion 2.5.1, the pipelining strategy must consider the wholecircuit rather than on individ-

ual wires separately as done for the SoC circuits in Section 2.5.2. For circuits that do

not not cycles, it is fairly straight forward to pipeline, since a simple breadth first search

or a topological sort will suffice. Furthermore, the additional latencies in this scenario

affect only the input (PI) to output (PO) latencies and do notimpact the throughput of

the circuit.

Gate Delay (ps)

NOT 29.0

NAND2 33.6

NAND3 36.0

NOR2 34.5

NOR3 37.4

DFF 67.2

Table 2.4: Gate library and delays.

In contrast, for circuits that have cycles, pipelining is much more complicated, since
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a topological ordering of the gates cannot be defined. One approach is to remove all the

back edgesfrom the circuit and then pipeline the resultant acyclic circuit. The deleted

back edges are then added and any timing violations can be handled by inserting flip-

flops on the added edges. These back edges can be, for instance, all wires that have

flip-flops, i.e., edges with a positive weight (wi) in the initial circuit. However, adding

memory elements on cycles of a circuit reduces its throughput and such a strategy can

result inρ suboptimal pipelining solutions, for it can insert additional flip-flops on cycles

even when not required.

(c)

aaa bbb

ddd

G0G0G0 G1G1G1

G2G2G2 G3G3G3

(300)(300)(300)(300)(300)(300)

(33) (33)(33) (33)(33) (33)

(a) (b)

ckti cktf1
cktf2

Figure 2.9: A circuit with four gates, two inputsa andb, an outputd and a cycleG2−G3.

The numbers shown in the parentheses are the delays, in picoseconds, of the blocks, and

suppose the clock period constraint is 333ps. (a) The circuit before pipelining wires

(ckti), the minimum clock period = 366ps. (b) The pipelined circuit obtained (cktf1
),

when the back edgeG2
e
→ G3 is removed and then added after pipelining the rest of

ckti, the minimum clock period is 333ps. For this circuit, the throughput slowdown =

2. (c) A better solution (cktf2
) that has no reduction in the throughput. In addition, the

minimum clock period for this circuit is 300ps.

For instance, consider the circuitckti with four gates (depicted as large rectangles)

shown in Figure 2.9(a) that has a cycle involving the gatesG2 andG3 with a latency
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of one. For simplicity, we ignore wire and flip-flop delays from the calculations. It

can be seen that the minimum clock period for this circuit is 366 units. Suppose there

is a maximum constraint of, say, 333 units (corresponding to3GHz if the units are

picoseconds) on the clock period. The approach detailed in the previous paragraph can

be executed as follows. First, the back edgeG2
e
→ G3 is removed and the remainder of

the circuit is pipelined using a topological traversal. In the process, a flip-flop needs to

be inserted on the wireG3
e′

→ G2. Whene is added later, the flip-flop must be retained

as the pathG0 → G1 → G2 has a delay of 366 units, and this exceeds the target clock

period. The resultant circuit with aρ of two, is shown ascktf1
in Figure 2.9(b). This

certainly is not an ideal solution, since it results in an overall loss of performance, and

cktf2
of Figure 2.9(c) is a better solution that transfers the insertion of additional flip-

flops to the non-cyclic wires of the circuit and ensures that there is no slowdown, i.e.,

ρ = 1.

Therefore a better strategy may to be to minimize the amount of pipelining required

on cycles. To this purpose, we use an approach that removes non-cyclic wires from the

delay calculations. The sequence of the steps is shown below:

• The cyclic wires, i.e., all of the wires that are part of the cycles of the circuit are

identified and this can be done using an all pairs path algorithm such as Floyd-

Warshall [CLR89] or multiple iterations of depth first search.

• All of the remaining, i.e., noncyclic wires, along with thecyclic wires that have

flip-flops are removed from the circuit. These cyclic wires can be treated as back

edges removed to break the cycles.

• The circuit is pipelined for the target clock period using topological ordering.

• The removed edges are then added, and are pipelined (flip-flops are inserted) if

they result in any timing violations.
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Circuit |V | |E| MaxFreq SGp
ρ̂ SGf

(GHz)

s13207 2708 4648 0.86 3.47 4 0.87

s15850 4566 8289 0.75 3.96 5 0.79

s38584 13669 25908 0.79 3.78 4 0.95

b14 9970 19100 1.26 2.37 5 0.48

b15 10010 18852 0.45 6.60 17 0.39

b20 19979 38484 0.89 3.36 8 0.42

Table 2.5: Performance comparison of pipelining the circuits with retiming.

Most of the ISCAS benchmarks that are used in Section 2.5.2 have very low gate

counts and do not offer much scope for pipelining. We apply the approach on a few large

benchmarks, namely, s13207, s15850 and s38584. In additionto these, we use a few

circuits from the ITC benchmark suite [CRS00], b14, b15 and b20, for experimentation.

Table 2.5 presents the results of the proposed correction technique and a comparison

with the performance achieved with retiming. The labels of the columns have the same

meaning as those of Tables 2.1 and 2.2. For instance, the column labeledMaxFreq

denotes the maximum frequencies obtained for the original,unpipelined, circuits with

retiming.

The last column, labeledSGf
, indicates that pipelining the circuits does not result in

overall performance improvement. One reason for this is that, although the pipelining

strategy explained earlier in the section eliminates the noncyclic wires from the delay

computations, it is still possible that the latencies of some cycles are increase even when

not required since the cycles may not be independent and can contain many common

wires. The problem is more pronounced in the ITC benchmarks,where there are very

few noncyclic wires. There is need for a better, more optimal, pipelining strategy to

handle this issue.
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2.6 Related concepts

2.6.1 Gf and ρ-slowing

The notion ofslowdown used in our thesis can be related to the idea ofρ-slowing

defined in [LRS83, LS83]5 to establish techniques to transform a synchronous circuit

into a functionally-equivalent systolic circuit, i.e., a circuit where each of its functional

units have unit delay, there is at least one flip-flop along each of its interconnections. If

a circuit, which consists of unit-delay functional units, has a maximum combinational

path delay ofρ units, then a corresponding systolic circuit can be constructed as follows.

First, each flip-flop of the circuit is replaced by a sequence of ρ flip-flops to produce a

ρ-slow functional equivalent circuit, i.e., it computes valid outputs only everyρ clock

cycles. Next, retiming is performed on theρ-slowcircuit to reduce the clock period. This

process can be extended to a general circuit with unequal functional unit delays. In such

a case, the objective may not necessarily be to obtain a systolic circuit, but to decrease

the clock period byρ-slowingand retiming, at the expense of decreased throughput.

The circuitGf can be related toGρ̂·i = 〈V, E, ρ̂ · wi〉, a ρ̂-slowversion of the initial

circuit Gi obtained by replacing each flip-flop inGi with a sequence of̂ρ flip-flops,

whereρ̂ is the optimal slowdown as calculated in section 2.4. A. LikeGρ̂·i (or any of its

retimed configurations), any feasible solution toGf is a ρ̂-slowversion ofGi. In either

circuits,Gf andGρ̂·i, the cycle latencies are scaled by a factor ofρ̂. While the same

is valid for input-output path latencies as well inGρ̂·i, this may not be true for input-

output path latencies inGf , since the path latencies inGf are dictated by the lower

bounds (weightswp in Gp) on the number of flip-flops required to pipeline the wires of

the paths. For instance, a purely combinational input-output path, sayq, in Gi will also

be purely combinational inGρ̂·i, and if there is a strictly positive lower bound on the

number of registers required to pipeline one of the wires, say e, on q, i.e., wp(e) > 0,

5In [LRS83,LS83], this concept is actually calledc-slowing.
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then the latency ofq must be at least that much in any feasible solution toGf . Even

for nonzero weighted paths inGi, the scaled weight inGρ̂·i may be less than the lower

bound, i.e.,ρ̂ · wi(q) < wp(q). Such a situation can arise since the scaling factorρ̂ is

solely determined by the cycles of the circuit, and increasing the latency of the pathq in

Gi by a factor of̂ρ may not be sufficient to obtain a wire-pipelining solution for the wires

of q. On the other hand, for some paths, the lower bound may be lessthan its weight in

Gρ̂·i, and in such cases, the redundant flip-flops can be removed from the circuit, thus

reducing the area of the circuit.

Consider any output vertexv and letqv be any input-output path ending atv. A close

look at the expressionx(v) = wf(qv) − ρ̂ · wi(qv), defined in section 2.4, indicates that

x(v) represents the amount by which the latency ofqv (or any input-output path ending

at v) in Gρ̂·i is altered in the correspondingGf , where the weightswf are computed

using (2.5). A positivex(v) implies that the weight ofqv in Gf exceeds that ofqv in

Gρ̂·i. Likewise, if x(v) < 0, the latency ofqv in Gf is less than the corresponding

latency inGρ̂·i by |x(v)|. In Gf , the edge and path latencies are constrained by the

inequalities (2.6), which represent lower bounds on the register count on the wires of

the circuitGf . From these observations, the solution approach discussedin section 2.4

can be thought of a way of altering the input-output latencies, while retaining the cycle

latencies, ofGρ̂·i such that the weight of each wire exceeds the given lower bound. Such

line of thinking is analogous to finding a feasible solution to Gf by applying retiming

onGρ̂·i with the following framework.

• Variables:The retiming variable for eachv ∈ V is x(v).

• Constraints:The retiming constraint graph consists of the lower bound constraints

(2.6), which model both the nonnegativity and clock period constraints of the

traditional retiming formulation. The inequalities (2.6)can be treated as a special

case of nonnegativity constraints, where the lower bounds on some or all of the

edge weights in the retimed circuit are strictly positive. In addition, they also
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represent the minimum number of flip-flops required on the wires of the retimed

circuit to meet the target clock period requirements.

• Input-output path latencies:In conventional retiming, a host vertex is introduced

into the circuit such that it has incoming edges from the outputs and outgoing

edges from the inputs of the circuit. Therefore, each input-output path forms

a cycle along with the host vertex, thus ensuring that the latency is retained in

the retimed circuit, since retiming preserves cycle latencies. In order to permit

changes in input-output path latencies, the host vertex cycles must be broken,

and this can be done by removing, from the circuit, the incoming edges to the

host vertex from the outputs of the circuit. In such a scenario, the change in the

latency of an input-output path ending atv ∈ V is equal tox(v)− x(host) and, if

x(host) = 0, this evaluates tox(v).

In theory, this approach appears to be a better strategy for pipelining the logic of

a circuit, than the techniques presented in Sections 2.5.2 and 2.5.3. Furthermore, the

solution throughρ-slowing is correct by construction and does not require any correc-

tion techniques addressed in this chapter. However, the primary issue with retiming

based implementations is the assumption of a simple model for the delays, such as the

Elmore delay model. While such approaches may work well for an optimization prob-

lem, where relative accuracy will suffice, they cannot be used for finding a solution that

strictly adheres to a given frequency constraint. A viable strategy may be to insert flip-

flops wherever timing violations occur, which is where our proposed solution technique

arrives into the picture, to correct the functionality. However, as noted in Section 2.5.3,

the challenge is to find a throughput-optimal pipelining solution.

Another motivation behindρ-slowing in [LRS83], besides reducing the clock pe-

riod, was to simultaneously processρ input streams by properly multiplexing and de-

multiplexing the I/O ports of theρ-slow circuit. Since the circuitsGf and Gρ̂·i are

functionally equivalent, this advantage can also be extended toGf , i.e., ρ̂ input streams
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can be processed to hide the slowdown, which leads to an overall throughput speedup

equal to the frequency speedup obtained by wire-pipeliningthe circuitGi.

2.6.2 Software implementation ofslowdown

For single input stream data, there is an alternative way of implementing slowdown

if the circuit Gi represents a microprocessor architecture, instead of an interconnection

of circuit blocks as assumed earlier. In microprocessors, the input presented is in the

form of a sequence of assembly instructions, and in the simplest case, the micropro-

cessor accepts and executes a single instruction every clock cycle. In this context, a

slowdown ofρ̂ can be thought as a pause ofρ̂ clock cycles between successive instruc-

tion executions, and this can be realized by insertingρ̂ NOPs, i.e., instructions which do

not implement any function, after every instruction in the assembly code.

2.7 Conclusion

This chapter has presented an approach to solve the problemscreated by wire-

pipelining. The proposed method also finds the optimal valueof input issue rate slow-

down required for a circuit, since it directly affects the throughput of the circuit. The

problem is formulated as an instance of the dual of minimum cost flow problem, to

incorporate the minimization of area increase, incurred due to the insertion of extra flip-

flops in the process of obtaining a solution. Though wire-pipelining improves overall

throughput of most circuits, it may degrade the throughput for some circuits. However,

this is still a useful solution since clock frequencies are typically decided by system-wide

considerations, and the task of the designer is to obtain thebest achievable performance

under such system-level constraints. In addition, the throughput can be improved by

choosing better objective functions. Finally, there is need for further research on mini-

mizing the overhead in the repeater area and power consumption, due to wire-pipelining,

an important concern which must not be ignored.
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Chapter 3

Microarchitecture-aware floorplanning

preliminaries

This chapter presents some background information about superscalar processors

and techniques that are used for the floorplanning methodologies dealt in the subsequent

chapters.

3.1 Superscalar microprocessors

The hardware of microprocessors typically consists of the fetch and decode logic,

execution core, memory, and writeback/retire logic. In pipelined processors, the logic is

distributed into multiple stages, where each stage implements a particular functionality,

to ensure high performance by keeping the clock period short. A superscalar processor

[HP96] implements a pipelined architecture that can execute multiple operations per

cycle. Instructions are pre-fetched and stored, and are executed when the corresponding

resources or functional units become available.

The main attributes of a superscalar processor are branch prediction and instruction

scheduling. Branch prediction allows the processor to fetch and execute instructions that

follow a branch operation, before the result of the branch isknown. If the prediction

turns out to be correct, then the execution continues, otherwise all of the instructions

fetched and executed in the incorrect path are squashed fromthe processor pipeline.

Instruction scheduling, on the other hand, relates to the techniques employed in dis-

patching multiple instructions per clock cycle to the execution units. Such schemes can

be broadly classified into two categories: dynamic and static. Most architectures such

as the Pentium processor [HP96] employ dynamic scheduling,where instructions can
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be issued and executed “out of order”. Specifically, an instruction can be dispatched to

the execution unit when all control and data dependencies, such as a Read After Write

(RAW) hazard, associated with the instruction are resolved, and not necessarily in pro-

gram order. This capability can significantly increase instruction level parallelism (ILP)

through efficient resource utilization, which reduces the CPI of the processor, thereby

decreasing the execution timeTexec of (1.1). Although the instructions can execute and

complete out of order, architecture state must be updated inprogram order, i.e., the

instructions must be retired in the order they are fetched from memory.

In contrast, static scheduling handles instruction issue in program order. The advan-

tage is that this technique requires less hardware than dynamic scheduling. However,

such a scheme can only be effective when combined with techniques such as Very Long

Instruction Word [HP96], where the optimization is handledmostly at the compiler

level. The Itanium processor [MLH+00], which uses the VLIW format, is an example

of an architecture that employs static instruction scheduling. Although the instructions

are scheduled in program order, operations can complete execution out of order. The

retire logic must be able to handle such a scenario.

3.2 Superscalar architecture simulation

Software modeling of microarchitectures provides an effective way of validating ar-

chitecture changes and performance/CPI estimation. Processor simulation has been a

major area of research and several techniques have been proposed and implemented in

the past decade. Examples include those developed in the public domain, such as Sim-

pleScalar [BA97] and industry simulators such as Asim [EAB+02] by Intel and Turan-

dot [EAB+02] by IBM. The primary components of these simulators are the timing and

functional models. The timing model implements an event driven engine that simulates

each clock cycle of programs executed on the architecture modeled by the simulator. In

contrast, the functional model maintains the microarchitecture state, such as the contents
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of the register file, and actually executes the simulated instructions on the host machine

where the simulator is installed.

We use SimpleScalar, which simulates the DLX superscalar architecture [HP97], for

most of the work presented in this thesis, specifically for the simulation strategies pre-

sented in Chapters 4 and 6. The simulator is widely used for microarchitecture research,

partly due to availability of the source code, since it is developed in the public domain.

Furthermore, it models all the important features of superscalar architectures such as

out-of-order execution. Another feature that is useful to evaluate different microarchi-

tectures is that the architecture configuration, such as cache size and fetch width, is

parameterized. In addition, for the simulation methodology of Chapter 5, we utilize

Asim, an industry simulator that models the Pentium architecture (P6) [Int98].

3.3 Benchmarks

An important aspect of performance estimation is the set of benchmark programs

that need to be used for the simulations. The programs must depict real life work load

scenarios seen for the simulated architecture, in order to attain an effective performance

characterization. Several work loads have been developed in the last few years for differ-

ent applications. The most widely used are the programs of the SPEC 2000 benchmark

suite [Hen00], which consists of work loads based on programs executed on general

purpose microprocessors, such as gcc and gzip. The benchmarks of the MediaBench

suite [LPMS97] mostly depict multimedia applications, while those of TPC-C [Tra97]

involve programs at transaction level. In this thesis, we use SPEC benchmarks for the

purpose of validating the proposed floorplanning methodologies.

46



3.4 Architecture power estimation

3.4.1 Sources of power dissipation

There are three major components in the power dissipated by CMOS circuits:

• Dynamic power: Also known as active power, this component corresponds to the

power consumed during the charging and discharging of circuit capacitances. The

magnitude of the dynamic power is proportional to the switching frequencies of

the devices.

• Leakage power:This component is due to the presence of subthreshold currents

and, more recently, gate oxide tunneling currents. Leakagepower are inversely

proportional to transistor threshold voltages, and has been gaining importance due

to the scaling of the threshold voltages and increasing chiptemperatures, because

of the exponential dependence of subthreshold current on operating temperature.

