
Variation-Aware and Aging-Aware
Design Tools and Techniques

for Nanometer-Scale Integrated Circuits

A DISSERTATION

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA

BY

Saket Gupta

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

Doctor of Philosophy

Sachin S. Sapatnekar

July, 2012

c© Saket Gupta 2012

ALL RIGHTS RESERVED

Acknowledgements

I am very grateful to my research advisor, Dr. Sachin S. Sapatnekar, for his support and

guidance during my entire stay at the University of Minnesota. When I think of him, I

feel a deep appreciation of the enormous amount of heart, time, energy, and efforts he

puts into the work and training of each one of his students. He takes the responsibility in

taking them forward in PhD, to be a sincere and modest individual, and mature in the

ability to be a researcher. His sharpness in getting to the root of the topic and getting

striking inspirations for solving tough problems, was quite amazing for me to witness

and go through with him. I have therefore been fortunate to have him as an advisor. I

have benefited and learnt a lot from his thorough and professional approach in different

aspects of scientific research and writing. Due to his constant support, encouragement,

and considerate nature, my entire experience as a graduate student has been very nice

and exciting.

I also wish to acknowledge my committee members, Dr. Marc Riedel, Dr. Chris

Kim, Dr. Antonia Zhai, and Dr. George Karypis, with whom I found a very congenial

and friendly atmosphere to learn many aspects and topics apart from my research, which

I feel is so very essential for a doctoral student.

I would also like to acknowledge the supports for research: National Science Foun-

dation (NSF) under award CCF-1017778, and the Semiconductor Research Corporation

(SRC) under contract 2012-TJ-2234.

I also want to express my thanks to fellow lab-mates Baktash, Pingqiang, Yaoguang,

Jianxin, Vivek, and Sravan, who shared their time and knowledge with me, and the

special moments spent with them, on the way towards completions of my dissertation

research, have become impressions for me to carry throughout.

I feel it would not have been possible for me to smoothly work in my PhD without

i

the utmost cooperation of my room-mates Ankur Khare, Srijan Aggarwal, and my other

friends like Ricky Jain, Pulkit Aggarwal, and Brijesh Kumar, from whom I learnt very

unique, practical lessons of PhD and of life. Because of their support and care, I could

always focus on my research without any worries and in their amicable presence I never

felt lost or lonely. I have been able to complete my PhD only due to the support and

guidance I received from so many sources, including my parents. I wish to sincerely

thank each and every one of them.

Lastly, I would like to thank my teachers in IIT, who had been the inspirational

source for me to take up this challenge of PhD, and whose guidance has been the most

valuable for my whole life.

ii

Dedication

To the Source of Everything, and my parents.

iii

Abstract

Shrinking feature sizes in CMOS-based technology beyond the 45nm regime have given

rise to increased levels of variation in digital circuits and architectures due to process,

temperature, and aging effects. The fabrication process induces variations in the process

parameters, causing differing levels of perturbation in the circuit delay in each manufac-

tured part at the postsilicon stage. Moreover, after manufacturing, during the normal

operation of a chip, new variations are injected due to various aging mechanisms, partic-

ularly Bias Temperature Instability (BTI). These effects cause long-term degradations

in transistor performance, resulting in temporal delay degradations at the circuit level.

The mechanism of BTI is exacerbated as transistor sizes reduce, and poses a growing

threat to circuit reliability.

All of these effects poses significant challenges at the presilicon design stage, which

must ensure correct and reliable performance of a chip throughout its lifetime. Hence,

techniques to mitigate the effects of spatial and temporal variations have become a vital

part of the design flow for digital circuits and architectures. In this thesis, we develop

robust techniques, in the form of design tools and techniques that operate at the circuit

and architectural levels, which can be used to analyze, compensate and mitigate various

sources of variation, including process and temperature variations and BTI-induced

aging.

One significant problem is related to the issue of performing presilicon timing anal-

ysis. State-of-the-art timing tools are built around the use of current source models

(CSMs), which have proven to be fast and accurate in enabling the analysis of large cir-

cuits. As circuits become increasingly exposed to process and temperature variations,

there is a strong need to augment these models to account for thermal effects and for the

impact of adaptive body biasing, a compensatory technique that is used to overcome

on-chip variations. However, a straightforward extension of CSMs to incorporate timing

analysis at multiple body biases and temperatures results in unreasonably large char-

acterization tables for each cell. The first contribution of this thesis is to propose a new

approach to compactly capture body bias and temperature effects within a mainstream

CSM framework. Our approach features a table reduction method for compaction of

iv

tables and a fast and novel waveform sensitivity method for timing evaluation under

any body bias and temperature condition.

The next part of the thesis addresses the problem of designing a new form of logic

circuit, known as a variable latency unit. The basic idea, proposed in prior research, is

an alternative to the conventional one-cycle implementation of combinational circuits.

Variable latency units (VLUs) allow a combinational circuit to complete its operation

in either one or multiple (typically, two) clock cycles, depending on the input provided

to the circuit. This is facilitated through the use of hold logic, which holds the clock

for an extra cycle when certain input patterns are applied. Our second contribution

develops VLU-based BTI-aware designs, with a novel scheme for multioutput hold logic

implementation for VLUs. A key observation is the identification and exploitation of

specific supersetting patterns in the two-dimensional space of frequency and aging of

the circuit. The multioutput hold logic scheme is used in conjunction with an adaptive

body bias framework to achieve high performance.

VLUs may experience functional incorrectness due to process variations. In our

third contribution, we develop an efficient, combined presilicon-postsilicon statistical

technique for variation aware VLU design. We develop a set of hold logics that ensure

functional correctness of the circuit across all manufactured chips. This is achieved by

exploiting spatial correlations to cluster such paths in the circuit, that get affected by

process variations in very similar ways. Since such clusters are quite few in number, the

corresponding set of hold logics is also small.

Our final contribution presents a novel scheme for saving architectural power by

mitigating BTI in digital circuits, inspired by the notion of human circadian rhythms.

The method works in two alternating phases. In the first, the compute phase, the circuit

is “awake” and active, operating briskly at a greater-than-nominal supply voltage, which

causes tasks to complete more quickly. In the second, the idle phase, the circuit is power-

gated and “put to sleep,” enabling BTI recovery. Since the wakeful stage works at an

elevated supply voltage, it results in greater aging than operation at the nominal supply

voltage, but the sleep state involves a recovery that more than compensates for this

differential. At about the same performance, this approach results in appreciable BTI

mitigation.

v

Contents

Acknowledgements i

Dedication iii

Abstract iv

List of Tables x

List of Figures xi

1 Introduction 1

1.1 Variability in Nanometer CMOS Technology 1

1.2 Motivation and Goal for the Thesis . 3

1.3 Our Contributions . 4

1.4 Organization of the Thesis . 6

2 Background 7

2.1 Process and Temperature Variations in Circuits 7

2.1.1 Process Variations . 7

2.1.2 Temperature Variations . 9

2.1.3 Statistical Timing Analysis . 11

2.1.4 Fast Postsilicon Delay Estimation 13

2.2 Aging Variations . 15

2.2.1 Bias Temperature Instability . 16

2.2.2 BTI Modeling: Constant Stress Model 18

2.2.3 BTI Modeling: Stress-Relaxation Model 19

vi

2.2.4 Effect of BTI on Circuits . 19

3 Variation-Aware Current Source Models 21

3.1 Variability-Aware Timing . 21

3.1.1 Current Source Models: An Overview 21

3.1.2 CSMs for Variability-Aware Designs 23

3.1.3 Our Contributions . 24

3.2 CSM Sensitivity Model Development . 25

3.2.1 Independence of Body Bias and Temperature Effects 26

3.2.2 CSM Body Bias Sensitivity Model 27

3.2.3 CSM Temperature Sensitivity Model 28

3.2.4 CSM Complete Sensitivity Model 28

3.3 Compact CSM Formulation . 29

3.3.1 Table Size Reduction for Conventional CSMs 29

3.3.2 Modifications for Sensitivity Tables 32

3.4 The Macromodel Solver . 35

3.4.1 Using the Macromodel in a Solver 36

3.4.2 Newton-Raphson Solver . 37

3.5 Formulation Of Waveform Sensitivity Model 38

3.5.1 Waveform Sensitivity Models . 39

3.5.2 Simplified Waveform Sensitivity Models 41

3.5.3 Complete Waveform Sensitivity Model 45

3.6 Experimental Results . 46

3.6.1 Reduction in CSM Sensitivity Table Size 46

3.6.2 Speedup due to Waveform Sensitivity Models 47

3.6.3 Accuracy of the Waveform Sensitivity Models 50

4 BTI-Aware Design using Variable Latency Units 56

4.1 Variable Latency Units (VLUs) . 56

4.1.1 Average-Case Computation . 56

4.1.2 Hold Logic Generation . 58

4.1.3 VLUs at the Architectural-Level 60

4.2 VLUs and BTI . 61

vii

4.2.1 Motivation . 61

4.2.2 BTI Degradation Model and Delay Monotonicity 62

4.3 Multioutput Hold Logic: Concept . 63

4.4 Multioutput Hold Logic: Theory . 64

4.4.1 Tabulating the Effects of Aging on VLUs 64

4.4.2 Supersetting Trends . 65

4.5 Rejuvenation: Nonmonotone BTI Models 67

4.6 BTI-Resilient VLUs . 68

4.6.1 Static MOHL VLU Implementation 69

4.6.2 Adaptive MOHL VLU Implementation Using Body Biases 69

4.6.3 Practical Issues . 71

4.7 Experimental Results . 72

4.7.1 Evaluation Methodology . 73

4.7.2 Area Overhead and Throughput Enhancements 74

4.7.3 Benchmark Categorization . 77

5 Variation-Aware Design of Variable Latency Units 80

5.1 Preliminaries . 80

5.2 The Impact of Variations on VLUs . 82

5.3 Variation-Aware Hold Logic . 84

5.3.1 The Pessimistic Approach . 84

5.3.2 The Enumerative Approach . 84

5.3.3 A Clustered Approach for VAHL 85

5.4 Enabling Practical Path Clustering . 89

5.4.1 Qualitative Criteria for Path Clustering 89

5.4.2 Reducing the Expense of Path Clustering 90

5.4.3 Node Cluster Generation: Node Closeness Metric 90

5.4.4 A Block-Based Algorithm for Node Cluster Generation 94

5.5 Generating Path Clusters and VAHL . 97

5.5.1 The Relation Between Node Clusters and Path Counts 97

5.5.2 Path Clustering . 99

5.5.3 Generation of VAHL . 101

5.6 Experimentation and Results . 102

viii

5.6.1 Tabulation of Results . 102

5.6.2 Analysis and Discussion . 105

5.6.3 Runtime . 107

5.6.4 Choice of Threshold Values . 108

5.6.5 Validation of Our Scheme . 109

6 Employing Circadian Rhythms to Enhance Power and Reliability 111

6.1 BTI Mitigation: Circadian Rythms . 111

6.1.1 Background and Motivation . 111

6.1.2 Circadian Rhythms for Circuits 113

6.2 GNOMO: Greater-Than-NOMinal Vdd Operation 114

6.2.1 Circuit Recovery through Power Gating 115

6.2.2 Idle Time Generation – Practical Considerations 119

6.2.3 Idle Time Generation – Implementation 121

6.3 Architectural Implementation of GNOMO 123

6.3.1 Processor Details . 123

6.3.2 Simulation Framework . 124

6.4 Power Analysis . 126

6.4.1 Changes in Power as a Function of Vdd,g 126

6.4.2 Power Savings in Delay Guardbanding 127

6.4.3 Overall Power Dissipation . 129

6.4.4 Choosing the Optimal GNOMO Supply Voltage 129

6.5 Results . 131

6.5.1 Delay Degradation Reduction . 131

6.5.2 Area and Power Savings in BTI Compensation 132

6.5.3 Overall Power Savings . 134

6.5.4 Analyzing the Architectural Performance Penalty 135

7 Conclusions 138

References 140

Appendix A. Proof of Theorems for CSM Waveform Sensitivities 151

ix

List of Tables

3.1 The outlier table for aQ . 35

3.2 Results for sensitivity parameter table reduction for tables with original

size = 900 . 47

3.3 Speedups obtained by the Complete Waveform Sensitivity (WS) Model

over HSPICE and Newton-Raphson (NR) solver 48

3.4 Percent delay and slew errors for a NAND2 cell at various temperature

offsets, over all vbp, vbn points . 54

3.5 Mean (µ) and standard deviation (σ) of the percentage errors over all

(vbp, vbn, ∆T) points, incurred by our complete waveform sensitivity

model in the output rise delay and slew values for NAND2 cell, as com-

pared to HSPICE for different input slews and output RC interconnect

loads . 55

4.1 Area overhead and throughput comparisons of various designs for over-

coming BTI degradation . 79

5.1 Results for VAHL under the clustered (ρth, fµ,th 6= 0) and enumerative

(ρth = fµ,th = 1) approaches. 103

5.2 Runtimes (in seconds) for clustering and VAHL generation 108

6.1 Operational Vdd/f pairs adopted from Intel’s IA-32 Processor [1] 122

6.2 Percentage idle time ti,1 for various (Vdd,n, Vdd,g) 122

6.3 Percentage overall power savings for various (Vdd,n, Vdd,g) for benchmark

applu . 130

6.4 The optimal Vdd,g values for various values of Vdd,n 130

6.5 Configuration of the processor . 135

x

List of Figures

1.1 (a) Variability in frequency and leakage in about 1000 fabricated dies,

and (b) deviation in the frequency of dies from the targeted frequency

specification, courtesy Intel [2]. 2

1.2 Increase in variations due to shrinking feature sizes, courtesy IBM [3]. . 3

1.3 (a) IBM Power 4 chip floorplan, and (b) chip thermal profile, courtesy

IBM [4]. 4

1.4 Temporal delay degradation of MCNC benchmark des, due to BTI, vio-

lating the Tclk specification early in its lifetime. 5

2.1 Adaptive body bias usage for mitigating variations in performance, cour-

tesy Intel [2]. 9

2.2 Positive, negative, and mixed temperature dependence for three ITC99

benchmarks synthesized with PTM 45nm technology [5]. 10

2.3 Circuit delay probability distribution for s38417 over 10000 samples [6].

The curve marked by the solid line is the result of a statistical timing

analyzer, MinnSSTA [7], and the curve marked with stars shows the

result of Monte Carlo. 12

2.4 Grid-based representation of a die for capturing spatial correlations in

devices [6]. 13

2.5 (a) Placement of sensors in the grid, and (b) estimation of real delay in

a particular die, by combining presilicon SSTA results with data from

postsilicon sensor measurements [8]. 14

xi

2.6 Application of a digital signal to the gate terminal of the CMOS causes

stresses and relaxations for the PMOS device at VG = 0 and VG = 1,

respectively. For NMOS, similar stress-relaxations patterns follow for VG

= 1 and VG = 0, respectively. 16

2.7 Schematic showing BTI mechanism and the Si-SiO2 interface: (a) the

diffusion of hydrogen into the oxide when some of the Si-H bonds are

broken during the stress phase, and (b) recovery of some of the Si-H

bonds during the relaxation phase. 17

3.1 Example of a CSM: the output port is modeled as a nonlinear VCCS de-

pendent on all input port voltages, in parallel with a nonlinear capacitance. 22

3.2 The initial step, considering all rectangles from any point (i, j), extending

to any point (k, l) at the northeast corner. 30

3.3 (a) A 1-hop solution from (i, j) to (n, n), through an intermediate point,

(k, l). (b) A 2-hop solution from (1, 1) to (n, n) through an intermediate

point, (k, l) uses a previously computed optimal 1-hop solution from (k, l)

to (n, n). 30

3.4 The CSM sensitivity parameter distribution for (a) aQ and (b) cI as

functions of (Vi, Vo). (c) The resultant lookup table for aQ, when all the

outliers have been removed and saved separately in a table. 33

3.5 The presence of outliers yields poor compaction of the lookup tables when

the original scheme from [9] is used. This results in incorrectly evaluated

output waveforms with kinks at some time points. Our approach how-

ever, with a mechanism for separation of outliers, results in the correctly

evaluated output waveform with minimal errors. 34

3.6 A CSM for a gate, under zero body bias and zero temperature offset,

driving a π load. 36

3.7 Typical surface plots for Vo showing the linear nature of Vo variations

with (vbp, vbn), with each surface corresponding to a randomly selected

time point during the simulation. 42

3.8 Simulations showing the variation of α(t) and β(t) at a range of body

biases from the minimum to the maximum, including zero. Two such

test cases are shown in Figs. (a) and (b). 43

xii

3.9 The result of our simplified body bias waveform sensitivity (WS) method

as compared with HSPICE, for several body bias values: (a) output wave-

form from an Inverter, loaded with a 20l benchmark RC interconnect,

evaluated at sink node 52, and (b) output waveform from a NAND2,

loaded with a 45l benchmark RC interconnect, evaluated at sink node 103. 49

3.10 Similar results of output waveform at the output node of a gate (a) for

a NAND2, modeling an input glitch, and (b) for a NAND3, with a non-

monotone input. 50

3.11 The result of our simplified temperature waveform sensitivity (WS) method

as compared with HSPICE, for various temperature values. Shown above

are output waveforms from a NOR3, loaded with 33l benchmark RC in-

terconnect, evaluated at sink node 55: (a) for a falling step input, and

(b) for a slower rising input. 51

3.12 The result of our complete waveform sensitivity (WS) model as compared

with HSPICE, for various temperature and body bias values. Shown

above are waveforms at the output node of an Inverter with (a) 45l as

the interconnect load and an input glitch due to crosstalk, and (b) 25m

as the interconnect load and an arbitrary input. 52

3.13 Similar output waveforms from cells loaded with 20l benchmark RC in-

terconnect, evaluated at farthest sink node 52: (a) the output from an

NAND2 for a rising input, and (b) the output from a NOR2 for a falling

input. 53

4.1 A VLU implementation of a 6-bit ripple carry adder. 57

4.2 VLU implementation of an 8-bit incrementer. 57

4.3 An example of a circuit at various timing specifications so that it has (a)

one critical path and (b) four critical paths. 59

4.4 Variable latency operation at the architectural level: the output of the

HDU is appended to the hold signal to stall the pipeline for a two-cycle

operation. 61

4.5 The concept of MOHL VLU design. A time sensor selects the hold logic

to be triggered at time t. 63

xiii

4.6 The F/A grid for circuit apex7 showing (a) the hold logics and (b) the

corresponding η values (shown on a 10−3 scale). The patterns in the grid

correspond to supersetting structures and result as a consequence of the

application of Theorems 1 and 2, and Corollaries 1 and 2. 65

4.7 (a) Block description of the MOHL VLU design incorporating ABB, and

(b) the ABB scheme corresponding to the F/A grid for apex7. Here, Vbb

is the applied body bias to the circuit. 71

4.8 (a) The two-output BTI-resilient hold logic for the 6-bit RCA. (b) A

plot for the multioutput hold logic VLU design for the circuit c5315

showing various values of the tuple: {Number of outputs, throughput

enhancement (%), area overhead (%)}. 72

4.9 Variation of ∆η as a function of time t for static MOHL VLU design for

a subset of the benchmark circuits. 76

5.1 DAG representation of a circuit. 81

5.2 Delay distribution at the presilicon stage, predicted with corner-based or

SSTA-based analysis , may be different from the actual delay distribution

obtained at the postsilicon stage; this change may further vary from one

chip to another. 83

5.3 The enumerative approach for VAHL generation. 84

5.4 The clustering approach for VAHL generation, based on identification of

path clusters. 86

5.5 Postsilicon processing for determining the sleep signal values: (a) overall

flow, and (b) hardware for sleep signal generation. 88

5.6 Importance of comparing the mean of the two path delays. 89

5.7 The concept of a node cluster. The dotted lines inside the node cluster

represent the node cluster arcs. 91

5.8 Results of node cluster generation for ISCAS89 benchmark s27, for four

different values of (ρth, fµ,th). 94

5.9 Illustration of node cluster growth from a particular node in the circuit,

which is already in a cluster. 95

5.10 (a) General structure of a coarsened circuit, (b) uncoarsened s27 circuit,

and (c) the coarsened s27 circuit. 98

xiv

5.11 Path clusters generated in circuit s27. 101

5.12 VAHL generated for circuit s27. 101

5.13 The distribution of percentage (a) ∆P and (b) ∆η, over all the L = 10000

Monte Carlo samples for circuit s9234. 104

5.14 Variation of ∆A with (ρth, fµ,th) for s1196 and s9234. 109

6.1 The delay degradation patterns of MCNC benchmark alu4 at (a) nominal

supply voltage Vdd,n = 1.0V and greater-than-nominal supply voltage

Vdd,g = 1.1V, (b) Vdd ∈ [0.8V, 1.3V] values, and (c) delay degradation for

alu4 at time tn in (b). 115

6.2 GNOMO results in lower degration than nominal operation (a) GNOMO

delay degradation becomes less than nominal degradation very early in

the lifetime, and (b) the envolope of GNOMO delay degradation over a

period of 10 years. The plot in (a) shows the early lifetime corresponding

to a highly magnified view the extreme left of the degradation envelope

in (b). 117

6.3 The compute and idle phases in GNOMO in the practical implementa-

tion. This figure is not drawn to scale; in reality, tg, ti >> ts, tw. 118

6.4 The illustration of our scheme for generating (a) fixed idle time, ti,1, and

(b) variable idle time, ti,2. The figure is not drawn to scale; in reality, tn,

tg, ti,1, ti,2 >> to. 120

6.5 Schematic of an out-of-order processor, with its on-chip and off-chip com-

ponents. 123

6.6 The power-gating scheme applied differently for various on-chip compo-

nents. Units with combinational circuits are completely switched off by

the sleep signal. Cache on the other hand preserves state by the use of a

special circuitry that scales the cache supply voltage to a relatively low

value. 125

6.7 Change in average power (dynamic + leakage) for alu4 as a function of

Vdd,g; Vdd,n = 0.8V. 127

xv

6.8 (a) The temporal delay degradation of alu4. The area overhead required

to compensate the circuit under GNOMO, is less than that required under

nominal operation. (b) Trends in power for alu4, with power overhead

due to compensation incorporated, as a function of Vdd,g; Vdd,n = 0.8V. . 128

6.9 Change in the total power with GNOMO, showing the power savings at

lower values of Vdd,g. 129

6.10 The reduction in delay degradation with GNOMO, shown for various

circuits for three different (Vdd,n, V opt
dd,g) pairs. 131

6.11 The normalized-area vs. delay curve for alu4, with area normalized by

the area of the uncompensated circuit. 132

6.12 The reduction in BTI compensation area overhead with GNOMO, shown

for various circuits for three different (Vdd,n, V opt
dd,g) pairs. 133

6.13 Reduction in BTI compensation area overhead also lowers the power over-

head with GNOMO, shown for various circuits for three different (Vdd,n,

V opt
dd,g) pairs. 134

6.14 The power savings corresponding to the (Vdd,n, V opt
dd,g) point for various

SPEC 2000 workloads. 136

6.15 The performance penalties for various SPEC CPU 2000 workloads. . . . 137

xvi

Chapter 1

Introduction

1.1 Variability in Nanometer CMOS Technology

The demand for systems with high performance has increased tremendously, driving the

shift of CMOS technology towards more deeply scaled nanometer feature sizes. While

greater on-chip device integration within the same chip area offers higher computing

capabilities, feature size scaling also results in a concomitant reduction in the likelihood

that the fabricated chip, at the postsilicon stage, meets the specifications developed in

the design flow before fabrication, at the presilicon stage.

This deviation is primarily attributable to the effects of variations (process, environ-

mental, and aging), which have grown larger with shrinking feature sizes. This poses

a significant challenge to achieve a simultaneous closure on the threefold metrics of

performance: reliable computing, high throughput, and low power.

As an illustration of the impact of process parameter variations, Fig. 1.1(a) shows

the effect of process variability with shrinking feature sizes on the frequency and leakage

of fabricated chips [2]. The distribution of frequency along the y-axis is plotted against

normalized standby leakage along the x-axis for about 1000 dies (microprocessors) fab-

ricated with 0.18µm technology. Due to variation in transistor parameters, chip leakage

and frequency suffer with about 20x and 30% variation from the minimum to the max-

imum, respectively. This trend is further illustrated through Fig. 1.1(b), which shows

the deviation of chip frequency of all the dies from the targeted frequency specification.

Some of the dies are too slow, and others, despite being faster, are too leaky. With

1

2

(a) (b)

Figure 1.1: (a) Variability in frequency and leakage in about 1000 fabricated dies, and

(b) deviation in the frequency of dies from the targeted frequency specification, courtesy

Intel [2].

more deeply scaled technology nodes, such variations are becoming more prominent, as

depicted in Fig. 1.2, which shows that the variability in performance in the sub-65nm

regime is much higher than at the 0.18µm technology node [3].

Variations in environmental factors such as temperature can affect the timing criti-

cal properties such as delay and slew. Figure 1.3(a) shows the floorplan of IBM Power4

server [4], with its thermal profile in Fig. 1.3(b). The thermal profile shows that across

the small chip, the temperature gradient can be appreciably high, and can cause numer-

ous undesirable effects in the processor [10], such as increased leakage and clock skew.

This in turn adversely affects the chip performance, due to which a significant fraction

of the total number of acceptable dies may fail to achieve the prescribed performance

goals.

Similarly, aging variations in circuits due to bias temperature instability (BTI), hot

carrier injection (HCI), and time dependent dielectric breakdown (TDDB), cause the

circuit delay to degrade over time. For example, Fig. 1.4 shows the temporal variation in

delay due to BTI of an MCNC benchmark des, with time along the x-axis and delay in

picoseconds along the y-axis, for a period of 10 years. For a 32nm Predictive Technology

Model (PTM) [11] based design, the degradation in this delay is about 24% for des, and

3

Figure 1.2: Increase in variations due to shrinking feature sizes, courtesy IBM [3].

causes functional failures early in lifetime (by violating the clock period, Tclk) without

adequate delay guardbands. The effects of aging, as with those of process variations,

are more significant with more deeply scaled CMOS technology nodes.

1.2 Motivation and Goal for the Thesis

The combined effect of all such variations can potentially cause large deviations from

the desired behavior of the chip. Increased variations have therefore led to a shift in the

design paradigms both at the presilicon and postsilicon stages, in order to cope with

the impact of such variations on delay, slew, power, etc.

At the presilicon stage, the design flow calls for new techniques for achieving higher-

performance. From Fig. 1.1(b), it can be inferred that many of the dies in postsilicon

stage may have to be pessimistically operated with a slower clock to preserve the yield

and functional correctness across all the dies (there are some postsilicon ways to handle

this, as discussed next). Similarly, from Fig. 1.4, we can infer that a delay guardband,

allowing the design to meet the Tclk specification throughout its lifetime, may necessitate

the circuit to function well below Tclk for a significant portion of the lifetime. Leveraging

on the ideas from new high-performance designs, one can nonetheless design the chip

at the presilicon stage to gain high performance even in the presence of variations and

aging (we discuss such high-performance paradigms in more detail in Chapter 5).

4

(a) (b)

Figure 1.3: (a) IBM Power 4 chip floorplan, and (b) chip thermal profile, courtesy

IBM [4].

At the postsilicon stage, various techniques have been employed to reduce the spread

shown in Fig. 1.1(b) or to counter the effects of aging. This includes the use of adaptive

body bias (ABB), adaptive supply voltage (ASV) [2, 12], and postsilicon tuning using

a small number of on-chip sensors [13]. Such techniques require multiple, fast timing

precharacterizations, creating the need for developing fast and accurate timing tools.

Our goal in this work is to develop fast and accurate timing tools, that can be

leveraged upon for delay and slew analysis for mitigating process variations and aging in

circuits and architectures. We further aim to develop novel techniques, for reliable, high-

throughput, and low-power operation in circuits and architectures, that can mitigate

and/or compensate for such variations and aging-related delay changes.

1.3 Our Contributions

With this goal, we summarize the contributions made through our work from the circuit

to the architectural levels. The details will be expanded upon in the chapters to follow.

1. As highlighted earlier, application of a suitable ABB/ASV to a circuit or a die,

at a particular temperature, requires faster and accurate timing characterizations.

Conventional tools, that use HSPICE [14], consume a large amount of time to

work with moderate to large designs.

5

0 2 4 6 8 10
400

420

440

460

480

500

Time (years)

D
el

ay
 (

p
s)

T
clk

Figure 1.4: Temporal delay degradation of MCNC benchmark des, due to BTI, violating

the Tclk specification early in its lifetime.

We therefore first look at the state-of-the-art timing tools, based on current source

models [15, 16, 17]. Such models have proven to be much fast and accurate as

compared to HSPICE, but have been limited to circuits and architectures that do

not consider process and temperature variability. We augment such tools with the

capabilities of being able to compactly and accurately model the effects of body

bias and temperature variations in circuits.

2. Timing tools developed above are typically used by conventional circuits and ar-

chitectures, which work with the assumption that the Tclk is constrained by the

worst-case delay of designs in a chip.

However, recent architectures have been increasingly working with and incorporat-

ing the idea of “better-than-worst-case” design [18, 19], in which the Tclk is chosen

by the average-case (or better-than-worst-case) delay, rather than the worst-case

delay. This results in higher throughput at the cost of low area overhead. Variable

latency units are one such design paradigm.

We extend the idea of variable latency design in our second contribution for achiev-

ing BTI resilience in digital circuits. We develop a suitable partition of the circuit

paths into either one-cycle or two-cycle paths (allowing for variable latency of

operation), thus preserving the functional correctness of the circuit against BTI

degradation throughout lifetime. In such a scheme, the partition of the paths is

6

also adaptively changed with time for maximizing throughput throughout lifetime.

3. Process variations in manufacturing of chips leads to a change in the delay distri-

bution of the circuit. In such a scenario, the design of variable latency units may

be rendered incorrect, as the identification of one-cycle or two-cycle paths should

also change with the change in delay distribution.

Our second contribution lies in the statistical-delay based design of variation-aware

VLUs, wherein process variations are incorporated in the design flow. We develop

novel algorithms for generation of clusters in a circuit which we then be leveraged

upon for efficient optimizations to reduce area and power overhead.

4. BTI resilience, as achieved in our contributions, allows for functional correctness

of the circuit throughout its lifetime. If the amount of BTI degradation that the

circuit or the architecture undergoes in its lifetime, can be reduced (mitigated),

the area and power overhead associated with BTI resilience can also be less.

Our final contribution thus, is a novel, counterintuitive scheme for saving archi-

tectural power by mitigating delay degradations in digital circuits due to BTI.

Working at a greater-than-nominal Vdd as the supply voltage, our scheme employs

the notion of circadian rhythms in humans to gain circuit recovery from BTI

degradation and hence, save area and power overhead required for BTI resilience.

1.4 Organization of the Thesis

The organization of this thesis is as follows. In Chapter 2, we present the background

needed for the topics dealt within the thesis. We then present the details of each of

our contributions described above, in Chapters 3, 5, 4 and 6, respectively. Within

each of these chapters, we first cover some of the relevant previous contributions of the

specific areas, then our approach and the results. Finally in Chapter 7, we present our

conclusions.

Chapter 2

Background

We discussed some of the variations and their effects on performance parameters in

Chapter 1. In this chapter, we elaborate on a subset of the types of these variations

dealt with in this thesis.

In the discussion to follow, in the context of a circuit or a chip, we use the terms

“gates” and “devices” interchangeably, to refer to the inverters, NANDs, NORs, etc.,

that constitute the circuit. On the other hand, we use the term “gate” and “gate termi-

nal” in the context of a PMOS/NMOS to refer to the gate terminal of the PMOS/NMOS,

attached to the polysilicon.

2.1 Process and Temperature Variations in Circuits

2.1.1 Process Variations

Process variations refer to the variations in the values of CMOS device parameters,

such as the transistor width (W), effective channel length (Leff), oxide thicknesses

(tox), dopant concentrations (Na), interlayer dielectric thickness (tILD) and the inter-

connect width and height (hint and wint) [20, 21, 22, 23, 24]. These variations occur

during the process of fabrication, due to phenomena such as proximity effects in pho-

tolithography, nonuniform conditions during deposition, random dopant fluctuations,

nonuniform layout density due to chemical mechanical polishing, thickness variations

due to nonuniform resist coating, and depth variations due to uneven etching. Since

all such process parameters impact the performance-related metrics such as the delay,

7

8

slew, and power of the CMOS device, a fluctuation in the values of these parameters also

causes performance variations in circuits and architectures, as was illustrated through

Figs. 1.1 and 1.2.

Variations in process parameter values can be classified in terms of different spatial

dimensions:

1. Die-to-Die (D2D): D2D variations are those that cause the values of the device

parameters to vary in the same way throughout the chip. For example, two ring

oscillators (ROs) in a particular chip may exhibit the same degree of variation in

their oscillation frequency, but this may differ for two ROs in two different chips.

2. Within-Die (WID): WID variations affect the values of the device parameters

to vary differently in the same chip. An inverter in an ALU, for instance, may

have different device parameter values compared to an inverter in a sense amplifier

of the on-chip L1 cache.

Process variations can also be classified in terms of their manifestations, such as

systematic variations and random variations [23, 24]. Typically, such variations from

one device to another tend to be correlated; devices that are located close to each other

tend to vary in same manner than devices that might be spatially distant. We elaborate

more on the correlation between devices in Section 2.1.3.

Process variations may result in significant degradation in the timing yield of the

chips upon manufacturing. Various techniques have therefore been adopted to enhance

the yield despite such variations. Robust gate sizing techniques [25, 26, 27, 28] aim to

guardband the delay against violating the timing specification, by sizing the gates in the

whole circuit or along the critical paths. Techniques are also developed for addressing

the binning-yield loss [29, 30], in which the chips are divided into bins based on their

timing properties. Such techniques are based on presilicon statistical timing analysis.

Techniques for mitigating variations based on postsilicon optimizations have also

been proposed. Adaptive supply voltage schemes [31, 32] tune the supply voltage in

each chip to meet the timing specifications. Application of body bias has been exten-

sively used for such mitigation [20, 21, 22, 33, 34, 35]. Body bias voltage alters the

threshold voltage of the transistors, and hence the delay of the devices on the chip.

Typically, adaptive body bias (ABB) is applied at coarse levels of granularity, e.g., by

9

biasing individual n-wells and/or p-wells, each of which contains a number of transis-

tors. Forward body bias (FBB) effectively reduces the transistor threshold voltage and

speeds up the device, at the cost of increased leakage, while reverse body bias (RBB)

achieves the opposite effect on speed and leakage. ABB involves the use of FBB or

RBB to help dies recover from variations, and may be applied dynamically to tighten

the distribution of the dies with maximum operational frequency, while simultaneously

meeting the leakage power constraints.

Figure 2.1: Adaptive body bias usage for mitigating variations in performance, courtesy

Intel [2].

An illustration of this optimization is shown in Fig. 2.1, where RBB and FBB are

used to tighten the frequency spread over all dies obtained after fabrication [2]. This

allows for a higher number of chips to work close to the design specifications. Notice that

this optimization requires timing precharacterizations at numerous body bias points.

This forms the motivation for our exploration of fast timing tools in Chapter 3, where

we demonstrate our results using typical logical gates such as inverters, NANDs, etc.,

for 45nm PTM technology.

2.1.2 Temperature Variations

On-chip temperature variations occur due to power dissipation in the form of heat; an

example of such variations was shown in Fig. 1.3. Such thermal variations have a sig-

nificant bearing on the mobilities of electrons and holes, as well as the threshold voltage

of the devices. Traditionally, it had been observed that timing varies monotonically

10

over the temperature range, but this is no longer the case with thermally-driven varia-

tions [36]. In nanometer-scale technologies, elevated temperatures cause reductions in

device mobilities (which tend to increase the delay) as well as reductions in threshold

voltages (which tend to decrease the delay). The interplay between these effects may

cause the circuit delay to increase monotonically (negative temperature dependence,

or NTD), decrease monotonically (positive temperature dependence, or PTD), or vary

nonmonotonically (mixed temperature dependence, or MTD) with temperature.

An an example, Fig. 2.2 shows the variation of delay for three ITC99 benchmarks [5].

Delay variation for circuits b21 1 opt, b21 opt, and b22 1 opt, shows PTD, NTD, and

MTD effects, respectively. In the last case, as is evident from the delay plot, the worst

case may occur in the interior of the temperature range, rather than at its edges.

Figure 2.2: Positive, negative, and mixed temperature dependence for three ITC99

benchmarks synthesized with PTM 45nm technology [5].

Increase in temperature has undesirable effects on power and aging too. Increased

on-chip temperatures cause higher leakage, which in turn aids the increase in temper-

ature, leading to thermal runaway. Hence, extra amounts of padding overhead and

cooling mechanisms have to be added in order to protect the chip from exceeding the

maximum power limit and burning out. Aging variations (discussed shortly) are also

exacerbated by increased on-chip temperatures.

11

2.1.3 Statistical Timing Analysis

Traditionally, the delay of a CMOS device in a chip has been represented as a fixed,

deterministic quantity (for a fixed input slope and output load) in the design flow.

Further, the delay of a circuit could be easily determined by performing a static timing

analysis (STA) over all the gates in the circuit.

Due to process variations, such an assumption no longer holds true since this deter-

ministic number for the same CMOS device can differ for different chips, or for different

locations in the same chip. Corner-based timing analysis is an attempt to overcome

this problem, wherein the design is simulated at a set of “corners,” with each corner

chosen in a way that it can capture the worst-case variations in delay due to parametric

variations. This technique, apart from being computationally intensive, works only for

D2D variations, but not for WID variations, which have become increasingly significant

at the nanometer scale.

Statistical static timing analysis (SSTA) [6, 37, 38, 39, 40] has therefore been pro-

posed as an alternative to these traditional methods. In SSTA, the delay of a device

is modeled as a statistical distribution (more specifically, as a probability distribution

function, termed as delay pdf) across all the chips, rather than as a fixed deterministic

value. Using this representation for delay for each of the gates in a circuit, a path-based

(block-based) SSTA engine then iterates through the paths (gates), beginning with the

primary inputs (PIs), to generate the pdf of the arrival time at the primary outputs

(POs) of the circuit (i.e., the maximum delay from the PIs to each of the POs). The

maximum over the arrival times of all the POs gives the circuit delay or the worst-case

delay.

This statistical delay pdf representation can be best illustrated through an example

in Fig. 2.3 for ISCAS89 benchmark circuit s38417. This figure shows the probability

of the circuit delay (along the y-axis) to be a particular value in picoseconds (along

the x-axis), for various chips. Considering any point (di, pi) on this pdf, we have the

following relationship:

pi =
Number of chips with circuit delay = di

Total number of chips fabricated
(2.1)

In this simulation, the total number of chip samples was chosen to be 10,000. From

12

Figure 2.3: Circuit delay probability distribution for s38417 over 10000 samples [6]. The

curve marked by the solid line is the result of a statistical timing analyzer, MinnSSTA

[7], and the curve marked with stars shows the result of Monte Carlo.

the figure, the point (960ps, 0.04) implies that 400 dies had the s38417 circuit delay to

be 960ps. The designers may use either the whole, or just the 3σ point, of the pdf in

the design flow.

Typically, such delay pdfs can be obtained through various block-based SSTA en-

gines [6, 39], which have proven to quite fast and accurate as compared to Monte Carlo

simulations (as shown in Fig. 2.3). In our thesis, we adopt the MinnSSTA engine [7],

the formulation and algorithms for which are described in [6].

MinnSSTA is a block-based SSTA engine that computes the statistical arrival time

for each of the gates in a circuit, including the POs. The circuit delay (or the worst-

case delay), as explained earlier, is then obtained by taking the maximum over the

statistical arrival times of all the POs. MinnSSTA accounts for the spatial correlations

(apart from structural correlations) of parameters for delay calculations, by a grid-based

correlation model [6]. Spatial correlations, as introduced earlier, refer to the fact that

the for devices and wires that are spatially closely located, the electrical parameters will

tend to vary in a more similar manner, as compared to those devices and wires that

are spatially distant. Depending upon the distance between the devices, the correlation

between them value between may vary from 0 to 1. Neglecting spatial correlations has

been observed to cause appreciable errors in the results from SSTA engines [6].

An example of this notion is illustrated in Fig. 2.4 using the grid representation of

13

Figure 2.4: Grid-based representation of a die for capturing spatial correlations in de-

vices [6].

a die. If the die area is divided into a grid of nrow ×ncol = n grid cells, the devices that

lie in the same grid cell (devices a and b) or the adjacent grid cells (devices c and e) will

have a high correlation, whereas those in spatially distant grid cells (devices a and d)

may have very low or zero correlation. Note that correlation exists in the variation of

same process parameters; there is no correlation between different process parameters .

Typically, variations in process parameters are modeled as Gaussian distributions

with the nominal values of these parameters being the mean of the Gaussian. Com-

puting Gaussian-distributed correlations for each parameter, for all the devices in the

n-cell grid, is computationally intensive, and an alternative technique based on princi-

ple component analysis (PCA) was proposed in [6] to reduce these computations. The

resulting SSTA methodology is much faster and accurate as compared to Monte Carlo

results.

2.1.4 Fast Postsilicon Delay Estimation

Having obtained a statistical distribution of the circuit delay over all the dies, at the

presilicon stage, the next step is to determine the precise value (or a close estimation)

for this delay in a particular die, in the postsilicon stage (this delay, after fabrication in

a particular die is termed as the real delay). This is useful since the designer may need

to use the value of the real circuit delay for various applications.

14

Since postsilicon full-chip testing is a prohibitive solution, a methodology seated

between SSTA and full-chip testing is adopted for this purpose uses measurements from

a small number of on-chip sensors to estimate the degree of variations at different spatial

locations of the chip [8], and combines it with the results of SSTA to narrow the spread

(variance) of the delay pdf. This results in a much closer estimate of the real delay in

the fabricated die. We use this technique in Chapter 5.

(a) (b)

Figure 2.5: (a) Placement of sensors in the grid, and (b) estimation of real delay in a

particular die, by combining presilicon SSTA results with data from postsilicon sensor

measurements [8].

The idea is illustrated in Fig. 2.5(a), showing the same grid as in Fig. 2.4, but now

with k sensors located on different parts of the die, marked with a “�”, with their delays

stored in a delay vector dt = [d1, d2, ..., dk] (these delays can be either computed by

SSTA in the presilicon stage, or measured through suitable circuitry in the postsilicon

stage). These sensors can be as small as a three-inverter ring oscillator (RO).

The spatial region, where the RO sensor is located, is characterized by a high cor-

relation between the variations in the sensor delay, and those in the delay of the gates

that are located in the same/neighboring grid cells. A measurement of the shift in delay

(from the mean value) of the sensor can therefore give a close approximation of the shift

in delay of these gates too.

15

This fact is exploited in [8] to develop algorithms for narrowing the delay pdf ob-

tained from SSTA. The result of the application of this algorithm, on one such circuit

in a die, is shown in Fig. 2.5(b), which shows that with k = 5 sensors, the variance

of circuit delay pdf is reduced. With k = 10 ROs, the estimation accuracy is further

increased, and the delay pdf mean is very close to the real circuit delay. The higher

the value of k, the closer is the estimation of the real delay. Note that such sensors

consume a negligible area on the chip, as they are small enough to be inserted in the

space allocated for buffers, decaps, etc.

2.2 Aging Variations

Aging variations refer to the temporal variations in delay of the underlying devices

and circuits in a chip. The primary on-chip aging mechanisms, that affect CMOS

devices, can be classified into several categories, outlined below. We present only a brief

description of each of these, and elaborate more on the phenomena of BTI in Chapters 4

and 6 of this thesis, since it is considered to be the primary source of aging induced

delays shifts in digital circuits.

1. Bias Temperature Instability (BTI): Negative/positive bias temperature in-

stability (NBTI/PBTI) in PMOS/NMOS devices are collectively referred to as

BTI [41, 42, 43]. In a CMOS device, when a PMOS (NMOS) is stressed under

BTI, typically by applying a logic 0 (logic 1) at its gate input, its threshold voltage

degrades, resulting in an increase in the delay of the device. When the stress is

removed, there is partial (but not complete) recovery in the threshold voltage, and

hence the delay degradation is also partially ameliorated.

2. Hot Carrier Injection (HCI): When a carrier (electron/hole) in the channel of

a CMOS device gains sufficient kinetic energy (becomes hot), it can get injected

into the gate dielectric and cause interface traps to be generated [41, 44]. This

results in a Vth shift of the device, and hence, degradation of delay and other

switching properties over time.

3. Time Dependent Dielectric Breakdown (TDDB): Oxide breakdown [45, 46]

refers to the creation of a current path from the gate to the channel, and this

16

happens due to the generation of defects in SiO2 gate oxide, when stress is applied

over a long period of time. When the defect density reaches a critical value, a

conductive path is formed through the oxide, resulting in a functional failure of

the device.

2.2.1 Bias Temperature Instability

Bias temperature instability refers to the instability created in the bonding structure

at the substrate-oxide interface of the CMOS device, when a bias (stress) is applied to

the gate terminal with respect to the source terminal. In PMOS, the application of a

zero/negative VG voltage creates a negative bias at the gate terminal with respect to

the source, as shown in Fig. 2.6. When a logic 1 is applied, the relative bias between

the gate and source terminals becomes zero. The application of negative bias, either

for a long period of time or in conjunction with alternating zero biases, can cause the

PMOS to age with time, and suffer from delay degradation.

Figure 2.6: Application of a digital signal to the gate terminal of the CMOS causes

stresses and relaxations for the PMOS device at VG = 0 and VG = 1, respectively. For

NMOS, similar stress-relaxations patterns follow for VG = 1 and VG = 0, respectively.

Aging due to NBTI under negative stress can be understood by examining the un-

derlying mechanism. An analogous mechanism also operates for NMOS when a positive

bias is applied, causing PBTI. NBTI aging occurs when the Si-SiO2 interface is affected

by the application of a negative bias. This interface is characterized by the presence

of both silicon-oxygen (Si-O) bonds and silicon-hydrogen (Si-H) bonds, as depicted in

Fig. 2.7, which shows the 2-D schematic of a Si-SiO2 interface. Under the reaction

17

diffusion model [42], the effects of changes in electric field at this interface, created by

application of negative bias and its removal, can be captured in the two phases:

(a) Stress (b) Relax

Figure 2.7: Schematic showing BTI mechanism and the Si-SiO2 interface: (a) the dif-

fusion of hydrogen into the oxide when some of the Si-H bonds are broken during the

stress phase, and (b) recovery of some of the Si-H bonds during the relaxation phase.

1. The stress phase: The Si-H bonds are much weaker than the Si-O bonds, and

thus tend to be very easily disassociated when negative bias, or stress, is applied at

the gate terminal. This results in the formation of interface traps, depicted by the

incomplete Si- bonds. The disassociated hydrogen then diffuses into the oxide, as

shown in Fig. 2.7(a). The rate of generation of these interface traps is exacerbated

at higher operating voltages and temperatures (thus the term temperature in BTI).

The increase in the number of interface traps, Nit, is directly related to the change

in the threshold voltage, ∆Vth, of the transistor by the following relationship:

∆Vth = Sgn
(m+ 1)qNit

Cox
(2.2)

where Sgn is -1 for PMOS and 1 for NMOS, m is a measure of the additional Vth

degradation caused due to mobility degradation [47], q is the charge on the carrier

and Cox is the oxide capacitance. Since delay ∝ Vth, an increase in the value of

Nit also causes the delay of the PMOS device to increase.

18

2. The relaxation phase: When the bias is removed from the gate terminal, some

of the hydrogen atoms that had diffused into the oxide in the stress phase, diffuse

back to the interface and recombine with the incomplete Si- bond at the trap sites,

as shown in Fig.2.7(b). This lowers the value of Nit, and from Equation (2.2), the

Vth of the device, improving its delay.

A detailed description of the physics and modeling of the hydrogen diffusion mech-

anism in the stress and relax phases can be found in [42, 48, 49].

The effect of aging with BTI can be captured as the amount of Vth shift for a

particular device, occurring over time. This causes the delay of the device to degrade.

Depending on the type of stress applied, the models can be classified in the following

ways.

2.2.2 BTI Modeling: Constant Stress Model

Assuming a constant stress on the gate terminal of the device, for both NBTI and PBTI,

the effect of aging on the threshold voltage degradation for a stressed device increases

as:

∆Vth(t) ∝ tn (2.3)

where a typical value of n is in the range of 0.1 to 0.2. In this work, we will use n = 0.16.

This model serves as a quick upper bound on the delay degradation that occurs

when relaxations are also applied, as discussed next. This model is useful when a

precise knowledge of the input pattern distributions for each of the specific devices in

the circuit is not available. One way to get this knowledge is through signal probability

information; however, there are two drawbacks to this. First, such information may not

be available. Second, it may predict the average behavior over all users and programs

for a system, but the actual aging depends on the behavior of a specific user, which may

not be predictable. Another potential approach is through the use of on-chip sensors

as described in Section 2.1.4, but these are of limited utility in the context of aging,

since they do not experience the same signal patterns as the circuits whose aging is to

be measured.

19

2.2.3 BTI Modeling: Stress-Relaxation Model

When the knowledge of applied relaxations is known and incorporated in BTI modeling,

the overall degradation is relatively less than that predicted by Equation (2.3). We work

with a widely adopted model [50] for predicting this delay degradation. We present an

expression for PMOS NBTI under alternate stress/relax cycles, for a given temperature,

Vdd and signal probability α at the input of the PMOS (for PBTI, similar equations may

be used since the mechanism of NMOS delay degradation is similar to that of PMOS,

albeit with a lower degradation magnitude [12]):

Stress: ∆Vth(t) =
(
Kv

√
t− t0 + 2n

√
C(t− t0)

)2n
(2.4)

Recovery: ∆Vth(t) = ∆Vth(t0)
(

1−
2ξ1te +

√
ξ2C(t− t0)

2tox +
√
Ct

)
(2.5)

where Equations (2.4) and (2.5) model the all-stress and all-recovery modes. This is

extended to build a long-term model that predicts the envelope of the BTI degradation

pattern with alternating stress and recovery:

Long-term model:

∆Vth(t) =
(K2

vαTclk)
n

(1− β1/2n
t)2n

; βt = 1−
2ξ1te +

√
ξ2C(1− α)Tclk

2tox +
√
Ct

(2.6)

The precise definitions of the symbols above may be found in [50], but it is important

to note that the exponent n = 1/6, and that Kv (and hence ∆Vth(t)) is a superlinear

function of Vdd.

2.2.4 Effect of BTI on Circuits

Since the underlying gates/devices in the circuits undergo repeated stress and relax-

ations when a chip is operated, the circuit delay also degrades with time. Further,

apart from delay, leakage power also changes with Vth due to its exponential relation-

ship with Vth.

In order to capture the delay degradation and changes in leakage power in circuits

considered in this thesis, as in past research, we use compact sensitivity-based perfor-

mance models for the delay (D) and the logarithm of the leakage power (logL) in terms

20

of Vth [12]. For X ∈ {D, logL}, we characterize:

X (t) = X0 +
n∑
i=1

∂X
∂Vthi

∆Vthi(t) (2.7)

where ∂X/∂Vthi denotes the sensitivity of the quantity X with respect to the Vth of the

ith transistor along the input-output path.

The overall flow of determining the degradation in the circuit delay is as follows:

1. At the device level, for each gate in the circuit, we first perform a computation

to determine the ∆Vth(t) for each of the PMOS/NMOS connected to the input

terminals of the gate. This can be done by using either of the models described

by Equations (2.3) or (2.6), depending upon the application. For this computa-

tion, the α values used in Equation (2.6), at each input terminal of the gate, are

computed by propagating the signal probabilities from the PIs of the circuit up

to the respective input terminals of the gate.

2. We then use these values of ∆Vth(t) in Equation (2.7), to determine the degraded

delay of each of the gates in the circuit at time t.

3. Following this, a static timing analysis of the circuit can be performed over all its

gates to determine its degraded delay at time t.

The final result is a ∆D vs. t curve for the circuit, beginning at time t = 0. A

representative curve was shown in Fig. 1.4 for MCNC benchmark des.

Chapter 3

Variation-Aware Current Source

Models

3.1 Variability-Aware Timing

We begin our work on variability and reliability with a set of timing tools that are highly

useful for timing analysis in variation-aware designs: the current source models.

3.1.1 Current Source Models: An Overview

Timing properties of library cells, such as slew and delay, have typically been obtained

by development of mathematical models of the the underlying physical parameters, such

as currents, threshold voltages, mobility, etc., in the MOS transistors. Timing solvers

such as HSPICE [14] use these mathematical models to solve for various port voltages

and branch currents of a circuit when an input is provided to the circuit. Generally, it

may require for the solver to solve for a large number of equations for each of the MOS

transistors, and this may result in high computational complexity and consequently

large runtimes for the solver to evaluate the slew and delay of the cells.

Current source models (CSMs), which have proven to be much faster and accurate

as compared to HSPICE, are gate-level black-box abstractions of cells in a library, such

as inverters, NANDs, etc. CSMs have the same input and output ports as the original

cell. This abstraction can be illustrated through Fig. 3.1, which shows the output of the

21

22

NAND2 cell being modeled by a nonlinear current source with a nonlinear capacitance

in parallel. The values of this current source and capacitance depend on all the port

voltages, and can be characterized at various values of port voltages by DC and AC

simulations. Such models can then be used by timing solvers for predicting the slew

and delay of a particular cell in the circuit, with much higher speed than HSPICE.

Figure 3.1: Example of a CSM: the output port is modeled as a nonlinear VCCS de-

pendent on all input port voltages, in parallel with a nonlinear capacitance.

A CSM approach termed as “Blade” [15] represents the cell as a voltage-controlled

current source (VCCS) with an internal capacitance and a time-shifted input waveform

driving an arbitrary load. A lookup table, indexed by the input voltage, Vin, and the

output voltage, Vout, models the VCCS current, Iout. These ideas were further refined

in [51, 52], which introduce extra resistances and capacitances in the model to capture

certain nonlinearities. All such models consider single input switching at the input of

these gates.

CSMs which also consider multiple input switching and stack effects [16, 17, 53, 54]

were therefore proposed to overcome this limitation. The essential difference compared

to earlier models was to model not just the output terminal, but every terminal of

the cell, as a VCCS in parallel with a nonlinear capacitance. Since this increases the

complexity of characterization of these models, such techniques also propose various

ways of reducing such complexity and maintaining the speedups and accuracy.

Other CSM approaches tend to use different modeling techniques compared to above

models, although still treating the cell as a black box. CSM proposed in [55] uses

orthogonal functions for delay prediction. Another CSM based on the small-signal

model of a transistor was built in [56], which used parallel simulations on multicores to

achieve speedups.

23

3.1.2 CSMs for Variability-Aware Designs

A key enabler for variation-tolerant design is the ability to simulate the timing behavior

of a circuit during the design process using static timing analysis (STA). Traditional

standard cell modeling approaches represent the delay and output slew as nonlinear

functions of the input slew and output load capacitance [57]. When interconnect re-

sistance became significant, these methods were replaced by the notion of effective

capacitance [58]. However, this approach models the input as a saturated ramp with

piecewise constant slope, and was further enhanced by the development of CSMs, that

provide fast and accurate timing estimates.

Within the CSM framework, process variations are commonly captured through

the use of process corners. Traditionally, temperature variations were also handled

using corner-based methods, but this is no longer viable. Corner-based approaches are

predicated on the idea that the timing varies monotonically over the temperature range,

but this is no longer the case, as highlighted in Section 2.1.2. The worst case, therefore,

may occur in the interior of the temperature range, rather than at its edges. As a result,

a set of temperature corners is no longer adequate, and circuit delays must be simulated

as functions of temperature.

Therefore, a first necessary enhancement of CSMs involves extending them to de-

termine the cell delay as a function of temperature. This capability is useful not only

for circuit analysis but also for building optimization techniques that compensate for

temperature variations [59, 22, 34, 10, 60].

A second way in which CSMs require augmentation is in building an ability to

simulate cell timing in the presence of body biases. The application of adaptive body

biases (ABBs) allows circuits to be made resilient and variation-tolerant by applying a

deliberate bias to the body terminals of transistors in a circuit. Realistically, ABB is

applied at coarse levels of granularity, e.g., by biasing individual n-wells and/or p-wells,

each of which contains a number of transistors. Forward body bias (FBB) effectively

reduces the transistor threshold voltage and speeds up the device, at the cost of increased

leakage, while reverse body bias (RBB) achieves the opposite effect on speed and leakage.

ABB involves the use of FBB or RBB to help dies recover from variations, and may be

applied dynamically to tighten the distribution of the dies with maximum operational

frequency, while simultaneously meeting the leakage power constraints [20, 21, 33, 22,

24

34].

Traditional CSMs simulate the circuit at fixed values of the body bias (vbp = vbn =

0) and at fixed values of the temperature. The obvious extensions to existing CSMs that

enable them to capture body biases and temperature effects are rather inefficient. In

principle, the body terminal of a device can be considered to be another port, and the cell

can be accordingly characterized by creating a look-up table for various combinations

of body biases, vbp, vbn. Further, such lookup tables would have to be constructed for

various temperature values. However, this increases the amount of memory used as

well as the characterization time significantly over the zero body bias and the nominal

temperature case. For instance, for 10 values each of vbp and vbn, and for 10 values

of temperature, the table for each library cell becomes 1000× larger. The need to

access a larger lookup table may also result in a significant concomitant increase in the

simulation runtime of CSM macromodels.

3.1.3 Our Contributions

This work develops efficient timing characterization methods for building CSMs that

incorporate changes in the body bias and the temperature. Since ABB is applied at

the granularity of a well, we assume that all PMOS transistors in a cell have the same

body bias value, vbp, and all NMOS devices are biased at vbn. Further we assume that

all transistors in the cell experience a uniform temperature: this is reasonable, since

the rate of decay of temperature with respect to the distance from the cell has a “time

constant” that is significantly larger than the size of a cell.

Our framework for incorporating effects of body bias and temperature into the CSM

has a very small memory and runtime overhead, while maintaining high levels of ac-

curacy. Our mathematical framework consists of two key steps. First, we intelligently

adapt an existing scheme to enable the compaction of look-up tables for the sensitivities

of CSM components to body bias and temperature, over the range of allowable values of

both the applied body bias and on-chip temperature. Our second key contribution is to

develop a novel waveform sensitivity model for evaluating the impact of the applied body

bias and variations in temperature, which provides accurate waveforms at the output of

the cell under any body bias or temperature condition, with minimal computation. The

25

essential idea of this approach is that since body bias or temperature variation consti-

tutes a small perturbation to the nominal waveform, it should be possible to determine

the perturbed waveform cheaply by determining and saving the parameters that com-

pute its shift from the nominal waveform. We develop a scheme for characterizing this

perturbation and computing it efficiently. Specifically, mathematical models for such

parameters are developed and further analyzed for their independence over body bias

and temperature variations for an efficient computation of such parameters.

The remainder of this chapter is organized as follows. Section 3.2 presents the

development of sensitivity models for CSM components to handle variations in body

bias and temperature. Section 3.3 presents our algorithms for compacting the CSM

sensitivity tables. Then we present the conventional macromodel solvers used in state-

of-the-art CSMs in Section 3.4, and is followed by a description of our method for fast

output waveform evaluation in Section 3.5. Section 3.6 presents experimental results on

a set of library cells in a 45nm technology.

3.2 CSM Sensitivity Model Development

Our CSM structure, shown in Fig. 3.1, is of the type proposed in [15], and is augmented

to model nonlinearities as in [16]. Specifically, output port p is replaced by a nonlinear

voltage-controlled-current-source (VCCS), Ip, in parallel with a nonlinear capacitance,

Cp. The VCCS model enables the CSM to be load-independent, and permits it to

handle an arbitrary electrical waveform at its inputs. The CSM is characterized in

terms of the value of Ip and the charge, Qp, stored on the capacitor, Cp. The variables,

Ip and Qp, are functions of all input and output port voltages and temperature, and are

determined by characterizing the cell at various port voltages, body bias combinations

and temperatures as follows:

Ip = F (Vi, Vo, vbp, vbn,∆T) (3.1)

Qp = G(Vi, Vo, vbp, vbn,∆T) (3.2)

The parameters Ip and Qp are modeled using the functions F and G, respectively, and

Vi and Vo are, respectively, the voltages at the transitioning input and output ports

of the cell. We use the term ∆T to represent the temperature offset from a baseline

26

temperature value, taken here to be room temperature (25◦C). In the temperature range

of [−25◦C, 125◦C] that we work in, the range for the values of ∆T is [−50◦C, 100◦C].

For a cell, Ip characterization involves DC simulations over multiple combinations

of DC values of (Vi, Vo), while Qp is characterized through a set of transient simulations

[16]. The presentation of our model is targeted to the more widely-used scenario of

single-input switching for gates with a single output, though the idea can easily be

extended to multiple input switching (MIS) and multioutput gates, leveraging current

work on CSMs on these topics [16, 53, 54].

As mentioned earlier, in order to capture the sensitivity of CSM parameters to the

applied body bias and temperature offset, in principle, the circuit could be character-

ized over a set S of all possible (vbp, vbn,∆T) points, treating body terminals as input

ports, and temperature offset as the independent variable. Since the allowable values of

the applied body biases and temperature offset change in discrete steps, the cardinality

of this set is large, and the corresponding characterization would be computationally

intensive, even as a precharacterization step that is to be performed once for a technol-

ogy. Moreover, memory requirements of the table multiply significantly over the current

characterization procedure at zero body bias and zero temperature offset.

We observe through simulations that the functions F and G depend much more

weakly on vbp, vbn, and ∆T as compared to Vi or Vo. Hence, a simpler model can be

utilized to save on this computation. We thus develop sensitivity models of CSM with

respect to vbp, vbn and ∆T (as we will soon show, the models with respect to body bias

and temperature are independent), and then present a scheme to incorporate the effects

of the two.

3.2.1 Independence of Body Bias and Temperature Effects

Next, we explain the rationale for analyzing the effects of body bias and temperature

independently. Body bias (a change in the substrate bias voltage, VBS) changes the

threshold voltage, Vth. The sensitivity of Vth with respect to VBS can be captured from

following equation [61]:

∂Vth
∂VBS

=
Cdep
Cox

(3.3)

27

where Cdep is the depletion capacitance of the MOS transistor and Cox is the oxide

capacitance. Cdep is a very weak function of temperature, being proportional to the

inverse square root of the built-in potential. Similarly, it is observed that the expression

for Vth sensitivity with respect to temperature is independent of VBS [61]. Hence, the

effects of changes in body bias and temperature on MOS transistors can be treated as

independent. Since Ip and Qp essentially abstract the internal cell behavior, the effects

of body bias and changes in temperature on Ip and Qp can also be assumed to be

independent. This is further verified by the model formulations and accuracy results as

presented in the subsequent subsections and sections.

3.2.2 CSM Body Bias Sensitivity Model

We first present the body bias sensitivity model, which is independent of the changes in

temperature and constructed at ∆T = 0◦C (i.e., at room temperature). We construct

a polynomial approximation for the variations of Ip and Qp with respect to (vbp, vbn).

Our simulations show that a linear approximation yields an average of 2.0% relative

error with respect to HSPICE, evaluated over all (vbp, vbn) points, for all (Vi, Vo) points.

The CSM is now modified by using the equations:

Ip(Vi, Vo, vbp, vbn, 0) = IZp · (1 + aI(Vi, Vo)vbp + bI(Vi, Vo)vbn) (3.4)

Qp(Vi, Vo, vbp, vbn, 0) = QZp · (1 + aQ(Vi, Vo)vbp + bQ(Vi, Vo)vbn) (3.5)

where IZp = F (Vi, Vo, 0, 0, 0), QZp = G(Vi, Vo, 0, 0, 0), and {aI , bI , aQ, bQ} correspond to

the sensitivity of the function to the corresponding body bias. These parameters are

characterized at a discrete set of (Vi, Vo) values and are saved in a lookup table.

The characterization of Ip and Qp using Equations (3.4) and (3.5) can now be carried

out using a minimum of three simulations at each (Vi, Vo), since it is a linear model;

however, additional redundancy is preferable to account for the small nonlinearities,

and a linear least squares fit can be used instead.

For notational simplicity, we will define the following functions:

LI(vbp, vbn) = 1 + aI(Vi, Vo)vbp + bI(Vi, Vo)vbn (3.6)

LQ(vbp, vbn) = 1 + aQ(Vi, Vo)vbp + bQ(Vi, Vo)vbn (3.7)

28

Clearly,

Ip(Vi, Vo, vbp, vbn, 0) = IZp LI(vbp, vbn) (3.8)

Qp(Vi, Vo, vbp, vbn, 0) = QZp LQ(vbp, vbn) (3.9)

3.2.3 CSM Temperature Sensitivity Model

We now construct the temperature sensitivity model at zero body bias. We observe

that the variations of Ip and Qp with ∆T are nonlinear, unlike the body bias case

where a linear approximation was adequate. We employ a second-order polynomial

approximation, and find that the fit has an average relative error of 1.6% relative error in

comparison with HSPICE simulations. The CSM for the temperature sensitivity model

with the first and second order sensitivities in temperature offset is now represented by

the following modified equations:

Ip(Vi, Vo, 0, 0,∆T) = IZp · (1 + cI(Vi, Vo)∆T + rI(Vi, Vo)∆T
2) (3.10)

Qp(Vi, Vo, 0, 0,∆T) = QZp · (1 + cQ(Vi, Vo)∆T + rQ(Vi, Vo)∆T
2) (3.11)

where IZp , Q
Z
p are as defined above, and {cI , cq, rI , rQ} correspond to the sensitivity of

the function to the corresponding powers of the temperature offset, ∆T . As in the case

of {aI , bI , aQ, bQ}, these parameters are characterized at a discrete set of (Vi, Vo) values

and saved in a lookup table. Since the temperature sensitivity model is a second order

model, we need at least three points to determine the values of {cI , rI , cQ, rQ}.
As before, for notational simplicity, we will define the following functions:

SI(∆T) = 1 + cI(Vi, Vo)∆T + rI(Vi, Vo)∆T
2 (3.12)

SQ(∆T) = 1 + cQ(Vi, Vo)∆T + rQ(Vi, Vo)∆T
2 (3.13)

Clearly,

Ip(Vi, Vo, 0, 0,∆T) = IZp SI(∆T) (3.14)

Qp(Vi, Vo, 0, 0,∆T) = QZp SQ(∆T) (3.15)

3.2.4 CSM Complete Sensitivity Model

The complete body bias and temperature sensitivity model can now be formulated by

integrating the models of Ip and Qp with body bias from Equations (3.8), (3.9), and with

29

temperature offset from Equations (3.14), (3.15). The complete model is constructed

as follows:

Ip(Vi, Vo, vbp, vbn,∆T) = IZp · LI(vbp, vbn) · SI(∆T) (3.16)

Qp(Vi, Vo, vbp, vbn,∆T) = QZp · LQ(vbp, vbn) · SQ(∆T) (3.17)

Simulations show that the above model yields approximations with an average of

2.9% relative error with respect to HSPICE. This also justifies our assumption that the

effects of body bias and changes in temperature on CSM components can be analyzed

independently.