• Short circuit power: This component is due to the presence of a short circuit

between the supply voltage and the ground during the time of input switching. In

general, short circuit power tends to have a small magnitudeif the input switch-

ing times are controlled, and we do not consider this component for the work

addressed in this thesis, specifically the thermally-awarefloorplanning approach

of Chapter 6.

3.4.2 Architectural power estimation

Microarchitecture optimizations typically focus on powerestimation at the block-

level. The event-driven/cycle-accurate model of microarchitecture simulations men-

tioned in Section 3.2 provides an effective framework for determining the block switch-

ing activities required to estimate, particularly, the dynamic component of the power.
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The leakage power is generally independent of the activity levels. Such a scheme re-

quires a block-level power characterization that can be constructed using circuit-level

simulations.

A number of frameworks have been proposed for architecturalpower estimation in

the public domain. Most of them incorporate power models into existing cycle-accurate

simulators, as described in the previous paragraph. For instance, Wattch [BTM00],

which we use in this thesis for simulations, and SimplePower[YVKI00] extend Sim-

pleScalar to add the capability of power estimation.

3.5 Experimental design

Experimental design involves of determining a set of experiments, which is a subset

of a generally large solution space, that characterizes theresponse or output of a system

in terms of changes in the factors (inputs) of the system. Thetypical objective is to build

a prediction model for the output, through for instance, regression, where the variables

are the inputs of the system. In such a process, the inputs arevaried over a set of finite,

usually small number of, values in order to observe the effect the changes have on the

response. The set of values and experiments can be chosen in anumber of ways, and it

is important to identify the best choices to achieve an accurate characterization.

3.5.1 One-factor-at-a-time design

The one-factor-at-a-time is a simple approach to experimental design, where the

inputs are varied one at a time over a specified range of acceptable values, instead of

all simultaneously. The advantage of this approach is that the number of experiments is

linear in the number of factors. The major disadvantage, however, is that it is not easy to

estimate interactions between the factors [Czi99]. Furthermore, the impact of the factors

can be more effectively estimated when they are varied simultaneously.
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3.5.2 Statistical design of experiments

Design of Experiments is a systematic approach that provides an appropriate sam-

pling of search space for response characterization. Unlike the one-factor-at-a-time

technique of the previous section, this approach consists of simultaneously changing

the factors, and the subsequent analysis of the resulting experimental data will identify

the critical factors, the presence of interactions betweenthe factors, etc. The influence

of the individual factors is expressed asmain effects, while interaction effectsdescribe

the influence of interactions. For a system affected byN factors, there areN main ef-

fects,
(

N

2

)

two-factor interaction effects, and so on. In all, there are2N − 1 effects that

must be estimated.

Multifactorial designs and resolution

The size of the design, i.e., the number of experiments in thesampling, depends

on and typically increases with the number of effects that need to be estimated. The

simplest design, commonly referred to asfull factorial design, permits estimation of all

of the main and interaction effects. However, such a design involves experimenting over

all possible number of factor combinations and the size is exponential in the number of

factors.

On the other hand,fractional factorial designs, which require relatively less number

of experiments, assume that some of the interaction effectsare negligible and all other

effects can be estimated. Specifically, each of the effects are grouped oraliasedwith

some other effects, and it is only possible to estimate the sum of the effects of each

group. In such a scenario, if all but one of the effects of a group are found to be negligi-

ble, then the sum can be solely attributed to that one nonnegligible effect. The grouping

pattern can be determined from the structure of the design.

Fractional factorial designs are categorized using the concept ofdesign resolution.

For a design with resolutionR, all of the main effects are grouped with interaction ef-
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fects involvingR-1 and higher number of factors. In general, any effect that is associated

with i factors is aliased with effects ofR-i and higher factor interactions, and the small-

est possible resolution is III. A resolution III design, which has a minimum size that

is linear in the number of factors like the one-factor-at-a-time design of Section 3.5.1,

works under the assumption that all of the interactions are negligible, and this can be

used to build a linear model for the response that includes only the main effects.

Components of effects

Each of the effects contain a linear component and components of higher degree

such as quadratic. The number of estimable components for a factor is determined by the

number of distinct values, also called factor levels, utilized for the factor in the design.

In ak-level design, where each factor is varied acrossk different values, components of

up to a degree ofk-1 can be estimated. For instance, a three-level design can be used to

compute both the linear and quadratic components of each of the main and interaction

effects. However, the size of a design rapidly increases as the number of factor levels

increases.

In this thesis, we utilize a two-level resolution III designfor the floorplanning of the

DLX architecture in Chapters 4 and 6. However, for the Pentium architecture, owing to

the associated nonlinearities that will be explained laterin Chapter 5, we use a two-step

approach, where the first step is a screening two-level resolution IV design that is used

to separate factors that have insignificant impact on the response. In the second step, a

three-level resolution V design is applied for the remaining, significant, factors to build

a quadratic response surface model.

3.5.3 Significance testing

Significance testing is an important part of experimental design to identify whether

an effect can substantially affect the response. A typical application is hypothesis test-
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ing, where anull hypothesisis set up to test analternative hypothesis, which has more

effects/terms in the model. If the null hypothesis matches the results of the alterna-

tive hypothesis, then the additional terms (of the alternative hypothesis) are statistically

insignificant and can be easily discarded.

The F-test, that we employ in this thesis, is the widely used scheme for significance

testing. The test involves matching the residual sum of squares of an effect (interaction

or main) to the sum of squares of the error. If both are comparable, then the effect can

be termed unimportant and can be safely removed from the model. For the purpose of

comparison, the ratio of the two sum of squares (for the effect and error/noise) is used to

index the F-distribution [Mon00]. The result is ap-level which corresponds to the like-

lihood of the effect being significant. The higher thep-level, the lower is the likelihood,

and ap-level of 0.05 is typically used as the threshold of statistical significance, i.e., if

the value is greater than 0.05, the effect can be ignored fromthe model.

3.6 Floorplanning

Floorplanning involves finding an optimal placement of the blocks of a circuit on

the layout of the circuit hat minimizes a cost function that typically includes topolog-

ical attributes such as the layout area, total wire length and aspect ratio. The problem

is an instance of combinatorial optimization that belongs to the class of NP [Ger99],

several heuristics have been proposed in the past. Most widely used algorithms employ

a Simulated Annealing (SA) framework [Ger99]. This technique involves iterating over

several candidate floorplans before arriving at a near-optimal solution. At each step,

the algorithm makes a move and constructs a new solution by slightly changing current

solution. If the new solution has a lower cost than the current solution, it is accepted. If

it has a higher cost, it is accepted with a probability that depends on the difference in the

costs and on a parameter called the annealing temperature that is gradually decreased

during the process. If the new solution is accepted, it replaces the current solution. The
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probability of acceptance (of new solutions that have higher cost than the current solu-

tions) is high initially and is gradually decreased. This process ensures that the method

does not get stuck in a “local minimum”.
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Chapter 4

Throughput-aware microarchitecture

floorplanning

4.1 Introduction

As noted in section 1.3.2, employing wire-pipelining to support high frequencies can

result in a reduction in the throughput of the circuit (increase in the CPI of (1.1)) due

to the increase in the number of clock cycles per computation. This penalty depends on

the locations at which these extra latencies are added: increasing the latencies on some

buses can impact the throughput more than on others.

In particular, the number of flip-flops that must be inserted on a bus is proportional

to the length of the bus, which in turn depends on the locations of the connecting func-

tional units (end points) of the bus in the layout. These lengths are determined during

thephysical designstep of the microprocessor circuit design cycle, which transforms a

functional net-list into a circuit layout, through procedures that include floorplanning,

placement, and routing.

For improved performance, physical design must attempt to keep the CPI-critical

buses as short as possible to minimize the amount of pipelining required by those buses.

Such a microarchitecture/CPI-aware strategy [Sch02] is particularly useful at floorplan-

ning or block-level placement, which being an early stage ofphysical design, has a major

role in determining the system/global bus delays. For a particular combination of bus

latencies, the CPI can be computed using cycle-accurate simulations on simulators such

as SimpleScalar [BA97], on widely-used benchmark programssuch as SPEC [Hen00].

The clear bottleneck in such a design flow is the microarchitecture simulation time.

Firstly, cycle-accurate simulations are inherently slow,and this, coupled with the large
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search space considered during physical design optimizations, makes it virtually impos-

sible to use simulations for each layout that is to be evaluated. Specifically, if each ofn

wires on a layout can havek possible latencies, then the cycle-accurate simulator may

have to perform up tokn simulations to fully explore the search space.

The exponentially large search space prompts us to considera design of experi-

ments (DOE) [Mon00] strategy, a well-established approachthat is particularly efficient

at extracting the basic characteristics of a large design space through a small number of

samples, as described in Section 3.5.2. Specifically, we propose a strategy [NCLS05],

based on a multifactorial resolution III design, to accurately identify the CPI-critical

wires to be optimized in physical design, and then applies the methodology to floorplan-

ning. The advantage of this approach is that the total numberof simulations required to

sample the space is proportional ton, compared to theO(kn) possible combinations of

bus latencies. The CPI-critical wires are explicitly identified and regression models are

constructed to estimate CPI, and these are used in the cost function of floorplanning.

Even withn simulations, the simulation time of each run is still an issue. The SPEC

benchmark suite [Hen00], along with thereference input sets has become thede

factostandard for microarchitecture research. However, reference input sets comprise

huge instruction counts and therefore have long run times, typically in the range of a few

days to run to completion. To maintain the run times with in practical limits, it is essen-

tial to employ alternative techniques that speed up the simulations, such as reducing the

size of the input sets and statistical sampling. This reduction in the simulation times,

however, comes at the cost of loss of accuracy associated with simulating only a frac-

tion of thereference input sets. Such inaccuracies can potentially lead to incorrect

conclusions and performance bottlenecks, and, therefore,can undermine a microarchi-

tecture optimization process such as CPI-aware floorplanning.

Due to the inaccuracies, it is necessary to understand the nature of the simulation

speedup techniques, and, importantly, how these techniques affect the results of the

optimization, i.e., whether different approaches lead to different conclusions and opti-
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mizations. We compare [NCLS06] two simulation techniques,namely, reduced input

sets and sampling, for the proposed CPI-aware floorplanning, and study their impact on

the overall performance speedup obtained.

The remainder of the chapter is organized as follows. Section 4.2 describes some

related work. Section 4.3 presents the design flow of the proposed CPI-aware floorplan-

ning methodology, along with the baseline architecture andblock configuration used in

this work, while section 4.4 outlines the simulation speedup techniques compared for

CPI-aware floorplanning. Section 4.5 demonstrates the experimentation process and the

results. We conclude the chapter in section 4.6.

4.2 Related work

CPI-aware floorplanning:There have been some recent attempts [LSLH04,EMW+04,

JYK+05] towards microarchitecture-aware design at the floorplanning level. In [LSLH04],

a CPI look-up table (LUT), indexed by the set of bus latencies, is constructed using

cycle-accurate simulations. For a given layout (and the corresponding bus latencies),

the CPI is evaluated from the LUT using some distance metrics. In contrast, the ap-

proach in [EMW+04] assigns weights to each of the system buses that are proportional

to the amount of traffic seen on the buses, operating under thenotion that the more often

a bus is accessed, the more critical it is. The objective of the floorplanner then is to

minimize a weighted sum of bus latencies, where the weights depend on the amount of

traffic. The work of [JYK+05] uses a one-factor-at-a-time (refer to Section 3.5.1) ap-

proach to build CPI sensitivity models for a few selected critical paths, and these models

guide the floorplanner to maximize the system throughput (orminimize CPI).

While these approaches indicate welcome progress in the quest for microarchitecture-

aware design, the accuracy of the strategies used to optimize the CPI-critical wires shows

room for improvement. For instance, the LUT has to be reconstructed if a different fre-

quency is chosen. On the other hand, bus access frequencies may not exactly capture
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the quantitative impact of the bus latencies on the CPI. Specifically, the effect of extra

latencies on the execution path of a particular operation isprimarily determined by the

dependencies the following instructions have on the data generated by that operation.

In a way, all of these approaches focus on assigning a weight of importance for each

wire of the circuit, and propose strategies to reduce the number of simulations required

for tapping the large solution space. While [EMW+04] uses a latency-independent and

traffic-oriented approach, [LSLH04, JYK+05] vary the latencies in the simulations. In

this respect, our DOE based methodology, although has the same objective, provides a

structured approach for conducting simulations. Such an approach, where the inputs,

i.e., bus latencies, are varied simultaneously, can capture the solution space in a much

better way than the one-factor-at-a-time approaches [Czi99], such as the one proposed

in [JYK+05].

Furthermore, the DOE method also provides a framework for estimating the interac-

tions between the inputs. While [LSLH04] consists of simultaneously changing the bus

latencies, it does not model any interactions between buses. As will be seen later in Sec-

tions 4.3.2 and 4.5, there are instances where the interactions can be significant. In ad-

dition, it may be a better idea to focus on specific buses than paths as done in [JYK+05],

since some paths can have common buses, which complicates the latency modeling. For

instance, the instruction commit path, which handles updates to the register file, and the

decode path, which dispatches the decoded instructions along with any available data

through the register file to the reorder buffer, can have a common (bidirectional) bus,

between the reorder buffer and the register file. The approach of [JYK+05] focuses on

buses that have no buses in common, and does not address the extension to cases where

paths can have common buses. Nevertheless, the idea of the DOE can be extended for

the paths addressed in [JYK+05], for a more effective-modeling than the one-at-a-time

approach considered.

Another recent work [CJRR03] explores the frequency-CPI tradeoff in floorplan-

ning. A set of implementations varying in area and latency isspecified for some or all of
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the blocks of the processor. The objective of the floorplanner is to find a configuration of

blocks with a placement to reduce the product of clock periodand the CPI. The lengths

of the global wires, combined with given arrival times at theterminals, determine the

clock period.

Comparing simulation techniques:With respect to reducing simulation times of the

reference input sets of the SPEC benchmarks, which can speed up our DOE based

approach, a recent work [YKS+05] evaluates the accuracies of a number of simula-

tion techniques, including reduced input sets and sampling. The comparison is based

on three different characterizations, one each at the hardware (processor bottleneck),

software (execution profile), and architecture levels. In addition, the work attempts to

quantify the effect of the inaccuracies on the execution times of the benchmarks, for a

couple of microarchitecture enhancements [YL02, Jou90]. The results of the compari-

son indicate that, in general, sampling techniques are morereliable than reduced input

sets in tracking the actual performance speedups obtained,due to the enhancements, on

thereference sets.

However, while these results hold for the enhancements considered, it is possible

that the impact of the inaccuracies can vary across different optimizations. Specifically,

for the hardware enhancements handled in [YKS+05], the decision making is directly

based on the results obtained from the simulations, and therefore a high reliability is

required. CPI-aware floorplanning, on the other hand, is a discrete optimization problem

where the variables are bus latencies. The purpose of the simulations is to describe

the CPI of a program as a function of the bus latencies, and thefloorplanner uses this

description to determine a block-level placement that represents an CPI-optimal bus

latency configuration.

For such optimization problems, a reasonably accurate characterization that does

not significantly alter the relative ordering of the performance-criticality of the param-

eters is sufficient; “absolute” accuracy may not be necessary. We focus on this issue

in this thesis and the objective is to determine if there is any correlation between per-
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Figure 4.1: CPI-aware floorplanning: design flow.

ceived inaccuracy of the reduced input sets and the corresponding optimization results

for the CPI-aware floorplanning problem. Although our studyspecifically concentrates

on floorplanning, the results are likely to be applicable forany microarchitecture opti-

mization in the physical design context, or, in fact, any related discrete (microarchitec-

ture) optimization problem.

4.3 CPI-aware floorplanning flow

The amount of pipelining required by each bus of a microprocessor is proportional to

its length, which is typically true for buffered interconnects [She95], and therefore, for

every block-level placement, where the blocks represent the functional units of the pro-

cessor, there is a corresponding bus-latency configuration. For each of these configura-

tions, the CPI for a given program can be determined using a cycle-accurate simulation.

The objective of floorplanning is to obtain a bus-latency configuration that minimizes

the CPI for each benchmark program.

To incorporate wire-pipelining issues into floorplanning,we develop a design flow

for microarchitecture-awareness, as depicted in Figure 4.1. The first step is to quan-

tify the impact of each system bus on the system performance through a CPI regres-

sion model for each of the chosen benchmark programs. The regression models (and

coefficients) may differ across the benchmarks, depending upon the instruction mix ex-
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ecuted. The concept of using these models is similar to the access-frequencies based

weights of [EMW+04], but the precise manner in which we obtain the weights (regres-

sion coefficients) is different. A comparison between the two approaches is shown in

Section 4.5.3.

The CPI regression models are then fed to the floorplanner, along with a target fre-

quency. The objective of the floorplanner is to determine thepositions of the blocks,

therefore the set of bus latencies, such that the CPI, in addition to traditional objectives

such as area and aspect ratio, is minimized. The performanceof the resultant layout

is then estimated from cycle-accurate simulations. If frequency is a design variable,

then the floorplanning may be repeated for several frequencies until an optimum de-

sign point or performance objective is achieved. In addition, the entire design flow of

Figure 4.1 may be repeated for several microarchitectural block configurations to iden-

tify the optimal configuration [CJRR03]. For a general case,the CPI model to be used

in floorplanning may be obtained by combining the regressionmodels obtained from

optimizing the processor performance on a set of benchmarks.