3.3 Compact CSM Formulation

As described in Sections 3.1 and 3.2, the lookup tables obtained for {aI , bI , aQ, bQ}
and {cI , rI , cQ, rQ} reduce the excessive memory requirements described in Section 3.1.

However, we still need a separate lookup table (indexed by (Vi, Vo)) for each parameter

of every cell in the library. If we can further reduce the size of these tables by suitably

compacting them, we can gain more in terms of memory overheads induced. We thus

present the development of a compact lookup table scheme used for reducing the size

of such lookup tables.

3.3.1 Table Size Reduction for Conventional CSMs

As a preliminary step, we attempt to apply the method in [9] to create compact lookup

tables for Ip and Qp for the zero body bias and nominal temperature case, i.e., IZp

and QZp , with controlled loss of accuracy. For general values of the body bias and

temperature, we must also create lookup tables for {aI , bI , aQ, bQ} and {cI , rI , cQ, rQ}
at each value of (Vi, Vo): as we will see, for these parameters, a direct extension of the

method in [9] does not yield satisfactory results.

We first overview the procedure in [9]. This method begins with an n × n table

of characterized points, indexed by variables x and y in the horizontal and vertical

directions, respectively. The idea behind table size reduction is to keep a subset of all

these points and to interpolate the rest. For instance, consider the rectangle bounded by

points (x1, y1), (x2, y1), (x2, y2), and (x1, y2): a point (x, y) within this rectangle can be

30

dropped if the interpolation error in its value, using these points lies within a specified

bound.

Instead of an expensive enumeration, the work in [9] presents a dynamic program-

ming method for reducing a two-dimensional n×n table. The objective of the algorithm

is to create a smaller m×m table, where m is prespecified, while minimizing the total

error corresponding to the points that are dropped from the table. The procedure be-

gins by constructing an initial 2×2 table corresponding to the points at the four corners

of the table. Next, this table is expanded to include additional entries using the idea of

h-hops.

Figure 3.2: The initial step, considering all rectangles from any point (i, j), extending

to any point (k, l) at the northeast corner.

(a) (b)

Figure 3.3: (a) A 1-hop solution from (i, j) to (n, n), through an intermediate point,

(k, l). (b) A 2-hop solution from (1, 1) to (n, n) through an intermediate point, (k, l)

uses a previously computed optimal 1-hop solution from (k, l) to (n, n).

31

In the initial step, we consider all rectangles originating at a point (i, j) at the

southwest corner, extending to any point (k, l) at the northeast corner, as shown in

Fig. 3.2. We compute the error metric over the rectangle, corresponding to the case

where only the points at the four corners of the rectangle are kept in the lookup table,

and all internal points are dropped. The error metric is the sum of the interpolation

errors for all points within and on the perimeter of the rectangle. Each such rectangle

corresponds to an optimal substructure for dynamic programming: the optimal solution

will be composed from some (but not all) such substructures.

Next, we define a 1-hop operation. We optimize the region bounded by point (i, j)

to the southwest and (n, n) to the northeast by finding an optimal point (k, l) within

this region. Here, optimality is defined as follows: the point (k, l) divides the region into

four subregions, as shown in Fig. 3.3(a), and over all candidate (k, l) points, the optimal

point minimizes the total error summed up over these four subregions. Since the error

over each rectangle was calculated in the initial step, this step involves enumerating

all candidate (k, l) points, and summing up the previously calculated error over the

rectangles in constant time for each such point. We refer to this as a 1-hop, indicating

that for each (i, j), the table “hops” over a single point, corresponding to the optimal

(k, l), on the way to (n, n). The associated optimal error encountered is the 1-hop error

for (i, j).

In general, an h-hop from (i, j) to (n, n) finds a point (k, l) such that the error from

(i, j) to (k, l), plus the (h − 1)-hop error from (k, l) to (n, n), is minimized over all

candidate points (k, l). To obtain an m×m table, the procedure stops after m−1 hops,

and the optimal m-hop from (1, 1) to (n, n) provides the compact table. Fig. 3.3(b)

shows an example of a 2-hop solution from P (1, 1) to P (n, n); if the algorithm were to

stop here, it would result in a 4× 4 compacted table. The computational complexity of

this algorithm is O(m · n4), but as n is typically small (n = 30 in our simulations), this

remains tractable, as we will show in Section VI-A that the runtimes for this scheme

are reasonable.

It should be noted that although this method proceeds along the main diagonal of

the table (in the north-east direction), the interpolation error is computed by considering

all the four end points of a rectangle (in Fig. 3(a) for instance). Thus, it also considers

the interpolation error induced along the other diagonal, and the rows and columns of

32

the table as well. While this method is not exact (for example, for an h-hop, it does

not entertain the possibility of an (h − 1) hop to (k, l) and then a 1-hop to (n, n)),

in practice it is seen to work well. A faster version of the algorithm, which trades off

accuracy for speed, is also proposed in [9].

3.3.2 Modifications for Sensitivity Tables

As stated earlier, the above approach works well for characterizing Ip and Qp, where

neighboring entries have similar magnitudes. However, in case of the sensitivity pa-

rameters, {aI , bI , aQ, bQ} and {cI , rI , cQ, rQ}, there can be large differences in the

values of neighboring parameters. This is illustrated in Fig. 3.4(a) and (b), which show,

respectively, the values of aQ = ∂Qp/∂vbp and cI = ∂Ip/∂∆T for an inverter cell1 .

Large “outliers” (i.e., values of large magnitude) are clearly visible on the plot.

The presence of these outliers is attributed to the nature of variation of the values

of IZp and QZp with (Vi, Vo), and the way these values are derived in the CSM. At a

particular (Vi, Vo) bias point, it is quite possible that only a small current flows inside

the input and output terminals of the cell. Since the magnitudes of these inflowing

currents decide the values of IZp and QZp , the values of resultant IZp and QZp are also

small. Hence, any change relative to this small value becomes large and is reflected as

a large sensitivity value.

In principle, since these IZp and QZp values are small, we may consider setting the

corresponding sensitivities to zero. This, however, has been observed to create inac-

curacies in waveform evaluations (the waveform evaluation techniques are described in

Sections 3.4 and 3.5) for when such changes are multiplied by other quantities with rel-

atively higher magnitudes (temperature offset for instance), the net contribution from

these small changes, to the computed values of Vo(t) or of the waveform sensitivities,

becomes significant, and hence cannot be neglected.

For such data, it can easily be shown that the approach in [9], which depends on grid-

ding the table in the coordinate directions, is poorly compacted, i.e., the interpolation

errors in the reduced table are large. Such errors are demonstrated to be easily visible

in the output response, where they appear as “kinks” in the CSM-based waveform that

do not exist in the corresponding HSPICE waveform. This happens due to the fact that

1 Similar behavior is seen for aI , bI , bQ, rI , cQ, and rQ.

33

an interpolation error caused by the presence of these outliers causes an error in Ip and

Qp values, which causes the solver (described in the next section) to generate errors in

output waveforms. A sample waveform with the use of compacted Ip and Qp tables, as

generated by the solver for a rising input ramp is shown in Fig. 3.5. As is seen, due

to poor compaction, kinks appear in the evaluated waveform. The incorrect waveform

also incurs slew and delay errors.

10
20

30

10

20

30

0

20

40

60

V
o
 index

Body Bias Sensitivity Distribution

V
i
 index

S
en

si
ti

v
it

y

(a)

10

20

3010

20

30

0

50

100

V
i
 index

Temperature Sensitivity Distribution

V
o
 index

S
en

si
ti

v
it

y

(b)

(c)

Figure 3.4: The CSM sensitivity parameter distribution for (a) aQ and (b) cI as functions

of (Vi, Vo). (c) The resultant lookup table for aQ, when all the outliers have been removed

and saved separately in a table.

We propose a simple method for avoiding these problems, based on the observation

that for these sensitivity parameters, such outliers are few in number and have relatively

34

Figure 3.5: The presence of outliers yields poor compaction of the lookup tables when the

original scheme from [9] is used. This results in incorrectly evaluated output waveforms

with kinks at some time points. Our approach however, with a mechanism for separation

of outliers, results in the correctly evaluated output waveform with minimal errors.

large magnitudes. We therefore tabulate and save the outliers separately. As can be

observed from Fig. 3.4(a) and (b), the number of outliers is quite small compared to

the total number of data points. Thus, a separate tabulation of outliers would incur

negligible overhead.

In order to tabulate the outliers separately, given the set of all points, we find the

mean and variance over all entries. Any entry that is over k variances from the mean is

found to be an outlier; in practice, we find k = 2 to be an adequate value. The removed

entry at table location (x, y) is then replaced by a dummy point, the error contribution

(to the total error) from which is zero. The modified table is then compacted using the

algorithm in Section 3.3.1.

When a table entry is requested, we first determine whether the accessed point is

an outlier: if so, we fetch it from the outliers list; else, we find it using the compacted

look-up table.

With the outliers separated, the variations in remaining lookup table become more

uniform. Table 3.1 shows the list of separately tabulated outliers for a lookup table for

35

aQ. Further, Fig. 3.4(c) shows the remaining entries for aQ in the 2-D lookup table

indexed by Vi, Vo. As is clearly seen, the removal of outliers make the variation in the

lookup table more uniform, allowing for a high compaction using the original algorithm.

Table 3.1: The outlier table for aQ
Vi index Vo index aQ

10 25 42.6

13 22 18.9

16 16 15.5

· · ·
· · ·

22 7 60.7

This method of separating the outliers removes the kinks present in the Vo(t) wave-

forms. As shown in Fig. 3.5, the smooth waveform obtained from the solver using our

approach is no longer characterized by kinks, as compared to the waveform which had

kinks due to the errors caused by original compaction scheme. The waveform using our

approach further has negligible slew and delay errors.

A potential alternative for dealing with such outliers is to decrease the size of (Vi, Vo)

voltages steps at which IZp andQZp are characterized, making the variation of sensitivities

more uniform. We observe that this requires us to increase the value of n by about 6-9×
for different tables, resulting in a large increase in the storage space required. For a

small number of outliers, this posed as a significant increase in the memory requirements

for a library with different cells. It also prohibitively increases the computational time

of the compression algorithm (∝ n4). Therefore, an intermediate approach of saving

outliers separately keeps both the storage space and the compression time tractable.

3.4 The Macromodel Solver

Using the approaches described so far, the cell library is characterized to determine

the Ip and Qp characterization tables at zero body bias and zero temperature offset,

and the compressed CSM sensitivity parameter tables for the body bias coefficients

{aI , bI , aQ, bQ} and the temperature offset coefficients {cI , rI , cQ, rQ}.

36

3.4.1 Using the Macromodel in a Solver

To solve the case of a gate driving an interconnect, including cases that involve coupled

lines and crosstalk, it is enough to consider the situation where a gate drives a load

described by an RC π-model as shown in Fig. 3.6. Standard techniques such as the

O’Brien-Savarino approach [62] are used in our work to reduce an arbitrary interconnect

load to a π-model at the driving point. We first obtain the waveform at the driving

point node Vo, and then we evaluate the waveform at any sink node in the RC network

by solving a linear system using standard model order reduction methods.

Figure 3.6: A CSM for a gate, under zero body bias and zero temperature offset, driving

a π load.

We analyze the case of a gate output driving a π-load in the absence of body bias and

at zero temperature offset, as shown in Fig. 3.6. Finding the output voltage waveform

involves solving the equation:

IZp + IZQp = IC1 + IC2 (3.18)

where IZQp =
dQZp
dt

IC1 = C1
dVo
dt

IC2 = C2
dVC2

dt

IZp = F (Vi, Vo, 0, 0, 0)

QZp = G(Vi, Vo, 0, 0, 0)

Equation (3.18) is a nonlinear differential equation in Vo(t), and the input voltage,

Vi(t), is known. This equation can be solved using routine circuit simulation methods.

37

We apply the Backward Euler formula to Qp, Vo and VC2 with a time step h, going from

time n to time n+ 1 (the superscript n+ 1 is dropped for notational simplicity) to get:

Qp = Qnp + hIQp (3.19)

C1Vo = C1V
n
o + hIC1 (3.20)

C2VC2 = C2V
n
C2

+ hIC2 (3.21)

Moreover, using Ohm’s Law, we have VC2 = Vo − RIC2 . Substituting VC2 from this in

Equation (3.21), we have:

IC2 =
C2(Vo − V n

C2
)

h+RC2
(3.22)

We then obtain the values of IQp from Equation (3.19), of IC1 from Equation (3.20)

and of IC2 from Equation (3.22), and substitute them in Equation (3.18) to obtain:

Ip +
Qp −Qnp

h
=
C1(Vo − V n

o)

h
+
C2(Vo − V n

C2
)

h+RC2

Solving this for Vo, we arrive at the following expressions:

Vo =
1

A

[
hC2V

n
C2

+B(C1V
n
o + hIp +Qp −Qnp)

]
(3.23)

where A = (hC1 + hC2 +RC1C2) (3.24)

B = (h+RC2) (3.25)

Obtaining Vo, we substitute IC2 from Equation (3.22) in Equation (3.21) to solve for

VC2 :

VC2 =
1

B

[
hVo +RC2V

n
C2

]
(3.26)

Thus we have obtained the expressions for both the unknown port voltages in terms

of known quantities. However, such expressions are still implicit, and hence must be

solved iteratively.

3.4.2 Newton-Raphson Solver

The approach conventionally employed in CSM solvers is to solve the nonlinear Equa-

tion (3.23), through iterative Newton-Raphson linearization. This approach is hereby

38

termed as the Newton-Raphson Solver, and referred as such in the rest of the sections. In

the (k+ 1)th iteration, we use the kth iteration value, shown by the additional subscript

k, to obtain:

AVo = BC1V
n
o + hC2V

n
C2

+ hB

(
Ip,k +

∂Ip
∂Vo

∣∣∣∣
k

(Vo − Vo,k)
)

+B

(
Qp,k +

∂Qp
∂Vo

∣∣∣∣
k

(Vo − Vo,k)−Qnp
)

Vo = Vo,k −
AVo,k − hC2V

n
C2
−B(C1V

n
o + hIp,k +Qp,k −Qnp)

A−B(h ∂Ip/∂Vo|k + ∂Qp/∂Vo|k)
(3.27)

This computation is carried out by references to the look-up tables for Ip and Qp, with

the appropriate use of interpolation as necessary, and the use of finite differences to

compute derivatives.

3.5 Formulation Of Waveform Sensitivity Model

The Newton-Raphson solver in Section 3.4.2 forms the basis for a procedure for com-

puting the waveform under any body bias and temperature condition using conven-

tional CSM solvers. However, evaluation of the delays and slews of the gates under

numerous body bias and temperature offset conditions entails multiple simulations of

the entire output voltage waveform at each combination of body bias and temperature

value. Applications that require timing analysis at multiple body biases and at multiple

temperature values include [20, 21, 22, 34, 60].

Intuitively, the repeated computation of full waveforms from scratch seems unnec-

essarily excessive, for several reasons. First, the application of body bias or a variation

in temperature corresponds to a perturbation to a base case, such as the zero body bias

and zero temperature offset case, and it should be possible to compute the waveform

at nonzero body bias and temperature offset based on the zero body bias and zero

temperature offset case, with some consideration of body bias and temperature sensi-

tivities, much more cheaply than the above procedure. Second, as discussed and shown

before in Section 3.2, the effects of changes in body bias and temperature on CSM can

be decoupled. Thus it should be possible to decouple and independently compute the

39

effects of body bias and temperature changes on the output waveforms too. Third, in

most cases, designers are interested not in the entire waveform, but specific properties

of the gate output, such as its delay and output transition time. In this section, we

demonstrate the efficient computation of such metrics under changing body bias and

temperature without the need for numerous table look-up operations.

3.5.1 Waveform Sensitivity Models

Consider the case when we have the cell maintained at zero temperature offset (∆T =

0◦C), but with a nonzero applied body bias (vbp, vbn). For various values of (vbp, vbn),

the solution of the waveform under the framework of Equation (3.27) entails multiple

accesses to the look-up tables for Ip and Qp. The entries that are accessed in these

tables change according to the applied body bias. However, since body bias is a small

perturbation, in practice, the accessed entries in each table at each step of the algorithm

are relatively close to each other, and can be viewed as perturbations to a nominal case.

Therefore, we propose to capture the output waveform at zero temperature offset

for nonzero body bias case as a perturbation to the waveform with zero body bias and

zero temperature offset as follows:

Vo(t) = V Z
o (t) + α(vbp, vbn, t) · vbp + β(vbp, vbn, t) · vbn (3.28)

where V Z
o (t) represents the output waveform, Vo(t), with zero body bias and zero tem-

perature offset, and α(vbp, vbn, t) and β(vbp, vbn, t) are time-varying body bias perturba-

tion parameters that are precisely defined as:

α(vbp, vbn, t) =
∂Vo(t)

∂vbp

β(vbp, vbn, t) =
∂Vo(t)

∂vbn
(3.29)

Similarly, if we consider the variation in temperature of the cell, the cell being

maintained at zero body bias, we can formulate a linear model as above for capturing

the output waveform at any temperature (with a nonzero temperature offset, ∆T) as

perturbation to the output waveform at nominal temperature (with zero temperature

offset ∆T):

Vo(t) = V Z
o (t) + σ(∆T, t) ·∆T (3.30)

40

where V Z
o (t) is as as described above, and σ(∆T, t) is time-varying temperature pertur-

bation parameter that is precisely defined as:

σ(∆T, t) =
∂Vo(t)

∂∆T
(3.31)

The following two results provide a precise formula for α(vbp, vbn, t), β(vbp, vbn, t)

and σ(∆T, t). We first present the results (proved in the Appendix), and then discuss

how the computational cost of evaluating these quantities can be significantly reduced.

Theorem 1 The waveform sensitivity parameters from Equation (3.28), α(vbp, vbn, t)

and β(vbp, vbn, t), are given by:

α(vbp, vbn, t) = Nα/Dα,β (3.32)

β(vbp, vbn, t) = Nβ/Dα,β (3.33)

Nα = B

[
αnC1 + haII

Z
p + aQQ

Z
p − anQQZ,np −QZ,np

∂anQ
∂V n

o

αnvbp

−QZ,np
∂bnQ
∂V n

o

αnvbn −
∂QZ,np
∂vbp

LnQ(vbp, vbn)

]
+ hC2

∂V n
C2

∂vbp
,

Nβ = B

[
βnC1 + hbII

Z
p + bQQ

Z
p − bnQQZ,np −QZ,np

∂anQ
∂V n

o

βnvbp

−QZ,np
∂bnQ
∂V n

o

βnvbn −
∂QZ,np
∂vbn

LnQ(vbp, vbn)

]
+ hC2

∂V n
C2

∂vbn
,

Dα,β = (−B)

[
hIZp

(
∂aI
∂Vo

vbp +
∂bI
∂Vo

vbn

)
+ h

∂IZp
∂Vo

LI(vbp, vbn)

+QZp

(
∂aQ
∂Vo

vbp +
∂bQ
∂Vo

vbn

)
+
∂QZp
∂vbp

LQ(vbp, vbn)

]
+A

where terms using the superscript n are understood to correspond to their values at the

previous (nth) time step, and the superscript Z refers to the case where vbp = vbn = 0V,

and ∆T = 0◦C.

Theorem 2 The waveform temperature sensitivity parameter from Equation (3.30), σ(∆T, t),

41

is given by:

σ(∆T , t) = Nσ/Dσ (3.34)

Nσ = B

[
σnC1 + h(cI + 2rI∆T)IZp + (cQ + 2rQ∆T)QZp

− (cnQ + 2rnQ∆T)QZ,np − ∂QZ,np
∂∆T

SnQ(∆T)

−QZ,np
∂cnQ
∂V n

o

σn∆T −QZ,np
∂rnQ
∂V n

o

σn∆T 2

]
+ hC2

∂V n
C2

∂∆T
,

Dσ = A−B

[(
hIZp

∂cI
∂Vo

+QZp
∂cQ
∂Vo

)
∆T + h

∂IZp
∂∆T

SI(∆T)

+

(
hIZp

∂rI
∂Vo

+QZp
∂rQ
∂Vo

)
∆T 2 +

∂QZp
∂∆T

SQ(∆T)

]

where the terms have the notations as described above.

Theorems 1 and 2 enable the efficient computation Vo(t) at any body bias value and

temperature offset using a closed form expression, dependent only on the values of Vo

at previous time steps and the values in the waveform at zero body bias and nominal

temperature. As a result, the waveform at arbitrary body bias and temperature values

can be reproduced if the values of α(t), β(t) and σ(t) are computed.

3.5.2 Simplified Waveform Sensitivity Models

Further simplifications are possible with both the models discussed above. Consider

first the body bias model. On investigating dependency of the output waveform on

(vbp, vbn) and on α(vbp, vbn, t), β(vbp, vbn, t) , we observe that:

1. The variation in Vo(t) over (vbp, vbn) is nearly linear at each time point of the wave-

form. Empirically, this can be seen in Fig. 3.7, which shows typical cases for the

variation of Vo(t) over (vbp, vbn) for various time points of simulation. This behav-

ior is observed for multiple test cases, and indicates that α(vbp, vbn, t), β(vbp, vbn, t)

are actually independent of the applied body bias, and are only dependent on t.

2. Fig. 3.8 shows the variations in α(vbp, vbn, t) and β(vbp, vbn, t) with (vbp, vbn). The

magnitude of these variations were observed to be a maximum of 0.1 for all test

42

cases. Since these parameters are further multiplied by vbp or vbn ∈ [−0.3V, 0.3V]

in Equation (3.28), their effects on Vo(t) are expected to be negligible. This is

further validated in Section 3.6.

−0.2 0 0.2 −0.2 0 0.2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

v
bp

V
o
 variation with body bias at selected time points

v
bn

V
o

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

V
o

Figure 3.7: Typical surface plots for Vo showing the linear nature of Vo variations with

(vbp, vbn), with each surface corresponding to a randomly selected time point during the

simulation.

This leads to the following approximation, which provides accurate waveforms with

very low errors, as demonstrated in Section 3.6:

α(vbp, vbn, t) ≈ α0(t) = α(vbp = 0, vbn = 0, t)

β(vbp, vbn, t) ≈ β0(t) = β(vbp = 0, vbn = 0, t) (3.35)

The simplified body bias waveform sensitivity model is thus given as follows:

Vo(t) = V Z
o (t) + α0(t) · vbp + β0(t) · vbn (3.36)

Note that this dramatically reduces the storage requirements for the lookup table. At

each time point, this method requires just two additional parameters, α0 and β0.

In order to develop a simplified model with changes in temperature as was done in

the body bias case, we investigated the possibility of being able to generate a simplified

43

0 50 100 150 200
−0.15

−0.1

−0.05

0

0.05

Time(ps)

Variation of α,β with body bias for falling input

α

β

(a)

0 50 100 150 200
−0.2

−0.1

0

0.1

0.2

Time(ps)

Variation of α,β with body bias for arbitrary input

α

β

(b)

Figure 3.8: Simulations showing the variation of α(t) and β(t) at a range of body biases

from the minimum to the maximum, including zero. Two such test cases are shown in

Figs. (a) and (b).

temperature waveform sensitivity model too. We however find that unlike the body bias

case, the following approximation:

σ(∆T, t) ≈ σ0(t) = σ(∆T = 0, t) (3.37)

does not work very well with the temperature waveform sensitivity model. The inac-

curacies in the resultant delays and slews, as compared to HSPICE, reach upto 20%.

This can be attributed to the nonlinear effects of temperature on the circuit responses,

which lead to reduced accuracy when a linear model is used.

Therefore, we apply a more accurate piecewise linear model to address the above

inaccuracies. We observe that increasing the value of |∆T | increases the inaccura-

cies in waveform evaluation, and that the magnitude of such errors are not large for

smaller values of |∆T |. Thus, instead of the very simplistic linear approximation as

in Equation (3.37), we propose a more accurate and less approximate linear simplified

temperature sensitivity model as follows:

44

σ(∆T, t) ≈ σp(∆T, t)

= σ(∆T = ∆T1, t), ∆TMIN ≤ ∆T < ∆TMIN +

⌈
∆TR

3

⌉
= σ(∆T = ∆T2, t), ∆TMIN +

⌈
∆TR

3

⌉
≤ ∆T < ∆TMIN +

⌈
2∆TR

3

⌉
= σ(∆T = ∆T3, t), ∆TMIN +

⌈
2∆TR

3

⌉
≤ ∆T ≤ ∆TMAX (3.38)

where,

∆TMIN = Minimum value of temperature offset in the range of ∆T

∆TMAX = Maximum value of temperature offset in the range of ∆T

∆TR = ∆TMAX −∆TMIN

∆T1 = ∆TMIN +

⌈
∆TR

6

⌉
∆T2 = ∆TMIN +

⌈
3∆TR

6

⌉
∆T3 = ∆TMIN +

⌈
5∆TR

6

⌉
As stated in Section 3.2, the values of ∆TMAX and ∆TMIN are taken to be -50◦C

and 100◦C, respectively. The above formulation in Equation (3.38) states that this

temperature range is divided into three ranges of nearly equal size. The waveforms

of σp(∆T, t), with ∆T chosen as the central value in each of these intervals, are then

evaluated and saved. Although in principle, a waveform corresponding to each of the 13

∆T values can be saved (giving us the lowest error in the model), a designer would like

to save and work with minimal number of waveforms, without losing much in accuracy.

We have found through simulations that a choice of 3 different waveform (described

through Equation (3.38)) serves this purpose. As we will show in Section 3.6, such a

choice still preserves the high accuracy. The gain in storage and waveform evaluation

speedup on the other hand, is significant.

In other words, instead of computing and saving σ(∆T, t) at just one temperature

point (as in the linear case in Equation (3.37)), we now save the values of σ(∆T, t) at

three distinct values of temperature to provide a better approximation that captures

thermal nonlinearities. The simplified temperature waveform sensitivity model is thus

45

given as follows:

Vo(t) = V Z
o (t) + σp(∆T, t) ·∆T (3.39)

where σp(∆T, t) is given by Equation (3.38). As will be shown in Section 3.6, the above

model yields accurate waveforms for all temperature points.

3.5.3 Complete Waveform Sensitivity Model

We now propose the complete body bias and temperature waveform sensitivity model

as follows:

Vo(t) = V Z
o (t)

+ α0(t) · vbp + β0(t) · vbn + σp(∆T, t) ·∆T (3.40)

This model is a linear combination of the simplified waveform sensitivity models as

given in Equations (3.36) and (3.39). Note that such a linear combination is possible

since the effects of body bias and temperature are independent of each other, as has

been discussed in Section 3.2. Equation (3.40) predicts that the effects of perturbations

inside a cell caused due to changes in body bias and temperature, can be captured

through a simple linear model of the output voltage in terms of the changes in the body

bias and temperature.

To summarize, evaluating the output at b body bias points each for vbp and vbn, and

at τ temperature offset points, using an enumerative approach would solve for b2 · τ
waveforms, involving the extensive use of lookup tables. In contrast, our approach

reduces the solution to finding just six waveforms: one for the zero body bias, V Z
o (t),

and one each for α0(t) and β0(t), and three for σp(∆T, t). The net result is a large

savings in the storage and computation. Thus, the steps involved in computing the

waveform at any (vbp, vbn) and ∆T are summarized below:

1. Apply Equation (3.27) to generate the waveform V Z
o (t) at zero-body bias and

zero temperature offset.

2. Compute and save α0(t), β0(t) at every timestep from Equations (3.32), (3.33),

and (3.35).

46

3. Compute and save σp(∆T, t) at every timestep from Equations (3.34)

and (3.38).

4. Use the computed α0(t), β0(t) and σp(∆T, t) in Equation (3.40) to directly

generate the waveform for any value of (vbp, vbn) and ∆T .

3.6 Experimental Results

Our results are based on standard library cells using the 45nm PTM [11], and our

accuracy is measured through comparisons with the results of HSPICE [14] simulations.

3.6.1 Reduction in CSM Sensitivity Table Size

We apply our table reduction algorithm for the sensitivity parameters, {aI , bI , aQ, bQ}
and {cI , rI , cQ, rQ} for a set of standard cells characterized using 45nm PTM [11], and

demonstrate our results in Table 3.2 for a typical table, for aI . Columns 2 through 4

show the number of entries in the reduced table using the original compression approach

(Section 3.3.1), and Columns 5 through 7 list the size of the reduced tables using our

approach (Section 3.3.2). These comparisons are shown for various bounds (2%, 5%,

10%) on the allowable error, and in each case, the optimal table size corresponds to the

smallest m ×m table, indexed by (Vi, Vo), that meets the error bound. In each case,

m = 30 for the original table size, i.e., it has 900 entries. As is seen from the table, in

each case, our approach yields much smaller tables than the prior approach.

The last column of Table 3.2 shows the runtime of the algorithm for achieving re-

duced table sizes for the most computationally-intensive solution, where the 2% error

bound must be satisfied. The runtimes are measured on a 3GHz Intel Core2Duo CPU,

and correspond to the average for the {aI , aQ, bI , bQ} and {cI , cQ, rI , rQ} sensitivity

tables, and are very reasonable, especially considering that this characterization com-

putation must be performed only once for a given library in a given technology.

It is easy to explain why the original algorithm of Section 3.3.1 does not lead to

sufficient reduction in the table size. This can primarily be related to outliers: ignoring

these points causes substantial errors at these points when interpolation is used to

47

Table 3.2: Results for sensitivity parameter table reduction for tables with original size
= 900

Cell Reduced Table Size with Error Bounds Run
Type Original approach Our approach Time

2% 5% 10% 2% 5% 10%

INV 529 484 324 225 169 100 115s

NAND2 576 484 289 196 144 81 110s

NOR2 900 784 576 324 256 169 168s

NAND3 625 529 256 169 144 81 104s

NOR3 841 729 484 289 225 144 167s

AOI21 576 529 484 196 169 100 114s

AOI22 529 484 361 225 169 81 117s

predict the values of missing entries. On the other hand, if these are included, the large

jumps at these points can result in interpolation errors at nearby points that do not

correspond to outliers. These errors can only be diminished by using reduced tables of

larger sizes.

3.6.2 Speedup due to Waveform Sensitivity Models

We now present the speedup obtained using our various simplified body bias, tempera-

ture and the complete waveform sensitivity (WS) models, as proposed in Sections 3.5.2,

and 3.5.3, respectively.

We evaluate the speedup of our models over HSPICE and over the Newton-Raphson

solver (see Section 3.4.2) that would be used in a simple extension of existing CSMs.

To calculate the above speedup, we perform our tests with each circuit example under

multiple combinations of the following parameters: multiple rise/fall waveforms (1ps–

100ps input ramps, in steps of 5-10ps), various RC interconnects from the ChipA-1K,

ChipB-1K and the ChipB-5K family [63] as load benchmarks reduced to π-models,

multiple body bias points (169 points with (vbp, vbn) ∈ [-0.3V, 0.3V], in steps of 0.05V

for each parameter), and multiple temperature points (13 points with ∆T ∈ [-50◦C,

100◦C], in steps of 12.5◦C).

First, we present the speedups with simplified body bias waveform sensitivity model

and those of simplified temperature waveform sensitivity model independently. Then

we present the speedups of the complete waveform sensitivity model. In each case,

48

we calculate the runtimes using HSPICE, Newton-Raphson solver and our simplified

waveform sensitivity models, and average these runtimes over all the test cases to arrive

at final speedup results. For the test cases, we perform transient simulations and re-

port the speedups of our algorithm over HSPICE and over the Newton-Raphson solver.

Expectedly, the speedup over HSPICE is large, and is found to be about five orders of

magnitude. More interestingly, our complete waveform sensitivity model achieves an av-

erage speedup of 91.81×, and a maximum speedup of 99.55×, over the Newton-Raphson

solver.

Table 3.3: Speedups obtained by the Complete Waveform Sensitivity (WS) Model over
HSPICE and Newton-Raphson (NR) solver

Cell WS Model Speedups
Body Bias Temperature Combined

Over Over NR Over Over NR Over Over NR
HSPICE Solver HSPICE Solver HSPICE Solver

INV 8.9e4 65.36 4.6e3 4.374 1.15e5 85.12

NAND2 9.6e4 66.29 4.9e3 4.352 1.28e5 88.15

NOR2 9.2e4 69.23 4.0e3 4.454 1.26e5 95.02

NAND3 9.6e4 66.67 4.8e3 4.313 1.29e5 89.50

NOR3 8.9e4 72.15 4.2e3 4.405 1.23e5 99.55

AOI21 10.8e4 66.80 4.8e3 4.389 1.45e5 89.72

AOI22 10.0e4 69.36 4.9e3 4.413 1.39e5 95.60

Body bias waveform sensitivity model

We evaluate the speedup achieved using the standalone body bias model as presented

in Section 3.5.2. We perform evaluations at 169 body bias points within the range

(vbp, vbn) ∈ [-0.3V, 0.3V]. All evaluations are carried at the zero temperature offset of

∆T = 0◦C. Table 3.3 lists the speedups that are obtained by our waveform sensitivity

model over HSPICE and over the Newton-Raphson Solver, for standard library cells. As

can be seen from the table, the body bias waveform sensitivity model achieves an average

speedup of around five orders of magnitude over HSPICE and an average speedup of

67.9× over the Newton-Raphson Solver.

49

0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

Time (ps)

V
o

lt
s

V
i

V
sink

 (HSPICE)

V
sink

 (WS MODEL)

v
bp

 = 1.0

v
bn

 = 0.0

v
bp

 = 1.3

v
bn

 = 0.3

(a)

0 10 20 30 40 50 60

0

0.2

0.4

0.6

0.8

1

Time (ps)

V
o

lt
s

V
i

V
sink

 (HSPICE)

V
sink

 (WS MODEL)

v
bp

 = 1.3

v
bn

 = 0.1

v
bp

 = 0.8

v
bn

 = −0.3

(b)

Figure 3.9: The result of our simplified body bias waveform sensitivity (WS) method

as compared with HSPICE, for several body bias values: (a) output waveform from an

Inverter, loaded with a 20l benchmark RC interconnect, evaluated at sink node 52, and

(b) output waveform from a NAND2, loaded with a 45l benchmark RC interconnect,

evaluated at sink node 103.

Temperature waveform sensitivity model

Next, we evaluate the speedup achieved using the standalone simplified temperature

waveform sensitivity model as presented in Section 3.5.2. We perform evaluations at

13 temperature points within the range ∆T ∈ [-50◦C, 100◦C] with zero body biasing.

Table 3.3 presents the average speedup attained over HSPICE and the Newton-Raphson

solver. Compared to body bias case, these speedups are lower since we are evaluating

at a much lesser number of temperature points (13 as compared to 169 in the body bias

case).

Complete waveform sensitivity model

We now present the speedup obtained with our complete body bias and temperature

waveform sensitivity model as presented in Section 3.5.3. In this case, we perform

evaluations at all combinations of the 169 body bias and 13 temperature points within

the range (vbp, vbn) ∈ [-0.3V, 0.3V], and ∆T ∈ [-50◦C, 100◦C] (thus a total of 169 × 13

50

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

Time(ps)

V
o

lt
s

V
i

V
o
 (HSPICE)

V
o
 (WS MODEL)

v
bp

 = 1.3

v
bn

 = 0.0

v
bp

 = 1.0

v
bn

 = 0.0

(a)

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time(ps)

V
o
lt

s

 V
i

V
o
 (HSPICE)

V
o
 (WS MODEL)

v
bp

 = 1.2

v
bn

 = 0.2

v
bp

 = 0.8

v
bn

 = −0.3

(b)

Figure 3.10: Similar results of output waveform at the output node of a gate (a) for a

NAND2, modeling an input glitch, and (b) for a NAND3, with a nonmonotone input.

evaluations). Table 3.3 presents the average speedup attained by our complete model

over HSPICE and the Newton-Raphson solver. Note that with the complete model, we

are able to achieve an order of five magnitudes speedup over HSPICE. Our complete

model is much faster as compared to the Newton-Raphson solver, over which we are

able to achieve an average speedup of 91.81×, considering all temperature and body

bias points.

3.6.3 Accuracy of the Waveform Sensitivity Models

In this subsection, we present the accuracy achieved by our body bias and temperature

models in both waveform generation and computation of slews and delays over multi-

ple combinations of body bias and temperature values. Through the accuracy of these

waveforms and low errors in slews and delays, we also show that our assumptions of

making waveform sensitivity models simplified are justified. We present accurate wave-

form generation both at the output node of the cell as well as the sink nodes of the RC

interconnect loads, which are connected to the output node of the cell.

51

(a) (b)

Figure 3.11: The result of our simplified temperature waveform sensitivity (WS) method

as compared with HSPICE, for various temperature values. Shown above are output

waveforms from a NOR3, loaded with 33l benchmark RC interconnect, evaluated at

sink node 55: (a) for a falling step input, and (b) for a slower rising input.

Body bias waveform sensitivity model

The temperature offset in this part of evaluation is set to zero. Fig. 3.9 and 3.10 compare

representative waveforms as generated through HSPICE [14] and the simplified body

bias waveform sensitivity model, when the input waveform takes any arbitrary shape

either due to glitches, noise or crosstalk. We evaluate accuracies both at the output

node of the cell, and the sink nodes of the interconnects which load the cell output

node. Fig. 3.9 shows the typical response of the cell at the sink nodes of the RC tree

interconnect loads. The waveform is first obtained at the output node of the cell, and

then evaluated at sink node using Padé-approximation of the RC interconnect circuit,

and model order reduction techniques [62]. Fig. 3.10 shows the output waveforms at

the output node of the cells, with arbitrary inputs. The waveforms in some cases are

coincident to the naked eye, as our algorithm yields high accuracy. This also validates

the idea that α, β can be assumed to be independent of (vbp, vbn), as proposed in Sec-

tion 3.5.2. Note that the initial ringing error in these waveforms is due to the use of

Padé-approximation, and not due to the waveform sensitivity model.

52

(a) (b)

Figure 3.12: The result of our complete waveform sensitivity (WS) model as compared

with HSPICE, for various temperature and body bias values. Shown above are wave-

forms at the output node of an Inverter with (a) 45l as the interconnect load and an

input glitch due to crosstalk, and (b) 25m as the interconnect load and an arbitrary

input.

Temperature waveform sensitivity model

As with the body bias waveform sensitivity model, the simplified temperature sensitivity

model as described in Section 3.5.2 yields accurate waveforms for any temperature offset

value. Note that the body bias is kept at zero in all such evaluations. Fig. 3.11 shows a

set of waveforms obtained from a NOR3 cell, loaded with 33l RC interconnect network.

The waveform is first obtained at the output node of the NOR3 cell, and the waveform

shown is then evaluated at sink node 55. As shown in the figure, the temperature

waveform sensitivity model yields very accurate waveforms. This also validates the

simplification of σ(∆T, t) values, as proposed in Section 3.5.2.

Complete waveform sensitivity model

For presenting the results in this section, we generate waveforms for multiple com-

binations of body bias or temperature offset values and compare the result with the

corresponding waveforms obtained from HSPICE. We find that the complete model as

53

(a) (b)

Figure 3.13: Similar output waveforms from cells loaded with 20l benchmark RC inter-

connect, evaluated at farthest sink node 52: (a) the output from an NAND2 for a rising

input, and (b) the output from a NOR2 for a falling input.

presented in Section 3.5.3, generates very accurate waveforms. As before, we evaluate

accuracies both at the output node of the cell, and the sink nodes of the interconnects

which load the cell output node. Fig. 3.12 shows the accuracy obtained at the output

node of an inverter loaded with 45l RC interconnect, with inputs having glitches and

arbitrary shapes. Fig. 3.13 shows the waveform evaluated at sink node 52 of 20l RC

load interconnect for NAND2 and NOR2 cells. Our results show that a linear model

for Vo(t) in both body bias and temperature with simplifications as in Equations (3.35)

and (3.38), suffices for generation of waveforms at any combination of body bias and

temperature, with sufficiently desired accuracy.

Slew and delay errors

We now present some more descriptive tables for the errors in delays and slews that are

incurred in formulation of the complete waveform sensitivity model.

Table 3.4 lists rise and fall delay/slew errors, for a particular test case: with a

NAND2 cell loaded with 20l as the RC interconnect, waveforms being evaluated at sink

node 52. This table shows the distribution of the delay/slew errors over all (vbp, vbn)

points, but at different ∆T values. Column 1 of the table lists the temperature offsets

from the nominal temperature of 25◦C at which the waveforms are evaluated. Columns

2 to 4 present, for the value of ∆T listed in column 1, the maximum, the minimum

54

Table 3.4: Percent delay and slew errors for a NAND2 cell at various temperature
offsets, over all vbp, vbn points

∆T Percent Delay Errors Percent Slew Errors
(◦C) Max. Min. Mean Max. Min. Mean

-50.0 1.43 0.06 0.47 4.63 0.09 1.75

-37.5 1.15 0.02 0.39 4.33 0.19 1.78

-25.0 1.23 0.03 0.40 3.71 0.16 1.64

-12.5 1.14 0.01 0.49 2.02 0.10 0.82

0.0 1.29 0.08 0.44 1.23 0.08 0.70

12.5 1.20 0.09 0.40 1.51 0.06 0.78

25.0 1.15 0.05 0.45 2.50 0.13 1.04

37.5 1.34 0.09 0.66 4.16 0.04 1.53

50.0 2.18 0.38 1.11 4.81 0.06 2.65

62.5 1.96 0.22 0.81 5.48 0.27 2.79

75.0 1.27 0.02 0.39 5.94 0.26 2.92

87.5 1.18 0.06 0.68 6.87 0.40 3.19

100.0 2.16 0.63 1.41 8.93 0.35 3.74

and the mean of the percentage delay errors obtained over all vbp, vbn points. Similarly,

columns 5 to 7 present the maximum, the minimum and the mean percentage slew errors

obtained over all vbp, vbn points at that temperature offset. Clearly, at all temperature

offsets, both the mean delay/slew errors over all vbp, vbn points are contained within 4%.

A more comprehensive view of these rise and fall delay/slew errors is presented in

Table 3.5. For this tabulation, we work with the test cases that were mentioned at the

beginning of Section 3.6.2, and save the delay and slew values as obtained from our

complete waveform sensitivity model and from HSPICE. We then obtain the relative

percentage error between delays and slews corresponding to the complete simplified

waveform sensitivity model and of HSPICE. All such errors are tabulated. Table 3.5

shows the mean and standard deviation of these relative errors for a NAND2 cell, over

all (vbp, vbn, ∆T) points, presented for each combination of inputs slews and output load

interconnects. It is seen that both the mean and standard deviations are small for all

test cases.

We thus observe from Tables 3.4 and 3.5 that only a small error is incurred in both

delays and slews over all combinations of vbp, vbn, and ∆T points, validating the use of

our waveform sensitivity model in predicting the delay and slews over the entire range

55

Table 3.5: Mean (µ) and standard deviation (σ) of the percentage errors over all (vbp, vbn,
∆T) points, incurred by our complete waveform sensitivity model in the output rise
delay and slew values for NAND2 cell, as compared to HSPICE for different input slews
and output RC interconnect loads

RC Interconnect Loads
Input 25m 33l 45l
Slews Delay Error Slew Error Delay Error Slew Error Delay Error Slew Error

µ σ µ σ µ σ µ σ µ σ µ σ

5ps 1.66% 1.45% 3.13% 2.54% 1.22% 1.27% 3.33% 2.63% 0.89% 0.83% 3.11% 2.45%
10ps 1.53% 1.39% 3.11% 2.54% 1.03% 1.19% 3.20% 2.66% 1.04% 0.96% 2.41% 2.30%
20ps 1.33% 1.38% 3.10% 2.55% 0.88% 0.95% 2.83% 2.60% 1.56% 1.34% 2.05% 2.16%
50ps 1.03% 1.16% 2.82% 2.57% 1.40% 1.09% 2.35% 2.53% 4.03% 3.99% 1.88% 2.17%
100ps 1.24% 1.19% 1.18% 1.40% 2.25% 1.73% 2.09% 2.33% 1.79% 1.81% 1.87% 2.35%

of body bias and temperature. Very similar observations were made for other standard

cells in the library.

Chapter 4

BTI-Aware Design using Variable

Latency Units

In Chapter 3, we presented a methodology for augmenting timing tools with the capa-

bility of modeling body bias and temperature. Such timing tools are typically used by

conventional synchronous designs, where the worst-case delay is optimized for. There-

fore, the worst-case delay also determines the clock period, Tclk.

In the next two chapters (including this chapter), we address reliability and variabil-

ity through a paradigm where the clock period is based on the notion of average-case

computations rather than the worst-case computations in a circuit – an approach that

leads to improved data throughput.

4.1 Variable Latency Units (VLUs)

4.1.1 Average-Case Computation

Average-case computation, as the name suggests, refers to those computations that

occur more frequently than others, and also get completed within average delays, con-

sidering the delay required by all the computations the circuit performs. Within the

synchronous paradigm, two classes of techniques have been proposed for exploiting

the average-case computations: variable-latency units [18, 64, 65], and error detection-

correction units [19]. Our work in this chapter focuses on the design of BTI-resilient

56

57

circuits using variable latency units (VLUs).

Unlike conventional combinational circuits that complete operations within one clock

cycle, VLUs allow the computation of the combinational circuit to be completed in a

variable, integer, number of clock cycles. By allowing high-probability operations to

complete in a single cycle, but allowing rarer events to use multiple (typically two) cycles,

the average cycle time may be shorter than that of the conventional implementation,

implying that the circuit throughput for a VLU may be significantly larger.

Figure 4.1: A VLU implementation of a 6-bit ripple carry adder.

As an illustration of a VLU, consider the 6-bit ripple carry adder (RCA) shown in

Fig. 4.1, with six full adders. Assuming unit gate delays, the conventional single-cycle

fixed-latency combinational circuit has a cycle time, Tclk = 13 units, equal to the delay of

its longest path, corresponding to a throughput, η1 = 1/13. The VLU implementation

of this adder operates at a reduced cycle time, Tclk < 13. For Tclk = 9, assuming

that all primary input signals are mutually independent and have signal probabilities of

50%, 18.75% of the input patterns violate Tclk, and the VLU allows these to complete

execution in two cycles. Under the 50% assumption above, each pattern is equiprobable,

so that the average VLU delay is 0.8125 × 9 + 0.1875 × 18 = 10.69 units, and the

corresponding throughput η2 = 1/10.69 is 21.6% better.

Figure 4.2: VLU implementation of an 8-bit incrementer.

Similarly, the VLU design for an 8-bit incrementer as shown in Fig. 4.2, can be

clocked at Tclk = 5 units as opposed to its combinational design clock period of Tclk = 8

58

units (assuming unit delays for each of the gates). This results in throughput enhance-

ment of 28.0%, with a hold logic activation probability of 25%. Therefore, exploiting

the average-case computation can result in higher performance (i.e., throughput) than

the worst-case.

VLUs require dedicated combinational circuitry for identifying the input patterns

that require two cycles for completion, to prompt each output flip-flop to hold its current

value at the next clock transition (rather than clocking in a new value). This is referred

to as “hold logic” and its output is called the “hold signal.” Techniques for constructing

the hold logic have been proposed in [18, 65]. The hold logic for the RCA and the

incrementer here is small and is shown in Figs. 4.1 and 4.2.

4.1.2 Hold Logic Generation

Our VLU scheme assumes that an operation completes in either one or two clock cycles.

Given a timing constraint Tclk, each path whose (delay + setup time) is larger than or

equal to Tclk is termed as a critical path. If a set of input assignments IP sensitizes a

set of critical paths CP , it must also evaluate the hold signal to 1. Paths excited by

these input patterns are allowed two cycles for completion.

A direct enumeration of paths (similar to [66]) is a direct approach for exact gener-

ation of hold expression fh, but becomes very restrictive with the increase in number

of critical paths, the number of gates and primary inputs in the circuit. This was ad-

dressed in [18, 65], in which the authors propose a ‘node-based’ algorithm as opposed

to a ‘path-based’ algorithm, based on a traversal of the critical gates since the number

of (critical) paths can be exponential in the number of gates in the network, whereas

the number of critical gates is guaranteed to be smaller than the number of gates.

We now briefly review an algorithm built on a corner based methodology for gener-

ating the hold logic; details are provided in [18, 65]. Consider the circuit in Fig. 4.3(a).

Assuming unit gate delays, the longest path has a delay of 4 units. With a required time

of 3 units on x, y, the circuit has one critical path P , and the sensitization condition for

this path constitutes the hold logic expression. Here, the critical path can be sensitized

if every gate g on the path has noncontrolling values on its noncritical inputs. Let S(g)

represent this condition for gate g. The condition for sensitization for P , which activates

the hold logic, is then given by fh =
∏
∀g∈P S(g) = b · c · e · f .

59

(a) (b)

Figure 4.3: An example of a circuit at various timing specifications so that it has (a)

one critical path and (b) four critical paths.

For a more stringent required time specification of 2 units on x, y, the circuit has four

critical paths, as shown in Fig. 4.3(b). The sensitization conditions for multiple critical

paths can be recursively computed using a method described in [18] to obtain the hold

logic expression. If any one of the critical paths is sensitized by an input pattern, the

hold signal should be set to 1.

The sensitization conditions for multiple critical paths is thus derived from the sum-

mation of sensitization condition for every critical path. This is computed by the for-

mulation of CPAF (g), the critical path activation function of gate g representing the

summation of the boolean condition that all the critical paths through g are allowed

to pass through. This happens when all the noncritical inputs of g are noncontrolling

(or in other words, S(g) = 1, as defined above). CPAF (g) is thus formulated using all

its critical fainins i of g as follows: CPAF (g) =
∑
∀i S(g) · CPAF (i). Since CPAF (g)

needs to be constructed from the CPAF s of g’s critical fanins, this involves a topological

traversal from PIs to the POs of the circuit, with the CPAF s of PIs being a boolean 1.

The hold logic expression fh is finally obtained by the summation of the CPAF s of all

the primary outputs. This can be illustrated through the example in Fig. 4.3(b),

CPAF (x) = CPAF (g4) · S(g6) = CPAF (g2) · a

= (CPAF (b) + CPAF (c)) · a = 1 · a = a

60

CPAF (y) = CPAF (g5) · S(g7) = (CPAF (g3) · S(g5)) · b · c

= (CPAF (g1) + CPAF (e)) · f · b · c

= (CPAF (d) + CPAF (e)) · S(f) · b · c

= 1 · f · b · c = b · c · f

fh = CPAF (x) + CPAF (y) = a+ b · c · f

The hold logic size may sometimes be appreciably large. We have implemented

some heuristics to reduce the hold logic size which are presented in [18, 65]. Note that

the algorithm does not work with paths, but involves a single topological traversal and

processing of all the gates in the circuit, incurring an O(n) complexity, where n =

number of gates in the circuit. Heuristic techniques to control the size of the hold logic

have been presented in [18, 65].

Given the signal probabilities at the primary inputs (PIs) of the circuit, the average

throughput η of the VLU is evaluated as the inverse of the average cycle time [65]:

η =
1

Phold · 2Tclk + (1− Phold) · Tclk
=

1

(1 + Phold) · Tclk
(4.1)

where Phold is the hold logic activation probability.

4.1.3 VLUs at the Architectural-Level

Variable latency operation can be easily incorporated in a processor architecture. Fig. 4.4

shows a typical five stage instruction pipeline in a microprocessor: variable latency de-

signs may be employed at the EX stage. When the EX stage requires a two-cycle

operation, it generates a stall for one cycle, preventing data from the IF and ID stage

from moving forward to the EX stage. Such a stall can be implemented through a simple

extension of a conventional hazard detection unit (HDU), which is a standard feature

that stalls such pipelines in the presence of data hazard. A modified design shown in

Fig. 4.4, which now allows both the hold signal and the HDU output to activate and

control the stalling mechanism in the pipeline, shows a low-overhead implementation

that facilitates the use of the VLU.

61

Figure 4.4: Variable latency operation at the architectural level: the output of the HDU

is appended to the hold signal to stall the pipeline for a two-cycle operation.

4.2 VLUs and BTI

4.2.1 Motivation

As discussed in Chapters 1 and 2, BTI degradation causes timing errors and performance

loss. Published approaches for enhancing BTI-resiliency include transistor sizing, logic

resynthesis, or postsilicon tuning, which all work with worst-case delays. Use of VLUs

therefore, can potentially enhance the performance of such circuits.

However, the performance of a VLU can also degrade or even become incorrect in the

presence of BTI, potentially leading to circuit failure as the circuit degrades temporally.

Few efforts have been in the direction of constructing BTI-resilient circuits using the

variable latency paradigm. One such technique has been explored in [67] for specific

adders, but this work does not extend to general circuits.

We therefore develop novel methods for building VLU-based BTI-resilient designs

for a general circuit, such that the performance over its lifetime is maximized, and relies

on two ideas: (a) using a novel scheme that uses multioutput hold logic (MOHL) to

alter the appropriate hold logic over time, in conjunction with (b) using adaptive body

biases [21] to maximize circuit performance.

The contents of this chapter are organized as follows: the concept of MOHL is

described in Section 4.3, followed by the details of our approach in Section 4.4. Next,

Section 4.5 shows how our schemes can be used even with general BTI models, and

Section 4.6 discusses circuit performance optimization using MOHL as well as body

biasing. Finally, we experimentally validate our method in Section 4.7.

62

4.2.2 BTI Degradation Model and Delay Monotonicity

Before entering our main discussion, it will be useful to highlight the BTI model used for

work. For a particular gate, we use HSPICE to precharacterize the impact of changes

in Vth on the delay Dg of a gate with n transistors as in [12], using the formulation

described in Section 2.2.4. Such characterizations are reasonably inexpensive and have

been widely deployed, e.g., in statistical static timing analysis (SSTA) methodologies.

This computation requires the determination of ∆Vth for each device in the gate,

for which we adopt Equation (2.3). Clearly, this equation suggests is a monotonically

increasing curve, and captures the effect of applying constant stress to a gate. Although

BTI is known to show some recovery when the stress is removed, modeling this recovery

requires precise knowledge of the input pattern distributions for each specific gate.

One way to achieve this is through signal probability information: however, there

are two drawbacks to this. First, such information may not be available. Second, the

available information can be quite inaccurate; it may predict the average behavior over

all users and programs for a system, but the actual aging depends on the behavior of a

specific user, which may not be predictable. Another potential approach is through the

use of on-chip sensors, but these are of limited utility since they do not experience the

same signal patterns as the circuits whose aging is to be measured. In our implemen-

tation, we employ the worst-case pattern for aging for BTI analysis, at the worst-case

temperature corner, as a guaranteed pessimistic estimate of usage; this approach is

consistent with widely-used methods for handling BTI.

For well-characterized circuits, specific information that is available about the signal

probabilities at each node can easily be incorporated into our framework. Such circuits

undergo stress/recovery cycles, and the delay model may work with the stress/recovery

envelope [48, 49] of the Vth vs. t curve. By definition, such an envelope is always

monotonically increasing.

One case that deserves special mention is when a functional unit is turned off for

a long period of time, which is detectable by a sensor (e.g., software timers, sensors,

or separate antifuses may keep track of the on- and off-times). In this case, due to

recovery effects, the circuit undergoes “rejuvenation” as the threshold voltage recovers

and the delay degradation is eased, and the use of an envelope waveform may be far too

pessimistic. This case is addressed in Section 4.5.

63

4.3 Multioutput Hold Logic: Concept

We now introduce the concept of multioutput hold logic (MOHL). We begin with the idea

that the task of building BTI-resilient VLUs is, in essence, one of partitioning the set

of circuit paths into one-cycle and two-cycle paths1 . Intuitively, for high throughput,

it is important to keep the most frequently-excited paths in the one-cycle set (or more

quantitatively, to keep the value of Phold high). However, under BTI, path delays may

change with time: under the monotone delay model, as path delays increase, more

paths may move from the one-cycle set to the two-cycle set. We develop a systematic

framework for choosing an appropriate partition of one-cycle/two-cycle paths with the

option of changing this partition over time as delays degrade due to BTI.

Figure 4.5: The concept of MOHL VLU design. A time sensor selects the hold logic to

be triggered at time t.

Our solution is based on the concept of an MOHL, introduced in Fig. 4.5. Under this

scheme, the VLU is controlled by temporally-varying hold logic circuitry. As the circuit

ages, by the monotonicity argument presented in Section 4.2.2, an increasing number

of single-cycle paths may require two cycles for completion, and the set of two-cycle

input patterns changes. To account for this, the MOHL circuit has multiple hold signal

outputs: depending on the age of the circuit, one is chosen. A hardware or software

time sensor can capture the system operational time, and this information can be fed

to a multiplexer that selects the proper hold signal to be triggered at time t.

1 As stated earlier, references to enumerated paths are only an aid to explanation; our actual
implementations do not perform path enumeration.

64

4.4 Multioutput Hold Logic: Theory

We will now outline some useful properties of the MOHL design problem. In particular,

we will describe some specific supersetting patterns in the two-dimensional space of

frequency and circuit aging that can be used to build compact implementations of the

hold logic. These patterns are based on the assumption of monotonic aging, described

in Section 4.2.2; this assumption is removed in Section 4.5. We use standard synthesis

tools for synthesizing MOHL; our contribution is in identifying these subsetting patterns

that reduce the implementation overhead in terms of the number of outputs, area, etc.

4.4.1 Tabulating the Effects of Aging on VLUs

As a circuit ages, the distribution of its path delays changes, and therefore, the hold logic

that is required to operate the circuit at a specific value of Tclk changes. Conversely,

at any time t, the hold logic required to ensure timing correctness is a function of Tclk.

We capture these relationships in a frequency/aging (F/A) grid, a table whose columns

are the possible values of Tclk and whose rows correspond to t, the age of the circuit. In

the discussion to follow,

• H(Tclk, t) denotes the ON-set (or the H-set) of the hold logic required to achieve

a clock period of Tclk at a given time t.

• η(Tclk, t) represents the corresponding value of η.

We use the terms “hold logic” and “H-set” interchangeably.

The entry at each (Tclk, t) point in the grid represents the hold logic function (with

Tclk as the one-cycle time), which is associated with a specific value of Phold and η,

the probability of hold logic activation and the throughput, respectively. In principle,

the F/A grid is a discretization on the continuous space of (Tclk, t) values. A represen-

tative example of an F/A grid for benchmark apex7 is shown in Fig. 4.6(a), and the

corresponding η values are displayed in Fig. 4.6(b).

The throughput for each hold logic function is computed using Equation (4.1). We

may perform a linear search on the values of Tclk in a row of the F/A grid to determine

the point at which η is maximized. In each row in Fig. 4.6(b), we highlight the maximum-

throughput entry and denote the corresponding value of Tclk by Tclk,opt(t). It is easily

65

(a) (b)

Figure 4.6: The F/A grid for circuit apex7 showing (a) the hold logics and (b) the

corresponding η values (shown on a 10−3 scale). The patterns in the grid correspond

to supersetting structures and result as a consequence of the application of Theorems 1

and 2, and Corollaries 1 and 2.

seen that Tclk,opt(t) is not, in general, monotone with t.

4.4.2 Supersetting Trends

We now present some supersetting trends that help in minimizing the circuitry required

to implement MOHL as a multioutput circuit.

Theorem 3 At a given time t, for two clock period constraints applied to a VLU,

H(Tclk,2, t) ⊇ H(Tclk,1, t) and Phold(Tclk,2, t) ≥ Phold(Tclk,1, t) value if Tclk,1 > Tclk,2.

Proof: At any time t during the life of the chip, as we decrease the value of Tclk, the

timing constraints on the circuit are tightened and more paths require two cycles for

completion. Since gate delays increase monotonically with time, for any Tclk,2 < Tclk,1,

all input patterns that excite a path with a delay larger than Tclk,1 will clearly excite a

path with delay larger than Tclk,2 (in addition to these, other patterns may also excite

two-cycle paths). Since such input patterns constitute the ON-set of the hold logic of

the circuit, the ON-set of hold logic at Tclk,1 is wholly contained within the ON-set of

hold logic at Tclk,2, i.e., H(Tclk,2, t) ⊇ H(Tclk,1, t). The corresponding result about Phold

follows trivially from this. �.

Example: In Fig. 4.6, f0 ⊂ f1 ⊂ f2 ⊂ f3 in the row t = 0.

66

Theorem 4 Under a monotonic delay model, at a given clock period Tclk applied to

a VLU, for two time points t1 > t2, H(Tclk, t1) ⊇ H(Tclk, t2) and Phold(Tclk, t1) ≥
Phold(Tclk, t2).

Proof: By the monotonicity of the BTI degradation model described in Section 4.2.2,

the path delays in a circuit slow down with time. Therefore, the same clock period Tclk

constitutes a tighter requirement at time t1 than at t2. Therefore, more input patterns

are included in the ON-set of the hold logic at t1, i.e., H(Tclk, t1) ⊇ H(Tclk, t2). �

Example: In Fig. 4.6, by Theorem 4, f1 ⊂ f3 ⊂ f4 in the column Tclk = 152.

These two theorems can be combined to define a corollary that describes a broader

supersetting relationship between the hold logics.

Corollary 1: If t2 > t1 and Tclk,2 < Tclk,1, then H(Tclk,1, t1) ⊆ H(Tclk,2, t2) and

Phold(Tclk,1, t1) ≤ Phold(Tclk,2, t2).

As a result of these supersetting trends, it is possible to detect patterns in the F/A

grid. In Fig. 4.6(a), the F/A grid for apex7 is divided into regions such that a single

hold logic represents each region. Note that by Corollary 1, a region that is to the north

or east of another region bears a subset relationship for the corresponding hold logic.

The subsetting relationships for the Tclk,opt entries in the table are:

H(164, 4) = f1 ⊆ H(152, 6) = f3 ⊆ H(152, 8) = f4

H(136, 0) = H(152, 6) = f3

H(144, 2) = H(152, 8) = H(152, 10) = f4

In other words, all of the hold logic in this example follows a supersetting trend; however,

this is not necessarily true in general. Even so, there can be substantial overlap in the

minterms of the optimal hold logic at various times, a result that is formalized below.

Corollary 2: If t2 > t1 and Tclk,2 > Tclk,1, then, ∃ H(Tclk,2, t1) that is a subset of

both H(Tclk,1, t1) and H(Tclk,2, t2).

The “common ancestor,” H(Tclk,2, t1), allows sharing between the circuitry needed

to implement H(Tclk,1, t1) and H(Tclk,2, t2), and implies that the two share a set of

minterms. This indicates the likelihood that the area required to implement the hold

logic as a multioutput circuit is less that the sum of separate implementations. This

has been verified empirically on benchmark circuits.

67

4.5 Rejuvenation: Nonmonotone BTI Models

Due to recovery effects, BTI aging may be nonmonotone. In practical workload sce-

narios, a gate may suffer both stresses and relaxations (removal of stress, causing delay

recovery) and the monotonic delay degradation assumption breaks down. As discussed

in Section 4.2.2, we focus on the more predictable case when a circuit is power-gated.

During this period, the threshold voltage of all transistors recovers from BTI stress in a

predictable way. This case is also practical because online sensing/detection techniques

can easily be leveraged to determine the period of time when the circuit is in recovery

mode.

We show that recovery has the effect of rejuvenation, effectively making a circuit

“younger,” and we may utilize the F/A table, except that an “effective age” of the circuit

is used along the t axis. All other ideas related to supersetting patterns presented in

Section 4.4 are preserved. We establish this through the following theorem.

Theorem 5 Delay recovery in a circuit, when BTI stress is removed, can be captured

by moving backward in time t along the F/A grid.

Proof: The change in the delay is the product of the delay sensitivity to Vth, multiplied

by ∆Vth. Since ∆Vth is reduced during recovery, the delay degradation is reduced,

and aging is effectively (partially) reversed, corresponding to moving backward in time

along the F/A grid. Consider a gate g on some path P in the circuit. The gate

experiences stresses from time 0 ≤ t ≤ t1 and subsequent recovery in time t1 < t ≤
t2; the corresponding shifts in the threshold voltage are denoted as ∆Vth(0, t1) and

∆Vth(t1, t2), respectively. The change in the gate delay can be computed by an extension

of Equation (2.7):

Dg(t2) = Dg,0 +

n∑
i=1

∂Dg

dVthi
∆Vthi(0, t1)−

n∑
i=1

∂Dg

dVthi
∆Vthi(t1, t2)

= Dg,0 +

[n∑
i=1

∂Dg

dVthi

]
· (A(t1)−B(t2 − t1)) (4.2)

where A(t1) and B(t2 − t1) represent the changes in Vth at the end of the stress and

relaxation phases, respectively. Note that the functions A and B depend on the periods

of the two intervals (e.g., A(t) ∝ t
1
6). If we consider all gates g on a path P , the path

68

delay of P at time t2 can be computed as:

DP (t2) = DP,0 +

[m∑
g=1

n∑
i=1

∂Dg

dVthi

]
· (A(t1)−B(t2 − t1)) (4.3)

where, DP,0 =
m∑
g=1

Dg,0

The absolute delay change caused due to relaxation can be no more than that caused

due to stress (and is often less), and the circuit cannot recover fully in a finite amount of

relaxation time t after stress. The term (A(t1)−B(t2−t1)) therefore, is always positive,

implying that DP (t2) ≥ DP,0. Hence we can rewrite Equation (4.3) as:

∃ t′1 ≤ t1, such that A(t′1) = A(t1)−B(t2 − t1) and,

DP (t2) = DP (t′1) = DP,0 +

[m∑
g=1

n∑
i=1

∂Dg

dVthi

]
·A(t′1) (4.4)

Equation (4.4) is of the same form as the path-level extension of Equation (2.7) for all the

gates g on path P. This implies that the recovery in delay caused due to relaxation can be

seen, in the light of monotonically increasing delay degradation model of Equation (2.7),

to have an effect of “rejuvenating” the circuit. Specifically, although the circuit is t2

time units old and has been stressed for time t1, its effective age t′1 is less than either

number. The idea of the F/A table may now be used exactly as before, except that the

new age of the circuit is t′1, and all decisions must be made from the entries of row t′1 in

the F/A grid (with t′1 ≤ t1 ≤ t2). In other words, rejuvenation corresponds to moving

backward in time t. �.