The succeeding sections illustrate this approach, and we tie the description to the

processor microarchitecture employed in this work. The DLXmicroarchitecture, which

is essentially a five-stage pipeline defined in the SimpleScalar simulator [BA97], and

the corresponding functional blocks are shown in Table 4.1 and Figure 4.2, respectively.

The instruction fetch and decode blocks are shown asfet and dec, respectively,

while il1 and dl1 are the level-1 instruction and data caches, respectively.The in-

struction and data translation look-aside buffers (TLB) are indicated asitlb anddtlb,

respectively, whilel2 represents the unified level-2 cache. The blockruu is the register

update unit, which contains the reservation stations and instruction issue logic, while

the blocklsq represents the load store queue. The system register file is represented

by reg, whereasbpred consists of the branch predictor and the target buffer (BTB),

which predict the direction and target address for a branch instruction, respectively. The

blocksiadd1, iadd2, iadd3, imult, fadd andfmult are the functional units that exe-
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Parameter Value

Fetch width 8 instrs/cycle

Issue width 8 instrs/cycle

Commit width 8 instrs/cycle

RUU entries 128

LSQ entries 64

IFQ entries 16

comb, 4K table

Branch pred 2-lev 2K table, 11-bit

2K BHT

BTB 512 sets, 4-way

IL1 64K, 64B, 2-way

LRU, latency: 1

DL1 32K, 32B, 2-way

LRU, latency: 1

L2 2M, 128B, 4-way

latency: 12

ITLB, DTLB 128 entries

Miss latency: 200

Table 4.1: Configuration of the microarchitecture used in this work.
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Figure 4.2: The functional blocks and buses of the microarchitecture of Table 4.1. The

blocks are shown as rectangles, while the lines between the rectangles (blocks) represent

the buses connecting them.

cute arithmetic and logic instructions. The figure also shows the 22 system buses that

can impact the throughput/performance (IPC or the number ofinstructions executed per

cycle, which is the reciprocal of CPI) of the processor, whenpipelined.

4.3.1 Wire pipelining models

The first step of the floorplanning flow is introducing wire pipelining models into

the chosen simulator, which in this work is based on sim–outorder, a detailed simulator

provided in the SimpleScalar package. The simulator is modified to include extra la-

tencies on these buses as additional delays. To achieve this, we use 19 factors to model

the 22 buses, as shown in Table 4.2, where 17 of the 19 factors directly model the buses

with the same name. The modeling of extra latencies is described below, for each stage

of the DLX processor pipeline.

• Fetch: The typical path followed by an instruction, on anil1 hit, from the initia-

tion of its fetch to its insertion into the fetch queue isfet–il1–bpred–fet. The ad-

dition of latencies on any of the buses of this path is equivalent to inserting dummy

pipeline stages on the fetch path. This path is modeled by thefactorextra fet,
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Bus Factor ID

dec reg dec reg f1

ruu reg ruu reg f2

dec ruu

dec lsq max lsq ruu f3

ruu iadd1 ruu add1 f4

ruu iadd2 ruu iadd2 f5

ruu iadd3 ruu iadd3 f6

ruu imult ruu imult f7

ruu fadd ruu fadd f8

il1 l2 il1 l2 f9

dl1 l2 dl1 l2 f10

fet il1

il1 bpred extra fet f11

fet bpred

fet dec fet dec f12

fet itlb fet itlb f13

itlb l2 itlb l2 f14

ruu lsq ruu lsq f15

ruu fmult ruu fmult f16

lsq dl1 lsq dl1 f17

dtlb l2 dtlb l2 f18

lsq dtlb lsq dtlb f19

Table 4.2: The set of buses of the microarchitecture of Figure 4.2, and the factors, with

the corresponding IDs, that model the impact of pipelining the buses in the simulator.

There are 22 buses, which are grouped into 19 factors, where most of the factors have a

one-to-one relation with the buses, exceptextra fet andmax lsq ruu.
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whose latency is the sum of the latencies of buses along the path. When anil1

miss occurs, theitlb/il1 miss penalty is added, which, in turn, might have been

increased due to extra latencies on the busesfet itlb/itlb l2/il1 l2. Each of these

is represented as a separate factor with the same name, as shown in Table 4.2.

• Decode: This stage performs register renaming and dispatches instructions to

ruu andlsq (for memory operations). In addition, if the input data corresponding

to the instruction is available inreg, it is forwarded to theruu. For functional

correctness, therefore, the latencies of the busesdec ruu, dec lsq, and the path

dec–reg–ruu must be equal. The number of extra decode stages can then be

determined as the maximum of the latencies of these buses summed with that of

fet dec, as shown in (4.1).

ex dec = fet dec + max



















dec lsq

dec ruu

dec reg + ruu reg



















(4.1)

However, the pathruu–reg also appears in the instruction commit stage, when

data from anruu entry is written to the register file. Due to this, unlike the fetch

stage, the extra decode stages cannot be modeled by a single parameterex dec,

althoughdec ruu anddec lsq can be combined into a single factor, which we

namemax lsq ruu, indicated in Table 4.2, and defined as shown below:

max lsq ruu = max{dec lsq, dec ruu} (4.2)

The number of extra decode stages is then internally computed in the simulator

using (4.1) and (4.2).

• Issue:This stage issues ready-to-execute instructions to the corresponding execu-

tion unit upon availability, and schedules writeback events. The changes required
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in this stage are adjustments to the functional unit and the data cache (dl1 andl2)

access latencies. In addition, we have incorporated functional unit scheduling in

the simulator. For instance, the number of latencies inserted on the three buses

ruu iadd1, ruu iadd2 andruu iadd3 can be different, and while issuing an in-

teger add instruction, of all the available units, the one with the least latency is

chosen.

• Writeback: This stage is accounted by altering the branch misprediction latency,

which is modeled by the factors related to the extra fetch anddecode latencies.

• Commit: The instruction commit latency is adjusted, and this is modeled by the

factor/busruu reg.

Each of the factors is made completely configurable by modifying the SimpleScalar

configuration file.

4.3.2 Simulation methodology

The next step of the proposed flow is to use the wire-pipelining-aware simulator

constructed as described in the previous section, to quantify the performance impact of

the factor/bus latencies in the form of CPI regression models. To reduce the number of

simulations required for this purpose, we use a strategy based on the theory of statistical

design of experiments.

As noted in Section 3.5.2, the simplest design, commonly referred to asfull factorial

design, permits estimation of all of the main and interaction effects. However, such a

design involves experimenting over all combinations of thepossible values subscribed

by the factors. As mentioned earlier in Section 4.1, the number of possible bus latency

configurations in floorplanning is an exponential function of the number of factors. Even

though the number of factorsN is relatively small (N = 19) for this microarchitecture,

given the high simulation times, it is impractical to use cycle-accurate simulations for

64



each of the allowable configurations to determine the response, which in this case is the

CPI of a program, that needs to be minimized (to maximize the throughput or IPC, its

reciprocal).

We address the problem of reducing the number of simulationswith a few assump-

tions. Each of the factors is restricted to have two levels: the minimum and the maximum

possible values for the factor, thereby permitting us to employ a two-level factorial de-

sign. The idea is that, by stimulating the system with inputsat their extreme values, we

provoke the greatest response for each input. The assumption is that the system response

is a monotone function of changes in the inputs (factor levels). While this assumption

cannot be guaranteed in these types of systems, it works quite well in practice1. Besides,

higher level designs, which permit the estimation of quadratic and higher degree compo-

nents of the effects as described in Section 3.5.2, exhibit acomplex effect structure and

require more simulations, which make them unreasonable forstudies like ours. As is

shown in [YLH03], the two-level approach can be effectivelyused to design simulation

strategies for microarchitectural optimizations.

Since the factor levels represent bus latencies, the extreme (high and low) values

can be obtained by assuming worst-case and best-case scenarios for the corresponding

wire lengths. The high/low value for a bus latency may be determined by placing the

connecting blocks as far/close as possible. A valid assignment may, for example, be 0

for the low value, and the latency corresponding to a corner-to-corner connection across

the chip for the high value.

Interactions

In general, it is not easy to identify potential significant interactions before hand in

a complex system such as a microprocessor. However, in most cases, the interactions in

a microarchitecture tend to be negligible. For instance, itis unlikely that, say, the level-

1Although this is not a proof, it seems intuitively acceptable to believe that increasing
the latency of a bus will decrease the system throughput.
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2 cache (l2) interacts with the instruction decoder, given the varied functionalities of

the two units. We have identified a few potential significant interactions, which resulted

from the nature of wire-pipelining models integrated into the simulator, as shown below:

We have identified a few potential significant interactions,which resulted from the

nature of wire-pipelining models integrated into the simulator.

• As we have incorporated functional unit scheduling in the simulator, the impact of

adding additional latencies on each of the buses between theregister update unit

and the three integer adders, i.e., those modeled by the factorsruu iadd1 (ID: f4),

ruu iadd2 (ID: f5) andruu iadd3 (ID: f6) of Table 4.2, is also determined by the

latencies of the other two buses. This indicates possible significant (two and three

factor) interactions.

• As shown in (4.1) and (4.2), the number of extra pipeline stages to be inserted in

the decode stage is modeled as a maximum function of three factorsdec ruu (ID:

f1), max lsq ruu (ID: f2) andruu reg (ID: f3). Such a nonlinear function can

result in significant interactions among these three factors.

We use the notationfi · fj to denote the interaction between factorsfi andfj , where

‘ ·’ represents the interaction operator. According to this terminology, the eight interac-

tions defined in the previous paragraph can be written as follows:

two–factor: f1 · f2; f1 · f3; f2 · f3

f4 · f5; f4 · f6; f5 · f6

three-factor: f1 · f2 · f3

f4 · f5 · f6 (4.3)
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Run c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16 c17 c18 c19 y

1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 -1 y1

2 -1 -1 -1 -1 1 -1 -1 -1 1 1 -1 1 1 1 1 -1 -1 -1 1 y2

3 -1 -1 -1 1 -1 1 1 1 -1 1 1 -1 1 1 -1 1 -1 -1 1 y3

4 -1 -1 -1 1 1 1 -1 1 1 -1 1 1 -1 -1 -1 -1 1 1 -1 y4

5 -1 -1 1 -1 -1 -1 -1 1 1 -1 1 1 -1 1 -1 -1 -1 -1 1 y5

6 -1 -1 1 -1 1 -1 1 1 -1 1 1 -1 1 -1 -1 1 1 1 -1 y6

7 -1 -1 1 1 -1 1 -1 -1 1 1 -1 1 1 -1 1 -1 1 1 -1 y7

8 -1 -1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 1 -1 -1 1 y8

9 -1 1 -1 -1 -1 1 1 -1 -1 -1 1 1 1 -1 -1 -1 1 -1 1 y9

10 -1 1 -1 -1 1 1 -1 -1 1 1 1 -1 -1 1 -1 1 -1 1 -1 y10

11 -1 1 -1 1 -1 -1 1 1 -1 1 -1 1 -1 1 1 -1 -1 1 -1 y11

12 -1 1 -1 1 1 -1 -1 1 1 -1 -1 -1 1 -1 1 1 1 -1 1 y12

13 -1 1 1 -1 -1 1 -1 1 1 -1 -1 -1 1 1 1 1 -1 1 -1 y13

14 -1 1 1 -1 1 1 1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 y14

15 -1 1 1 1 -1 -1 -1 -1 1 1 1 -1 -1 -1 -1 1 1 -1 1 y15

16 -1 1 1 1 1 -1 1 -1 -1 -1 1 1 1 1 -1 -1 -1 1 -1 y16

17 1 -1 -1 -1 -1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 1 1 y17

18 1 -1 -1 -1 1 1 -1 1 -1 -1 -1 1 1 1 -1 1 1 -1 -1 y18

19 1 -1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 1 1 -1 1 -1 -1 y19

20 1 -1 -1 1 1 -1 -1 -1 -1 1 1 1 -1 -1 1 1 -1 1 1 y20

21 1 -1 1 -1 -1 1 -1 -1 -1 1 1 1 -1 1 1 1 1 -1 -1 y21

22 1 -1 1 -1 1 1 1 -1 1 -1 1 -1 1 -1 1 -1 -1 1 1 y22

23 1 -1 1 1 -1 -1 -1 1 -1 -1 -1 1 1 -1 -1 1 -1 1 1 y23

24 1 -1 1 1 1 -1 1 1 1 1 -1 -1 -1 1 -1 -1 1 -1 -1 y24

25 1 1 -1 -1 -1 -1 1 1 1 1 1 1 1 -1 1 1 -1 -1 -1 y25

26 1 1 -1 -1 1 -1 -1 1 -1 -1 1 -1 -1 1 1 -1 1 1 1 y26

27 1 1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 -1 1 1 1 1 y27

28 1 1 -1 1 1 1 -1 -1 -1 1 -1 -1 1 -1 -1 -1 -1 -1 -1 y28

29 1 1 1 -1 -1 -1 -1 -1 -1 1 -1 -1 1 1 -1 -1 1 1 1 y29

30 1 1 1 -1 1 -1 1 -1 1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 y30

31 1 1 1 1 -1 1 -1 1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 y31

32 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 y32

Table 4.3: Resolution III design matrixM for 19 factors. Each of the 32 rows corre-

sponds to a simulation run, while the columns represent the factors: each entryM(j, i)

contains the value to be used for factorfi in run j. The two levels of each factor are

coded as±1, and the labely is the response, CPI, of the system (microarchitecture).
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Resolution III design

Using our knowledge of the behavior of the process, it is reasonable assume that all

of the other interactions are negligible, allowing us to utilize a resolution III fractional

factorial design [Mon00], which provides the logically minimum number of experiments

to determine the main effects of the factors. ForN factors, the number of experiments

required is equal to the nearest highest power of 2, which turns out to be 32 for our

work, sinceN = 19. The design is captured by a simulation matrixM of size32 × N ,

as shown in Table 4.3. Each of the 32 rows ofM corresponds to a simulation run, and

yi represents the response (CPI) obtained duringith simulation. The two levels of each

factor are encoded as{+1, –1}, and the idea is to estimate the effect of changing the

level of the factor from “+1” to “−1”. The columns, labeledc1–c19, correspond to the

19 factorsf1–f19 described in Table 4.2. Each level (±1) is contained in exactly half

of the simulation runs, indicating that every column (whichcorresponds to a factor) of

M has 16 “+1”s and 16 “–1”s. Furthermore, no two columns are identical, i.e., each

column has a distinct mix of “±1s”.

Each of the columns ofM results in a distinctcontrastor effect, from which the

main and interaction effects of the factors can be determined. The contrast/effect for

columnci, ei, is computed as the difference of the responses where the entry of ci is

“+1” (maximum value of factorfi) and those where the level is “–1” (minimum value

of fi), as shown below:

ei =

j=32
∑

j=1

M(j, i) · yj (4.4)

The matrixM is constructed as follows. First, a two-level full-factorial is generated

for five factorsf1–f5 (refer to Table 4.2) involving all possible (25 = 32) combinations,

as shown by columns labeledc1–c5 of M in Table 4.3. The values to be used for the

remaining 14 factors (f6–f19), listed in columnsc6–c19 of Table 4.3, are obtained through

component-wise multiplication of several combinations ofthe five full-factorial columns

c1–c5, as defined by the followingincidence relation.
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f1 (dec reg) = c1

f2 (ruu reg) = c2

f3 (max lsq ruu) = c3

f4 (ruu iadd1) = c4

f5 (ruu iadd2) = c5

f6 (ruu iadd3) = c1 × c2 × c4

f7 (ruu imult) = c3 × c5

f8 (ruu fadd) = c1 × c3 × c4

f9 (il1 l2) = c1 × c3 × c5

f10 (dl1 l2) = c1 × c4 × c5

f11 (extra fet) = c2 × c3 × c4

f12 (fet dec) = c2 × c3 × c5

f13 (fet itlb) = c2 × c4 × c5

f14 (itlb l2) = c3 × c4 × c5

f15 (ruu lsq) = c1 × c2 × c3 × c4

f16 (ruu fmult) = c1 × c2 × c3 × c5

f17 (lsq dl1) = c1 × c3 × c4 × c5

f18 (dtlb l2) = c2 × c3 × c4 × c5

f19 (lsq dtlb) = c1 × c2 × c3 × c4 × c5 (4.5)

For instance, the entries of columnc6 in M , e6, which contains the values to be

used for factorf6 (ruu iadd3) of Table 4.2, is obtained by the multiplication of the

corresponding entries of columnsc1, c2 andc4, i.e., the values that are used for factors

f1 (dec reg), f2 (ruu reg) and f4 (max lsq ruu). Such a set-up indicates that the

effect of factorf6 is aliased with that of the interaction of the three factors,f1, f2 andf4,
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i.e.,f1 · f2 · f4. In other words, the contraste6, computed using (4.4), is the sum of both

the main effect off6 and the interaction effect off1 · f2 · f4
2. Assuming that the effect

of the interactionf1 · f2 · f4 is negligible, thene6 can be solely attributed the main effect

of factorf6.

In reality, a resolution III design of size 32 can be used for up to 31 factors, in

which case, it is called a saturated design, and these can only be used where all of

the interactions are insignificant. However, since we only have 19 factors, some of

the combinations, 12 of them, of the columnsc1–c5 of M are left unused. The unused

combinations can be treated as dummy factors, which have negligible (zero) effects, and

these can be used to estimate a few selected interactions. Using the resolution III design

prescribed byM and the associated incidence relation of (4.5), it is possible to estimate

all of the interaction effects described earlier in section4.3.2, in addition to the 19 main

effects. For instance, the combinations, sayc20 = c1 × c2 andc21 = c1 × c2 × c3, are

not used in (4.5), indicating the contrastse20 ande21 solely represent the effects of the

two-factor interaction betweenf1 andf2, f1 · f2, and the three-factor interaction among

1, 2 and 3,f1 ·f2 ·f3, respectively, wheref20 andf21 are dummy factors with zero (main)

effects.