It is easy to extend this analysis to multiple stress/recovery cycles.

4.6 BTI-Resilient VLUs

At a fixed value of Tclk, as the VLU ages and more paths require two-cycle operation,

the concept of MOHL, as outlined in Section 4.3, may be used to implement BTI-

resilience. We classify the techniques for MOHL as being either static, when Tclk is

constant through the lifetime of the circuit, or dynamic, when its value is tuned for

maximal throughput during the circuit lifetime. Since the optimally-tuned Tclk may

69

vary from one functional unit to another, dynamic MOHLs are not realistic in main-

stream systems, where Tclk is set through the use of system-level considerations, but the

corresponding ideas will be used to obtain a better implementation of a static MOHL

circuit.

4.6.1 Static MOHL VLU Implementation

This approach chooses a fixed Tclk through the life of the circuit. At t = 0, the hold logic

corresponds to an initial set of two-cycle paths. As the circuit ages, under monotonicity,

more paths require two cycles, and the MOHL is updated appropriately.

This scheme corresponds to moving along a single column of the F/A grid, corre-

sponding to the {(Tclk, t), ∀t}, where Tclk is the specified period. By Theorem 4, the

hold logic at each successive point in time is a superset of that before it. Therefore, there

are substantial containment relationships between the H-sets, which can be leveraged

to build minimal multioutput functions.

The static MOHL VLU has two limitations: 1) the value of Phold also increases

monotonically with time; from Equation (4.1), its throughput reduces monotonically as

a function of time; 2) it cannot benefit from optimizations (Section 4.4.1) that adjust

the clock period.

4.6.2 Adaptive MOHL VLU Implementation Using Body Biases

To overcome these limitations of static MOHL VLUs, we consider a scenario where we

build a dynamic VLU, for which it is permissible to change the clock period of the VLU

as a function of time. Under this scheme, at each value of t, the MOHL VLU is operated

at the optimal clock period, Tclk,opt(t), that maximizes the throughput at time t. To

enable this, the optimal hold logic is selected from different columns of the F/A grid

(unlike the case for static VLUs); from Fig. 4.6, Tclk,opt(t) is not a constant or monotone

with t.

A critical limitation of such a design is that varying Tclk over time can create syn-

chronization problems in pipelines. Since Tclk is typically set by global considerations,

and its optimal value may vary from one unit to another in a system, dynamic changes

in Tclk may only be possible under restricted scenarios such as asynchronous systems

and not under mainstream applications.

70

Therefore, we modify this scheme to build a new approach, based on the observation

that the variations in Tclk,opt(t) in the dynamic method above are typically very small

over all values of t in the lifetime of the circuit. Examining Equation (4.1), the primary

gains in the throughput come about due to large discrete changes in Phold (e.g., between

H(152, 8) and H(164, 4) in Fig. 4.6) and the contribution of Tclk variations is small. This

allows the possibility of operating under a more practical paradigm, with a constant Tclk

over all time. Fig. 4.7(a) shows the working of this scheme for the F/A grid for the apex7

benchmark. Using H(Tclk,opt(t), t), ABB allows the circuit to be clocked at Tclk,opt(0) at

all t. Since Tclk,opt(t) changes with t, the applied body bias Vbb(t) also changes with t.

We consider two cases and use the concept of adaptive body bias ABB) [21] to

preserve Tclk:

Case I: If Tclk,opt(t) ≤ Tclk, we may simply operate the circuit at Tclk with hold logic

corresponding to this Tclk (i.e., H(Tclk, t)). This is functionally correct and represents

an identical Phold and a small shift in Tclk from Tclk,opt; therefore, the change in the

throughput from the t = 0, as predicted by Equation (4.1), is very small.

Case II: If Tclk,opt(t) > Tclk, then the optimal circuit clearly violates Tclk. In this case,

we use the hold circuitry (and hence Phold) from the Tclk,opt(t) point and employ forward

body bias (FBB) by applying a positive body bias voltage, Vbb(t) to speed up the path

delays and reduce the clock period to Tclk. Since the optimal hold logic does not change

and Tclk,opt(t) is close to Tclk, as predicted by Equation (4.1), the throughput remains

almost the same as that at Tclk,opt.

In Case II, we denote the set of one-cycle (two-cycle) paths at Tclk,opt by P1,opt

(P2,opt), and the corresponding hold logic as Hopt. The application of FBB speeds up

all paths and the value of Vbb is chosen to guarantee that all paths in P1,opt meet the

constraint, Tclk. It is theoretically possible that some paths in P2,opt may be sped up

faster than those in P1,opt if they have vastly different sensitivities to Vbb, to the point

that they become one-cycle paths. We refer to this set of paths as P2→1,opt: in practice

it is unlikely that this set will have any members. Even if it were to, using the hold

logic Hopt is functionally correct, but pessimistic (since it may allocate two cycles to

the paths in P2→1,opt instead of one).

The ABB scheme for an adaptive MOHL VLU operating at a fixed Tclk is illustrated

through Fig. 4.7(b). To the original MOHL scheme described in Fig. 4.5, we add a

71

time-based t-ABB lookup table, which saves the value of Vbb(t) that must be applied

to the circuit at time t to achieve the best throughput. On a practical level, our

implementation applies the same body biases to all transistors in the functional block

under consideration.

(a) (b)

Figure 4.7: (a) Block description of the MOHL VLU design incorporating ABB, and

(b) the ABB scheme corresponding to the F/A grid for apex7. Here, Vbb is the applied

body bias to the circuit.

Over all benchmark circuits, we have found that |Vbb(t)| ≤ 0.25V. In this range, we

have verified that leakage power (including junction leakage) is negligible using SPICE

simulations. This was also confirmed through a detailed leakage analysis presented

in [12]. Therefore, we explore the range, in steps of 0.05V.

4.6.3 Practical Issues

In using the F/A grid, we constrain ourselves to the granularity of t at which it was

characterized. This granularity can generally be chosen to be consistent with the degra-

dation model (e.g., spacing it out according to t1/6 instead of uniformly). In general,

this has seen to yield MOHL with a small number of outputs, like the MOHL for 6-bit

RCA shown in Fig. 4.8(a) with two outputs and significant sharing in the circuitry re-

quired for generating them. However, it is possible that the hold logic may change at

each entry of t in the table. Under this scenario, the cost of implementing MOHL may

be high, even when we leverage the subset containment properties described earlier.

Fig. 4.8(b) shows that the MOHL for benchmark c5315 requires five outputs (the point

in the top right corner).

In such cases, it is possible to use an MOHL implementation with a smaller number

72

(a)

10 15 20 25 30
0

10

20

30

40

Percentage throughput enhancement

P
er

ce
n

ta
g

e

A
re

a
 O

v
er

h
ea

d {5, 29.02, 33.14}
{4, 28.11, 28.14}

{3, 25.7, 22.45}

{2, 20.88, 17.55}

{1, 13.65, 9.842}

(b)

Figure 4.8: (a) The two-output BTI-resilient hold logic for the 6-bit RCA. (b) A plot

for the multioutput hold logic VLU design for the circuit c5315 showing various values

of the tuple: {Number of outputs, throughput enhancement (%), area overhead (%)}.

of outputs, i.e., with the hold logic changing less frequently over the life of the circuit.

This results in improved implementations with lower cost, with some loss in optimality.

For example, for the adaptive scheme, we may work with Tclk = T ′clk from the F/A

grid, where T ′clk 6= Tclk,opt(t)). This idea is illustrated in Fig. 4.8(b) for c5315, which

shows that initially, the MOHL is composed of five different H-sets (top-right corner

point). When the number of H-sets is reduced to four and then to three, we see a small

reduction in average throughput enhancement (29.0% to 25.7%), but a large gain in the

reduction of area overheads (from 33.1% to 22.5%). However, further reduction in the

number of H-sets reduces the throughput enhancement too.

For the static scheme, similar optimizations are adopted, e.g., if only one hold logic

is to be used, we choose the end-of-life hold logic; if at most two were permissible, we

choose another one that provides the least lifetime loss in throughput, and so on.

4.7 Experimental Results

In this section we present results on various ISCAS85, ISCAS89, MCNC, LGSYNTH93

and ITC99 benchmark circuits, synthesized using ABC [68] on the 45nm PTM [11]

based library. Our .genlib library for ABC used for mapping circuits consists of INVs;

BUFs; 2-4 input NANDs and NORs; 2 input XORs and XNORs; all with different sizes.

ABC also integrates the CUDD package [69] required for logical computations in hold

73

logic generation. We choose tlife = 10 years, and our experiments are based on the

monotone BTI degradation model.

4.7.1 Evaluation Methodology

In order to evaluate the effectiveness of our MOHL VLU schemes as presented in Sec-

tion 4.4 and Section 4.6, we compare the results of these designs, in terms of area

overhead and throughput enhancements achieved, with other VLU-extensions of exist-

ing BTI-resilient designs for combinational circuits, such as the delay padding schemes

as described below. A design may be made BTI-resilient by padding the timing specifi-

cation using a margin to ensure that the circuit meets its timing requirements through

its lifetime, tlife.

VLU sizing-based padding

A VLU can be synthesized using library delay models that predict the circuit delay at

tlife. A padding strategy ensures that the circuit meets specifications throughout its

lifetime by adding a safety margin to the timing specification. The circuits are sized to

the knee of the area vs. delay curve.

Hybrid padding

As a circuit ages, an increasing number of paths violate the clock period. A conservative

approach is to identify the paths that violate Tclk at the end-of-life: such paths are

allowed two cycles throughout the entire lifetime of the circuit. This however results

in significant throughput penalties, and some of these paths may well work within one

cycle for part of the circuit lifetime.

We therefore combine the sizing and conservative approaches by introducing sizing-

based partial padding into the combinational circuit. This approach ensures that it

meets Tclk up to time t = tp, where tp < tlife. For t ≥ tp, we simply move the

paths to a second cycle. The benefit achieved is that we incur lower sizing overhead as

compared to the sizing method, and also lower throughput degradation as compared to

the conservative method.

The area overhead for this method arises from the extra hold logic required, and

from sizing costs. The choice of tp is important in ensuring low sizing overhead. Our

74

implementation uses the point where the circuit suffers nearly 50% of the total degra-

dation that it suffers over its entire lifetime. We can deduce, both through analytical

algebraic techniques and through simulations, that for tlife =10 years, tp = 2 years

meets this criterion.

4.7.2 Area Overhead and Throughput Enhancements

Tabulation details

The results of the area overhead and throughput enhancements as achieved by various

schemes are summarized in Table 4.1. Here, ∆A denotes the percentage area overhead

(padding overhead and/or the hold logic area), and ∆η denotes the average change in

throughput from t = 0 to tlife, incurred in each of the respective designs. Note that the

circuit apex7 has a different mapping from that used in Fig. 4.6, and therefore shows

different numbers in our results table below.

Baseline case: The baseline corresponds to a conventional one-cycle combinational

implementation, where worst-case sizing is used, where all paths are required to meet

Tclk specification throughout the circuit lifetime, using library delay models that predict

the circuit delay at tlife. VLUs with positive (negative) overhead values incur larger

(smaller) overhead as compared to this design and imply that the corresponding VLU

circuit is better (worse) than its single-cycle counterpart2 .

In presenting the data in the table, we refer to column number m as Cm, as marked

in the table. For various benchmark circuits listed in C1, the delay degradation
∆D(tlife)
D(t=0)

over the entire lifetime lies between 5.6% and 15.6%, with an average of 11.4%. To be

more realistic, our results choose the starting point t = 0 to be three months after the

circuit is manufactured to model burn-in test procedures. (Note that starting at the

real t = 0 would improve slightly the numbers shown in our results, but should leave

the relative comparisons between various methods unchanged.)

In C2–C5, we present the results for the two methods described in Section 4.7.1:

VLU sizing-based padding and hybrid padding. We then show the results for two

MOHL VLU schemes (Section 4.6): the static (C6–C8) and the ABB-based (C9–C13)

2 It is possible to use a baseline corresponding to a nominal unaged circuit without padding: in
such a case, the overhead would always be positive. However, such an uncompensated circuit does not
meet performance specifications, and we prefer a comparison with a functionally correct circuit. Such
a comparison also shows the advantages of BTI-resilient VLUs over single-cycle implementations.

75

designs. Columns C6 and C9 show the number of outputs, |H| (number of different H-

sets), present in the MOHL circuit, and C12 shows the maximum magnitude of Vbb(t)

required at any time point in the life of the adaptive MOHL VLU.

Run times for the adaptive MOHL VLU method for various circuits are shown

in C13, and are seen to be reasonable. The CPU times are presented only for the

adaptive MOHL VLU scheme, since it involves relatively more runs of the hold logic

computation algorithm (Section 4.1.2) for the generation of all points for the F/A grid.

In other designs, we either simply perform a remapping (for sizing), or run the hold

logic generation algorithm for one value of Tclk (for static MOHL VLU).

These runtimes depend on multiple factors: the size of the circuit, the logic func-

tionality (which changes the size of BDD’s used) and the distribution of paths in the

circuit and thus do not show a monotone trend with any one of these factors: e.g., two

circuits with comparable size (s3384 and c2670) have very different runtimes. Similar

observations have also been made in [18, 65].

We categorize the circuits in Table 4.1 into two sets, named Set1 and Set2, based

on the throughput improvements (∆η) obtained. Our method is generally successful

on circuits in Set1 and not so on those in Set2. We will analyze this further, discuss

the root causes, and present a technique in Section 4.7.3 for predetermining whether a

circuit can benefit from the use of our methods (and in general, from VLUs).

Area and throughput analysis

All comparisons shown here are with respect to the padded baseline one-cycle circuit.

VLU sizing-based padding: An area overhead is induced due to (a) sizing and (b) addi-

tional hold logic. Although this method yields the highest throughput over all designs,

the area overhead induced is also the highest, similar to or even greater than the base-

line. Since the baseline is a combinational design, Tclk for the baseline is always greater

than that of VLUs, as demonstrated for the RCA in Section 4.1.1.

Hybrid padding: The sizing overhead of this method is due to the insertion of hold logic

(Section 4.7.1): in some circuits, this is large enough that the net area overhead is

positive.

Static MOHL VLU: The static MOHL incurs an average savings in area as compared to

the worst-case design. In considering the throughput overhead, it is important to note

76

that ∆η for this method provably decreases monotonically with time, as more paths

move to two-cycle operation with time. This is illustrated in Fig. 4.9.

Let us examine the ∆η values for the hybrid padding method and the static MOHL

VLU design. For the Set1 benchmarks, the hybrid method shows only a small through-

put degradation while the static method shows a positive or negative change. For the

Set2 benchmarks, both methods show large overhead.

On analyzing this further, we determined that this is caused because the circuits in

Set2 have either a zero or small margin between the delays of the near-critical paths

and other paths in the circuit. This observation was also made for such circuits in [70]

for MCNC circuits that proved to be hard to optimize for average-case operation. Thus,

as we move along a particular column of the F/A grid of Fig. 4.6, the value of Phold)

changes rapidly from a small value (such as 0.05) to a large value (such as 0.99), implying

that upon degradation, almost all paths are moved to second cycle, resulting in large

negative values of ∆η. This is also confirmed by the ∆η results of the adaptive MOHL

VLU design (discussed next), where such circuits yield only a very small enhancement

in throughput.

0 2 4 6 8 10
−50

−30

−10
0

10

30

50

t (years)

∆
 η

 (
P

er
ce

n
ta

g
e)

C5315 dalu s3271 b11 des

Figure 4.9: Variation of ∆η as a function of time t for static MOHL VLU design for a

subset of the benchmark circuits.

Adaptive MOHL VLU: Empirically, we see that allowing the choice of H-sets from dif-

ferent columns of the F/A grid, not only allows for throughput enhancement throughout

the lifetime, but also requires fewer hold logics for correct functionality, and hence the

largest area savings. We also see that only a small amount of Vbb (maximum 0.25V) is

necessary for all the circuits. We also note that amongst all designs, adaptive MOHL

achieves lowest area overhead (-9.1%), with throughput enhancements quite close to

77

the highest throughput enhancements of the sizing-based padded VLU. These negative

overhead numbers are significant, for a lower area also requires lower power require-

ments.

For some cases in Set1 (C2670, cmb, i5, b11), although the hybrid scheme results in

only a small throughput degradation, and the adaptive scheme results in good through-

put enhancement, the static MOHL VLU gives a relatively higher throughput degra-

dation. We observe that such circuits have a large number of paths with delays close

to the maximum one-cycle path delay in the nominal VLU, and only a few paths with

delays close to that of the critical-path delay of the circuit. With delay-degradation,

static MOHL moves all such paths to second cycle, experiencing a higher throughput

degradation. Since such circuits also have only a few paths with delays close to the

critical-path delay of the circuit, they do not suffer much throughput degradation with

hybrid design, and show significant throughput gain with adaptive MOHL design.

We can conclude from the above analysis, that for benchmarks in Set1, the static

MOHL VLU scheme with ABB proves to be most suitable in ensuring BTI resilience

with large savings in area, and significant gains in throughputs throughout lifetime.

For benchmarks in Set2, combinational or VLU sizing schemes may perform as well as

adaptive MOHL but much better than the static MOHL scheme.

4.7.3 Benchmark Categorization

Although our results have categorized benchmarks into Set1 and Set2 after analysis, it

would be useful for a designer to be able to do so a priori, without having the need of

constructing the F/A grid and of the subsequent analysis. We present a method for such

categorization. For this method, we only need to work with the nominal combinational

design of the circuit.

As highlighted in Section 4.7.2, at a given Tclk, for circuits that belong to Set2,

numerous paths delays are close to the longest path delay, and these are moved to the

second cycle as the circuit degrades with aging. We identify ε-critical paths in the

nominal design: paths whose delay values lie within a fraction ε of becoming critical,

i.e., delays in the interval [εDc, Dc], where Dc = D(t = 0) is the critical path delay. We

choose ε = (1 − ∆D(tlife)
Dc

), since paths that are within ε of Dc are likely to age so that

their delays increase and violate Tclk. If the number of such ε-critical paths is large, we

78

will likely incur low gains, or losses, in throughput in the VLU-based designs.

A measure of this change in throughput can be computed as follows. Let η1 be the

throughput of the nominal circuit (Tclk = Dc), and let η2 be the throughput if we set

Tclk = εDc. Using Equation (4.1):

η1 =
1

Dc
and η2 =

1

(1 + Phold) · εDc
(4.5)

where the Phold value is obtained by the hold logic generation algorithm in Section 4.1.2.

The throughput change is then computed as:

∆η =
η2 − η1

η1
=

1

ε · (1 + Phold)
− 1 (4.6)

We choose ∆ηtol = -25% as the tolerance on the estimated percentage change in the

throughput incurred (compared to nominal design) when the ε-critical paths are moved

to the second cycle. If ∆η (from Equation (4.6)) ≥ ∆ηtol, the design is categorized in

Set2. For such designs, the Phold value, as expected, is seen to be quite large. We have

found this choice to work well for all the benchmarks tested.

Note that percentage of ε-critical paths, with respect to the total number of paths

in the circuit, is equal to (1− Phold)× 100 (Phold generated with Tclk = εDc), for Phold

essentially is the fraction of total number of paths that have delays less than εDc. This

can be computed in linear time since the computational cost for determining such paths

is the same as the hold logic generation algorithm: O(n).

79

Table 4.1: Area overhead and throughput comparisons of various designs for overcoming
BTI degradation

Circuit

Sizing/ VLU/ Static Adaptive
Padding Hybrid MOHL VLU MOHL VLU

∆A ∆η ∆A ∆η |H| ∆A ∆η |H| ∆A ∆η Max CPU
(%) (%) (%) (%) (%) (%) (%) (%) Vbb (min.)

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13

Set1 Benchmarks
c1908 0.4 36.6 -5.3 -3.8 4 -7.1 9.2 2 -13.1 37.5 0.25 8.83
c2670 7.8 18.1 2.2 -4.3 4 7.8 -34.1 1 -6.8 19.9 0.25 10.28
c5315 1.7 22.0 -5.9 -3.4 3 -2.1 16.5 3 -3.7 25.7 0.20 8.16
c7552 6.7 15.3 1.8 -9.3 4 -3.7 -6.0 2 -5.1 10.2 0.25 24.62

s344 -3.5 38.0 -9.0 -0.4 2 -10.3 10.8 2 -12.2 39.5 0.25 0.02
s635 0.8 61.6 -4.9 0.0 4 -1.2 30.0 1 -14.2 61.2 0.25 0.18
s1269 -0.6 14.3 -7.0 -7.1 2 -16.1 9.3 1 -16.1 13.7 0.05 0.21
s1512 -4.2 22.2 -9.9 -6.8 2 -17.2 1.2 1 -18.2 22.3 0.25 0.12
s3271 -2.6 13.5 -9.0 -1.5 2 -15.5 -0.6 3 -16.3 13.5 0.25 0.21
s3384 -1.3 61.0 -7.3 -1.6 4 -10.3 21.4 1 -15.8 59.5 0.25 0.87

cmb 4.6 34.7 -0.3 -0.2 4 7.9 -16.3 1 -6.1 31.8 0.20 0.03
lal 7.4 43.0 3.9 -0.1 4 15.2 -3.8 1 -0.4 37.4 0.25 0.05
ttt2 7.6 10.9 2.8 0.0 4 1.6 -9.1 1 -9.6 11.1 0.25 0.04
apex7 2.6 42.4 -4.6 -3.3 3 -10.2 35.3 3 -7.5 39.9 0.25 0.04
alu2 -1.1 40.2 -7.0 -0.3 3 -12.6 19.8 2 -14.6 36.5 0.15 0.08
i5 7.7 7.8 1.6 -5.8 3 -5.8 -13.9 2 -6.1 9.8 0.20 0.13
b11 9.3 26.1 2.3 -0.6 4 1.1 -22.7 3 -4.6 30.6 0.25 0.11
apex6 3.6 81.5 -1.9 0.0 2 -2.2 20.0 3 -0.8 75.0 0.20 0.11
alu4 -2.7 48.1 -8.5 -1.7 2 -15.7 12.4 2 -15.4 48.1 0.25 0.20
x3 0.5 85.1 -4.8 0.0 2 -7.8 12.7 3 -5.5 78.7 0.20 0.12
dalu 3.6 42.9 -0.6 0.0 3 5.8 7.2 3 -0.6 44.8 0.25 2.99
Avg. 2.3 36.4 -3.4 -2.4 -4.7 4.7 -9.1 35.6 2.73

Set2 Benchmarks
s6669 -4.5 1.8 -10.4 -40.6 4.0 6.5 -43.6 3.0 -1.6 1.8 0.25 1.88
vda -2.6 8.2 -6.7 -40.3 4.0 -2.9 -45.4 2.0 -11.9 0.6 0.25 0.04
des -3.8 0.0 -8.7 -37.6 2.0 -15.6 -43.5 1.0 -15.6 0.0 0.25 0.06
t481 0.7 0.0 -3.7 -23.4 3.0 -2.6 -39.6 1.0 -14.2 0.0 0.25 0.10
Avg. -2.6 2.5 -7.4 -35.4 -3.7 -43.1 -10.0 0.6 0.52

Overall 1.5 31.0 -4.0 -7.7 -4.5 -2.9 -9.2 30.0 2.38

Chapter 5

Variation-Aware Design of

Variable Latency Units

In Chapter 4, we presented several schemes for BTI compensation using variable latency

operation. VLUs are characterized by the property that the hold logic is highly depen-

dent on distribution of delay amongst the various paths in the circuit. If the choice of

one-cycle and two-cycle paths in a VLU is based on nominal delay estimates from the

presilicon stage, it is quite possible that process variations during the fabrication can

change this distribution and hence affect the functional correctness of VLUs. This can

be overcome using pessimistic delay estimates; however, this would result in an inability

to harness the best achievable throughput. In this chapter, we investigate this effect,

and also propose a solution for constructing variation-aware variable latency designs.

5.1 Preliminaries

Our discussion to follow will use some common terminologies and notions, that we

summarize here for reference throughout this chapter:

• We use the term “variable latency” to denote that we allow a variable number of

clock cycles (either one cycle or two cycles) for the operation of the circuit. On the

other hand, the term “variations” is used to refer to changes in device parameters

between one manufactured part and another during the fabrication process.

80

81

• Variations in parameters and also the resultant variations in delay-related quan-

tities are modeled as Gaussians, as was highlighted in Section 2.1.3.

• For this chapter, we frequently use the directed acyclic graph (DAG) representa-

tion of a circuit (or a part of the circuit) to illustrate our concepts, as shown in

Fig. 5.1. The gates/nodes are shown as vertices and interconnections as edges of

the graph. Noncritical nodes and edges are marked as black whereas critical ones

are marked in red. Primary inputs and primary outputs are also represented as

separated nodes.

(a) Circuit (b) DAG

Figure 5.1: DAG representation of a circuit.

• We may refer to a circuit either in terms of its elements or its graph representa-

tion. We use the terms “gate” and “node” interchangeably to refer to any gate

in the circuit, such as an inverter or a NAND2. Similarly, we use the terms “in-

terconnection” and “edge” interchangeably to refer to a connection between the

input and output ports of two gates/nodes in the circuit.

• We define the slack time, ST, at an output node of a gate as

ST = RT − AT

where RT is the Required Time and AT is the Arrival Time at the node. Similarly,

we define the slack time ST for a path as the slack at the output of the final gate

on the path. We will overload the notation by using ST[G] to refer to the slack

time at the output port of gate G, and ST[P] to refer to the slack on path P .

• During our analysis, for simplicity, we assume that flip-flop setup times are zero.

Nonzero setup times can be easily incorporated into path delay constraints and

into the RT and ST information.

82

• Given a clock period specification, Tclk, for a chip, we refer to a path or a gate as

being critical according to the following definitions:

– For the deterministic case, a path is a critical path if delay[path] > Tclk. In

the presence of variations, however, a path may be critical in some chips and

noncritical in others. As a practical measure, we define potentially critical

paths as those paths for which the µ + 3σ value of path delay distribution

exceeds Tclk, where µ refers to the mean of the distribution, and σ to its stan-

dard deviation. Our analysis is based on Gaussian delay approximations, and

therefore, this 3σ condition implies path noncriticality in 99.73% of the man-

ufactured dies, which practically means that the path will never be critical

in a manufactured part. Note that this assumption is especially reasonable

since real path delay distributions are truncated Gaussians (e.g., their delays

cannot be negative, although a full Gaussian allows for this possibility).

– For the deterministic case, a gate is critical if ST[gate] < 0. Under process

variations, a gate G is potentially critical if the µ− 3σ value of ST[G] is less

than 0.

– Throughout this chapter, in the context of variations, we use the term critical

paths (gates) to refer to potentially critical paths (gates). However, when

the context is deterministic (as with manufactured dies or with Monte Carlo

simulations, where we know the exact delay values), this usage refers to paths

(gates) that are deterministically critical.

• In the context of VLUs, we interchangeably refer to a critical path as a two-cycle

path, and to a noncritical path as a one-cycle path.

5.2 The Impact of Variations on VLUs

As stated in Chapter 4, the approach for VLU generation, in the deterministic case,

first determines the deterministic delays of all gates in the circuit at the presilicon

stage. Next, an STA is performed with the given Tclk constraint at the POs of the

circuit. Following this, all deterministically critical nodes and edges in the circuit are

83

marked, and the algorithm described in Section 4.1.2 is applied to generate the final

hold logic.

Figure 5.2: Delay distribution at the presilicon stage, predicted with corner-based or

SSTA-based analysis , may be different from the actual delay distribution obtained at

the postsilicon stage; this change may further vary from one chip to another.

The outcome of the hold logic generation algorithm relies strongly on the presilicon

delay estimates of the circuit. In the presence of process variations, this delay distribu-

tion changes during fabrication. This is illustrated through Fig. 5.2, which shows the

DAG representation of the circuit in Fig. 5.1(a) at the presilicon stage (under corner-

based or SSTA-based analysis), and for n manufactured chips at the postsilicon stage.

Any presilicon analysis is necessarily pessimistic: therefore, there may be paths that

are flagged as two-cycle paths, due to the pessimistic estimates, that can operate in

one cycle in a manufactured part. As a result, such manufactured parts are unable to

achieve the best possible throughput.

In other words, to optimize the throughput for each specific part, we may need

different hold logics for different fabricated chips. This motivates the need to develop

a combined presilicon-postsilicon procedure for the generation of a hold logic (or a set

of hold logics) that can be (a) functionally correct across all chips at the postsilicon

stage, (b) ensure high throughput, and (c) incur low area and power overhead. We now

present our scheme for the generation of such variation-aware hold logic.

84

5.3 Variation-Aware Hold Logic

We will now proceed to describe several approaches for designing variation-aware hold

logic (VAHL), showing tradeoffs between the design overhead and the throughput ben-

efits.

5.3.1 The Pessimistic Approach

The pessimistic hold logic described in Section 5.2 may be generated through either a

corner-based or an SSTA-based presilicon analysis. Since the latter has reduced pes-

simism, through its ability to capture the effects of cancellations between less correlated

within-die variations, an SSTA-based analysis is preferable. Using the results of such

an analysis, we can generate a single hold logic by applying the hold logic generation

algorithm in Section 4.1.2 to all potentially critical paths identified by SSTA.

5.3.2 The Enumerative Approach

We now present an alternative approach that is recognizably impractical, but will serve

to motivate our eventual solution. Under this scheme, we build a separate hold logic

corresponding to each of N critical paths in the circuit, P1, P2, . . . , PN , as identified by

presilicon SSTA, using the algorithm in Section 4.1.2.

We use fi to denote the hold logic for path Pi. If Pi is indeed critical in the man-

ufactured part, then fi is activated; otherwise, it is power-gated and fi is set to logic

0. This operation is controlled by a sleep signal Si that is set to 1 when fi is to be

power-gated, and is 0 otherwise. Fig. 5.3 illustrates this idea for an example where N

= 6.

Figure 5.3: The enumerative approach for VAHL generation.

85

The generation of the sleep signals is based on the prediction of the postsilicon delays

of each of these paths, and a crucial ingredient of this solution is to determine whether

a path is critical or not in each manufactured part. We achieve this through postsilicon

measurements on RO sensors. As discussed in Section 2.1.4, a set of k RO sensors on

a chip is used to predict the real delay, DPi , of each path Pi, to determine whether it

exceeds the specifications imposed by the clock period, Tclk. Based on the results of this

determination, the values of fi and Si are set according to the criteria described above.

This method impractical for two related reasons. First, path enumeration methods

can be prohibitively time-consuming. Second, since the number of paths can be very

large, the hardware overhead, in terms of area and power, of all hold logics is also large.

5.3.3 A Clustered Approach for VAHL

The Concept

The two methods described earlier define two extremes: the pessimistic approach has

low overheads since it generates a single hold logic, but sacrifices throughput; the enu-

merative approach achieves the best possible throughput, but may have a large overhead

since the number of hold logics required, N , can be very large. We adopt a strategy

inspired by the notion of the “Middle Way” [71] to find a solution for VAHL generation

that is a happy medium between the two extremes.

A key observation that drives our approach is that since delay variations in a circuit

are spatially correlated, the delays of some set of paths with spatial and/or structural

similarity may be similar in magnitude and also highly correlated. If one of the paths

in the set is identified as critical (or noncritical) in the postsilicon stage for a particular

chip, it is very likely that all other paths in the set will have the same property. Instead

of treating these paths separately, as in the enumerative approach, we choose to place

them together in a single path cluster, with a combined hold logic that is driven by a

single sleep signal.

Using this principle, the N critical paths in the circuit may be grouped into m path

clusters, with m hold logics in all, which together will constitute the VAHL.1 Each

1 Note that grouping paths together in a cluster implies that the resulting hold logic is the logical OR
of the individual hold logics. This provides for the possibility of logic minimization, and the hold logic
for the path cluster typically involves significantly less hardware that the aggregate of hold logics for

86

path cluster, denoted by Cp, will contain a subset of all N critical paths, such that none

of the N critical paths is left unclustered. Further, by definition, each of these clusters

will have paths whose delays are similar and correlated, and will vary in the same way in

different chips. We will discuss computationally efficient algorithms for the generation

of path clusters in Sections 5.4 and 5.5.

Figure 5.4: The clustering approach for VAHL generation, based on identification of

path clusters.

This scheme can be illustrated through Fig.5.4, which shows m = 2 separate path

clusters for the circuit of Fig.5.3. Consequently, only m = 2 hold logics are required

instead of N = 6 hold logics in the enumerative case in Fig.5.3. Based on this clustered

scheme, we make the following observations:

1. Compared to the pessimistic extreme, where m = 1, this approach has VAHL

with m ≥ 1 outputs. In general, whenever m > 1, this approach will involve

less pessimism than the pessimistic approach outlined above, and hence result in

higher throughput.

2. Compared to the enumerative extreme, where m = N , the number of outputs m

in this VAHL will be much smaller (as will be shown in Section 5.6), reducing

the overhead greatly. However, this VAHL will be pessimistic over a cluster, i.e.,

it will activate the hold logic for the cluster if any one path within a cluster is

critical. Therefore, it is more pessimistic than the enumerative approach.

In other words, the results are indeed consistent with the concept of the Middle Way,

with the number of hold logics as well as the throughput being somewhere between the

individual paths. However, VAHL does not allow any logic sharing amongst the hold logics of different
path clusters, since we need the ability to put some of these hold logics to sleep if the corresponding
path cluster is noncritical.

87

corresponding numbers for the enumerative case and the pessimistic case.

The Implementation

We now present a more systematic description of the our clustered approach through

Algorithm 1, including further details for generating the select signals. The procedure

consists of a presilicon stage (lines 1 through 6) where path clusters are generated,

followed by a postsilicon stage (lines 7 through 12) where the criticality of the path

clusters is determined.

Algorithm 1: VAHL Generation Framework

/* Presilicon Stage */

Input: Tclk, Circuit: a levelized circuit

1 Perform SSTA

2 {Cp,1, Cp,2, ..., Cp,m} = GeneratePathClusters(Circuit)

3 for each path cluster Cp,i, 1 ≤ i ≤ m do

4 Compute fi = hold logic for Cp,i
5 DSSTA

Cp,i
← maximum delay {∀ paths in Cp,i}

6 Determine dt = [d1, d2, ..., dk]

/* Postsilicon Stage */

7 for each manufactured chip do

8 dt = dr from measurements of RO sensors

9 for each path cluster Cp,i, 1 ≤ i ≤ m do

10 Compute Dcond
Cp,i

= PDF (DSSTA
Cp,i

| dt = dr)

11 Dr
Cp,i
← (µ+ 3σ) of Dcond

Cp,i

12 (Dr
Cp,i

> Tclk) ? { Si ← 0 } : { Si ← 1; fi ← 0 }

At the presilicon stage, given a Tclk specification at the POs of the circuit, we first

perform an SSTA (line 1), and generate m path clusters {Cp,1, Cp,2, ..., Cp,m} (line 2)

using a procedure that will be described in Sections 5.4 and 5.5 through Algorithm 2.

For each of these path clusters, Cp,i, we then evaluate the corresponding hold logic

(line 4) using the hold logic generation algorithm presented in Section 4.1.2. We also

compute, in canonical SSTA form [6], the delay PDF of the maximum delay over all

paths in the path cluster, DSSTA
Cp,i

(line 5). Finally, we determine, also in canonical

88

form, the statistical presilicon delay vector dt = [d1, d2, ..., dk] of the k RO-sensors (test

structures) on the chip, described in Section 2.1.4 (line 6).

At the postsilicon stage, we aim to identify which of the m path clusters will be

critical in a particular chip, so that we can decide appropriate subset of these that

should be active on that chip. We therefore perform postsilicon measurements for the

RO sensors (line 8) for each manufactured chip to obtain the resultant RO sensor delay

vector sample, dt = dr. This information is used to predict the postsilicon delays of

each path cluster Cp,i based on a conditional PDF evaluation [8], Dcond
Cp,i

, of CP,i (line

10); this corresponds to the narrowed PDFs illustrated earlier in Fig. 2.5. Next, the

real delay, Dr
Cp,i

, of Cp,i is estimated (line 11) to be the (µ+ 3σ) point of its conditional

PDF. In practice, this value is very close to its mean, as the conditional PDFs have a

small variance [8].

(a) (b)

Figure 5.5: Postsilicon processing for determining the sleep signal values: (a) overall

flow, and (b) hardware for sleep signal generation.

Having estimated the real delays, we then determine (line 12) if Cp,i is critical in

the specific manufactured chip by comparing the values of Tclk and Dr
Cp,i

, as depicted

in Fig. 5.5(a). If the estimated delay is larger than the clock period, then the hold logic

is left active; otherwise it is put to sleep and the corresponding fi is set to zero. The

hardware implementation of this operation, shown in Figs. 5.5(b), performs a floating

point addition of Dr
Cp,i

and the 2’s complement of Tclk, and checks the sign bit of the

result. If this sign bit is 0, then the clock period has been exceeded; otherwise not.

We evaluate the overhead required to generate the sleep signals. All postsilicon

steps described above are a one-time computation for each manufactured part. The

89

conditional PDF evaluation for all m path clusters can be performed by a simple func-

tion; the runtime for one such evaluation is reasonable [8]. Practically, as we will find

in Section 5.6, the number of path clusters generated by our scheme is typically less

than 8. The calculation for sleep signal generation described in line 12 is also only a

one-time computation that can leverage hardware (hardware comparators or adders, as

well as registers) that already exist on-chip in many designs. Hence, very little extra

hardware is required for generation of these sleep signals, other than a few multiplexers

to appropriately route data to these units.

5.4 Enabling Practical Path Clustering

5.4.1 Qualitative Criteria for Path Clustering

Qualitatively, a set of paths in the circuit should be clustered together, with the hold

logic controlled by a single sleep signal, if they all have a high probability of together

being critical/noncritical after fabrication. This means that they should experience

similar shifts in their delays from similar mean values. The similarity of mean values is

an important consideration, as depicted in Fig. 5.6, which shows the PDFs of the delays

DPi and DPj of paths Pi and Pj . Both PDFs are observed to have a high correlation,

but since their mean values differ significantly, in most manufactured dies, path Pj may

have DPj < Tclk , whereas the path Pi may have DPi > Tclk .

Figure 5.6: Importance of comparing the mean of the two path delays.

We therefore define the path closeness of any two paths based on two criteria: (a)

the correlation between the path delays, and (b) the mean values of the path delays.

Based on this closeness metric, if any two paths are “close enough”, they can be clustered

together. We can then further grow this cluster by testing other paths for their closeness

with these two paths.

90

5.4.2 Reducing the Expense of Path Clustering

The direct use of a path closeness metric is impractical: in order to determine the

closeness of N critical paths in the circuit in a pairwise manner, we will have to perform

O(N2) pairwise comparisons; moreover, recall that N can be very large since it involves

a form of path enumeration.

This leads us to the need of a procedure to reduce the computational expense asso-

ciated with path clustering. In pursuit of this, we first coarsen the graph by generating

“node clusters” in polynomial time. This coarsening step effectively reduces the number

of paths to be enumerated to a practical number. As a result, the quadratic complexity

for pairwise comparisons constitutes a reasonable computational overhead.

Algorithm 2: GeneratePathClusters

/* Algorithm for generating path clusters */

Input: Circuit: a levelized circuit
Output: LCp : list of m path clusters Cp,1, Cp,2, ..., Cp,m

1 LCn = GenerateNodeClusters(Circuit)
2 return LCp = NodeToPathClusters(LCn)

We now describe, at a high level, our path clustering scheme in the function in

Algorithm 2 (recall that this was invoked by Algorithm 1 earlier). Given a levelized

circuit, the algorithm generates and returns the list of path clusters, LCp . In our first

step (line 1), we call a function, to be described in Algorithm 3, to generate a list of

node clusters, LCn , for all critical nodes of the circuit. This step will be shown to be

performed in a block-based manner. Next, we use these node clusters in LCn in line

2 to extract the list of m path clusters, LCp through a function to be described in

Algorithm 4, such that this step requires minimal enumeration.

5.4.3 Node Cluster Generation: Node Closeness Metric

Formally, a node cluster refers to a cluster of critical nodes and critical edges of the

original circuit (or a critical connected subgraph of the original circuit graph) under a

specified node closeness metric.2 The inputs of this connected subgraph come either

2 This concept is somewhat similar to (but not the same as) the concept of “supergate” formation,
where groups of adjacent gates in a circuit are fused into a single supergate [72, 73], except that the
criteria for clustering are different.

91

from the critical PIs or from the outputs of some other node cluster, and whose outputs

go either to the critical POs or to the inputs of some other node cluster. The node

cluster is abstracted as a set of input-to-output connections connected by node cluster

arcs; by definition, a node cluster arc represents a subpath of some critical path of the

circuit. An illustration of a node cluster is shown in Fig. 5.7.

The inputs of this connected subgraph come either from the PIs or from the outputs

of some other node cluster, and whose outputs go either to the critical POs or to the

inputs of some other node cluster. The node cluster is abstracted as a set of input-

to-output connections connected by node cluster arcs; by definition, a node cluster arc

represents a subpath of some potentially critical path of the circuit. An illustration of

a node cluster is shown in Fig. 5.7.

Figure 5.7: The concept of a node cluster. The dotted lines inside the node cluster

represent the node cluster arcs.

We first begin with a definition of node closeness of two critical nodes, which if

sufficiently high, allows for the two nodes to be clustered together. Since our goal

is to reduce path clustering computation by development of node clusters (line 2 of

Algorithm 2), this definition should be constructed in a way that, although the metric

is defined for nodes, it also somehow reflects on the closeness of the set of paths that

pass through these two nodes. In other words, the node closeness metric must capture

information about path delays of all critical paths passing through the node.

In this context, we define the metric M for the output port of a critical gate G as:

M[G] = AT[G] + (Tclk − RT[G]) = Tclk − ST[G] (5.1)

where, as usual, ST[G] = RT[G] − AT[G] is the slack time at the output of gate G, and

RT[G] and AT[G] are respectively, the required time, and arrival time at the output of

G.

92

The term, AT[G], represents the statistical maximum of the delays of all paths from

PIs up to G, while the term, (Tclk − RT[G]), represents the statistical maximum of

the delays of all paths from G upto the POs. Therefore, M[G] captures the statistical

maximum delay over all paths passing through G.

It is important to note that unlike the deterministic case, in which M[G] will be

able to capture only the longest path passing through G, in the statistical case, this

formulation captures delays over all potentially critical paths through G.

We now use this metric to define the closeness between two nodes, nodei and nodej ,

in terms of (a) the correlation ofM, and (b) the mean value ofM for the two nodes. A

high correlation ofM for the two nodes implies that the maximum delays of paths pass-

ing through nodei and nodej may also be well correlated. Further, similar mean values

ofM implies that these paths may also have similar mean values. This is important in

the light of our previous discussion in Section 5.4.1.

We now mathematically formulate this node closeness as:

Closeness C
(
nodei,nodej

)
= 1, if (5.2)

ρ
(
M[nodei],M[nodej]

)
≥ ρth, (5.3)

and, fµ
(
nodei,nodej

)
≥ fµ,th (5.4)

where ρ is the correlation coefficient, ρth and fµ,th are user defined thresholds, based on

the degree of pessimism permitted, and

fµ
(
nodei,nodej

)
=
min

{
µ(M[nodei]), µ(M[nodej])

}
max

{
µ(M[nodei]), µ(M[nodej])

} (5.5)

In words, the node closeness formulation in Equation (5.2) states that two nodes are

close enough to be clustered if:

1. the correlation between M for the two nodes is above a certain threshold, as

captured by Equation (5.3).

2. the mean value of M for the two nodes are similar.

The similarity between the means is captured by the fµ formulation in Equation (5.5):

the ratio of the minimum and maximum M mean values for nodei and nodej provides

an estimate how far apart these mean values are from each other. Note that both the

93

correlation coefficient and the ratio of the lesser to the greater mean lie between 0 and

1.

Based on the above formulation, we make the following observations:

1. If we set ρth = fµ,th = 0, the conditions in Equations (5.3) and (5.4) will always

be satisfied: the minimum correlation between any two M values can be 0, and

the mean of M can have a minimum value of 0 (since M represents path delay,

which cannot be negative). Hence, all critical nodes are forced to be clustered in

a single node cluster. This reaches to one extreme case of pessimism discussed in

Section 5.3.

2. For ρth = 1 and fµ,th = 1, the condition of Equation (5.3) will be most likely

violated by every pair of gates in a practical circuit, as due to variations, it is

very unlikely that two nodes will have M to be exactly of the same value on the

same die. For the same reason, the condition in Equation (5.4) is highly likely to

be violated. No two nodes, therefore, may be allowed to be clustered together,

and each node cluster may become a node cluster in itself, as will be illustrated

shortly. This reaches to the other extreme case of path enumeration discussed in

Section 5.3.

3. Any value in (0,1), therefore, for both ρth and fµ,th corresponds to the middle way

solution with different degrees of pessimism. We elaborate in more detail on the

considerations for an appropriate choice of threshold values in Section 5.6.

These observations can be more concretely depicted by the results of the application

of this algorithm on an ISCAS89 benchmark circuit, s27, as shown in Fig. 5.8, with gate

delays as used in MinnSSTA [7]. With Tclk = 84.3ps and four different set of values for

(ρth, fµ,th) = (0.0, 0.0), (0.9, 0.9), (0.99, 0.99), and (1.0, 1.0). We observe that:

1. With (ρth, fµ,th) = (0.0, 0.0), all critical gates are clustered into a single node

cluster.

2. With (ρth, fµ,th) = (0.9, 0.9), the pessimism decreases, and the result is 2 node

clusters in all. Node G12 and its inputs have a differentM[G12] mean than of all

other critical nodes, and thus clustered into a separate node cluster.

94

(a) (ρth, fµ,th) = (0.0, 0.0) (b) (ρth, fµ,th) = (0.9, 0.9)

(c) (ρth, fµ,th) = (0.99, 0.99) (d) (ρth, fµ,th) = (1.0, 1.0)

Figure 5.8: Results of node cluster generation for ISCAS89 benchmark s27, for four

different values of (ρth, fµ,th).

3. As the threshold values reach closer to 1.0, the pessimism further decreases and

we obtain 4 node clusters with (ρth, fµ,th) = (0.99, 0.99).3

4. When both thresholds are set to 1.0, we see that each node in itself becomes a

node cluster, confirming our earlier observation.

5.4.4 A Block-Based Algorithm for Node Cluster Generation

Based on the above metric and a measure of node closeness, we now illustrate our block-

based nonenumerative procedure for generating node clusters through an example. We

then formalize this procedure into an algorithm.

Our approach iteratively grows a cluster by topologically traversing the circuit graph

backwards from the POs to the PIs. An atomic operation consists of examining a node

G, that already lies in a particular node cluster (as illustrated by an example in Fig. 5.9),

and determining whether the fanins of G may be included into this node cluster, i.e.,

whether they are close enough to G, based on Equation (5.2). We therefore compute

the closeness between G and each of its fanin nodes, F1, F2, and F3, to check which

3 As s27 is a small circuit, such high thresholds result in only 4 node clusters; with larger circuits,
the variations are enhanced, and results in large overhead as will be shown in Section 5.6.4.

95

of the fanins, if any, satisfy the closeness criterion. In this example, both F2 and F3

satisfy the criterion, and the node cluster is grown to include F2 and F3 in the cluster.

Next, the most recently added nodes are compared with their as-yet-unclustered fanins,

and the process continues until the cluster grows no further. Any inputs that could not

be added to the current cluster are used to seed new clusters, and the method continues

until all clusters have been grown.

Figure 5.9: Illustration of node cluster growth from a particular node in the circuit,

which is already in a cluster.

We note that this step of node cluster growth includes nodes at only two levels: the

level l at which the node G being processed is located, and the level l − 1 at which its

fanin nodes are located. Hence, this computation can be very easily performed using a

block-based manner over all nodes in the circuit, with computation time that is linear

in the number of gates in the circuit.

This procedure is a heuristic and we do not claim it to be exact or optimal. For

instance, for a node at level l, we may instead test the fanout nodes at level l + 1

for closeness, and grow the cluster. Second, our cluster growth approach is based on

comparisons between a gate output and its fanin nodes, but not between the fanin nodes

and existing nodes in the cluster. In general, if node n1 is close to n2 and n2 is close to

n3, there is no guarantee that transitivity applies, making n1 close to n3. Therefore, it

is possible that our method may cluster nodes more than necessary: the consequence of

this is a loss in throughput. As will be shown in Section 5.6, this loss is not significant

under this fast heuristic.

Algorithm 3 presents a formalized description of the node cluster generation function

for a circuit: this function was called earlier by the Algorithm 2. Given a levelized circuit,

the function generates a list of all node clusters of the circuit, along with its input-output

connections. For simplicity, a node cluster is denoted as Cn in the algorithm. It first

96

Algorithm 3: GenerateNodeClusters

/* Algorithm for generating node clusters */

Input: Circuit: a levelized circuit without node clusters
Output: LCn : list of node clusters with input-output connections
// Initialize node clusters with the POs of the circuit

1 K ← number of POs in the circuit
2 LCn .Clear() // Initialize as an empty list

3 for each critical unclustered POi, 1 ≤ i ≤ K do
4 Cn ← new node cluster initialized with POi

5 LCn .Insert(Cn)
6 POi ← output connection of Cn
7 for each critical unclustered POj, i < j ≤ K do
8 if closeness(POi, POj) = 1 then
9 Cn.Insert(POj)

10 POj ← output connection of Cn

// Node cluster growth, beginning with POs

11 l← number of topological levels in the circuit
12 G.visited ← 0 ∀ critical nodes G
13 for each critical node G at level l ≥ 1 do
14 if G.visited = 0 then
15 G.visited ← 1
16 if G is not already clustered then
17 Cn ← new node cluster with G
18 LCn .Insert(Cn)
19 G ← output connection of Cn

20 else Cn ← G’s node cluster
21 for each critical fanin F of G do
22 if F ∈ C ′n 6= Cn then
23 F ← input connection of Cn, output connection of C ′n

24 else
25 if closeness C(G, F) = 1 then
26 Cn.Insert(F)
27 if F is critical PI then
28 F ← input connection of Cn

29 else if all critical fanouts of F have been visited then
30 C ′n ← new node cluster with F
31 LCn .Insert(C ′n)
32 F ← input connection of Cn, output connection of C ′n

33 l = l − 1;

34 return LCn

97

begins with the critical POs of the circuit and cluster them into node clusters based on

their closeness C in lines 1 to 10.

After this initialization, the function then grows the existing clusters in lines 11 to

33. First, all unclustered critical nodes are initialized as unvisited in line 12 (a node

is marked visited to indicate that it has been processed for node cluster growth). The

algorithm then repeatedly picks up each unvisited critical node (only once), including

the POs, in an existing node cluster, in a reverse topological manner (from POs to PIs)

in lines 13 to 20, and initializes a new node cluster with it if the node is not already

clustered. It then examines all its unclustered, critical fanin nodes in lines 21 to 33,

to check if they can be included in this node cluster by performing the closeness test

in line 26, effectively growing the cluster. Along with such computation, the external

input and output connections of the node clusters are also updated. An input/output

connection for a node cluster is created when some of its nodes are connected to either

a critical PI or a critical PO, or to a critical gate in some other node cluster.

The complexity of Algorithm 3 is O(K2 + Ng): K was defined as the number of

POs in Algorithm 3, and Ng are the number of gates in the levelized circuit. The first

term, K2 comes from performing the pairwise closeness test of all K POs. The second

term represents the complexity of visiting each node in the levelized circuit in a reverse

topological manner.

5.5 Generating Path Clusters and VAHL

Having presented the theory of node clusters in Section 5.4, we now present the link

between node clusters and path clusters in this section.

5.5.1 The Relation Between Node Clusters and Path Counts

Our starting point is a coarsened circuit, illustrated in Fig. 5.10(a), with node clusters,

where the blocks represent node clusters as in Fig. 5.7. These node clusters are exter-

nally connected to other node clusters through their input-output ports (determined by

Algorithm 3), through external interconnections between these node clusters, which are

simply a subset of all interconnections of the original uncoarsened circuit (the rest of

the interconnections are present within the node clusters). If we begin from the PIs, we

98

(a)

(b) (c)

Figure 5.10: (a) General structure of a coarsened circuit, (b) uncoarsened s27 circuit,

and (c) the coarsened s27 circuit.

can traverse the coarsened circuit along the external connections of the node clusters to

reach to the POs.

As an example, Figs. 5.10(b) and 5.10(c) show the uncoarsened and coarsened s27

circuits, respectively, with Tclk = 84.3ps as in Section 5.4.3, and (ρth, fmu,th) = (0.9,

0.9) chosen as thresholds for clustering. Recall that all nodes and edges of the coarsened

circuit are critical, since node clusters only include critical nodes.

Each internal arc of a node cluster from an input port Ik to an output port Ol of

that node cluster, captures in itself, potentially many (≥ 1, to be more specific) partial

paths from Ik to Ol of the uncoarsened circuit, that lie within the node cluster.4 A

path, Pc,i, in the coarsened circuit, being constituted by multiple such arcs, therefore,

encapsulates 1 ≤ ni ≤ N critical paths of the uncoarsened circuit in itself, where N is

the total number of critical paths in the uncoarsened circuit.

Therefore, each path, Pc,i, in the coarsened circuit is a cluster of ni critical paths of

the uncoarsened circuit, with 1 ≤ ni ≤ N .

4 Every node cluster input may not necessarily have an arc to every node cluster output. As shown
in Fig. 5.10(a), the node cluster, with its arcs visible, has two inputs connected to only a subset of the
5 outputs.

99

If each of the arcs lying on Pc,i encapsulates only one partial path of the uncoarsened

circuit, it implies that Pc,i is a path cluster that contains only one critical path of the

uncoarsened circuit, resulting in ni = 1. This was observed to occur in Fig. 5.8 for all

paths Pc,i with one of the extremes: ρth = 1 and fµ,th = 1: each node in the uncoarsened

circuit becomes a node cluster in itself. For the other extreme, ρth = 0 and fµ,th = 0,

there exists only one node cluster, as discussed in Section 5.4.3, and the number of paths

is upper-bounded by the product of the number of PIs and the number of POs.

In other words, the number of paths in the node clusters is no more than, and

often substantially less than, the original number of paths, N . For our example of the

small s27 circuit shown in Fig. 5.8, this corresponds to reducing 6 critical paths in the

uncoarsened circuit to 4 paths of the coarsened circuit. This reduction seems to be

small since s27 itself is a small circuit; in larger circuits, this reduction is also large, as

will be shown in Section 5.6.

5.5.2 Path Clustering

The number of such coarsened circuit paths in the node-clustered circuit, even if they

are fewer than those in the uncoarsened circuit, are still seen to be appreciably large in

many circuits. This can result in a large area and power overhead of the hold logics.

In such a case, we proceed further to apply our second step in the reduction of the

number of coarsened circuit paths, reducing also the number of hold logics that must

be generated: if the delays of any two such paths are close enough, then they can be

further clustered together.

For this purpose, we can now use and mathematically formulate a path closeness

metric, similar to that introduced earlier in Equation 5.2, for two paths Pc,i and Pc,j in

the coarsened circuit:

Closeness C
(
Pc,i, Pc,j

)
= 1, if (5.6)

ρ
(
delay[Pc,i], delay[Pc,j]

)
≥ ρth (5.7)

and fµ
(
Pc,i, Pc,j

)
≥ fµ,th (5.8)

where

fµ
(
Pc,i, Pc,j

)
=
min

{
µ(delay[Pc,i]), µ(delay[Pc,j])

}
max

{
µ(delay[Pc,i]), µ(delay[Pc,j])

} (5.9)

100

In practice, given the reduction in the number of the paths as we move from the original

circuit to the coarsened circuit, it is practical to enumerate the paths without much

computational overhead and to perform pairwise comparisons to cluster them.5

Algorithm 4: NodeToPathClusters

/* Algorithm for generating path clusters from node clusters */

Input: LCn : list of node clusters
Output: LCp : list of m path clusters Cp,1, Cp,2, ..., Cp,m
// Node Coarsening: enumeration of coarsened circuit paths

1 for each node cluster Cn ∈ LCn do
2 K ← number of PIs connected to Cn
3 for each PIi connected to Cn, 1 ≤ i ≤ K do
4 Enumerate paths using DepthFirstTraversal(LCn , PIi)

// Path Clustering

5 NCp ← total number of paths generated above
6 LCp .Clear(); // Initialize as an empty list

7 for each unclustered path Pc,i, 1 ≤ i ≤ NCp do
8 Cp ← new path cluster with Pc,i
9 LCp .Insert(Pc,i)

10 for each unclustered path Pc,j, i < j ≤ NCp do
11 if closeness C(Pc,i, Pc,j) = 1 then
12 Cp.Insert(Pc,j)

13 return LCp

The path clustering step can therefore be formalized as shown in Algorithm 4, which

was called earlier by Algorithm 2. The input to Algorithm 4 is the list of node clusters,

LCn , and it returns a list of path clusters, LCp . First, all paths in the coarsened circuit

are enumerated in lines 1 to 4 through a simple depth-first traversal of the coarsened

circuit. Next, a pairwise comparison is performed between these paths in lines 5 to

12 to check if they can be clustered together by applying the closeness test in line 11,

resulting in a greatly reduced number of clusters of coarsened circuit paths.

The application of this scheme is shown in Fig. 5.11 for s27 circuit. Path coarsening

in the second step reduces 4 paths in the coarsened cicuit further down to 2 clusters

5 Note that while this is computationally feasible in the presilicon phase, node clustering has only
solved a part of the problem. Path clustering is still essential to reduce the hardware overhead of hold
logic.

101

Figure 5.11: Path clusters generated in circuit s27.

of these paths. Hence node and path clustering allows for the number of hold logics to

be reduced by 3× as compared to the enumerative scheme discussed in Section 5.3.2

(which generated 6 hold logics). This reduction will be seen in Section 5.6 to be much

more in larger circuits.

5.5.3 Generation of VAHL

Having obtained the coarsened circuit path clusters, we now generate a separate hold

logic corresponding to each of these path clusters, by applying the hold logic generation

algorithm discussed in Section 4.1.2; each hold logic corresponds to the sensitization

criterion of all paths within the path cluster.

Figure 5.12: VAHL generated for circuit s27.

102

For our running example of circuit s27, the two-output VAHL along with the sleep

signals is shown in Fig. 5.12. These sleep signals can be selectively exercised in the

postsilicon stage for various dies.

5.6 Experimentation and Results

The proposed algorithms were implemented in C++, using the MinnSSTA [7] software

for SSTA under 32nm PTM [11] models. The methods were exercised on the ISCAS89

benchmark circuits on a 3.0GHz CPU with 8GB RAM. The SSTA grid size for each

circuit is taken from [6, 8]. Next, in Sextion 5.6.1, we provide a listing of all results,

followed by a detailed discussion and analysis in Section 5.6.2.

5.6.1 Tabulation of Results

We present the results of applying the clustering approaches in Table 5.1. For conve-

nience, we have marked the kth column in the table as Ck. We first describe the details

of how Table 5.1 is generated, and then analyze the results.

Baseline

For comparison purposes, we choose the pessimistic VLU design (Section 5.3.1, ρth =

fµ,th = 0) as the baseline. Recall that the pessimistic VLU has only one hold logic, and

identifies all potentially critical paths as two-cycle paths in the manufactured chip if the

clock constraint is violated.

Clustering parameters

Columns C2 and C3 list the values of the threshold parameters, ρth and fµ,th, that are

used in determining the closeness of nodes and paths. For comparison, we show two

sets of results for each circuit:

• Using clustering (Section 5.3.3, ρth, fµ,th 6= 0)

• Using enumeration (Section 5.3.2, ρth = fµ,th = 1).

For clustering, the procedure for choosing ρth and fµ,th (as tabulated) will be presented

in Section 5.6.4.

103

Table 5.1: Results for VAHL under the clustered (ρth, fµ,th 6= 0) and enumerative (ρth
= fµ,th = 1) approaches.

Circuit ρth fµ,th

Results from Clustering VAHL Results

|LCn | N NC m
∆A ∆P (%) ∆η(%)
(%) µ σ µ σ

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

s27 0.87 0.89 4 12 8 2 11.7 6.7 5.3 12.0 11.5
1 1 16 12 12 105.3 21.5 19.5 12.4 9.3

s1196 0.82 0.82 10 656 452 4 12.6 6.6 2.6 30.6 10.7
1 1 337 656 656 109.2 41.2 22.5 38.5 9.5

s5378 0.94 0.93 7 520 67 8 -6.3 -4.4 4.1 27.1 23.9
1 1 157 520 520 47.5 22.5 27.5 29.5 20.5

s9234 0.88 0.85 12 119556 297 3 8.5 2.2 1.3 7.8 11.2
1 1 1368 119556 – – – – – –

s13207 0.88 0.89 23 189666 1481 2 0.7 -0.3 0.2 26.6 6.8
1 1 1126 189666 – – – – – –

s15850 0.9 0.87 3 2.6e7 624 2 1.6 -0.9 0.4 2.6 0.6
1 1 1383 2.6e7 – – – – – –

s35932 0.95 0.95 9 174 59 4 -0.6 -0.2 0.2 1.1 0.8
1 1 1185 174 174 100.5 37.4 28.1 1.2 0.9

s38417 0.87 0.85 6 38337 302 5 5.0 1.0 1.8 19.6 5.6
1 1 1513 38337 – – – – – –

s38584 0.94 0.96 4 12172 16 3 0.3 -0.1 0.1 22.4 8.3
1 1 383 12172 – – – – – –

Average Clustered 3.7 1.2 1.8 16.7 8.8
Enumerative* 90.6 30.6 24.4 20.4 10.0

* Enumerative computations are prohibitive for larger circuits; hence the average for this
scheme is taken only over circuits which allow this.

Clustering results

The results for our clustering algorithms are shown in C4–C7. Column C4 presents the

number of node clusters, |LCn |, generated in Algorithm 3. Columns C5 and C6 list,

respectively, the number of potentially critical paths, N , in the uncoarsened circuit6

and the number of paths, NC , in the coarsened circuit. We then list the number of

coarsened circuit path clusters, m, generated in Section 5.5.2, in C7. Recall that for m

path clusters, we need m separate hold logics.

Computations for enumerative approach become prohibitive as the number of paths

6 While the critical path enumeration can be exponential in the number of nodes, the number of
critical paths can be computed in linear time.

104

increases, and hence the results could not be obtained for circuits larger than s5378.

VAHL area, power, and throughput

In C8 to C12, we show the results for overhead in area and power (denoted as ∆A (%)

and ∆P (%), respectively) as compared to the baseline. These changes arise due to a

higher number of hold logics, and the throughput enhancements (denoted as ∆η (%))

achieved due to less pessimism, for both the clustered and enumerative approaches.

Further, we recall that for the clustered and enumerative approaches, only a subset of

m hold logics will be active in postsilicon stage in a particular chip. Therefore, although

∆A remains the same for all chips, ∆P will be proportional to the area overhead of

the active hold logics in a particular chip, and may differ for different chips. ∆P can

therefore be captured as a distribution over L samples of Monte Carlo simulations.

Choosing L = 10000 as in [6], we tabulate the mean (µ) and standard deviation (σ) of

this distribution in C9 and C10. By the same logic, ∆η will also depend on the set of

active hold logics in a particular chip, and can be captured as a distribution over the L

Monte Carlo samples. C11 and C12 list the µ and σ values for ∆η distribution.

0 2 4 6 8 1010
0

2000

4000

6000

8000

10000

∆ P (%)

N
u
m

b
er

 o
f

sa
m

p
le

s

(a)

0 10 20 30
0

2000

4000

6000

8000

∆ η (%)

N
u
m

b
er

 o
f

sa
m

p
le

s

(b)

Figure 5.13: The distribution of percentage (a) ∆P and (b) ∆η, over all the L = 10000

Monte Carlo samples for circuit s9234.

In interpreting these results, it is important to note that the distributions of ∆P and

∆η are not Gaussian, but can be quite skewed. This is because a variation may cause a

hold logic to be activated or disactivated; large bars correspond to frequently-activated

105

hold logics that correspond to paths that are frequently critical. The distributions for an

example benchmark, s9234, are shown in Fig. 5.13. Even more skewed distributions are

seen for other benchmarks, e.g., s38417. Therefore, the fact that µ− 3σ, for example, is

negative, should not be misinterpreted to mean that the distribution necessarily shows

samples with negative power or throughput overheads. In fact, we observe that for both

the circuits, ∆η is positive over all chips. We also see many samples having zero ∆P ,

∆η values; in such samples, hold logic is not exercised as Tclk is not violated.

5.6.2 Analysis and Discussion

Gains through clustering

We first discuss the results of clustering algorithms presented in C4–C7. As discussed in

Section 5.3.1. the pessimistic baseline will always be characterized by one node cluster.

Compared to this, the clustered scheme has a slightly higher number of node clusters,

and the enumerative scheme substantially higher numbers, indicating progressively re-

duced degrees of pessimism.

Comparing C5 and C6, we find that node cluster generation reduces a large number

of potentially critical paths in the uncoarsened circuit (N), up to even 1000×, resulting

in a small number of paths in the coarsened circuit (NC). This shows that our node

clustering technique is very effective in reducing the number of paths. The enumerative

scheme offers no reduction and becomes prohibitive for large values of N .

For the clustered scheme, NC is still sufficiently high for most circuits that it is

impractical to maintain a separate hold logic for each path in the node-coarsened circuit.

Our second step of path coarsening (Section 5.5.2) further reduces this number, and

generates a set of m hold logics for VAHL listed in C8: it is seen that for our clustered

approach, m ≤ 8 over all the circuits. This is again a significant reduction and hence

very beneficial in gaining low area and power overhead, as discussed next. On the other

hand, the enumerative scheme does not allow any path clustering.

Area overhead

Our first observation is that for the clustered VLU, the increase in area over the pes-

simistic VLU is appreciably small: 3.7% on an average. This is a significant reduction

106

compared to 90.6% overhead incurred in the enumerative scheme (in fairness, it should

be pointed out that the average area overhead for the four circuits where enumeration

is feasible is 4.4%). We further notice that for some circuits (such as s5378, s35932),

∆A is negative, implying less area than the pessimistic VLU. This can happen as VAHL

area depends not only on the number of hold logics (which are higher in the clustered

VLU), but also their logical complexity. A single hold logic may contain a large num-

ber of terms in its (minimized) logical expression, hence requiring a large number of

gates to realize such logic. Compared to this, a number of hold logics with only a few

terms in their (minimized) logical expressions may need only a small hardware for logic

implementation.