In addition, it can be noted that the two-factor interactioneffects of{ruu iadd1,

ruu iadd2, ruu iadd3}, i.e., {f4, f5, f6}, must be equal due to symmetry. Therefore,

estimating one of them will suffice, and this is true for the corresponding main effects

as well.

The advantage of fractional factorial resolution III designs over other screening de-

signs such as Plackett and Burman (PB) [PB56], which is employed in [YLH03], is the

well defined aliasing structure. This attribute can be used to estimate a few required

interactions, as is done in this project, at the expense of a few additional simulations3.

2The contrast includes many other higher order interaction effects, as defined by a
complete incidence relation. We refer the reader to [Mon00]for further details about the
aliasing structure of fractional factorial designs.

3For N factors, the number of experiments required in a PB design isequal to the
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Finally, if more interactions need to be considered in the design, and the number of

dummy factors is inadequate, then one option is to perform appropriate additional or-

thogonal runs [WH00]. If this is not sufficient, then a higherresolution (IV or more)

design can be utilized, if the associated simulation cost4 can be tolerated.

CPI regression models

From the 32 simulations performed using the resolution III design of Table 4.3 for

each benchmark, we construct a regression model for CPI, based on least-squares ap-

proximation, where the variables are the bus latencies. More specifically, for fractional

factorial designs, the contrasts obtained from the design using (4.4) directly correspond

to the regression coefficients determined through least-squares minimization. Equation

(4.6) shows one such a model, whereβis represent the regression coefficients computed

from the 32 CPI values of the resolution III design. Eachx variable in (4.6), sayxi, rep-

resents an encoding of the latency of factorfi, li, where the minimum and the maximum

latencies are coded as -1 and +1, respectively, andI is the set of interactions described

in section 4.3.2 and (4.3).

xi = −1 +

(

2 · li
min(fi) + max(fi)

)

, 1 ≤ i ≤ 19

CPI = β0 +

19
∑

i=1

βi · xi +
∑

(fi·fj)∈I

βi.j · xi · xj +

∑

(fi·fj ·fk)∈I

βfi·fj ·fk
· xi · xj · xk (4.6)

next highest multiple of four (20 for 19 factors in this work), unlike the nearest highest
power of two in a resolution III fractional factorial designused in this work.

4A resolution IV fractional factorial design for the microarchitecture of this work
has a minimum size of 64.
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4.3.3 Floorplanning cost function

Our floorplanner procedure is based on simulated annealing (SA), and uses the CPI

regression models built out of the simulation methodology described in section 4.3.2 in

the cost function. We use PARQUET [AM01], a floorplanner available in the public

domain for this purpose.

The cost function of the floorplanner is a weighted sum of topological objectives

such as the chip area (Area) and the aspect ratio (AR), and the CPI estimated using the

regression model, as shown below:

Cost = W1 · Area + W2 · AR + W3 · CPI (4.7)

where theWs represent the relative weights of the optimization terms.

4.4 Reducing simulation times

It is widely accepted that the SPEC benchmark suite [Hen00],along with thereference

input sets, represents a realistic work-load that is executed on microprocessors, and

therefore has become an accepted standard in microarchitecture research such as the

optimization problem addressed in this chapter. However, executing thereference

input sets to completion, in most cases, is prohibitive, dueto the inherent slow nature

of the cycle-accurate simulations; simulating one cycle ofthe target microarchitecture

consumes about 3000–5000 cycles of the host machine. For this reason, although the

resolution III design described in section 4.3.2 considerably reduces the number of sim-

ulations (from exponential to linear in the number of buses/factors), the run time of each

simulation is still an issue.

Several techniques have been proposed in the past to reduce simulation times to

practical levels, while attempting to reproduce the behavior of thereference input

sets. These techniques can be broadly categorized into three groups: (i) Reducing the in-

72



put sets, (ii) Truncated execution, and (iii) Sampling. Thework of [YKS+05] compares

the accuracies of six such techniques, and the results of thework indicate that sampling

techniques have much higher accuracies in tracking microarchitecture (reference)

performance than the other two categories. However, as explained in section 4.1, the

findings are specific to the two enhancements considered, andit is not clear whether

the inaccuracies can be generalized for all microarchitectural optimizations. In discrete

optimization problems such as CPI-aware floorplanning, a moderate perturbation in the

weight (regression coefficient) of a factor (or an interaction) may not be sufficient to

shift the optimal value of that factor by an integer above or below.

Specifically, changing the latency of a bus in a particular placement involves a signif-

icant change in the locations of the connecting blocks in thelayout, to increase/decrease

the bus length by appropriate amount, and this can potentially lead to a massive realign-

ment of the positions of other blocks, resulting in a drastically different placement with

a significant change in the value of the cost function, which includes the weighted sum

of factor/interaction latencies. It is unlikely that smallor moderate perturbations in fac-

tor regression coefficients can result in such a scenario, which changes the cost function

by a significant amount, during optimization. Therefore, any simulation technique with

a reasonable accuracy (or moderate inaccuracy) may be sufficient in problems such as

CPI-aware floorplanning.

In this chapter, we compare a few approaches that can be used to speed up the simu-

lation methodology described in section 4.3.2 for the CPI-aware floorplanning problem.

Due to the high number of simulations (32 per benchmark) required for each technique,

we limit our comparison to two techniques, namely, samplingand reduced input sets, as

shown below:

• Reduced Input sets:The idea behind the reduced input sets is to alter thereference

input sets so that the simulation times are reduced when using these reduced input

sets, while endeavoring to retaining the characteristics of the unalteredreference
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input sets. Thetest andtrain input sets from SPEC, and the MinneSPEC

[KL02] reduced input sets are a few examples. For this work, we choose MinneSPEC

reduced input sets for evaluation.

• Sampling: In statistical sampling, only selected portions of the instruction se-

quence of a benchmark are measured. The program segments between the selected

portions are fast-forwarded using functional simulation.These samples must be

chosen carefully such that they accurately reflect the behavior of thepopulation,

i.e, the whole program. The sampling technique proposed in [WWFH03], called

SMARTS, simulates periodically selected subsets of the instruction sequence. The

sampling frequency and the length of each sample are used to control the simula-

tion time. The statistics measured for the simulated samples are generalized for

the whole program. In addition, SMARTS uses statistical sampling theory to esti-

mate the CPI error of the sampled simulation results, as compared to the complete

simulation. On the other hand, the approach of SimPoint [SPHC02] selects a few

representative simulation points beforehand and then usesstatistical based clus-

tering to select a set that is representative of the whole program. At the end of the

simulation, the results from each simulation point are weighed to compute the fi-

nal statistics. The number of simulation points, and the length of each determines

the simulation time.

We choose SMARTS as a representative of sampling techniquesfor our compar-

isons, since, as noted in [YKS+05], there is little difference in the accuracies of

SMARTS and SimPoint.

• In addition to the above mentioned techniques, we considera third case, a hybrid

approach that is obtained by combining the two techniques. Specifically, in this

case, we apply SMARTS on the MinneSPEC reduced input sets, tofurther reduce

the simulation times. Hence, we actually compare three techniques in this thesis.
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Besides, statistical simulation [NS01, EBN00, OCF00], which is not addressed in

this thesis, is another way of reducing the simulation times, thereby allowing an efficient

exploration of the design search space. For a benchmark program, using a single detailed

simulation, statistical tables are constructed for various program characteristics such as

cache miss rates and register dependencies. This synthesistrace generated, essentially a

statistical imageof the benchmark, can be used to speed up the subsequent simulations

of the benchmark.

4.5 Experimentation

4.5.1 Benchmarks

We choose a set of eight SPEC 2000 benchmarks for evaluationsin this work. The

benchmarks, along with the correspondingreference and MinneSPEC input instruc-

tion counts are shown in Table 4.4. The total simulation timelimited the number of

benchmarks that we could use. The benchmarks are chosen because of their distinct in-

struction mixes. For instance, mesa has a high percentage ofconditional branches, while

the benchmark gcc has a very large number of memory operations. All benchmarks are

compiled at optimization level O3 using the SimpleScalar version of the gcc compiler.

4.5.2 Set up

The areas of the blocks shown in Figure 4.2 are estimated using [SKLP+01], and

are shown in Table 4.5. The total area of the chip is about 2cm2 at 90nm technology,

with the level-2 cache (l2) consuming about 70% of the area, as shown in the table.

Only the chip core that also includes the L1 caches is considered during floorplanning,

and the L2 cache is wrapped around the core floorplan, just as is done in [SSH+03] and

Alpha 21362 [Ban98]. For the bus latency ranges that are to beused in the resolution III

design, the minimum value is chosen to be 0, depicting the best case placement of the
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Benchmark Type Instr. count (Billions)

MinneSPEC reference

gzip Int 1.065 63

vpr Int 0.217 110

gcc Int 0.175 34

mesa FP 1.297 305

art FP 7.700 54

equake FP 0.716 175

parser Int 0.914 301

bzip2 Int 3.800 94

Table 4.4: Benchmarks from the SPEC suite, along with thereference and reduced

instruction counts.

connecting blocks. The maximum value chosen is equal to the corner-to-corner latency

of the chip core, which is found to be 9 clock cycles at 6GHz, based on the projections

of [SSH+05]. We present results for three clock frequencies, ranging from 4GHz to

6GHz. The regression model constructed for each benchmark and technique can be

used for all of these frequencies, since the bus latency ranges are valid for all of the

frequencies less than or equal to 6GHz.

We assume that the operating frequency of the chip is constrained only by the bus

delays, and the maximum of the delays of the buses is the minimum possible clock pe-

riod when wire-pipelining is not employed. The corresponding maximum frequency,

obtained by minimizing the maximum of wire lengths of the global wires in the floor-

planner, is determined to be about 2.4GHz, and this forms thebaseline unpipelined

design.

The comparison metric is the execution time,Texec, which, as shown in (4.8), is the

product of the number of instructions (Ninst) in the benchmark, the CPI (CPI), and the
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Block Area (cm2) Block Area (cm2)

il1 0.097 dec 0.019

dl1 0.101 bpred 0.038

ialu1 0.006 fet 0.017

ialu2 0.006 fadd 0.016

ialu3 0.006 fmult 0.023

imult 0.012 itlb 0.003

ruu 0.125 dtlb 0.003

lsq 0.035 l2 1.471

reg 0.022

Table 4.5: Areas of the microarchitecture blocks shown in Figure 4.2 for the configura-

tion of Table 4.1. The total area of the processor is 2.03cm2.

corresponding clock cycle time evaluated as the reciprocalof the clock frequency (1
f
).

It can be noted that this is the same equation as (1.1), with the clock periodTclk written

as the reciprocal of the frequency.

Texec =
Ninst · CPI

f
(4.8)

In addition, for all of the simulations using the SMARTS technique, both inreference

and MinneSPEC input sets, we use the default values that are listed in [WWFH03] for

the sampling parameters (a sampling interval of 1000, a sample size of 1000 and a

warmup size of 2000 instructions).

4.5.3 Results

We present the results in two parts in this section. The first part demonstrates the

efficacy of our proposed CPI-aware floorplanning methodology against a naive and an
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Coefficient Factor Value

β0 mean 100.00

β1 dec reg 0.86

β2 ruu reg 7.77

β3 max lsq ruu 0.47

β4 ruu iadd1 11.24

β5 ruu iadd2 11.24

β6 ruu iadd3 11.24

β7 ruu imult 0.16

β8 ruu fadd 3.83

β9 il1 l2 0.64

β10 dl1 l2 1.48

β11 extra fet 2.05

β12 fet dec 2.12

β13 fet itlb 0.59

β14 itlb l2 0.16

β15 ruu lsq 5.64

β16 ruu fmult 1.40

β17 lsq dl1 8.66

β18 dtlb l2 1.21

β19 lsq dtlb 3.67

β1.2 f1 · f2 -0.63

β1.3 f1 · f3 -0.53

β2.3 f2 · f3 -0.55

β1.2.3 f1 · f2 · f3 0.54

β4.5 f4 · f5 4.51

β4.6 f4 · f6 4.51

β5.6 f5 · f6 4.51

β4.5.6 f4 · f5 · f6 3.75

Table 4.6: Normalized regression coefficients, averaged over all of the eight bench-

marks. The final eight rows correspond to the interaction terms shown in (4.3).
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existing approach. For the purpose of this demonstration, we use SMARTS to speed up

thereference simulations, both in the resolution III design strategy of section 4.3.2,

and in validating the floorplanning results. Next we presentthe results of the comparison

of the three techniques, SMARTS included, that can be used tospeed up the resolution

III design strategy.

Validation of the proposed floorplanning strategy

For each of the eight SPEC benchmarks of Table 4.4, 32 cycle-accurate simulations

are performed on thereference input sets using SMARTS, as prescribed by the

resolution III design described in section 4.3.2. Althoughthe floorplan can be optimized

for each of the individual benchmarks, in practice, a processor must be optimized so

that it performs well over a range of benchmarks. In other words, one must generate a

single floorplan for the processor that is, on average, optimal over all benchmarks. For

this purpose, the CPI regression coefficients are averaged over the eight benchmarks

to generate a new set of regression models that are used in theoptimization process to

generate a single floorplan.

Table 4.6 shows the coefficients of the average case regression model. These are

normalized such that themean, β0, is 100. It can be seen that the buses from the regis-

ter update unit (ruu) to the integer adders (iadd1, iadd2, iadd3) have the highest impact

on CPI when pipelined5. The main reason for this is that programs typically have a

high number of integer instructions such as branch operations that involve significant

dependencies. The memory buslsq dl1 has the next highest magnitude, followed by

ruu reg. In addition, some of the factors/buses such asitlb l2 have negligible (coeffi-

cient) magnitudes, and therefore can be freely pipelined without any significant impact

on CPI.
5However, it can also be seen in Table 4.6 that these factors have significant inter-

actions, and these tend to further magnify the impact of pipelining the corresponding
buses.
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Figure 4.3: Floorplanning results for eight benchmarks forthree different frequencies.

The execution times are normalized to the baseline case, where wire-pipelining is em-

ployed and the frequency cannot exceed 2.4GHz.
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Figure 4.4: The floorplanning results of Figure 4.3, plottedfor each frequency. The hor-

izontal line in each graph represents the reduction in the clock period, over the baseline

0.42ns (corresponding to a frequency of 2.4GHz), obtained with wire-pipelining, and

this represents the lower bound on the achievable executiontimes. However, this lower

bound is not be achievable, since operating at frequencies higher than 2.4GHz makes

it necessary to pipeline some of the buses, which increases the associated CPIs, thus

affecting the execution times, determined using (4.8).
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The regression model thus obtained is used to guide our Statistical FloorPlanner

(SFP). We compare the results of SFP with those of traditional floorplanning, where

the cost function shown in (4.7) includes the total wire length, instead of CPI or any mi-

croarchitecture related issue, and we refer to this floorplanner asminWL. In addition, we

also compare our results with the access frequency-based floorplanning of [EMW+04],

which will be referred to asacchenceforth. Based on [Ekp04], we have implemented

the algorithm in [EMW+04] that gathers the bus access information by incorporating ac-

cess counters for each bus in SimpleScalar. These access frequencies are used to weight

the buses in floorplanning, and we replace the CPI term in (4.7) with the weighted sum

of bus latencies.

Figure 4.3 presents the results obtained from floorplanningfor the eight benchmarks.

The graphs plot the execution times of the programs for threedifferent frequencies

ranging from 4GHz to 6GHz. As mentioned earlier, the baseline processor with no

wire-pipelining operates at 2.4GHz. All execution times are normalized to those of this

baseline processor. The bars SFP and acc represent the cases, respectively, for our pro-

posed floorplanner and the access-ratios based floorplanning of [EMW+04], where the

floorplan is optimized for the general case by averaging the regression coefficients (or

access-frequencies in acc) across the eight benchmarks.

Firstly, since all of the bars in the graphs are well below 1.0, the execution times are

less than those obtained on the baseline processor, which indicates that wire-pipelining

does increase the performance of a microarchitecture. In addition, our proposed floor-

planner, SFP, as well as acc outperform minWL by a large margin for each benchmark

over all frequencies. Next, SFP performs better than acc foralmost all frequencies, and

the execution time reductions tend to be more at higher frequencies where the amount

of pipelining required is typically higher. For instance, at a frequency of 6GHz, im-

provements of about 16% and 11% over acc are obtained for the benchmarks gzip and

equake, respectively, while these are about 11% and 6% at 4GHz. On an average, as

compared to acc, SFP reduces the execution time by 6% for the eight benchmarks. In
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addition, it can be observed that the execution times decrease as the frequency increases

for all benchmarks for both acc and SFP. However, this is not true for minWL, where in

some instances, an increase in the frequency raises the execution time, such as gzip as

the frequency is increased from 5 to 6GHz.

The graphs of Figure 4.4 plot the results for each frequency,as opposed to Figure

4.3 where the results are shown for each benchmark separately, to demonstrate the sen-

sitivity of the execution times of the eight benchmarks to wire-pipelining. Similar to

Figure 4.3, the y-axes of the graphs show the normalized execution times. For each fre-

quency, the horizontal line depicts the frequency speedup achieved by employing wire-

pipelining, essentially the ratio of the corresponding andbaseline (2.4GHz) frequencies

of 2.4GHz. This line represents the theoretical bestcase for the execution times, assum-

ing that the circuit can still be operated at the high clock frequency without pipelining

the buses, i.e., the frequency speedup translates to an equivalent reduction in the execu-

tion time. In reality, however, the bestcase may not be achievable since at least a few

buses may need to be pipelined in order to operate at the high clock frequency, which

increases the associated CPI. From the figure, it may be observed that all of the bars are

over the corresponding horizontal lines, indicating an increase in the CPIs due to wire-

pipelining. In addition, the ratios of the best and observedexecution times gets higher

as the frequency increases. However, there is considerablevariation in the sensitivity to

wire-pipelining across various benchmarks. For instance,for benchmarks such as mesa,

SFP results in about 7%, 17% and 28% higher execution times than the (unachievable)

bestcases, for the frequencies of 4, 5 and 6GHz, respectively. On the other hand, for

gcc, the corresponding increases are lower, about 5%, 6% and12%, respectively.