For the clustered approach, a few circuits (s5378, s38584) give an appreciably low

area overhead even with high threshold values. This means that there is a high degree

of correlation in such circuits, offering greater potential for the use of our clustering

method.

Power overhead

As stated earlier, ∆P in C9, C10 is proportional to the area overhead of the active hold

logics, and is therefore observed to be always less than or equal to the total ∆A in C8.

Further, we observe that although ∆A is positive for clustered scheme, ∆P is neg-

ative for nearly half of the circuits. This implies a small power savings with clustered

VLU design, and attributes itself to reduced pessimism: for the baseline pessimistic

case, all of the hold logic is active in a particular chip when the Tclk constraint is vio-

lated, whereas in the clustered scheme, only a subset of the hold logics is active, which

may dissipate less power than the pessimistic VAHL. For different circuits therefore,

sometimes the pessimistic schemes wins, and sometimes the clustered scheme wins (and

sometimes the one-cycle case may win, when Tclk is met).

For the enumerative case, both area and power overheads are quite high even for

small circuits.

Throughput enhancements

We now analyze the throughput values in C11, C12. On an average, the clustered

scheme offers high throughput enhancements, with a mean value of 16.7% across all

107

the chips, approaching quite close to the 20.4% value for the enumerative case. Given

the low area/power overhead of the clustered scheme, our “Middle Way” approach for

clustering is therefore very beneficial in offering the desirable aspects of the pessimism

and enumeration extremes: low overhead and close-to-maximum throughputs.

One exception is of circuit s35932: ∆η values are low and similar for both approaches;

this indicates that this circuit has most of its potentially critical paths with near-critical

delays (similar observations are also discussed in [70, 74]), and all such paths will be

moved to second cycle. Clustering (or even path enumeration) therefore will not show

much benefit.

5.6.3 Runtime

We now present the runtime (in seconds) for our clustered approach, for the presilicon

steps of Algorithm 17 in Table 5.2, with the same values of ρth and fµ,th as in Table 5.1

for each of the ISCAS89 circuits. We first tabulate the runtime for SSTA in C2, to

compare the runtimes of our node and path clustering algorithms in C3, C4 with those

of SSTA. In C5, we present the total runtime for the clustering step (C3 + C4), and

finally present the overall total runtime in C6.

Node clustering

On an average, the runtimes for node clustering algorithm in C4 is smaller than that

of SSTA. This is intuitive as it involves a topological traversal only on the potentially

critical gates. This may not be strictly true: for s9234, s13207, this is larger. Runtime

increases with the number of node clusters processed (which are higher for s9234 and

s13207). This is also related to the degree of correlation in the circuit: s15850 has largest

N over all circuits, but due to high correlation, most of the nodes can be clustered

together into a small number of node clusters, saving runtime.

Path clustering

From C4, we observe that the path clustering step also takes much less runtime than

SSTA (except for s13207, for which the number of node and path clusters are highest

7 Runtime for postsilicon steps is small and measurement dependent, and was discussed in Sec-
tion 5.3.3

108

Table 5.2: Runtimes (in seconds) for clustering and VAHL generation

Circuit SSTA
Node Path Total

Total
Clusters Clusters (Clustering)

C1 C2 C3 C4 C5 C6

s27 0.0 0.0 0.0 0.0 0.0
s1196 0.7 0.5 0.5 1.0 1.6
s5378 7.4 2.1 0.1 2.2 9.6
s9234 14.6 19.6 5.0 24.6 39.2
s13207 74.3 132.9 208.0 340.9 415.2
s15850 89.6 18.7 31.4 50.1 139.7
s35932 229.8 10.5 0.1 10.6 240.4
s38417 207.2 51.2 1.7 52.9 260.0
s38584 233.0 26.4 0.1 26.5 259.4

Average 95.2 29.1 27.4 56.5 151.7

among all other circuits). Note that this step involved a path enumeration; however, due

to our node clustering step, this becomes much more inexpensive than the topological

traversal based SSTA! This gain is further pronounced for the largest circuits: s38417

and s38584. The final result is that the average total runtime for clustering step, shown

in C5, is smaller than that of SSTA.

5.6.4 Choice of Threshold Values

Our results in Table 5.1 were presented for some suitable value of ρth and fµ,th thresh-

olds. It will be therefore useful to understand how this value can be arrived at.

We recall that any choice of ρth, fµ,th ∈ (0, 1) values will be a good choice if these

give us as close (or as high) ∆η values as the enumerative VLU design, and as close (or

as low) ∆A values as the pessimistic VLU design. This was observed to be true for the

threshold values listed in Table 5.1.

In order to obtain this choice, we plot the trends of ∆A against ρth, fµ,th, and observe

the point closest to (ρth, fµ,th) = (1, 1) that yields a sufficiently low area overhead.

This choice also ensures high throughputs. This trend is shown for two of the ISCAS89

circuits, s1196 and s9234, in Fig. 5.14. For both the circuits, with a decrease in ρth, fµ,th

values from (1, 1) to (0.4, 0.4), the value of ∆A, being very high at (1, 1), reduces

quickly, offering some “knee” points on the curve where the reduction rate changes

quickly. These can be identified as suitable choices for thresholds, one of which is

109

tabulated in Table 5.1. From these figures we infer that we may only need to check a

few combinations of threshold values in between (0.8, 0.8) and (0.97, 0.97) to obtain a

high enough ∆η value, close to the enumerative case. Observing the threshold values

listed in Table 5.1, we find this intuition to be true for all ISCAS89 circuits.

0.4

0.6

0.8

1

0.4

0.6

0.8

1

20

40

60

80

100

f
µ,th

corr
th

∆
 A

 (
%

)

(a) s1196

0.4

0.6

0.8

0.4

0.6

0.8

200

400

600

800

f
µ,th

corr
th

∆
 A

 (
%

)

(b) s9234

Figure 5.14: Variation of ∆A with (ρth, fµ,th) for s1196 and s9234.

As before, ∆A may be somewhat higher for lower threshold values, as the logical

complexity of VAHL may increase ∆A. We further note from Table 5.2 that clustering

algorithms take take less than a minute on an average. Evaluating ∆A at multiple

combinations of ρth, fµ,th is therefore inexpensive as a one-time presilicon step.

5.6.5 Validation of Our Scheme

While we attempt to be less pessimistic than the pessimistic approach, a functional error

is possible in the postsilicon stage if a two-cycle path is wrongly predicted as a one-cycle

path by our postsilicon processing described in Section 5.3.3. In this section, we validate

that our algorithms have pessimism indeed : they do not cause any functional errors.

We first notice that a two-cycle path is identified as a one-cycle path only when

at least one of the critical ports in any of the critical gates in the circuit is wrongly

identified as noncritical, as such computations rely completely on the set of critical

ports.

To investigate if such a scenario may arise, we perform Monte Carlo simulations

110

with L = 10000 samples, and follow these steps for validation:

1. Each Monte Carlo sample corresponds to a case where we know the exact delay

distribution of the circuit. We perform an STA over the circuit and determine the

exact set of critical ports, and term it as CS,exact.

2. Next we simulate the clustered scheme: for each of the Monte Carlo samples

generated above, the postsilicon processing steps described in Section 5.3.3 are

performed to identify all critical path clusters. We then determine the set of

critical ports as ports that lie on the gates on the paths of critical path clusters,

termed as CS,clus.

3. In order to be functionally correct, we must have CS,clus ⊇ CS,exact, indicating

that one-cycle paths may be predicted as two-cycle paths, but not the other way.

We test for this supersetting property for each of the circuits listed in Table 5.1, and

find that among the L samples, zero samples caused such an error, thus validating our

scheme.

Chapter 6

Employing Circadian Rhythms to

Enhance Power and Reliability

Chapters 4 and 5 presented a framework for better-than-worst case designs for the com-

pensation of BTI and variations in digital circuits, maintaining functional correctness

across all chips and throughout lifetime.

As we saw in Chapter 4, compensation incurs some overhead. If the amount of

BTI degradation is reduced, such overhead can also be appreciably reduced, and can

be useful for both conventional and the better-than-worst-case paradigms. This forms

the pathway for the last part of our work in this thesis, wherein we present in this

chapter, a novel, counterintuitive, reliability-aware, and low-power scheme for circuits

and architectures.

6.1 BTI Mitigation: Circadian Rythms

6.1.1 Background and Motivation

With the continued scaling of CMOS technology, the demand for low power consumption

in circuits and computer systems has risen sharply. Increased on-chip power due to

switching and leakage can have numerous undesirable effects [10], and techniques for

achieving reliable, low-power operation have therefore become a critical issue in the

design flow.

111

112

Amongst the various factors that add to the power dissipation of a chip, one of

the major contributors is the design overhead for ensuring functional correctness over

its lifetime. The presence of variations and various aging effects causes spatial and

temporal changes of the chip frequency, respectively, and requires delay guardbanding

to ensure that the Tclk specification is met throughout the lifetime of the chip. In case

of aging, this design overhead can increase the power of various circuits on the chip by

about 30% in the 45nm regime [12]; this becomes increasingly significant at more deeply

scaled technology nodes. Reducing or removing such design overhead is an important

component of low power design.

The most major component of aging in digital circuits is attributable to BTI. Various

approaches (apart from our approach presented in Chapter 4) have been proposed to

overcome this degradation. As discussed above, some methods introduce delay guard-

bands using sizing or resynthesis [75] to add a delay margin to the nominal (t = 0)

design. Since this can incur a significant overhead, other methods have also been pur-

sued to mitigate/compensate for these effects and reduce the design overhead. At the

circuit level, adaptive body bias and adaptive supply voltage schemes [76, 12] compen-

sate for BTI degradation by dynamically increasing the values of Vdd and Vbb voltages

to speed up the circuit. Since the optimum for each circuit block may be different, this

could involve the generation of a large set of Vdd and Vbb values, which poses a signif-

icant challenge. Such a solution requires a voltage control system to supply different

values of Vdd and Vbb to different circuit blocks. Implementing these multiple values at

the architectural level, with a small number of chip-level supply voltage and body-bias

voltage regulators, is a significant challenge.

Chip-level dynamic voltage scaling (DVS) schemes [77, 78, 79, 80, 81] to recapture

lost performance overcome this problem by dynamically varying the supply voltage

at the processor level. These methods also mitigate BTI by managing the workload

amongst multiple cores.

State-based schemes detect the idle states of the circuit during computation [82, 83],

and apply a suitable recovery mechanism to lower the degradation. Other methods in

this class distribute tasks over partitioned functional units to balance aging [84] and

perform node vector control [85] or power-gating [86] during idle times.

Such idle state approaches have some common limitations. First, the idle states

113

are dependent on the workload/circuit configuration: the precise idle times tend to be

unpredictable, or difficult to predict dynamically. Hence, the schemes require a complex

hardware/software control mechanism that can (a) dynamically detect the idle times

during execution, (b) apply the appropriate recovery mechanism, and (c) keep track of

which parts of the circuit have partially recovered after the idle time, and by how much.

Second, it may not be easy to exploit such idle times fully, since modern out-of-order

execution and multi-threading endeavor to hide idle periods. A better approach would

be to have predictable idle times of fixed durations, requiring a potentially much simpler

control mechanism.

6.1.2 Circadian Rhythms for Circuits

In this work, we employ an entirely new approach to reduce circuit aging. We propose

Greater-than-NOMinal Operation (GNOMO), a novel and superficially counterintuitive

scheme for mitigating BTI that goes against the conventional wisdom that operation at

a higher Vdd will result in a higher delay degradation and higher power dissipation. On

the contrary, we show that by elevating Vdd to an optimal, greater-than-nominal value,

we can achieve both lower delay degradation and power dissipation than that incurred

at the nominal Vdd, at roughly constant performance.

Our ideas are inspired by the notion of human circadian rhythms of wakefulness and

sleep. A human is likely to age more quickly without adequate rest, and we show that

a similar argument can be made for an inanimate circuit. The normal way to exercise a

circuit is to subject it to a nominal supply voltage, Vdd,n, throughout its lifetime. Under

our scheme, we apply a greater-than-nominal voltage, Vdd,g > Vdd,n, interspersed with

predictable periods of sleep (i.e., power-gating), to reduce aging effects. Intuitively, just

as a human uses sleep to recover from fatigue, and can operate at greater intensity after

adequate sleep, a circuit can also recover from BTI while it is “asleep,” and can operate

at the larger supply voltage value, Vdd,g, and yet age less than the scenario where it is

constantly “awake” and subjected to the Vdd,n voltage under nominal operation.

For a given nominal Vdd, this chapter develops a procedure that allows the static

determination of the optimal Vdd,g for a circuit. We show that the GNOMO scheme can

result in enhanced reliability and lower aging. This reduction, as well as other aspects of

GNOMO, can then be parleyed into a reduction in the power overhead of guardbanding

114

a circuit against aging degradation. We exercise the GNOMO approach from the circuit

level to the architecture level, and show how power savings can be achieved through a

practical adoption scheme that is applied up to the architectural level. Specifically, we

show in Sections 6.5.1 and 6.5.2 that GNOMO enables a reduction of about 1.3× to

1.8× in delay degradation, for various values of Vdd,n considered in this chapter. For

the same lifetime, this reduction in degradation implies that reduced guardbands are

necessary as compared to the nominal voltage case. This yields a reduction of about

1.8× to 3.2× in area overhead and about 1.5× to 3.1× in the power overhead.

GNOMO does not require fine-grained voltage supplies/control. Nor does it require

the detection of idle times (or the potentially complex associated circuitry) since the

idle times are generated, and not detected, and are hence predictable-by-construction.

Further, the idle times are orthogonal to those that dynamically occur during work-

load execution (due to cache misses, branch mispredictions, etc.). Moreover, they do

not depend on a precise characterization of signal probabilities, as is the case for other

approaches: characterizing BTI aging based on signal probabilities is inherently unreli-

able, in that probabilities represent an often unpredictable average rather than a worst

case1 . The use of predictable idleness, on the other hand, provides safe, correct-by-

construction, guarantees on the amount of recovery.

We work with a widely adopted model [50] for predicting delay degradation due to

BTI, as discussed in Section 2.2.3. Further, our delay and power modeling for circuits

is based upon the formulations described in Section 2.2.4.

The remainder of this chapter is organized as follows. Sections 6.2 and 6.3 present

the framework and architectural implementation for GNOMO, and are followed by an

analysis of the power dissipation under GNOMO in Section 6.4. We then present our

results in Section 6.5.

6.2 GNOMO: Greater-Than-NOMinal Vdd Operation

We now present the GNOMO framework for BTI mitigation. As defined earlier, the

term Vdd,n refers to the nominal supply voltage and Vdd,g to the GNOMO value.

1 While such averages are useful in working with the “softer” constraints associated with power
dissipation, they are much more unreliable for the “harder” constraints involved in timing.

115

6.2.1 Circuit Recovery through Power Gating

Motivating intuition

We illustrate the idea of GNOMO through the example of an ALU circuit, the MCNC

benchmark alu4. We define the delay degradation, ∆D, as the increase in circuit delay

due to BTI effects, and express it as a percentage of the nominal delay, D(0), at time

0. The curve marked “Vdd,n” in Fig. 6.1(a) shows the temporal change in ∆D (%)

for alu4 when the circuit is operated at a nominal supply voltage, Vdd,n = 1.0V. The

time required to complete the ALU computation is denoted as tn. Note that monotone

degradation under stress shown here captures the effect of alternate stress/recovery

cycles and plots the envelope of BTI degradation [50, 49].

Computation Time

∆
 D

 (
%

)

Reduction in
Delay

Degradation

V
dd, g

 = 1.1V

 t
g

 t
n

 t
i

V
dd, n

 = 1.0V

(a)

Computation Time

∆
 D

 (
%

)

V
dd

 = 1.3V V
dd

 = 1.2V

V
dd

 = 1.1V

V
dd

 = 1.0V

V
dd

 = 0.8V

V
dd

 = 0.9V

(b)

0.8 0.9 1 1.1 1.2 1.3
5

10

15

20

V
dd

 (V)

∆
 D

 (
%

)

V
dd,n

V
dd,g

(c)

Figure 6.1: The delay degradation patterns of MCNC benchmark alu4 at (a) nominal

supply voltage Vdd,n = 1.0V and greater-than-nominal supply voltage Vdd,g = 1.1V, (b)

Vdd ∈ [0.8V, 1.3V] values, and (c) delay degradation for alu4 at time tn in (b).

Under GNOMO, at a higher supply voltage Vdd,g (chosen to be 1.1V in this figure),

the ALU has a lower delay and completes the same computation in time tg < tn. To

maintain the same throughput as the Vdd,n case, in principle the data may be latched at

time tg, and the circuit could then be power-gated2 during an idle time, ti = tn − tg.
During the idle time, the circuit recovers from BTI degradation, as shown in the figure.

The net result is that at time tn, the BTI degradation for GNOMO is lower than that

2 For convenience, we will temporarily assume that such a power-gating operation is instantaneous.
We will remove this assumption later.

116

under the nominal supply voltage.

We explore this tradeoff further in Fig. 6.1(b), for the case where a different baseline

voltage, Vdd,n = 0.8V, is used, and several Vdd,g values are considered. A higher value

of Vdd,g implies greater degradation during the compute period, and a larger idle time.

Since the degradation increases superlinearly with the supply voltage, but the idle times

increase sublinearly (as will be shown in Section 6.2.3), it is possible to identify a

supply voltage point at which the overall degradation at time tn is optimized. This

is illustrated in Fig. 6.1(c): as Vdd,g is increased, the percentage ∆D first decreases,

reaches a minimum at 1.1V, and then increases again.

Mechanism

In reality, it is quite impractical to implement such a scheme in the form described

above, where circuits must be put to sleep and woken up within a single clock cycle.

The essence of the idea can nonetheless be extended to a realistic framework: at a higher

Vdd value (corresponding to a higher clock frequency), instead of switching-off/waking-

up the circuit within each cycle, we run the circuit for a large number of cycles at

a faster-than-nominal clock. This completes a part of the overall computation more

rapidly than at the nominal supply voltage/clock frequency, but we maintain the same

throughput by introducing idle time, during which the circuit is power-gated and allowed

to recover from BTI degradation.

This idea effectively provides the same sleep/wakeup “duty cycle” as in the ear-

lier conceptual exposition, and therefore the same pattern of temporal degradation and

recovery. From the notion of frequency independence of BTI [50, 48, 87], the degrada-

tion/recovery depends on the duty cycle rather than the precise distribution of on/off

periods, and therefore this alternative, more practical, formulation results in the same

amount of recovery as the conceptual idea presented earlier.

This is depicted more concretely through Fig. 6.2, which shows the delay degradation

patterns for MCNC circuit b12 under GNOMO. When the processor is operated at the

GNOMO Vdd, the initial delay degradation is higher. This degradation, however, as

shown in Fig. 6.2(a), is decreased due to the recovery obtained in the idle phase, and

susequently becomes less than (or “crosses over”) the nominal delay degradation very

early in the lifetime. An envelope of this degradation trend over 10 years of operation is

117

∆
 D

 (
%

)

Time

 V
dd

 = 0.9V

 V
dd

 = 1.1V

(a)

0 2 4 6 8 10
0

10

20

30

Time (years)

 ∆
 D

 (
%

)

 V
dd

 = 0.9V

 V
dd

 = 1.1V

(b)

Figure 6.2: GNOMO results in lower degration than nominal operation (a) GNOMO

delay degradation becomes less than nominal degradation very early in the lifetime, and

(b) the envolope of GNOMO delay degradation over a period of 10 years. The plot in

(a) shows the early lifetime corresponding to a highly magnified view the extreme left

of the degradation envelope in (b).

plotted in Fig. 6.2(b), which shows that delay degradation at GNOMO is substantially

lower than the nominal delay degradation. Fig. 6.2(a) corresponds to a highly magnified

view of the extreme left of Fig. 6.2(b) (the early lifetime). Simulations and experimental

data from [87] also validate this trend: operating at a higher Vdd value with interspersed

idle cycles reduces the overall delay degradation compared to the nominal case.

Therefore, a practical implementation of GNOMO works as follows: the processor

functions under a circadian rhythm, where it is awake and runs at high speed for several

(typically, millions of) cycles at the GNOMO supply voltage, Vdd,g, during the compute

phase, and then sleeps for some cycles during the idle phase where it is power-gated.

The circadian cycle is then continued throughout its lifetime.

The alternation of the compute/idle phases is depicted in Fig. 6.3, which shows the

supply voltage value along the y-axis and time (in cycles as well as seconds) along the

x-axis. We use this figure to introduce some notation that will be used in the remainder

of this chapter. For a given workload, consider the operation of the processor during a

compute phase, corresponding to a fixed number of clock cycles, cf .

Let the number of instructions committed, while operating at Vdd,n (Vdd,g), be In

118

Figure 6.3: The compute and idle phases in GNOMO in the practical implementation.

This figure is not drawn to scale; in reality, tg, ti >> ts, tw.

(Ig), and let the corresponding execution time be tn (tg) time units. Clearly,

tn = cf · Tclk,n and tg = cf · Tclk,g (6.1)

The duration of the idle phase is denoted by ti (in seconds) and ci (in terms of the

number of cycles). During this period, the circuits are power-gated and do not perform

any computation3 .

The additional costs associated with the idle phase are also illustrated in the figure.

Power-gating a circuit incurs an overhead of ts time units (cs cycles) for the circuits to

transition to the sleep state, and an overhead of tw time units (cw cycles) for wakeup.

The sleep/wakeup transitions are deliberately designed to occur within the idle phase,

ensuring that the execution of instructions is not affected by the GNOMO scheme.

Constraints on the Choice of ci and cf

At the chosen value of Vdd,g, for a specific lifetime goal, a prescribed ratio of tg to ti can

be calculated. Therefore, if ci (and hence ti) is very large, then cf (and hence tg) will

also be large; conversely if ci is small, then cf will also be small. In this section, we will

discuss the constraints that place double-sided bounds on the choice of ci (and hence,

on cf).

Existing power-gating frameworks offer sleep transition times (cs) of about 10 to 50

cycles for various circuits in a processor [86], while the wakeup time (cw) is typically

about 5-10 cycles. Since these transitions are designed to occur within the idle phase,

3 Note that this idle phase is deliberately inserted and therefore easily predictable, and is thus
different from the idle periods that may occur within the compute phase due to cache misses, TLB
misses, branch mispredictions, etc.

119

the effective idle time may decrease significantly if cs and cw are comparable to ci.

To amortize the effects of sleep/wakeup transitions, it is necessary to choose ci to be

significantly larger than cs or cw. This constraint places a lower bound on the value of

ci that must be used, an issue that is discussed in greater detail in Section 6.5.4.

Thermal constraints also place an upper bound on the choice of ci. If a large value

of ci is chosen, then the processor could operate under a high supply voltage, Vdd,g, for a

prolonged period, possibly leading to thermal problems. The value of ci must be chosen

in such a way that tg is well below the thermal time constant of silicon, so that if the

power is relatively unchanged from the nominal case, the alternate compute/idle phases

do not affect the peak temperature.

In practice, choosing cf to be of the order of ten million cycles provides a reasonable

balance that meets the double-sided constraints discussed above.

6.2.2 Idle Time Generation – Practical Considerations

Recall that the number of instructions executed in cf cycles at Vdd,n and Vdd,g are In

and Ig, respectively.

If the frequencies of all the components in a CPU (both on-chip and off-chip com-

ponents) were to scale at the same rate as Vdd is changed, the number of instructions

committed in cf cycles would be the same, i.e., In = Ig. The idle time ti,1 could then

be computed as:

ti,1 = tn − tg = cf · (Tclk,n − Tclk,g) (6.2)

However, in practice, the voltages and frequencies are scaled up only for on-chip

components (processor, cache, on-chip buses, etc.), and the access time for off-chip

memory (upon a cache miss) remains the same at both Vdd,n and Vdd,g. This constant

access time corresponds to a larger number of cycles under the faster clock at Vdd,g.

The overhead of off-chip operations such as cache misses therefore corresponds to

a larger number of cycles of penalty under Vdd,g, implying that during a fixed number

of clock cycles, cf , while the processor is awake, the number of instructions committed

under GNOMO will be smaller. In other words, Ig = In− Io, where Io is the number of

instructions that could be committed at the nominal supply voltage, but not at Vdd,g.

120

(a) (b)

Figure 6.4: The illustration of our scheme for generating (a) fixed idle time, ti,1, and (b)

variable idle time, ti,2. The figure is not drawn to scale; in reality, tn, tg, ti,1, ti,2 >> to.

We denote the overhead of completing the execution of these Io instructions by co (in

clock cycles) and to (in seconds).

This overhead can be accommodated in two ways:

• By keeping the duration of idle phase fixed (= ti,1) and deferring the execution

of Io instructions to after the idle phase, as shown in Fig. 6.4(a): this incurs a

performance penalty of to time units (we show that this performance penalty is

very small in Section 6.5.4).

• By executing the Io instructions within the idle phase, as shown in Fig. 6.4(b)

(which shows the same operations as in Fig. 6.4(a), except for the placement of

the execution overhead). This reduces idle time from ti,1 to ti,2:

ti,2 = tn − (tg + to) = ti,1 − to (6.3)

This reduction in idle time also reduces the overall recovery possible, albeit without

a performance penalty.

For a specific value of Vdd,n, the value of ti,1 is fixed as it depends only on the fixed number

of cycles cf and the frequency corresponding to Vdd,n, which is also fixed according to

Table 6.1. On the other hand, the value of ti,2 varies with the number of off-chip accesses

during execution.

A second practical consideration is the need to preserve the state of the processor

during the sleep periods, thus facilitating a rapid return to normal execution upon

121

wakeup. To ensure this, the circadian cycle is applied to computational units such as

ALUs, decoders, and sense amplifiers. Storage elements such as caches, register files,

the reorder buffer (ROB), tables for virtual address translation (TLBs) and for branch

prediction (BPTs), and load-store queue (LSQs), may contain state data that must be

preserved, and are maintained with suitable optimizations, as reported in Section 6.3.2.

6.2.3 Idle Time Generation – Implementation

In our experiments, we use the first of the two schemes proposed above: after completing

cf cycles, we use a fixed idle time of ti,1 time units (corresponding to ci,1 cycles), as given

by Equation (6.2). Under this scheme, the idle phase duration is fixed, and a fixed and

predictable amount of recovery is guaranteed. A substantially similar approach may be

used for the second scheme.

Since the idle time is fixed, the completion time of Ig + Io instructions is delayed by

co cycles, i.e., there is a performance penalty involved, but the amount of recovery time

is guaranteed. The total performance penalty for a particular workload is given by:

Performance Penalty =
to
tn

=
co · Tclk,g
cf · Tclk,n

(6.4)

In our experiments, the choice of Vdd,n and Vdd,g > Vdd,n may take one of several

values; each such value corresponds to a different frequency of operation for the proces-

sor. We use a set of realistic discrete supply voltage/frequency (Vdd/f) pairs, adopted

from Intel’s recent 48-core IA-32 Processor [1] as shown in Table 6.1, where Vdd lies

in the range [0.7V, 1.3V] (this choice is only for illustration purposes; any other Vdd/f

framework can be used instead)4 . This allows us to operate within the framework

of existing technologies to illustrate the principles of GNOMO. Table 6.1 confirms our

earlier observation in Section 6.2.1 that with a linear increase in the value of Vdd, the

increase in the clock frequency (i.e., circuit speed) is sublinear.

Using the data in Table 6.1, the fraction of the idle time at the GNOMO supply

voltage in the “ideal” case (where t0 = 0), to the execution time for cf cycles at Vdd,n,

4 It is important to emphasize here that although this table is taken from the allowable DVFS values
for an Intel processor, GNOMO is not an adaptive supply voltage scheme (ASV) for BTI mitigation.
Under the baseline GNOMO scheme, the processor operates at a constant voltage and frequency. How-
ever, it is possible to extend the baseline GNOMO framework to the case where ASV is required for
power management.

122

Table 6.1: Operational Vdd/f pairs adopted from Intel’s IA-32 Processor [1]
Vdd (Volts) 0.7 0.8 0.9 1.0 1.1 1.2 1.3

Frequency (GHz) 0.25 0.47 0.68 0.86 1.03 1.17 1.30

Tclk (ns) 4.00 2.13 1.47 1.16 0.97 0.85 0.77

can be computed for valid combinations of (Vdd,n, Vdd,g) as follows:

ti,1
tn

=
cf · (Tclk,n − Tclk,g)

cf · Tclk,n
= 1−

Tclk,g
Tclk,n

(6.5)

Note that this expression is an approximation of the realistic idle time fraction, ti,2 / tn,

since our experiments show that the performance penalty is small.

Table 6.2: Percentage idle time ti,1 for various (Vdd,n, Vdd,g)

Vdd,g → 0.8V 0.9V 1.0V 1.1V 1.2V 1.3V
Vdd,n ↓
0.7V 46.8% 63.2% 70.9% 75.7% 78.6% 80.8%

0.8V – 30.8% 45.3% 54.3% 59.8% 63.9%

0.9V – – 20.9% 34.0% 41.9% 47.7%

1.0V – – – 16.1% 26.5% 33.6%

1.1V – – – – 12.5% 20.8%

1.2V – – – – – 10.0%

Table 6.2 shows this percentage, wherein each entry is computed by Equation (6.5),

using the respective values of (Tclk,n, Tclk,g) from Table 6.1. We observe the following

diminishing returns in idle times:

• For a particular value of the nominal supply voltage Vdd,n (say 0.8V), a linear

increase in the value of Vdd,g (along the row from 0.9V to 1.3V) increases the idle

time durations only in a sublinear fashion.

• At higher values of Vdd,n (≥ 1.1V), the available idle time is low.

The idle times discussed above correspond to available time for BTI recovery, and

therefore the delay degradation improvements also show diminishing returns, as was

illustrated earlier in Fig. 6.1(c).

123

6.3 Architectural Implementation of GNOMO

In this section, we discuss the details of GNOMO implementation on a processor with

out-of-order execution, and the simulation framework that we utilize to validate the

gains of this approach.

6.3.1 Processor Details

The structure for a general purpose processor is depicted by Fig. 6.5. Broadly, the

components of the processor can be categorized into on-chip components and off-chip

components.

Figure 6.5: Schematic of an out-of-order processor, with its on-chip and off-chip com-

ponents.

The on-chip components include all the circuitry and resources that require fast

communication during the execution of instructions, such as the ROB, registers, TLBs,

BPTs, and LSQs. The processor architecture is assumed to be a MIPS-like five-stage

pipeline shown in Fig. 6.5, with the fetch, decode, execution, memory and commit

stages. On-chip caches store the copy of a part of the data from the main memory

and are further divided into L1 and L2 caches. Communication between the various

components is achieved through on-chip buses.

124

The off-chip components include the peripheral memory (main memory), the associ-

ated memory controllers and the memory buses. An access to the main memory, which

occurs when there is a cache miss, is carried out by the buses connecting the on-chip

and the off-chip components.

6.3.2 Simulation Framework

Processor Model

We implement our GNOMO framework in a MIPS architecture based out-of-order ex-

ecution processor simulation environment built upon Simplescalar [88], with the added

functionality of being able to model the power dissipation of the various components

of the processor using Wattch [89]. We adopt SPEC 2000 suite [90] as the benchmarks

for simulations, which are executed using Wattch, with the inputs for these benchmarks

derived from the MinneSPEC set [91]. The technology parameters for our simulations

are at the 32nm node: since the available implementation of Wattch is based on older

technology nodes (100nm and above), the parameters used in the power model were

updated for the 32nm node from Orion2.0 [92].

During execution, a small, fixed number of instructions are fetched from the instruc-

tion cache into the ROB. The processor then repeatedly extracts an instruction from the

tail of the ROB and starts execution in the pipeline beginning with fetch and decode.

Functional and control units are used during the pipeline operation, and the underlying

devices undergo stress-relax cycles during execution.

Idle time insertion

We now describe the modifications to incorporate GNOMO in the simulation environ-

ment. The first step is to introduce periods of idle times in the execution. To enable

this, we maintain a clock counter that is initialized whenever a compute phase begins.

After cf cycles have been completed, the pipeline is flushed, and the sleep signal is acti-

vated for all on-chip components. Note that since the pipeline is flushed, the execution

in the next compute phase restarts at the instruction that follows the last committed

instruction.

125

Power gating with state preservation

When the processor enters into the idle state, power-gating is applied to some on-

chip components. As discussed in Section 6.2.1, power-gating disconnects the devices

in these components from the power supply, resulting in a possible loss of state. For

computational elements such as ALUs and control units that do not contain useful state

information, this is entirely acceptable. We augment Wattch to model the functionalities

and power dissipation of the processor when its operation is halted upon sleep, and

resumed upon wakeup, and describe this augmentation scheme below.

For caches, register files and other storage structures, we use the sleep signal to

preserve state through hybrid drowsy cache techniques [93, 94] that reduce standby

leakage. Under this scheme, the sleep signal, instead of cutting off the supply voltage,

triggers circuitry that scales the supply voltage of the devices to an appreciably low

value (for instance, 0.3V) where the device has a very small leakage and the state can

be preserved. The sleep/wakeup overhead associated with these schemes is 1-10 cycles

and is thus negligible as compared to the duration of the idle period (which is of the

order of a million cycles).

Figure 6.6: The power-gating scheme applied differently for various on-chip components.