Comparison of simulation techniques

In addition to the SMARTS technique that is used to generate the results of the

previous section, we perform 32 simulations, according to the resolution III design of
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Figure 4.5: Run time comparison of a single simulation for the three techniques. The y-

axis plots the run time of a single run for each technique and benchmark on a logarithmic

scale.

section 4.3.2, for each of the other two techniques described in section 4.4 for every

benchmark. Furthermore, the floorplan is optimized for eachbenchmark separately,

unlike the average case that is used in the previous section,to study the impact of the

techniques on individual optimizations.

The three floorplanning scenarios that are compared are labeled as shown below:

• Minne: MinneSPEC reduced input sets are simulated to completion.

• SMARTS-R: SMARTS is applied on thereference input sets.

• SMARTS-M: SMARTS is applied on the MinneSPEC input sets.

In addition, we use a common platform to compare the three cases: the evaluations

are performed on thereference input sets, with SMARTS speeding the simulations.

In doing so, we are biasing the evaluations towards the SMARTS-R technique. We
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note that our objective is to examine how the reduced input sets compare with the sam-

pling techniques, not exactly to measure the accuracy of these techniques in tracking the

reference performance. The reason behind choosing “sampling–on–reference”

as the common framework is that sampling techniques replicate thereference be-

havior with very high accuracies, as indicated in [YKS+05], and the speedups evaluated

on this platform are likely to represent those observed whenthereference input sets

are run to completion.

Figure 4.5 plots the run times of a single simulation for the three techniques in loga-

rithmic scale. It can be seen from the figure that SMARTS-R hasthe longest simulation

times among the three techniques. However, the SMARTS-M case has simulation times

that are more than two orders less than the other two approaches, specifically SMARTS-

R, while the simulation times in Minne are somewhere betweenthose of the other two

techniques. As an example, for the benchmark gzip, the simulation times associated

with SMARTS-M, Minne, and SMARTS-R are 125, 3100, and 7000 seconds, respec-

tively.

Figure 4.6 presents the results obtained from floorplanningfor the four scenarios de-

scribed earlier in this section, for each of the eight benchmarks, and for four frequencies,

3-6GHz. For each benchmark, all execution times plotted in the graphs are normalized

to that of the corresponding baseline case, where the frequency is 2.4GHz.

The graphs of the figure show that, for most benchmarks, thereis not much dif-

ference in the execution times obtained for the three cases,Minne, SMARTS-R and

SMARTS-M, and the differences in execution times are with in1%. This indicates

that the reduced input sets compare well with the sampling technique for the CPI-aware

floorplanning problem. In fact, by employing sampling (SMARTS) on the reduced input

sets (MinneSPEC), we can drastically reduce the simulationtimes without much loss in

the performance. For instance, for the benchmark vpr, on an average, each simulation

run for SMARTS-R takes about 5 hours. However, almost the same performance im-

provements (as seen in SMARTS-R) can be obtained when MinneSPEC reduced inputs
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Figure 4.6: The floorplanning results of the comparison of the three simulation tech-

niques, for eight benchmarks for three different frequencies. Just as is done in Figure

4.3, the execution times are normalized to the baseline case, where no wire-pipelining

is employed and the frequency cannot exceed 2.4GHz.
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Figure 4.7: Run time vs Execution time comparison for the three techniques, at each

of the three frequencies. For each benchmark, the executiontimes obtained using

SMARTS-M and Minne are normalized to those of SMARTS-R, shown as the hori-

zontal line in the graphs. Similarly the run times are normalized those of SMARTS-R

(on a logarithmic scale) as shown on the x-axes.
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are used to generate the factor/interaction weights, and inthis case (Minne), the time re-

quired for each simulation is about 30 minutes, a nearly10× speedup over SMARTS-R.

The simulation times can further be decreased with a negligible reduction in the perfor-

mance by sampling the reduced input sets, i.e, SMARTS-M, where each simulation runs

for about 30 seconds, approximately600× faster than SMARTS-R.

The graphs of Figure 4.7 provide a better picture to examine the tradeoffs between

the run times and the execution times associated with the three techniques, and the re-

sults are plotted for each of the three frequencies separately, just as is done in Figure

4.4. The graphs show the run time of a single run (refer to Figure 4.5) using the three

techniques for each of the eight benchmarks on the x-axes. These are normalized on

the logarithmic scale to those of the SMARTS-R technique foreach benchmark, where

a (normalized) run time of one for a benchmark corresponds tothat of SMARTS-R

for that benchmark. The y-axes of the graphs plot the execution times obtained using

Minne and SMARTS-M, and once again, these are normalized to those of the SMARTS-

R technique for each benchmark. The horizontal line in a graph at one represents the

(normalized) execution time of the SMARTS-R technique for each benchmark at the

associated frequency. In addition, the 16 entries in each graph correspond to the execu-

tion times obtained using Minne and SMARTS-M for various benchmarks: one square

(SMARTS-M) and one plus (Minne) for each benchmark.

It can be observed from the figure that, as expected and seen earlier in Figure 4.6,

almost all of the entries (both squares and pluses) are closeto the horizontal line. In

addition, a fraction of the small differences seen may be attributed to random variations

due to the nondeterministic nature of the floorplanner. Thismay also be the reason

behind the fact that for some cases, Minne and SMARTS-M outperform the SMARTS-

R technique, as indicated by the presence of some of the entries above the horizontal

line in the graphs.

Table 4.7 shows pairwise comparisons of the three techniques in terms of the mag-

nitudes of the regression coefficients obtained from the resolution III design of sec-
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tion 4.3.2 for the three techniques, SMARTS-R, SMARTS-M, and Minne. For each

pairwise combination of these three, the value shown for each benchmark is the av-

erage Euclidean distance between the corresponding main and interaction regression

coefficient vectors, similar to the metric used in [YLH03]. If X = 〈x1, · · · , xn〉 and

Y = 〈y1, · · · , yn〉 are two regression (coefficient) vectors, i.e., sets ofβs described in

(4.6), then the average Euclidean distance betweenX andY is determined as follows:

Exy =

√

(x1 − y1)2 + · · · + (xn − yn)2

n
(4.9)

We only include the main and interaction coefficients, and omit the meanβ0, in

the distance estimation. Each weight vector is normalized to 100, i.e., maximum of

the coefficients (other thanβ0) in each vector is 100. In such a case, the maximum

bound on the average Euclidean distance is 100, with the minimum being 0. The idea of

this distance metric is to observe how the regression coefficients (or factor/interaction

weights) generated in the three cases compare with each other. Each value in Table 4.7

indicates how much the magnitude of a coefficient obtained using an approach differs, on

an average, from the corresponding value obtained using thecompared technique. For

instance, for the benchmark vpr, a value of 6.73 shown in column labeledSMARTS-R

Vs Minne indicates that, on an average, any regression coefficient obtained using Minne

differs by about seven from that of the corresponding coefficient determined through

SMARTS on thereference input sets (SMARTS-R).

• Minne Vs SMARTS-M: The distance is negligible for most of the benchmarks,

as shown in the table, which suggests that sampling with SMARTS on the reduced

input sets tracks the behavior of the whole input sets with high accuracy. This is

an interesting observation, since, it shows that, for applications which employ re-

duced input sets, the simulations can further be speeded up by applying sampling.

• Minne Vs SMARTS-R: The distances are relatively higher than those seen in

the Minne Vs SMARTS-M comparison, presumably because of change in the
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Benchmark SMARTS-R Vs Minne SMARTS-R Vs SMARTS-M Minne Vs SMARTS-M

gzip 4.30 4.22 0.45

vpr 6.73 6.58 2.38

mesa 26.36 27.29 2.92

art 23.81 22.87 4.79

mesa 12.78 11.35 1.65

equake 12.73 12.89 0.81

parser 9.23 9.30 0.67

bzip2 0.86 0.83 0.56

Table 4.7: Pairwise distance comparison of the three techniques. For each pair of tech-

niques, the values shown represent the average differencesbetween the regression coef-

ficients of the model shown in (4.6), computed using (4.9). The maximum coefficient in

each technique is normalized to 100, i.e., the maximum possible distance is 100.

input sets, in tune with the conclusions of [YKS+05]. However, other than mesa

and gcc, the distances are still moderate, and it is unlikelythat such moderate

changes in the factor and interaction regression coefficients shift the optimal op-

erating points by significant amounts, given the discrete nature of the cost function

that is minimized in floorplanning. For mesa, the reason behind the large differ-

ences is the contrasting instruction mixes of the corresponding MinneSPEC and

reference input sets: MinneSPEC input set for mesa has negligible floating

point instruction count, while thereference input set has about 9% floating

point instructions.

This is also the reason behind the relatively higher differences in the execution

times obtained for mesa for the three techniques shown in Figure 4.6. Although

the differences in the distances are also higher for gcc, it is less sensitive to wire-

pipelining, as shown in Figure 4.4, where the execution times for gcc exceed the

theoretical limits (horizontal lines in the graphs) only bysmall amounts. We be-

lieve this is a reason for the lack of impact of such differences on the floorplanning

results.
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• SMARTS-R Vs SMARTS-M: The distances follow the same trend as seen in

theSMARTS-R Vs Minne comparison above, since both Minne and SMARTS-

M use reduced input sets. The distances are slightly lower than those observed

in SMARTS-R Vs SMARTS, however. This may be because both SMARTS-

R and SMARTS-M employ SMARTS, the inaccuracies, however small they are,

associated with the SMARTS technique creep into both of them, having identical

effects.

Therefore, due to the similarities in the results obtained,there are no accuracy-run

time tradeoffs that can be explored. From Figure 4.7, it is clear that, SMARTS-M, while

achieving the same performance speedups as the other two techniques, represents the

best approach with least simulation times, in the order of a few hundreds of seconds.

Given the small run times of SMARTS-M, it may also be possibleto employ a more

accurate or a higher resolution design than that it is described in section 4.3.2. However,

as will be demonstrated in the next section, it is unlikely that a higher resolution design

can result in a better floorplanning solution.

4.5.4 Validation of the resolution III design

As pointed out in Section 4.3.2, the underlying assumption in using the resolution

III design of Table 4.3 to generate the results in Section 4.5.3 is that all of the interac-

tions except those shown in (4.3) are negligible. To test thevalidity of this assumption,

we utilize a two-level resolution V design, where all of the main and two-factor inter-

actions can be estimated, and compare the resultant regression models with those of

(4.6). However, such a design requires a minimum of 512 simulations, which makes the

implementation impractical if the simulations have long run times, even with speed up

techniques such asSMARTS-R andMinne described in the previous section.

We therefore utilize theSMARTS-M technique, which has short simulation times

and is shown to be a good substitute for thereference input sets for CPI-aware floor-
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Benchmark Res. III Vs Res. V

gzip 1.60

vpr 2.32

gcc 4.61

mesa 9.14

art 4.82

equake 5.31

parser 2.35

bzip2 2.66

Table 4.8: Distance comparison of the Resolution III and V designs for theSMARTS-M

technique. The values shown represent the average differences between the regression

coefficients of the model shown in (4.6), computed using (4.9). Just as done in Table 4.7,

the maximum coefficient in each technique is normalized to 100, i.e., the maximum

possible distance is 100.

planning in the Section 4.5.3, for the comparison. Table 4.8lists, for each benchmark,

the distance between the corresponding regression coefficients of (4.6) obtained using

the resolution III and V designs, computed using the metric shown in (4.9). We note

that only the terms of (4.6), i.e., the main effects and the eight interaction effects of

(4.3), are compared in generating the distance, although a model with many more in-

teraction terms than in (4.6) can be constructed using a resolution V design. Since the

coefficients, particularly of the main effects, obtained with the resolution III design are

aliased with interactions that are assumed to be negligible, a comparison with the cor-

responding coefficients determined using the resolution V design will be sufficient to

check if the assumption is valid.

Specifically, if the coefficients are equal (or almost equal), then the interactions must

be negligible. It can be seen from the table that the distances are small, indicating that
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Res. III design Res. V design

Benchmark Avg. err. Max. err. Avg. err. Max. err.

(%) (%) (%) (%)

gzip 1.434 6.553 0.621 3.130

vpr 2.678 -9.911 1.628 -11.171

gcc 2.514 18.134 3.063 -20.959

mesa 5.492 24.444 2.896 -9.352

art 4.024 14.187 0.941 5.679

equake 3.309 -21.762 0.811 3.867

parser 1.591 7.397 0.863 3.034

bzip2 1.787 8.438 0.869 4.029

Table 4.9: Error in the estimated CPIs as compared to the simulated numbers over a

set of 512 combinations of the minimum and the maximum valuesfor the bus latencies.

The absolute values of the individual errors are used in the calculations of the average

errors.

the coefficients compare well, and this validates the assumption of negligible interac-

tion effects. Furthermore, the numbers are much smaller than those seen in Table 4.7,

which presents a pairwise comparison of the three simulation techniques described in

Section 4.4. It is unlikely that the small increase in the accuracies, when the resolution

V design is used, can significantly impact the floorplanning optimization process.

In addition, we compare the estimated CPI values with the simulated numbers for

the set of 512 latency combinations that are part of the resolution V design. Table 4.9

shows the maximum and the absolute average of the error in estimation for both res-

olution III and V designs, for each benchmark. On the whole, the models do well in

predicting the CPIs, except for a few outliers. For instance, for bzip2, resolution III and

V designs result in errors of about 1.7% and 0.9%, respectively, on an average. It can
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also be observed that the resolution V design does better than resolution III in estima-

tion, the differences are not significant however. This can partly be explained by the fact

that the combinations for which the CPIs are estimated to obtain the errors actually cor-

respond to the 512 simulations prescribed by the resolutionV design, i.e., the same set

of combinations are used in the resolution V case to generatethe regression functions.

Since the 512 simulations are actually part of a two-level design, the combinations

only have the extreme (minimum and maximum) values for the bus latencies. As stated

in Section 4.3.2, the assumption is that the response (CPI) has a linear dependence on the

bus latencies. To check if there are significant nonlinearities, we generate a set of 1000

random combinations and perform simulations for each benchmark. The combinations

contain any values between the range of bus latencies, i.e.,between the two levels of the

resolution III and V designs addressed in the previous paragraphs. Table 4.10 shows the

average and maximum of the estimated errors for both the resolution III and V cases.

It can be seen that the errors have higher magnitudes than those of Table 4.9, which

suggests the presence of nonlinearities. However, the reduction in the accuracy is not

significant. For instance, the average error increases fromabout 1% in Table 4.9 to about

4%, which is not big enough to have a significant impact. It mayalso be noticed that the

two cases, resolution III and V, result in almost identical errors, unlike the comparison

presented in Table 4.9.

4.6 Conclusion

This chapter proposed a methodology based on a statistical design of experiments

approach to identify the CPI critical buses in a microarchitecture. Using this approach,

the essence of the large exponential search space is captured using a small number of

simulations, linear in the number of buses. In addition, ourapproach also considers the

impact of interactions of the bus latencies. The performance impact of bus latencies is

quantified by constructing a CPI regression model, and the approach is applied at the
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Res. III design Res. V design

Benchmark Avg. err. Max. err. Avg. err. Max. err.

(%) (%) (%) (%)

gzip 6.343 -20.962 6.425 -21.940

vpr 6.314 -20.889 5.312 -21.077

gcc 3.011 20.958 3.696 -14.930

mesa 6.108 19.854 5.548 -20.173

art 8.287 -23.583 8.004 -22.581

equake 6.182 -21.801 6.291 -21.945

parser 2.467 -9.193 2.468 10.258

bzip2 4.387 -18.392 4.467 -18.371

Table 4.10: Error in the estimated CPIs as compared to the simulated numbers over a

set of 1000 different combinations of random values for the bus latencies. The absolute

values of the individual errors are used in the calculationsof the average errors.

floorplanning level. A comparison of the results with an existing approach, which uses

bus access frequencies to weight the criticality of the bus latencies, indicates that our

proposed methodology produces better performance for a number of frequencies.

In addition, we compared three techniques, namely, SMARTS,MinneSPEC reduced

input sets, and a hybrid of both, that can speed up the simulations of thereference

inputs of the SPEC benchmarks for the CPI-aware floorplanning problem. We use a

distance metric to compare the regression models generatedusing the three techniques

in the simulation methodology. This comparison suggests that MinneSPEC sets and

SMARTS generate significantly different sets of regressioncoefficients. However, this

variation in the magnitudes did not affect that subsequent optimization, and the per-

formance improvements seen in both cases are almost identical. Therefore, there is no

correlation between the contrasting regression models generated and the actual delivered
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performance. The best technique for this optimization is the hybrid version of both, i.e.,

SMARTS on the MinneSPEC reduced input sets, and this case drastically quickens the

simulation process by several orders, besides generating high quality designs.
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Chapter 5

Floorplanning of a Pentium architecture

In Chapter 4, the proposed strategy for throughput-aware floorplanning is experi-

mented on the DLX architecture using the SimpleScalar simulator. In this chapter, we

extend the technique for the widely used Intel Pentium architecture (P6) [HP96]. For

this purpose, we use Asim [EAB+02], a cycle-accurate simulation framework devel-

oped at Intel Corporation. The objective of this study is to validate the efficacy of our

proposed floorplanning methodology in an industry simulation framework.

The rest of the chapter is organized as follows. Section 5.1 overviews the Pen-

tium architecture and the simulator Asim, while Section 5.2presents the floorplanning

methodology. The results of the simulation methodology andfloorplanning are demon-

strated in Section 5.3 and we conclude the chapter in Section5.4.

5.1 Preliminaries

5.1.1 Pentium architecture

Pentium architecture (P6) models an out–of–order superscalar machine that imple-

ments a Complex Instruction Set Computing (CISC) instruction set. However, during

execution, programmer visible instructions are split intoequal sized operations called

µops, which gives the appearance of a RISC machine at this level. The word arrange-

ment is little–endian and like the DLX architecture employed in Chapter 4, there are

separate Level 1 caches for instructions and data and a single unified cache at Level 2.

The P6 architecture has been utilized for several processors developed by Intel Corpo-

ration such as Pentium III and Pentium M.
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M1 M2

M1 M2

2

Figure 5.1: A busM1 M2, from moduleM1 to moduleM2. The bandwidth of the bus

is two and the latency is one, as indicated by the single dark rectangle on the bus.

5.1.2 Overview of Asim

Asim provides a cycle-accurate simulation framework for microprocessor perfor-

mance modeling. The basic components of the simulator are modules and feeders,

where the modules represent the functional blocks of a processor and the feeders provide

the instructions for simulations. The framework also provides a template for multiple

implementations of the modules, thereby allowing the capability of simulating different

architectures. In addition, Asim includes a port network that models the buses connect-

ing the blocks of a processor. Such a representation enablesmodeling of a microarchi-

tecture system much closer to the actual hardware, than SimpleScalar, where there is no

explicit way of communication between the functional blocks, and thus making it easier

to account for the additional bus latencies in the simulator.

For instance, consider any two modules (blocks) of a processor, M1 andM2, and

suppose there is a bus of width two fromM1 to M2, say,M1 M2, with a latency of one,

as shown in Figure 5.1. The bus can be declared as a write port in the module definition

of M1 while it becomes a read port inM2. Both declarations use the same identifier

“M1 M2” and this binds the read and write ports. The bandwidth ofM1 M2 is set in

the input block, i.e.,M1, and the destination module,M2, sets the latency, which in the

example of Figure 5.1 is one. In such a scenario, changing thelatency of a bus can be

easily done just by modifying the latency of the corresponding read port in the simulator

code.
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5.2 Simulation methodology

5.2.1 Microarchitecture blocks and buses

Due to the complexity and the high number of blocks and buses associated with

the Pentium architecture, we decided to approach the floorplanning problem in phases,

first applying the methodology on subsystems of the processor before a comprehensive

implementation for the entire microarchitecture. In the initial phase reported in this

thesis, we consider the backend execution and memory cores shown in Figure 5.2. The

blocks rs, rob, int andfp represent the backend, andldb, stb, dcu anddtlb form the

memory unit of the architecture. Comparing with the blocks of DLX processor shown in

Figure 4.2, we have the load store queue,lsq of DLX split into separate queues for loads

and stores, shown asldb andstb, respectively, in Figure 5.2. Similarly, there are separate

queuing systems for the reorder buffer, which maintains theinstruction pool dispatched

from the frontend, and reservation stations, where instructions are scheduled and issued

to execution and memory units, and these are labeled asrob andrs in Figure 5.2. It can

be noted that therob andrs are combined to form the register update unit,ruu, in the

DLX architecture of Figure 4.2. The blocksint andfp correspond to the integer and

floating point execution clusters comprising adders and multipliers. Finally,dcu and

dtlb are the data cache and TLB of the microprocessor.

There are 16 buses (ports) in this subsystem, as shown in Figure 5.2. The buses

include the instruction issue ports fromrs, the cache access and the data forwarding

paths.

5.2.2 Bus latency modeling

As noted in Section 5.1.2, the buses (of Figure 5.2) are modeled as ports in Asim, and

the latencies can be varied by calling appropriate member functions of the port objects.

However, arbitrarily increasing the latencies can pose functional correctness issues, as
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rob
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dtlb

dcu

int

fp

stb

ldb

Figure 5.2: The backend execution and memory functional blocks of the P6 architecture.

The blocksrs, rob, int andfp represent the backend, andldb, stb, dcu anddtlb form the

memory units of the architecture. The arrows represent the ports (buses), 16 of them,

connecting the blocks.

observed in Chapter 2, which addresses the correctness problems at circuit-level, and

Chapter 4, where the latency modeling issues for the DLX architecture are dealt. There

are several dependencies associated with bus latencies that need to be considered for

correct execution, such as:

• The load buffer,ldb, monitors and retains a few previous store instructions issued

by the reservationrs as part of the wake-up logic that unblocks load instructions

that are previously stopped for possible Read after Write (RAW) hazards. It turns

out that the number of the previous stores retained is dependent upon the latency

of the port betweenrs andldb.

• When the load buffer,ldb, dispatches a load instruction to the data cache and tlb

for memory access, a warning signal is sent to the scheduler of rs to speculatively

issue any dependent instructions of the load operation. If acache hit occurs for

the load operation, then the execution continues. However,the speculatively dis-

patched dependent instructions must be squashed if the memory access for the

load instruction results in a cache miss or a page fault. If the latency of the signal
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is less than the cache hit latency, the dependent instructions can be issued before

the data is available, even when a cache hit occurs. In such a scenario, the instruc-

tions are always squashed irrespective of a hit of miss in thecache. The existing

mechanism works for a miss but not for a hit. For correct execution, the latency

of the warning signal fromldb to rs must be greater than the cache hit latency,

which indicates a dependency between the two paths.

The dependencies are modeled and the additional bus latencies are parameterized in

the simulator. Each of the 16 buses represents a factor that can influence the throughput,

IPC, of the microarchitecture.

5.2.3 Design of experiments strategy

Although the resolution III design of Table 4.3 is accurate enough for the DLX

architecture, as explained in Section 4.5.4, preliminary experimentation indicated that

there may be several significant, particularly two-factor,interactions. Estimation of all

of the two-factor interaction effects requires a design with a higher resolution, such

as V, as noted in Section 4.5.4. However, such a design involves a high number of

experiments: for 16 factors, a typical two-level resolution V design has a size of 512

[DM70], like the design used in Section 4.5.4.

We instead employ a two-step approach, shown in Figure 5.3, that can reduce the

number of simulations to a reasonable level. The rationale of this approach is that,

in general, not all factors may significantly impact the response of a system. It has

been a common practice to use a simple, screening, design to filter out the factors that

have negligible impact and construct a better and detailed model in the second phase

for the significant ones. For instance, the work of [FP00] uses this two-step technique

for optimizing electromagnetic devices. The efficacy of such an approach lies in the

concept offactor sparsity, i.e., the fewer the number of significant factors, the loweris

the number of experiments required.
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The objective of our proposed two-step approach is to construct a performance

model that includes all of the two-factor interaction termsalong with the main effects,

for the identified few significant factors. We use the statistical software JMP [SLC01]

for this purpose. The software can be used to generate a variety of statistical designs,

perform statistical significance tests, and construct regression models using techniques

such as Analysis of Variance (ANOVA) [Lil00].

Screening Design

(Resolution IV)

Response Surface

Design (RSD)

Statistically significant

factors (using JMP)

Figure 5.3: The outline of the two-step Design of Experiments approach. The statistical

significance tests are performed using the software JMP.

The first step of the approach involves a screening design to identify the significant

and insignificant factors. For this purpose, we use a two-level resolution IV design,

where the main effects are completely separated from the two-factor interaction effects,

as described in Section 3.5.2. A resolution III design, suchas that of Table 4.3, may

not be effective since the magnitude of a main effect can be masked by potentially

significant two-factor interaction terms that are aliased with the main effect. For 16

factors, a standard resolution IV has a size of 641. A two-level resolution IV design can

be obtained by simply folding over the entries of a resolution III design such as that of

Table 4.3. For instance, complementing all the entries of Table 4.3 gives a set of 32

additional distinct simulations, which when combined withthe original 32 rows of the

table gives a resolution IV design (of size 64).

1Alternatively, a Plackett and Burman (PB) design of resolution IV, which has a size
of 40, can be used.

102



The screening design is applied on the set of benchmarks, andthe results obtained

from the simulations are used to find important factors. The identification of significant

factors is done using a systematic procedure that employs ANOVA and the F-test, a test

for determining statistical significance, as described in Section 3.5.3. The test involves

indexing the appropriate F-distribution with the F-ratio obtained for each factor, using

the simulation results. The result of the look up is a p-value, which is an indicator of the

importance of the factor: the lower the value, the higher is the significance. As noted in

Section 3.5.3, the general rule of thumb followed is to classify all factors with a p-value

higher than 0.05 (5%) as statistically insignificant, and wedo this in our work.

The factors that are found to be statistically insignificantare ignored and a Response

Surface Design (RSD) is applied for the retained significantfactors. The design is of

resolution V, therefore all of the two-factor interactionsinvolving the (retained) factors

can be estimated. In addition, it also permits the estimation of the quadratic components

of the main effects, there by enabling the modeling of nonlinearities in the impact of

the factors on the throughput. In other words, the throughput of the microprocessor

is captured as a response surface involving the identified important factors. Since, a

three-level design is required to estimate the quadratic components as mentioned in

Section 3.5.2, the design includes a third level for each factor, and this corresponds

to the mean of the minimum and maximum values of the latency range of the factors.

We use JMP to generate the design and perform simulations foreach benchmark as

prescribed by the generated RSD.

5.2.4 Regression model

The result of the simulation methodology outlined in the previous section is a re-

gression function for CPI, where the variables are the significant factors obtained using

the screening design. If, say,n out of the original 16 factors are found to be important,

then the following regression function can be constructed for CPI from the results of the

simulations obtained using the RSD generated using JMP.
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CPI = β0 +

n
∑

i=1

βi · xi +

n
∑

i=1

βi.i · x
2
i +

∑

∀i<j≤n

βi.j · xi · xj (5.1)

Where thexis represent the encodings of the latencies of then buses, computed along

the same lines of those in (4.6). The termβ0 represents the mean or intercept of the

function, eachβi andβi.i correspond to the coefficients of the linear and quadratic com-

ponents, respectively, of the main effect of factori, while eachβi.j is the magnitude

of interaction between factorsi andj. Overall, there are2n main effect terms and
(

n

2

)

two-factor interaction terms in the model.

5.3 Results

5.3.1 Experimental Setup

We use a set of 24 SPEC 2000 benchmarks for the experimentation. For the floor-

planning step, we use an Intel internal floorplanning tool that is also a simulated an-

nealing based implementation similar to Parquet employed in Chapter 4 for DLX, and

we choose a frequency of 4GHz for the experimentation. Owingto the slow simulation

speed of Asim, we only simulate each benchmark for one million instructions. The idea

is to first validate the efficacy of the simulation methodology of Section 5.2 for a small

portion of the benchmarks before graduating to utilizing complete simulations. Each

simulation, of size one million instructions, takes about 10-20 minutes to complete. For

the latency range for each factor, we choose zero and two clock cycles as the minimum

and maximum values, and therefore one for the mean latency value which is used in the

RSD of Section 5.2.3, besides the minimum and the maximum, toestimate the quadratic

components of the main effects. It is unlikely that the latencies exceed more than two

clock cycles since the methodology is applied on a relatively smaller portion of the pro-

cessor, i.e., the backend and memory cores, as compared to the whole area of the DLX

processor in Chapter 4.
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5.3.2 Results of the two-step methodology

First, 64 simulations are performed for each of the 24 benchmarks, as part of the

two-level resolution IV screening design generated using JMP. The results of the F-

test indicate that 10 of the 16 factors can be ignored in building the regression model.

Figure 5.4 shows the six significant factors (buses), where the dotted line indicates the

factor which has the highest impact on the throughput. In addition, it turns out that

almost all of the benchmarks have the same set of critical factors. It can also be observed

that most of the buses are related to the instruction issue and forwarding paths, and the

data forwarding bus betweenint andstb is the most critical of these buses.

rob

rs

dtlb

dcu

int

fp

stb

ldb

Figure 5.4: The six statistically significant buses of the architecture. The dotted line

betweenint andstb represents the most important of the six buses.

The next step involves the implementation of the Response Surface Design (RSD)

for the six factors of Figure 5.4. This design is generated using JMP, and requires 45 sim-

ulations per benchmark. Therefore, the two-step approach of Section 5.2.3 prescribes a

total of 109 (64 for the screening design and 45 for RSD) simulations per benchmark.

It can be noted that this is significantly less than the 512 simulations per benchmark

required in a potential one-step approach that utilizes a resolution V design for all of the

16 factors.

The results of the simulations are then used to generate regression models, one for
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each benchmark, and a single regression function is constructed by averaging over the

24 benchmarks: Each regression coefficient of (5.1) is obtained by averaging the corre-

sponding coefficients of the 24 regression models.

Two of the coefficients of the regression function, corresponding to the main effects

of the buses betweenrs andldb, andrs andstb have negative magnitudes. This is an un-

expected result since it indicates that inserting additional flip-flops on the two buses can

actually increase the throughput, i.e., reduce the number of clock cycles of execution.

To understand such an anomalous behavior, we analyze and compare the block activity

traces and instruction issue patterns across several relevant bus latency configurations.

The analysis suggests that the complex scheduling and the out-of-order issuing schemes

employed in the P6 architecture proved to be significantly sensitive to the bus latencies.

Increasing the latencies sometimes can change the issue patterns in a beneficial way that

will reduce the number of clock cycles required for execution. Although SimpleScalar

models an out-of-order execution core, such an unexpected trend is not observed, and

the system behavior is much more linear, i.e., the throughput reduces with insertion of

latencies on any of the buses, compared to the out-of-order execution core of the Pen-

tium processor.

rob

rs

dtlb

dcu

int

fp

stb

ldb

Figure 5.5: The eight statistically significant buses of thein-order execution version of

the P6 architecture. The dotted line betweenrs andldb represents the most important

of the eight buses.
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For an even better understanding of the Pentium system behavior, we implement an

in-order version of the execution core of the P6 architecture with in the Asim frame-

work. The goal is to identify if the observed nonlinearitiesare due to the out-of-order

nature of the execution. In general, an in-order machine hasa lot less unpredictability in

instruction scheduling as compared to an out-of-order processor. In particular, changing

bus latencies tends to impact the scheduling algorithms of an in-order core with a lesser

magnitude than those of an out-of-order system due to the relatively lower flexibility in

issuing instructions: Even if an instruction is ready to be issued, it can only be scheduled

after all of the previously queued instructions are dispatched.

We implement the same two-step simulation methodology utilized for the out-of-

order core, for the in-order execution version. The resultsof the screening design indi-

cate that there are eight statistically significant factors, and these are shown in Figure 5.5.

It can be observed that most of the buses are related to the forward paths, similar to those

seen for the out-of-order case in Figure 5.4. The most important factor for the in-order

machine is the bus between the reservation stationrs and the load bufferldb.

For eight buses, the response surface design has a minimum size of 80, compared to

45 for six buses in the out-of-order scenario. Therefore, the total number of simulations

increases to 144 per benchmark for the in-order processor. All of the regression coeffi-

cients obtained through the application of the RSD have positive magnitudes, indicating

a normally expected behavior. The results therefore suggest that the scheduling schemes

are less sensitive to bus latency variations in the in-orderversion of the P6 architecture,

compared to the original out-of-order core.

5.3.3 Validation of the simulation methodology

We validate the regression models obtained using the two-step approach of Fig-

ure 5.3 for the in-order and out-of-order versions over a random set of 256 bus latency

configurations. For this purpose, 256 simulations are performed and the results are com-
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Figure 5.6: Comparison of the estimated and simulated results for a randomly generated

set of 256 simulations for the benchmark ammp, for the out-of-order P6 machine. The

CPIs are sorted with respect to the simulated results.

pared with those estimated from the models, and we do this forone benchmark in this

work. It is, however, a good idea to validate the models for each benchmark, as is done

for the DLX architecture in Section 4.5.4, although the hugecomputation cost, 256

simulations per benchmark, introduces feasibility concerns.

Figures 5.6 and 5.7 show the validation results for the SPEC benchmark “ammp”

for the out-of-order and in-order scenarios, respectively. The graphs plot the estimated

and simulated CPIs of the 256 simulations, sorted with respect to the simulated numbers.

The figures indicate that the percentage differences between the estimated and simulated

results is lower in the in-order scenario than the out-of-order case. The average absolute

errors are about 6% and 12% for the in-order and out-of-ordercases, respectively, while

the corresponding maximum errors are 28% and 86%, respectively.. Overall, the graphs

do not exhibit any particular trends, the estimated values exceed and fall behind the

simulated values arbitrarily. In addition, it can be observed that, as expected, the in-

order CPIs are much higher than those of the out-of-order case.
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Figure 5.7: Comparison of the estimated and simulated results for a randomly generated

set of 256 simulations for the benchmark ammp, for the in-order P6 machine. The CPIs

are sorted with respect to the simulated results.

5.3.4 Floorplanning results

The floorplanner uses the CPI regression models constructedfrom the two-step sim-

ulation methodology of Section 5.2.3 in the cost function ofthe simulated annealing

based engine. The cost function is similar to that of (4.7), and we compare our Design

Of Experiments (DOE) based floorplanning approach with the regular floorplanning

methodology, where total wire length minimization is considered instead of CPI. Fig-

ures 5.8 and 5.9 compare the floorplanning results obtained using the proposed DOE

approach and the regular approach, for the out-of-order andin-order scenarios, respec-

tively. Each plot has 24 points, one each for a benchmark.

The graphs show that our proposed approach results in lower CPIs, therefore better

throughputs, than the regular floorplanner, in both the out-of-order and in-order cases.

However, the improvements are much higher in the in-order case than out-of-order,

which is not surprising given better validation results seen for the in-order scenario in
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Figure 5.8: Floorplanning results for the out-of-order case: The CPIs obtained using

our proposed approach are compared to those computed through regular, minimum wire

length, floorplanning.

Section 5.3.3. On an average, a reduction of about 11% in the CPI is observed for the

in-order case, while it is about 5% for the out-of-order machine.

5.4 Conclusion

This chapter extends the Design of Experiments (DOE) based floorplanning method-

ology of Chapter 4 to the Pentium architecture (P6) that implements an out-of-order ma-

chine. For this purpose, we use Asim, a simulation frameworkof Intel corporation. In

this thesis, we focus only on the backend and memory bus latencies in the performance

modeling. We use a two-step approach for simulation methodology, where insignificant

factors are filtered out in the first step using a screening design of resolution IV. A de-

tailed Response Surface Design (RSD) is applied on the remaining significant factors to

construct a quadratic model that includes all of the two-factor interactions and quadratic

components of the main effects. Simulation results indicate unexpected behavior where
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Figure 5.9: Floorplanning results for the in-order case: The CPIs obtained using our

proposed approach are compared to those computed through regular, minimum wire

length, floorplanning.

throughput increases (or CPI reduces) when some bus latencies increase. Our analy-

sis suggests that that the reason for this is that the complexscheduling schemes of the

out-of-order execution core are highly sensitive to changes in bus latencies.

For a better understanding, we implemented an in-order version of the execution

core and applied the two-step methodology on this new processor. The results indi-

cate predictable behavior, unlike the out-of-order case. The floorplanning results show

that the proposed floorplanning approach outperforms a regular, minimum wire length,

methodology, and the approach works better for the in-orderscenario than the out-of-

order version.
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Chapter 6

Thermally-aware floorplanning

The microarchitecture-aware floorplanning problem addressed in Chapters 4 and 5

specifically focuses on throughput/performance optimization. As pointed out in sec-

tion 1.3.2, floorplanning can also impact the operating temperature of a chip, through the

vertical and horizontal heat transfer mechanisms between the components, the spreader

and the heat sink of the chip. In this chapter, we extend the methodology to include

temperature in the objectives of floorplanning.

The chapter is arranged as follows. Section 6.1 introduces the problem and presents

some previous work. The importance of modeling the power-throughput interaction

is addressed in Section 6.2, while 6.3 explains the concept of temperature estimation.

Section 6.4 lists the thermal metrics considered in this work and the overall flow of

the floorplanning methodology is outlined in Section 6.5. Weconclude the chapter in

Section 6.7 after presenting some experimental results in Section 6.6.

6.1 Introduction

Due to rapid increases in on-chip power and integration densities, operating tem-

peratures have become an important concern in high performance integrated circuits

in nanometer technologies. A high temperature can affect the reliability of a circuit,

thus reducing its lifetime [SABR04], through phenomena such as electromigration and

Negative Temperature Bias Instability (NBTI). With every process generation, circuit

performance becomes more sensitive to thermal effects due to the decreasing limits on

the maximum junction temperature [Sem01]. In addition, thetemperature dependence

of the leakage power results in an undesirable positive feedback, commonly referred

to asthermal runaway, which could even lead to catastrophic chip failures. Whilead-
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vanced [GBCH01] packaging solutions can result in enhancedheat removal capabilities,

the costs associated with these solutions are typically prohibitive. Therefore, it is impor-

tant to develop temperature-conscious design techniques that alleviate on-chip thermal

problems.

As noted in Section 1.3.2, on-chip temperature distributions depend not only on the

total power dissipation, but also on the spatial distribution of the power sources and the

material properties of the medium that permit vertical and horizontal heat transfer in a

chip. Physical design methods, such as floorplanning and placement, can impact the

thermal profile of a chip by altering the spatial distribution of power sources, indicat-

ing a scope for improvement through better heat spreading that evens the temperature

distribution on the chip. In addition, physical design optimizations can complement

other thermal- and power-aware design [BCB+00] techniques implemented at a higher,

architecture level such as Dynamic Thermal Management (DTM) [BM01].

The topic of thermally-aware floorplanning/placement has attracted some attention

in the last few years, both at the circuit and microarchitecture levels. The primary dif-

ference between circuit and architecture level treatmentsis the level of knowledge about

the spatial distribution of power. At the architectural level, the circuit is defined only in

terms of large functional blocks and coarse estimates of power are available, while at

the circuit level [HXV+05,CWZ05,GS03], the power consumptions of individual macro

cells or blocks are all well known, and more accurate estimations are possible. However,

there are many more flexibilities at the architectural levelthat permit significant design

changes that reduce the overall power and temperature distribution.

This thesis focuses on the interactions between microarchitecture design and phys-

ical design, in particular, floorplanning, to explore performance-temperature tradeoffs.

As seen in Chapter 4, the choice of a floorplan can significantly affect the through-

put/performance of a processor due to the presence of wires with multicycle delays.

Such fluctuations in the CPI can change the activity patternsof the blocks, resulting in

variations in the power densities. In other words, floorplanning can affect the temper-
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ature profile not only through heat spreading but also because the spatial and tempo-

ral distributions of power densities vary due to wire-pipelining. A good floorplanning

strategy must therefore consider such interaction betweenCPI and power (and hence

temperature) and jointly optimize both the performance andtemperature objectives.

A few recent works [HKM05, WYYC05, SSH+05, EHB+04] propose techniques

for thermally-aware microarchitecture floorplanning. While these indicate a welcome

progress, they suffer from two drawbacks:

• They do not model the CPI-power interaction in the floorplanning step and as-

sume that the block power consumptions are layout independent. Specifically, the

power densities that are obtained for a zero-bus-latency scenario, which typically

represents the worst case for dynamic power (and the best case for the through-

put, IPC), are assumed to be valid for all floorplans irrespective of the amount

of pipelining required by the buses, and this can result in overestimation of the

temperature.

• They attempt to minimize the steady-state temperature of achip. However, steady-

state can only occur when the power dissipation is constant,which may not be true

in general since programs tend to exhibit phases of varying activities [IM03]. In

such a case, a transient modeling [WC02] provides a better picture of the ther-

mal behavior of the chip: the execution times of the standardbenchmarks that are

used in simulations, such as SPEC [Hen00] utilized in this thesis, are typically

in the range of seconds, which are significantly larger than typical thermal time

constants, making it imperative to model transients. In addition, transient model-

ing also captures an accurate depiction of the dependence ofleakage current on

temperature.

A better strategy may be to focus on minimizing the peak transient tempera-

ture over the entire execution time of a program. Furthermore, besides the peak
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temperature, it is useful to capture the temporal average ofthe temperature distri-

bution, since many reliability mechanisms depend on this.

Although some of the previous approaches do consider the temperature tran-

sients, the emphasis is on modeling the impact of temperature on leakage power,

only a small portion of the execution time is considered for analysis, and the goal

of floorplanning is to minimize the steady-state temperature.

We propose a methodology for multiobjective microarchitecture floorplanning, where

the objectives are minimizing the temperature (both average and peak), based on tran-

sient analysis, and maximizing the performance (or minimizing the CPI). Our approach

models the impact of wire-pipelining (i.e., changes in the CPI, on power densities

in the floorplanning step) and temperature-leakage power dependencies. For the pur-

poses of a complete transient analysis that considers the entire execution times of the

programs, we use a larger timestep than those employed in thelimited-time analyses

of [HKM05, WYYC05, SSH+05, EHB+04]. Since the floorplanning that we address

involves big microarchitecture blocks, which have larger time constants than ordinary

cells, the temperatures change at a slow rate, in which case,a large timestep, which

reduces the analysis time by a tremendous amount, can be chosen without much loss in

accuracy.

6.2 Dependence between power and throughput

Figure 6.1 plots the instantaneous dynamic power consumptions of a block, aver-

aged over every 10000 clock cycles, for two different latency configurations, “c1” and

“c2”, that result in CPIs of 0.91 and 1.11, respectively, forthe SPEC benchmark, “gcc”.

The two instances represent two distinct floorplans of the DLX architecture shown in

Figure 4.2 and Table 4.1. It can be observed from the figure that there is considerable

variation in the dissipated power between the two configurations. The case “c2”, which
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has a higher CPI, takes more clock cycles than “c1”, a programevent is likely to occur

in “c2” at a time later than in “c1”. Moreover, the magnitude of such a “time shift” may

vary across different events, it is even possible that a particular instruction of a program

is executed in “c2” at an earlier time than in “c1”. Such variations in the block activi-

ties can significantly impact the power consumption profile of the processor, as seen in

Figure 6.1. It is therefore important to consider this dependence between the throughput

and dynamic power in the floorplanning optimization.
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Figure 6.1: The instantaneous dynamic power consumption ofthe register update unit

(ruu) block for two different bus latency configurations, each corresponding to a differ-

ent floorplan of the same microarchitecture.

6.3 Thermal estimation

A key component of a thermally-aware design methodology is aframework to es-

timate the temperature distribution of a chip. In the thermal analysis context, a chip

can be viewed as a multi-layered grid network, essentially adiscretization of the chip

geometry, where the nodes of the network correspond to the centers of the grids, and the
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connections between the nodes represent the heat flow paths in the chip. In such a set-

up, the power sources~P are located at the nodes of the network and based on the duality

of electricity and heat transfer, the temperature distribution of the network is governed

by the following differential equation:

~C ·
d~T

dt
+ G · ~T = ~P (6.1)

whereG is the thermal conductance matrix of the network,~T is the temperature distri-

bution of the nodes of the network. The first term on the LHS of (6.1) represents the

transient behavior of the temperature, with~C modeling the thermal capacitances. Sev-

eral techniques for thermal analysis have been proposed in the past, some of which can

be found in [ZGS06].
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Figure 6.2: The results of two transient analyses of a circuit under two different imple-

mentations.

6.4 Average temperature

Figure 6.2 shows two possible transient scenarios for a circuit, where the maximum

transient temperature of the circuit is plotted against time elapsed. Although the curve

of Figure 6.2(a) has a lower peak than that of Figure 6.2(b), Figure 6.2(b) offers a better
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average, where the curve is below that of Figure 6.2(a) for a majority of the time. As

noted in [SABR04], the reliability or mean time to failure (MTTF) decreases exponen-

tially with temperature. Therefore, Figure 6.2(b) may represent a higher reliable case

than Figure 6.2(a). In such a scenario, attempting to minimize the peak temperature can

result in suboptimal thermal profiles. Nevertheless, a higher peak, seen in Figure 6.2(b),

is not desirable due to the constraints it places on the package hardware. Therefore, a

better approach may be to consider both the peak and the average temperatures in the

optimization objectives, and we do this in our floorplanningmethodology.

6.5 Floorplanning flow

Figure 6.3 shows the flow of the proposed temperature-aware microarchitecture

floorplanning methodology. It can be observed that the flow isan extension of the

methodology depicted by Figure 4.1 in Chapter 4 to include temperature in the floor-

planning objectives. The approach accepts a microarchitecture block configuration, a

set of buses, benchmarks and a target frequency as inputs andgenerates a floorplan of

the blocks that is both optimal in both CPI and temperature.

µ-arch

benchmarks

benchmarks

Floorplanning
frequency

regression models (CPI, power)

Simulation

Validation

Methodology

latencies

floorplan

Thermal metrics
Thermal Estimation

Figure 6.3: Thermal-aware floorplanning: design flow.
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Unlike [SSH+05,EHB+04] and also in the throughput-aware floorplanning problem

addressed in Chapter 4, where the purpose of the simulationsis to characterize the vari-

ations in the CPI in terms of changes in the bus latencies, theobjective of the simulation

strategy of Figure 6.3 is to model the variations in both the throughput and the power

densities, and thus capture the CPI-power dependence. The variations are encapsulated

in the form of regression functions, similar to those of (4.6), with the bus latencies as

variables, both for CPI and power.

The floorplanner, based on a simulated annealing (SA) framework, uses the regres-

sion models to optimize a cost function that is similar to that of Section 4.3.3. However,

besides the CPI, it also includes the thermal terms, both thepeak and average tempera-

tures, as described in section 6.4.

After every SA move, the floorplanner estimates the block power densities from the

regression models and passes them along with the corresponding floorplan to the thermal

simulator, which in turn returns the thermal metrics that are part of the cost function.

The performance and thermal profile of the resultant layout can then be determined

from cycle-accurate simulations. In addition, the entire design flow of Figure 6.3 may

be repeated for several microarchitectural block configurations to identify the optimal

configuration.

For the purpose of simulations, we use SimpleScalar that is augmented with the

Wattch [BTM00] technique for power estimation. In addition, we utilize the same two-

level resolution III design of Table 4.3 that is used in Chapter 4 for the simulation strat-

egy . Furthermore, as both power and CPI depend on the same setof variables, i.e., bus

latencies, a single design can be used to characterize both responses.

The thermally-aware floorplanning approaches of [SSH+05, EHB+04], although do

not model the dependence of power on bus latencies, propose simulation strategies

to capture the throughput impact of bus latencies. The method of [SSH+05] con-

structs linear regression models using simulations by varying each latency indepen-

dently, whereas [EHB+04], which is an extension of the CPI-aware floorplanning work
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of [EMW+04] that is compared in Section 4.5.3, uses latency-independent models to

capture the CPI/IPC variations. While these may work well for CPI since a reasonably

accurate relative ordering of variables is sufficient as shown in Section 4.5.31, such one-

at-a-time approaches may not effectively track absolute variations, required in the case

of power, as compared to the DOE approach [Czi99] used in thiswork.

The reason for the requirement of “absoluteness” is that thepower and temperature

may not have a perfect correlation [SSH+03], and power-criticality does not necessarily

imply temperature-criticality. This lack of fidelity2, coupled with the dependence of

leakage current on temperature, indicates that any error inpower estimation can result

in significant inaccuracies in the temperature computations.

Reducing simulation times

To speed up the simulations, we utilize SMARTS, one of the techniques compared

in Chapter 4, which works well both for throughput and power/energy, particularly for

the SPEC benchmarks. In this way, we reuse the CPI regressionmodels obtained using

theSMARTS-R technique of Section 4.5.3.

Power/CPI regression models

As mentioned in Section 4.4, the SMARTS technique involves fastforwarding pro-

gram segments between successive samples chosen for detailed simulation. However,

the transient modeling requires that the block power densities be collected periodically

for every timestep. For this, we extrapolate the power data collected for each sample for

the succeeding fastforwarded portion. While we do not offera proof, the concept of pe-

riodic sampling is inherently based on this assumption, andthere is empirical evidence

1Section 4.5.3 however shows that our proposed DOE based approach outperforms
the technique of [EMW+04]

2A well known case where the property of fidelity holds is Elmore delay modeling: although
the estimated delays may be inaccurate, the metric accurately tracks the variations in the delays.
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that it works well at least for average power/energy estimation [WWFH03].

The total execution time obtained from a simulation is then segmented into slots

of size equal to the transient analysis timestep. Therefore, the data collected from the

simulation can be arranged as an arrayP indexed by the timestep and the block number,

i.e., the entryP (a, b) of the array corresponds to the power consumption of blockb

(one of the 17 blocks of Figure 4.2) during timestepa. Since 32 simulations performed

(per benchmark), there are 32 such tables. For each entryP (a, b) (per benchmark), a

regression model is constructed from the 32 values [Mon00],based on least-squares

approximation, where the variables are the bus latencies. Equation (4.6), essentially the

same equation listed in (4.6), shows one such a model, constructed to estimate the power

dissipation at entryP (a, b), whereβis represent the regression coefficients computed

from the 32 values obtained for the correspond entry(a, b).

xi = −1 +

(

2 · li
min(i) + max(i)

)

, 1 ≤ i ≤ 22

P (a, b) = β0 +
22

∑

i=1

βi · xi +
∑

(ij)∈I

βij · xi · xj +

∑

(ijk)∈I

βijk · xi · xj · xk (6.2)

A CPI regression model is similarly constructed for each benchmark from the statis-

tics gathered from the 32 simulations. In addition, although we construct separate re-

gression functions for CPI and power, since the associated variables are the same, a

direct relation between the power and the CPI estimates can be obtained by composition

of the regression functions.

6.5.1 Temperature estimation

We use HotSpot [SSH+03] in this work for thermal analysis. In this approach, the

nodes of the multi-layered thermal network described in section 6.3 are the centers of
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the blocks of the microarchitecture. The tool also providesa framework for transient

modeling, and accepts a floorplan, the length of the timestep, and the block power dissi-

pations averaged over each timestep as inputs. The differential equation (6.1) is solved

at each timestep to estimate the new set of temperatures (with the initial conditions be-

ing those of the previous timestep). The leakage power component of the succeeding

timestep can then be updated using the new temperatures.

Choice of timestep

In general, the smaller the timestep, the higher is the accuracy of the transient anal-

ysis. It is clearly impractical to perform the analysis for every clock cycle of execution,

and the authors of HotSpot suggest a size of about 10000 clockcycles at a frequency

of 3GHz, i.e., a timestep of about3.3µs. Although this reduces the analysis time by a

significant factor, it still makes it prohibitive to incorporate transient analysis into the

iterative scheme of the floorplanning step, where thousandsof floorplans are evaluated.

To solve this issue, we choose an interval of one million clock cycles, which amounts

to about a few hundreds of microseconds for gigahertz frequencies, and this can possibly

affect the accuracy of the computations. However, since thefocus of the optimizations

involves relatively larger microarchitecture blocks (than the macro cells considered in

circuit level optimizations), the thermal RC constants tend to be higher, typically in the

range of tens of milliseconds, and this indicates a minimal loss of accuracy since each

time constant still involves a high number of timesteps. Forinstance,ruu, a medium

sized block of the microarchitecture of Figure 4.2, has a time constant of about 120ms.

As noted in [SSH+03], the temperatures rise slowly, and it takes more than 100,000

clock cycles to observe an increase of as small as 0.1°C in thetemperature. In addition,

we use a single iteration to solve the differential equationof (6.1) during each timestep

of the analysis.
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6.5.2 Floorplanning cost function

The floorplanner, PARQUET, uses the power and CPI regressionmodels built out of

the simulation methodology described in section 4.3.2 in the cost function.

The cost functionC is a weighted sum of, besides the chip area (Area) and the

aspect ratio (AR), the average (Tavg), and the peak (Tpeak) transient temperatures, as

shown below:

C = W1 · Area + W2 · AR + W3 · CPI + W4 · (Tavg + Tpeak) (6.3)

where theWs represent the relative weights of the optimization terms.If Nt is

the number of timesteps in the transient analysis andTi is the maximum of the block

temperatures at timestepi, the average and the peak temperatures are determined as

follows:

Tavg =
1

Nt

∑

i

Ti andTpeak = max
i

Ti (i = 1, 2, · · · , Nt)

6.6 Experimentation

6.6.1 Experimental set up

We use the same set of benchmarks that are utilized for validating the throughput-

aware floorplanning strategy of Chapter 4, shown in Table 4.4. In addition, just as

done in Chapter 4, only the chip core that also includes the L1caches is considered

during floorplanning, and the L2 cache is wrapped around the core floorplan, just as is

done in [SSH+05] and Alpha 21362 [Ban98]. We choose a frequency of 4GHz forour

experiments, and therefore, a timestep of 250µs.

For each of the eight SPEC benchmarks of Table 4.4, 32 cycle-accurate simulations

are performed, as prescribed by the resolution III design ofTable 4.3. We also generate
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a single floorplan for the processor that is, on average, optimal over all benchmarks.

For this purpose, the CPI and power regression coefficients are averaged over the eight

benchmarks to generate a new set of regression models that are used in the optimization

process to generate a single floorplan.

We integrate HotSpot with Wattch to enable thermal analysisduring simulations.

Although we use SMARTS to speed up the simulation strategy ofsection 6.5, detailed

cycle-accurate simulations, without fastforwarding any program portions, for the en-

tire execution times of the benchmarks are performed for validating the floorplanning

solutions. In addition, we use a relatively smaller timestep of 10000 clock cycles, as

compared to that of 1000000 cycles used during optimization, for transient analysis,

i.e., the power data are averaged over every 10000 clock cycles and are provided to the

HotSpot solver to determine the set of temperatures.

We compare our proposed thermal floorplanning technique with two other approaches.

The long run times of the simulations is the main obstacle that limits the number of com-

parisons that can be made. The floorplanners compared are listed below:

• cpiFP: IPC/CPI only floorplanning, the cost function of the floorplanning does

not consider any thermal issues.

• therFP: Our proposed temperature-aware floorplanning, where the cost includes

CPI and both the average and peak transient temperatures, along with the core

area and aspect ratio.

• skadFP: A temperature-aware floorplanning approach based on [SSH+05]: the

block power densities are assumed to be independent of the bus latencies. In

addition, the cost includes only the peak transient temperature, along with the

CPI, area and aspect ratio3.

3We choose to include the peak transient temperature in our implementation of [SSH+05] for
convenience. Moreover, although the original implementation attempts to minimize the steady-
state temperature, the authors use peak transient temperature as a metric of their validation pro-
cess.

124



For therFP andskadFP, we choose a weight of 0.4 for both CPI and temperature,

and 0.1 for area and aspect ratio, i.e.,w1 = w2 = 0.1, w3 = w4 = 0.4 in (6.3). For the

CPI-only floorplannercpiFP, we havew1 = w2 = 0.1, w3 = 0.8, w4 = 0. The idea is

to provide a greater emphasis on the primary issues, the CPI and the temperature, while

still attempting to limit the total area.

6.6.2 Impact of initial temperature

A key issue in transient modeling is the setting of the initial temperature, which

serves as the reference point of the analysis. It is possiblethat the transients of a chip

converge to a steady-state irrespective of the initial ambient conditions. However, the

steady-state is likely to occur after a significantly long transient phase, particularly for

microprocessors which have large time constants, and the nature of this phase can be

affected by the initial temperature. The impact is further aggravated by the mutual

dependence between the leakage power and the temperature: if the processor begins

execution at a high temperature, high leakage will be seen, which may drive up the

transients.

However, since floorplanning focuses on optimizing the heattransfer mechanisms

of the chip through appropriately spreading the “hot spots”across the chip, it is likely

that the optimization is not significantly impacted by the choice of initial setting. While

it may still be a good idea to optimize over a range of possibleinitial temperatures,

it requires multiple transient analysis evaluations, one for each temperature, for each

choice considered and this blows up the simulated annealingruntime.

In this work, we perform the floorplanning optimization at a single initial tempera-

ture of 40°C. We assume this choice reflects the commonly observed ambient conditions.

Although only one initial temperature is utilized in our floorplanning strategy, we

analyze the impact of variations in the initial conditions on the temperature profiles

of the floorplans obtained using the three optimization approaches. Specifically, we
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Case Core WS (%) Core AR

cpiFP 5.33 1.15

skadFP 7.60 1.02

therFP 6.21 1.03

Table 6.1: Comparison of white space (WS) and aspect ratio (AR) for the three floor-

planners.

capture the transients of the three floorplans for a number ofinitial temperatures, ranging

from 40°, the setting used in the floorplanning step, to a hightemperature of 120°.

To this purpose, for each floorplan, we collect the block dynamic power dissipations

averaged every timestep (10000 cycles) for all of the benchmarks4. Using these traces,

transient analysis is performed at a number of initial temperatures, and we compare the

temperature metrics obtained at each of the temperatures.

6.6.3 Results

The cores of the floorplans obtained with the three approaches, namely, cpiFP, therFP,

and skadFP, are shown in Figure 6.4. The L2 cache,l2, not shown in the figures, is

wrapped around the cores to complete the floorplans. The white spaces (WS) and the

aspect ratios (AR) of the floorplans obtained using the threeapproaches, shown in Table

6.1, imply that all of the three result only in a small increase in the area. For instance,

a core WS of about 6% intherFP indicates an overall increase of 1.5% in the chip

area (equivalent to 2.03cm2). Besides, bothskadFPandtherFP produce floorplans of

almost perfect AR.

Figures 6.5, 6.6 and 6.7 plot the instantaneous temperatures obtained for the three

floorplanning scenariostherFP, skadFPandcpiFP, respectively, at four different initial

temperatures, 40, 60, 80 and 120°C.

4We remind that the dynamic power can vary across floorplans, if the bus latencies
differ.
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Figure 6.4: The cores, which exclude the L2 cache, of the floorplans obtained using the

three approaches.
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Figure 6.5: Transient profiles for the floorplan obtained using our proposed floorplanner,

therFP, at four different initial conditions.
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Figure 6.6: Transient profiles for the floorplan obtained using skadFP at four different

initial conditions.
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Figure 6.7: Transient profiles for the floorplan obtained using cpiFP at four different

initial conditions.
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It is apparent from the graphs that the transient curves tendto reach a steady-state

like pattern, i.e., the gaps between the curves reduce over time, particularly towards

the end of the execution, and this is true for all of the benchmarks. Besides, in most

instances, the peak occurs quite early into the execution, and increases with the initial

temperature. However, even with the increased leakage seenat high temperatures, the

power dissipations are not enough to sustain the high temperatures after these early mo-

ments, and the temperatures gradually drop before eventually converging. The steady-

state like patterns, however, occur after more than a few seconds, and such long times

indicate that the differences in the average temperatures across initial temperatures can

be significant. Overall, the graphs show that steady-state temperature is not an ideal

metric for measuring thermal performance, since it is quitepossible that two instances

that have different peaks (and averages) reach the same steady-state.

It can also be observed that some benchmarks such as gcc and bzip2 exhibit uneven

activity levels with several low and high temperature phases, in which case, the average

and peak of the temperatures may not have a perfect correlation, i.e., a curve with a

higher peak than another can have a lower average. On the other hand, benchmarks

such as art maintain steady-states or monotonically decreasing temperatures for a major

part of the execution time.

Figure 6.8 plots the peaks of the transient curves of Figures6.5, 6.6 and 6.7 for the

four initial temperatures. The graphs show that, for all benchmarks, our proposed floor-

plannertherFP obtains good reductions in the peak temperatures than bothcpiFP and

skadFP, particularly for those that exhibit high temperatures such as gcc. For instance,

for the benchmark gcc, at 40°C, the floorplan generated bytherFP reduces the peak by

about 14°C as compared tocpiFP, while it is about 5°C forskadFP, and at the initial

temperature of 80°C, the reductions are about 16°C and 6°C, respectively.

Moreover,therFP outperformsskadFP despite not explicitly attempting to mini-

mize the peak temperature as is done inskadFP. This is true for all of the initial temper-

atures, even though the floorplanning is performed at a single point, i.e., 40°C, indicating
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Figure 6.8: Comparison of the peak temperatures for the three floorplanning scenarios

at different initial temperatures.
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that the initial state has not significantly affected the optimization. A possible reason for

this is that the shape of the profile does not change much across different initial set-

tings, as can be seen in Figures 6.5, 6.6 and 6.7; if a technique keeps the temperatures

low at some initial temperature, it is likely that the trend is maintained for other initial

temperatures as well.

Figure 6.9 compares the average transient temperatures obtained using the three ap-

proaches at the four initial temperatures of 40, 60, 80 and 120°C. The plots indicate that

therFP outperforms bothcpiFP andskadFPby significant amounts for all benchmarks.

Reductions of about 9°C and 6°C are obtained overcpiFP andskadFP, respectively, for

gcc, at 40°C. Similar trends are observed for the most part ofother initial temperatures.

In addition, since the floorplans are optimized for the average cases and not specif-

ically for each benchmark, the optimization potential for each benchmark may not be

fully exploited. Furthermore, benchmarks that have low power profiles such as art and

vpr do not offer much scope for optimization, the resultant improvements tend to be

small, and in fact,skadFPworsens the thermal profiles obtained for art and vpr, where

both the average and the peak temperatures are higher than those ofcpiFP, as shown in

Figures 6.8 and 6.9.

Table 6.2 lists the critical block, i.e., the block for whichthe peak temperature oc-

curs, for a number of scenarios, for each benchmark. It can beseen that the integer adder

blocks,iadd1, iadd2 andiadd3 are critical for a majority of the cases. In general, as was

also observed in Section 4.5.3, integer adders see a lot of activity due to the associated

instruction mix and tend to be active for a significant percentage of the total execution

time. In addition, blocks that implement random logic such as adders typically have

high power densities, since the percentage switching transistors during active state is

much higher than arrayed structures such as caches.

However, for some benchmarks such as art, which is a floating-point benchmark, it

turns out that the register filereg is the critical block. It can also be observed that the

criticality shifts to the register file or the register update unitruu at high temperatures,
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Figure 6.9: Comparison of the average temperature metric for the three floorplanning

scenarios at different initial temperatures.
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Init. T Case gzip vpr gcc mesa art equake parser bzip2

cpiFP iadd2 iadd2 iadd2 iadd2 reg iadd2 iadd2 iadd2

40°C therFP iadd1 iadd1 iadd1 iadd1 iadd1 iadd1 iadd1 iadd1

skadFP ruu reg iadd3 ruu reg iadd3 ruu iadd3

cpiFP iadd2 iadd2 iadd2 iadd2 reg iadd2 iadd2 iadd2

60°C therFP iadd1 iadd1 iadd1 iadd1 reg iadd1 iadd1 iadd1

skadFP ruu reg iadd3 ruu reg iadd3 reg iadd3

cpiFP iadd2 iadd2 iadd2 iadd2 reg iadd2 iadd2 iadd2

80°C therFP iadd1 iadd1 iadd1 iadd1 reg iadd1 iadd1 iadd1

skadFP reg reg iadd3 reg reg reg reg iadd3

cpiFP iadd2 reg iadd2 iadd2 reg iadd2 iadd2 iadd2

120°C therFP iadd1 iadd1 iadd1 ruu reg iadd1 iadd1 iadd1

skadFP reg reg iadd3 reg reg reg reg reg

Table 6.2: The critical block with the peak temperature for the eight benchmarks at

different initial settings (Init. T in the table).

such as 120°C. The reason for this is that the unitsruu andreg are arrayed structures

and dissipate more leakage than execution units such as adders. In such a scenario, due

to the exponential dependence of leakage on temperature, the leakage becomes so high

in ruu andreg that they become hotter than adders.

Finally, Figure 6.10 depicts the performance degradation,i.e., increase in the CPIs,

obtained intherFP andskadFPdue to the inclusion of thermal issues in the cost func-

tion, besides performance. On an average, boththerFP andskadFP result in almost

identical CPIs, about 6% more thancpiFP, where no thermal metrics are considered in

the cost.
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Figure 6.10: Comparison of the CPI metric for the three floorplanning scenarios.

6.7 Conclusion

Thermal issues have become an important concern in microprocessors designed in

nanometer technology nodes. This chapter presented a strategy for thermally-aware

floorplanning for microprocessors, where the optimizationobjectives also include the

throughput (IPC) issues. The approach also models the IPC-power interaction, and uses

a complete transient analysis that captures a thermal profile of a chip in a better way than

the steady-state approach, during the floorplanning optimization. The results indicate

good improvements both in the average and peak temperatureswhen compared to an

approach derived from a previous work.
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Chapter 7

Conclusion

7.1 Summary

This thesis has focused on two important issues of interconnect pipelining and oper-

ating temperature that are associated with the high gigahertz frequencies utilized in high-

performance integrated circuits, particularly microprocessors, designed in the nanome-

ter technologies. First,wire-pipelining, when applied on a circuit to realize multicycle

communication, can change the path latencies in a nonuniform way and result in a func-

tionally different version of the circuit. An even more important concern is the potential

reduction in the throughput due to the additional latenciesintroduced into the circuit.

Next, the high frequencies, combined with high integrationdensities, have resulted in

high chip temperatures and this poses a significant challenge to the circuit design com-

munity, due to the nonlinearly increasing cooling costs.

The problems that we have addressed can be categorized into circuit- and microarchitecture-

level issues and our contributions for the problems can be summarized as follows:

• At the circuit-level, we have proposed a solution to correct the functionality of

a wire-pipelined circuit. The solution finds the minimal value of the throughput

slowdown and also includes a minimum area formulation to minimize the increase

in the number of additional flip-flops that are required to be inserted in arriving at

a solution. The technique is applied on the ISCAS and the ITC benchmark circuits

and the results indicate that wire-pipelining improves performance for most of the

circuits.

• At the microarchitecture-level, we have focused on the interactions between ar-

chitecture design and physical design. Specifically, physical design plays a piv-
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otal role in determining the throughput, measured as the average number of in-

structions executed per cycle (IPC), and the thermal profileof a microprocessor,

through its influence on deciding the latencies of the buses and the heat transfer

mechanisms of the processor, respectively. Furthermore, there is also dependence

between the throughput and temperature, as the power consumption levels of the

chip vary with program execution times.

We have presented floorplanning methodologies to optimize the throughput and

the thermal attributes of a microprocessor. The vital ingredient of the method-

ologies is a design of experiments based approach to limit the number of cycle-

accurate simulations required to characterize the throughput and the dynamic

power patterns of the architecture. The regression models built from the simula-

tions drive the floorplanner that optimizes for the throughput and the temperature

objectives. In addition, our approach uses transient analysis and minimizes the

peak and average of the transients as opposed to the steady-state temperature, and

also analyze the impact of variations in the initial temperature on the floorplan-

ning optimization. We apply the methodologies on the DLX architecture and a

Pentium architecture, in which case only the throughput objective is considered,

and the results indicate good improvements in the throughput and reductions in

temperatures when compared to existing approaches.

Additionally, we compare a few simulation speed up techniques, namely, sam-

pling and reduced input sets in the context of throughput-aware floorplanning for

the DLX architecture. Our results suggest that, although the techniques exhibit

variations in the regression models, the differences do notimpact the floorplan-

ning optimization.
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7.2 Future directions

The regime of wire-pipelining offers exciting opportunities and challenges for fur-

ther research. Future extensions of the topics addressed inthis thesis may include the

following:

• Buffer explosion: It is important to consider the number of repeaters inserted

on the wires in the wire-pipelining regime during optimizations. As shown in

[SMCK04], the number of buffers and flip-flops required to optimize the wires of

a circuit increases exponentially as the technology advances, .

• Local interconnect: As the circuit complexity and clock frequencies increase,

at some point, the individual blocks become big enough, and the local wire de-

lays can exceed a clock cycle. In such a scenario, it may be wise to reduce the

granularity by splitting each block into sub-blocks.

• Applications of DOE: The idea of statistical design of experiments (DOE), which

is utilized in this thesis, is particularly useful for domains such as microarchi-

tecture research, where even though there are a small numberof factors, each

simulation runs for a long time. Several other problems thatcan use DOE for

optimization can be thought of. One such application is in the domain of chip

multiprocessing (CMP). Multicore machines tend to have large die sizes and com-

municate through long multicycle buses. The theory of DOE can be used to build

performance models for these multicycle buses, and incorporate them in the floor-

planning step. In addition, there is also scope for novel floorplanning schemes for

multicore machines, such as hierarchical placement, i.e.,inter- and intra- proces-

sor placement, and 3D arrangement of devices.
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