Units with combinational circuits are completely switched off by the sleep signal. Cache

on the other hand preserves state by the use of a special circuitry that scales the cache

supply voltage to a relatively low value.

In this scheme, we first save the register files and the storage structures in the cache

(their sizes are typically small and this takes a negligible amount of storage), and then

allow the sleep signal to activate the hybrid drowsy cache mode. When the next compute

phase begins, the data for register files and storage structures is restored. This scheme

is depicted in Fig. 6.6, which shows how the same sleep signal acts in a different manner

for various on-chip components.

Under this scheme, a main memory access transaction (either for a load or for a

126

store) may be in progress just before the processor enters into the idle phase. Since the

pipeline is flushed, this instruction would have required a re-execution of the memory

transaction. This is avoided by our scheme of saving the LSQ entries during the idle

phase. Upon wakeup, the processor checks the old LSQ entries and finds the load/store

operation already served during the idle phase (since the memory transaction continues

to take place in the off-chip components even during the idle time and the off-chip

components are not affected by on-chip GNOMO).

6.4 Power Analysis

In this section, we examine the implications of GNOMO on power at both the circuit

and architectural levels. In sequence, we examine a set of factors that cause the power

dissipation to be altered under GNOMO. First, in Section 6.4.1, we analyze the change

in power consumption, averaged over its lifetime, of a circuit operating at an elevated

Vdd, as compared to the nominal operation, for a unit without state that is completely

power-gated during the idle phase. Next, in Section 6.4.2, we examine the impact of

reduced aging on the delay guardbands, and hence the power dissipation, associated

with such a unit. Finally, in Section 6.4.3, we consider the complete picture: change

in the total power dissipation due to GNOMO, which includes the impact of units that

are turned off, as well as those placed in a drowsy state, during the idle phase.

6.4.1 Changes in Power as a Function of Vdd,g

We begin by considering a circuit that is designed to meet the delay specification at the

beginning of lifetime, and is not resilient to BTI5 , and set the delay of this nominal

circuit to a normalized power value of 1 unit. When such a circuit is operated at

GNOMO, the power dissipation changes as follows:

• With the supply voltage increased to Vdd,g, dynamic power increases quadratically

and leakage increases exponentially [95].

• Even though the Vth increase due to BTI degradation is small, the exponential

relationship in leakage power leads to a significant reduction of leakage over the

5 Such a circuit is not practically useful, as it fails with time. We merely consider this as a baseline
for all comparisons, for convenience.

127

lifetime of the chip [12]. This effect is more pronounced at higher Vdd values (due

to increased BTI degradation).

• A further reduction in the average dynamic and leakage power consumption occurs

due to generation of idle time, since power dissipation now occurs only in the

compute phase and not in the idle phase (except during sleep/wakeup cycles),

which is a fraction of the total nominal computation time.

0.8 0.9 1 1.1 1.2 1.3
0

0.5

1

1.5

V
dd

 (V)

N
o

rm
a
li

z
e
d

 P
o

w
e
r V

dd,n

V
dd,g

Figure 6.7: Change in average power (dynamic + leakage) for alu4 as a function of Vdd,g;

Vdd,n = 0.8V.

For our running example of the MCNC benchmark alu4, Fig. 6.7 illustrates the

changes of power (dynamic+leakage), normalized to the nominal value defined above,

for a typical case with Vdd,n = 0.8V, with Vdd,g ranging from 0.9V to 1.3V. Similar

trends are seen for other values of Vdd,n. Considering the combined impact of the three

effects listed above, Fig. 6.7 shows that the power consumption therefore remains about

flat until Vdd,g = 1.0V and then begins to increase beyond this point.

6.4.2 Power Savings in Delay Guardbanding

We now consider the scenario where the delay guardbanding is introduced in the circuit

to make it BTI-resilient throughout its lifetime. In our discussion, we use the terms

“guardbanding” and “compensation” interchangeably. We work with a guardbanding

technique under which the transistors in the circuits are synthesized with a tighter timing

constraint such that the end-of-lifetime delay meets the delay specification, Dspec. This

128

delay margin algorithm is identical to that used in Section IV of [12]. The cost of this

compensation is in the form of an increased area overhead.

(a)

0.8 0.9 1 1.1 1.2 1.3
0

0.5

1

1.5

V
dd

 (V)

N
o

rm
a
li

z
e
d

 P
o

w
e
r

V
dd,n

V
dd,g

(b)

Figure 6.8: (a) The temporal delay degradation of alu4. The area overhead required

to compensate the circuit under GNOMO, is less than that required under nominal

operation. (b) Trends in power for alu4, with power overhead due to compensation

incorporated, as a function of Vdd,g; Vdd,n = 0.8V.

The idea presented in this section can be depicted schematically through Fig. 6.8(a),

which shows the temporal delay of a circuit along the y-axis and time along the x-axis.

A circuit operated at Vdd,g has a lower end-of-lifetime delay degradation than the same

circuit when operated at Vdd,n. Hence, in making each case BTI-resilient, a lower amount

of compensation (and associated area overhead) is needed with GNOMO than for the

Vdd,n case. Since both the dynamic and subthreshold leakage power are proportional to

the widths of the transistors used in these circuits, a lower compensation area overhead

corresponds to a lower power dissipation of the circuit. This results in a further lowering

of the power dissipation at the GNOMO supply voltage points, as compared to the points

in Fig. 6.7.

Fig. 6.8(b) shows the changes in the normalized average total power consumption

for circuit alu4, with Vdd,n = 0.8V and Vdd,g ranging from 0.9V to 1.3V, under the

same workload conditions as Fig. 6.7. This plot combines the effects on power from

Section 6.4.1 and the effect of BTI compensation. The net result is a further decrease

in the GNOMO power compared to the power under nominal operation: total power

remains below the nominal dissipation as Vdd,g is increased, up to 1.2V.

129

6.4.3 Overall Power Dissipation

The analysis so far only considers components that can be fully switched off in the idle

state and do not need to retain their states. When we consider the power overhead of

state preservation, the total power can be higher than shown in Fig. 6.8(b). The power

dissipation in all the components of the processor is evaluated next.

0.8 0.9 1 1.1 1.2 1.3
0

0.5

1

1.5

2

V
dd

 (V)

N
o

rm
a
li

z
e
d

 P
o

w
e
r

V
dd,n

V
dd,g

Figure 6.9: Change in the total power with GNOMO, showing the power savings at

lower values of Vdd,g.

The changes of the overall power dissipation (again, normalized to the nominal

case) is shown in Fig. 6.9 for Vdd,n = 0.8V and Vdd,g ranging from 0.9V to 1.3V, for

the execution of the applu workload (similar trends are seen for other workloads). We

observe that as Vdd,g is increased, the power dissipation with GNOMO reduces until

about 1.0V, and then becomes greater. Note that the rate of power increase is higher

in Fig. 6.9 as compared to Fig. 6.8(b).

The power dissipation of cache and storage structures forms a significant portion of

the total power dissipation. At higher Vdd,g values (beyond Vdd,g = 1.0V), the power

dissipation is also higher. Thus the total power begins to dominate the power savings

that we achieve through GNOMO.

6.4.4 Choosing the Optimal GNOMO Supply Voltage

Based on the above analysis of overall power dissipation, we can select an optimal choice

of Vdd,g (= V opt
dd,g) for a given Vdd,n, that maximizes the power savings. For instance, we

observe in Fig. 6.9 that for Vdd,n = 0.8V, this happens at Vdd,g = 0.9V.

We therefore consider the power savings for the benchmark applu, for all Vdd,n

130

values, in Table 6.3. This table is quite similar to Table 6.2, except that it lists the

power savings instead of idle times, for valid combinations of (Vdd,n, Vdd,g). Positive

entries imply a power savings, whereas negative entries imply a power overhead. From

this table, we determine the optimal Vdd,g value (for a particular Vdd,n), to be the value

that maximizes power savings, and indicate it by the symbol “*.” We observe that for

a fixed Vdd,n, increase in Vdd,g (moving along a row) first yields power savings, and then

power overhead. Further, as Vdd,n is increased, the optimal savings in power (at V opt
dd,g)

although substantial, decrease sublinearly.

Table 6.3: Percentage overall power savings for various (Vdd,n, Vdd,g) for benchmark
applu

Vdd,g → 0.8V 0.9V 1.0V 1.1V 1.2V 1.3V
Vdd,n ↓
0.7V 14.9%* 13.6% 0.7% -23.4% -54.5% -93.4%

0.8V – 9.4%* 3.9% -12.4% -37.7% -76.2%

0.9V – – 6.9%* 1.8% -20.2% -55.7%

1.0V – – – 5.3%* -12.0% -35.9%

1.1V – – – – 4.2%* -21.4%

1.2V – – – – – -15.5%

Table 6.4: The optimal Vdd,g values for various values of Vdd,n
Vdd,n (V) 0.7 0.8 0.9 1.0 1.1 1.2

V opt
dd,g (V) 0.8 0.9 1.0 1.1 1.2 1.2

Although the simulations above show results only for applu workload, we have ob-

served that these values of optimal Vdd,g, in fact, are the optimal values across a range

of SPEC 2000 benchmarks considered in Section 6.5.3. The optimal (Vdd,n, V opt
dd,g) pairs

for each value of Vdd,n, are tabulated in Table 6.4. We make the following observations

about the data in this table:

• For Vdd,n = 1.2V, V opt
dd,g = Vdd,n and no gain is possible. This is attributed to the

fact that for various workloads, the total power increases by 14.4% to 16.2% for

Vdd,g = 1.3V candidate value, resulting is no power savings. This is primarily

attributed to a steep increase in the leakage power due to the higher voltage value

and also due to the low idle time.

131

• The GNOMO scheme works best when the value of Vdd,n is lower, but it provides

significant improvements for all Vdd,n ≤ 1.1V.

6.5 Results

We now present the results of applying GNOMO at both the circuit and architectural

levels. At the circuit level, we examine the application of GNOMO on various ISCAS85,

MCNC and ITC99 benchmarks, synthesized using ABC [68] on the 32nm PTM [11]

based library. Our library consists of INVs; BUFs; 2-4 input NANDs and NORs; 2

input XORs and XNORs; all with different sizes. We choose tlife = 10 years. We

optimize the circuits by introducing delay margins to compensate for BTI aging, using

the algorithms in [12]. At the architectural level, we use the framework detailed in

Section 6.3.

6.5.1 Delay Degradation Reduction

We evaluate the extent to which GNOMO can reduce the degradation in various bench-

mark circuits at the transistor level. In Fig. 6.10, for a variety of circuits, we present the

end-of-lifetime percentage delay degradation, ∆D (%), for three different (Vdd,n, V opt
dd,g)

pairs from Table 6.4: (0.8V, 0.9V), (0.9V, 1.0V) and (1.0V, 1.1V).

(a) Vdd,n = 0.8V, V optdd,g = 0.9V (b) Vdd,n = 0.9V, V optdd,g = 1.0V (c) Vdd,n = 1.0V, V optdd,g = 1.1V

Figure 6.10: The reduction in delay degradation with GNOMO, shown for various

circuits for three different (Vdd,n, V opt
dd,g) pairs.

132

In all cases, we see that under GNOMO, the end-of-lifetime delay degradation is

significantly smaller than under the nominal scheme. In general, we observe over all

(Vdd,n, V opt
dd,g) pairs that value of average ∆D (%) over all benchmarks reduces by about

1.3× to 1.8× for GNOMO as compared to nominal operation. This impacts the re-

duction in area and power overhead significantly, which we discuss next. Further, as

expected from our prior discussion in Section 6.2.3, on diminishing returns in idle times

with increasing Vdd,n, our lifetime gains are higher for lower values of Vdd,n.

6.5.2 Area and Power Savings in BTI Compensation

In Section 6.4.2, we had analyzed that a reduction in delay degradation also results in

lower power, due to a lower compensation area overhead. In this subsection, we show

this result over a set of benchmark circuits.

600 700 800 900
0.8

1

1.2

1.4

A

D
 uc

spec

B

D
 c,n

spec
C

D
 c,g

spec

Delay (ps)

A
re

a
(N

o
rm

al
iz

ed
)

Figure 6.11: The normalized-area vs. delay curve for alu4, with area normalized by the

area of the uncompensated circuit.

We begin with a specific example; consider the application of GNOMO to the circuit

alu4 with (Vdd,n, Vdd,g) = (0.9V, 1.1V). The area vs. delay curve for this circuit, for

various target delay specifications, is shown in Fig. 6.11. The area values are normalized

to point A, which corresponds to the uncompensated circuit for which no delay margins

are added. We compare optimizations using the nominal and the GNOMO supply

voltages:

• At Vdd,n, the ALU incurs a 20.9% delay degradation over its lifetime, which is

compensated by mapping the circuit with a tighter specification, Dc,n
spec, using the

delay margin algorithm in [12]. This corresponds to point B on the curve, which

incurs an additional area overhead of 19.9% over point A. We call this circuit at

133

(a) Vdd,n = 0.8V, V optdd,g = 0.9V (b) Vdd,n = 0.9V, V optdd,g = 1.0V (c) Vdd,n = 1.0V, V optdd,g = 1.1V

Figure 6.12: The reduction in BTI compensation area overhead with GNOMO, shown

for various circuits for three different (Vdd,n, V opt
dd,g) pairs.

point B as the “Vdd,n circuit”: a delay-margined circuit at a supply voltage of

Vdd,n, and this circuit is guaranteed to be functional throughout the projected

chip lifetime.

• At the GNOMO voltage, Vdd,g, the BTI degradation is reduced to 12.6%, and

hence the delay margin is relaxed, corresponding to a delay specification of Dc,g
spec

at Point C. This reduces the area overhead to 6.3%. Thus, the area overhead

for BTI compensation is reduced by 3× for GNOMO as compared to the Vdd,n

case. We call the circuit at point C as the “Vdd,g circuit”: this is a delay-margined

circuit at a supply voltage of Vdd,g under a GNOMO-based circadian rhythm, and

is guaranteed-functional throughout the projected chip lifetime.

This analysis is applied to all benchmark circuits and the results that show the

reduction in compensation area overhead, ∆A, are presented in Fig. 6.12, for three

different (Vdd,n, V opt
dd,g) pairs, as in Fig. 6.10. For each of these circuits, we show the area

overhead for the Vdd,n and Vdd,g circuits.

Comparing the area overhead in both the Vdd,n and Vdd,g circuits, the overhead for

the Vdd,g circuits is consistently smaller for each benchmark. These reductions in area

overhead impact the power overhead, ∆P, of the Vdd,n and the Vdd,g circuits, as shown

in Fig. 6.13. Recall that the power overhead in the Vdd,g circuit comes from two sources:

134

(a) Vdd,n = 0.8V, V optdd,g = 0.9V (b) Vdd,n = 0.9V, V optdd,g = 1.0V (c) Vdd,n = 1.0V, V optdd,g = 1.1V

Figure 6.13: Reduction in BTI compensation area overhead also lowers the power over-

head with GNOMO, shown for various circuits for three different (Vdd,n, V opt
dd,g) pairs.

operation at the GNOMO supply voltage, and from compensation6 , while the Vdd,n

circuit has power overhead only due to compensation. Again, the gains in area/power

overhead are highest for lower values of Vdd,n. Over all (Vdd,n, V opt
dd,g) pairs, we observe

that the value of average ∆A over various benchmark circuits reduces by about 1.8×
to 3.2× for GNOMO as compared to nominal operation. For average ∆P values, this

reduction is about 1.5× to 3.1×.

6.5.3 Overall Power Savings

The total power evaluation framework and the potential for power savings was dis-

cussed in Section 6.4.3. In this section, we use various types of workloads to gauge

the average power savings under various workloads. To determine the overall power

savings of the GNOMO scheme, the SPEC 2000 benchmark suite was simulated us-

ing SimpleScalar and Wattch, with the processor configuration described in Table 6.5,

under the MinneSPEC input set. The processor was first run at a nominal supply volt-

age, Vdd,n, and then under GNOMO at the optimal value of Vdd,g, with state-sensitive

elements being placed in drowsy mode, as described earlier.

We discussed in Section 6.4.4, that the operation at optimal GNOMO supply voltage,

6 For the time being, since we consider units that will be power-gated completely during the idle
phase, we do not consider total power; we will add this consideration in the next subsection.

135

Table 6.5: Configuration of the processor
Fetch/Decode/ 4/4/4/4
Issue/Commit width (instructions/cycle)

RUU size 64 entries

LSQ size 32 entries

Private L1 16KB, 4-way set associative,
Data cache 32B block size

Private L1 16KB, 4-way set associative,
Instruction cache 32B block size

Private L2 Unified 512KB, 8-way set associative,
Data and Instruction cache 64B block size

Memory access bus width 8 bytes

Data Translation 512KB, 4-way set associative,
Lookaside Buffer 4KB block size

Instruction Translation 256KB, 4-way set associative,
Lookaside Buffer 4KB block size

Number of integer ALUs 4

Number of integer multiplier/dividers 4

Number of floating point ALUs 2

Number of floating point multipliers/dividers 2

Number of memory system ports available to CPU 2 (1 read, 1 write)

V opt
dd,g gives us the highest power savings for the benchmark applu, under the processor

configuration described in Table 6.5. A similar trend is observed with other workloads in

the SPEC 2000 suite. This data is presented in Fig. 6.14, which shows the power savings

at the (Vdd,n, V opt
dd,g) point, for Vdd,n ∈ [0.7V, 1.1V]. On average, over all benchmarks,

GNOMO achieves power savings of up to 13.6%. This shows that reducing guardbanding

overhead can appreciably improve the overall power consumption. Further, the power

savings decrease sublinearly as Vdd,n increases, as the idle time durations become smaller

at higher Vdd,n points. Thus, the average power savings are the highest at (Vdd,n, V opt
dd,g)

= (0.7V, 0.8V), and the lowest at (Vdd,n, V opt
dd,g) = (1.1V, 1.2V).

6.5.4 Analyzing the Architectural Performance Penalty

As described in Section 6.2.3, the idle time scheme used here incurs a performance

penalty due to the increased mismatch between on-chip and off-chip speeds under

GNOMO. For the benchmarks and processor configuration considered in Section 6.5.3,

136

Figure 6.14: The power savings corresponding to the (Vdd,n, V opt
dd,g) point for various

SPEC 2000 workloads.

we quantify this penalty. After cf cycles of instructions, we record the values of to

required by the corresponding set of Io instructions. Fig. 6.15 shows the average perfor-

mance penalty (over all cf sets), based on Equation (6.4), for the execution of various

benchmarks, with values of Vdd,n = 0.7V to 1.1V and the corresponding V opt
dd,g value.

We find that choosing cf = 10 million ensures that at Vdd,n = 0.7V (which shows

the largest penalty), the performance penalty for GNOMO is an average of 1.9% over

all benchmarks. The worst-case penalty is under 3% for most of the workloads, and

is 5.9% and 13.5% for the remaining two. Further, our simulations show that for the

workloads with the largest overhead, such cases are rare: over 90% of the cf sets for

these workloads have < 1.5% overhead. The remaining cf sets are characterized by a

higher number of memory accesses, thus incurring a higher performance penalty.

This choice of a large value of cf has other benefits. The repeated compute-standby

operation in our scheme may seem to create regular interruptions in workload execution.

Since cf = 10 million, these occur much less frequently (and also more predictably)

as compared to the unpredictable interruptions and pipeline flushes caused by cache

read/write misses, branch mispredictions, etc. Further, as discussed in Section 6.2.1,

the power-gating overhead of 10 to 50 cycles, becomes completely negligible for this

choice of cf . At the frequencies under consideration, this choice of cf also keeps the

temperature unchanged since the power dissipation is similar (or slightly lower), and

the compute/idle phases change at a rate that is below the thermal time constant of

the material.

137

Figure 6.15: The performance penalties for various SPEC CPU 2000 workloads.

Further, we note that as cf is increased from 100,000 to 10 million cycles, the

maximum performance penalty (over all cf sets) over the execution of a benchmark

decreases. This can be explained by the fact that a larger value of cf corresponds to

a larger number of on-chip operations, offering a greater potential for hiding latencies

for off-chip operations through out-of-order execution. The average penalty, however,

remains approximately the same.

With an increase in Vdd,n, the penalty decreases sublinearly. This is because the

increase in off-chip latency in cycles is directly related to the difference between the clock

periods at Vdd,g and Vdd,n. As shown in Table 6.1, this difference decreases sublinearly

as Vdd,n goes up, implying a lower additional overhead from off-chip accesses.

Chapter 7

Conclusions

As feature sizes continue to shrink and these variations affect both circuits and architec-

tures, it is widely acknowledged that variations and aging cannot be neglected in modern

VLSI designs. Fast and accurate presilicon and postsilicon techniques have therefore be-

come essential to offer high performance and reliable computations throughout lifetime.

This thesis has aided the research in this direction with such techniques.

In Chapter 3, we first show that a simple extension of existing CSMs to incorporate

the effects of body bias and temperature in the CSM framework results in excessive

increase in library memory and solver runtime. We then present a novel approach

to incorporate body bias and temperature effects into current source models. We de-

velop sensitivity model for capturing variations in CSM components with body bias

and temperature, with compaction of the resulting tables of these model parameters.

We incorporate this sensitivity model into the mainstream CSM solver framework, and

develop a new model for capturing waveform sensitivity with body bias and tempera-

ture, which allows us to compute waveforms at multiple combinations of body bias and

temperature points with massive savings in computation. The results demonstrate the

effectiveness of our compaction scheme and the waveform sensitivity model. On a 45nm

technology, we achieve high accuracy, with mean errors of under 4% in both slew and

delay as compared to HSPICE. We show a speedup of over five orders of magnitude

over HSPICE and a speedup of about 92× over conventional CSMs.

Chapter 4 then presents a novel BTI-resilience scheme that exploits the average-

case performance of the circuit, through an efficient multioutput hold logic scheme. We

138

139

develop a suitable partition between the one-cycle and two-cycle paths, such that we

maximize throughput throughout lifetime. We further show the applicability of our

scheme to cases where the circuits can be power gated, and augmented the MOHL VLU

with an adaptive body bias framework. As compared to conventional combinational

BTI-resilience scheme, our design achieves an area reduction of 9.2%, with a significant

throughput enhancement of 30.0%.

Providing a statistical foundation for VLUs, Chapter 5 then lays the ground for

developing a clustered scheme for generation of variation-aware hold logics. Delays

of paths in a circuit are correlated due to spatial correlations in the delays of the

devices in the circuit. Exploiting this fact, we present algorithms to generate node and

path clusters in a circuit, which offer significant reduction in area/power overhead and

enhanced throughputs, compared to the pessimistic and enumerative extensions of the

deterministic hold logic generation scheme. In a 32nm regime, we show through our

results that we obtain a mean of about 16% throughput enhancement, with less than

10% area overhead compared to the baseline. A future direction in the context of VLUs

can be to combine the schemes in Chapters 4 and 5 to offer variation-awareness along

with BTI compensation.

We finally conclude our thesis with the concept of circadian rhythms, used for op-

erating a processor in alternating wakeful and sleepy states. The wakeful state uses an

elevated supply voltage under the GNOMO scheme, and the resulting reliability degra-

dation is better than the processor that “pulls an all-nighter” without going to sleep.

We demonstrate at the architectural and circuit levels that this scheme is viable, and

that it provides significant gains in power. Our results on a 32nm out-of-order processor

architecture show up to 13.6% power savings at about the same performance. The cur-

rent implementation focuses on a constant nominal Vdd; however, in principle, the idea

can be extended when the nominal case uses dynamic voltage and frequency scaling.

References

[1] J. Howard, S. Dighe, S. Vangal, G. Ruhl, N. Borkar, S. Jain, V. Erraguntla,

M. Konow, M. Riepen, M. Gries, G. Droege, T. Lund-Larsen, S. Steibl, S. Borkar,

V. De, and R. Van Der Wijngaart, “A 48-core IA-32 processor in 45 nm CMOS

using on-die message-passing and DVFS for performance and power scaling,” IEEE

Journal of Solid-State Circuits, vol. 46, pp. 173–183, January 2011.

[2] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, and V. De, “Pa-

rameter variations and impact on circuits and microarchitecture,” in Proceedings

of the Design Automation Conference, pp. 338–342, 2003.

[3] P. Hurat, Y.-T. Wang, and N. K. Verghese, “Sub-90 nanometer variability is here

to stay,” in Proceedings of the EDA Technical Forum, pp. 26–28, 2005.

[4] A. Devgan, 2003. Tutorial: http://www.research.ibm.com/compsci/project spotlight/

da/devgan-iccad03-tut.pdf.

[5] S. V. Kumar, “Reliability-aware and variation-aware CAD techniques,” 2009. Doc-

toral dissertation thesis, University of Minnesota, Twin Cities.

[6] H. Chang and S. S. Sapatnekar, “Statistical timing analysis under spatial correla-

tions,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, vol. 24, no. 9, pp. 1467–1482, 2005.

[7] H. Chang, Q. Liu, and S. S. Sapatnekar, 2009. MinnSSTA :

http://www.ece.umn.edu/users/sachin/software/MinnSSTA/.

140

141

[8] Q. Liu and S. S. Sapatnekar, “A framework for scalable postsilicon statistical de-

lay prediction under process variations,” IEEE Transactions on Computer Aided

Design of Integrated Circuits and Systems, vol. 28, pp. 1201–1212, August 2009.

[9] J. F. Croix and D. F. Wong, “A fast and accurate technique to optimize char-

acterization tables for logic synthesis,” in Proceedings of the Design Automation

Conference, pp. 337–340, 1997.

[10] Y. Zhan, S. V. Kumar, and S. S. Sapatnekar, “Thermally aware design,” Foun-

dations and Trends in Electronic Design Automation, vol. 2, no. 3, pp. 255–370,

2008.

[11] Predictive Technology Model, 2008. http://www.eas.asu.edu/∼ptm.

[12] S. V. Kumar, C. H. Kim, and S. S. Sapatnekar, “Adaptive techniques for overcom-

ing performance degradation due to aging in CMOS circuits,” IEEE Transactions

on Very Large Scale Integration Systems, vol. 19, pp. 603–614, April 2011.

[13] Q. Liu and S. S. Sapatnekar, “Synthesizing a representative critical path for post-

silicon delay prediction,” in Proceedings of the International Symposium on Physical

Design, pp. 183–190, 2009.

[14] http://www.synopsys.com/products/mixedsignal/hspice/hspice.html.

[15] J. F. Croix and D. F. Wong, “Blade and Razor: cell and interconnect delay analysis

using current-based models,” in Proceedings of the Design Automation Conference,

pp. 386–389, 2003.

[16] C. Amin, C. Kashyap, N. Menezes, K. Killpack, and E. Chiprout, “A multi-port

current source model for multiple-input switching effects in CMOS library cells,”

in Proceedings of the Design Automation Conference, pp. 247–252, 2006.

[17] C. Kashyap, C. Amin, N. Menezes, and E. Chiprout, “A nonlinear cell macro-

model for digital applications,” in Proceedings of the International Conference on

Computer-Aided Design, pp. 678–685, 2007.

142

[18] L. Benini, G. D. Micheli, A. Lioy, E. Macii, G. Odasso, and M. Poncino, “Automatic

synthesis of large telescopic units based on near-minimum timed supersetting,”

IEEE Transactions on Computers, vol. 48, pp. 769–779, August 1999.

[19] T. Austin, V. Bertacco, D. Blaauw, and T. Mudge, “Opportunities and challenges

for better than worst-case design,” in Proceedings of the Asia and South Pacific

Design Automation Conference, pp. 2–7, 2005.

[20] T. Kuroda, T. Fujita, S. Mita, T. Nagamatsu, S. Yoshioka, K. Suzuki, F. Sano,

M. Norishima, M. Murota, M. Kako, M. Kinugawa, M. Kakumu, and T. Sakurai, “A

0.9-V, 150 MHz, 10-mW, 4 mm2, 2-D discrete cosine transform core processor with

variable threshold-voltage (VT) scheme,” in Proceedings of the IEEE International

Solid-State Circuits Conference, pp. 166–167, 1996.

[21] J. W. Tschanz, J. Kao, S. G. Narendra, R. Nair, D. Antoniadis, A. Chandrakasan,

and V. De, “Adaptive body bias for reducing impacts of die-to-die and within-die

parameter variations on microprocessor frequency and leakage,” IEEE Journal of

Solid-State Circuits, vol. 37, pp. 1396–1402, November 2002.

[22] J. Tschanz, N. Kim, S. Dighe, J. Howard, G. Ruhl, S. Vanga, S. Narendra,

Y. Hoskote, H. Wilson, C. Lam, M. Shuman, C. Tokunaga, D. Somasekhar, S. Tang,

D. Finan, T. Karnik, N. Borkar, N. Kurd, and V. De, “Adaptive frequency and

biasing techniques for tolerance to dynamic temperature-voltage variations and

aging,” in Proceedings of the IEEE International Solid-State Circuits Conference,

pp. 292–604, 2007.

[23] O. Unsal, J. Tschanz, K. Bowman, V. De, X. Vera, A. Gonzalez, and O. Ergin,

“Impact of parameter variations on circuits and microarchitecture,” IEEE Micro,

vol. 26, pp. 30–39, November 2006.

[24] S. Sapatnekar, “Overcoming variations in nanometer-scale technologies,” IEEE

Journal on Emerging and Selected Topics in Circuits and Systems, vol. 1, pp. 5–18,

March 2011.

143

[25] S. H. Choi, B. C. Paul, and K. Roy, “Novel sizing algorithm for yield improvement

under process variation in nanometer technology,” in Proceedings of the Design

Automation Conference, pp. 454–459, 2004.

[26] S. Raj, S. B. K. Vrudhula, and J. Wang, “A methodology to improve timing yield

in the presence of process variations,” in Proceedings of the Design Automation

Conference, pp. 448–453, 2004.

[27] O. Neiroukh and X. Song, “Improving the process-variation tolerance of digital cir-

cuits using gate sizing and statistical techniques,” in Proceedings of the Conference

on Design, Automation and Test in Europe, pp. 294–299, 2005.

[28] S. Debjit, “Statistical gate sizing for timing yield optimization,” in Proceedings of

the International Conference on Computer Design, pp. 1037–1041, 2005.

[29] A. Davoodi and A. Srivastava, “Variability driven gate sizing for binning yield

optimization,” in Proceedings of the Design Automation Conference, pp. 959–964,

2006.

[30] V. Khandelwal and A. Srivastava, “Monte-Carlo driven stochastic optimization

framework for handling fabrication variability,” in Proceedings of the International

Conference on Computer Design, pp. 105–110, 2007.

[31] K. Brownell, G.-Y. Wei, and D. Brooks, “Evaluation of voltage interpolation to

address process variations,” in Proceedings of the International Conference on

Computer-Aided Design, pp. 529–536, 2008.

[32] X. Liang, G.-Y. Wei, and D. Brooks, “ReVIVaL: a variation-tolerant architecture

using voltage interpolation and variable latency,” in Proceedings of International

Symposium on Computer Architecture, pp. 191–202, 2008.

[33] J. Tschanz, S. Narendra, A. Keshavarzi, and V. De, “Adaptive circuit techniques

to minimize variation impacts on microprocessor performance and power,” in Pro-

ceedings of the IEEE International Symposium on Circuits and Systems, pp. 9–12,

2005.

144

[34] S. V. Kumar, C. H. Kim, and S. S. Sapatnekar, “Body bias voltage computations

for process and temperature compensation,” IEEE Transactions on Very Large

Scale Integration Systems, vol. 16, pp. 249–262, March 2008.

[35] S. H. Kulkarni, D. Sylvester, and D. Blaauw, “A statistical framework for post-

silicon tuning through body bias clustering,” in Proceedings of the International

Conference on Computer Aided Design, pp. 39–46, 2006.

[36] V. Gerousis, “Design and modeling challenges for 90nm and 50nm,” in Proceedings

of the IEEE Custom Integrated Circuits Conference, pp. 353–360, 2003.

[37] J.-J. Liou, K.-T. Cheng, S. Kundu, and A. Krstic, “Fast statistical timing analy-

sis by probabilistic event propagation,” in Proceedings of the Design Automation

Conference, pp. 661–666, 2001.

[38] W.-S. Wang and M. Orshansky, “Path-based statistical timing analysis handling

arbitrary delay correlations: theory and implementation,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 25, pp. 2976–2988,

December 2006.

[39] C. Visweswariah, K. Ravindran, K. Kalafala, S. G. Walker, S. Narayan, D. K.

Beece, J. Piaget, N. Venkateswaran, and J. G. Hemmett, “First-order incremental

block-based statistical timing analysis,” IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 25, pp. 2170–2180, October 2006.

[40] D. Blaauw, K. Chopra, A. Srivastava, and L. Scheffer, “Statistical timing analysis:

from basic principles to state of the art,” IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 27, pp. 589–607, April 2008.

[41] H. Kufluoglu and M. A. Alam, “A computational model of NBTI and hot car-

rier injection time-exponents for MOSFET reliability,” Journal of Computational

Electronics, vol. 2, pp. 165–169, October 2004.

[42] M. A. Alam and S. Mahapatra, “A comprehensive model of PMOS NBTI degra-

dation,” Microelectronics And Reliability, vol. 45, pp. 71–81, January 2005.

145

[43] F. Crupi, C. Pace, G. Cocorullo, G. Groeseneken, M. Aoulaiche, and M. Houssa,

“Positive bias temperature instability in nMOSFETs with ultra-thin Hf-silicate

gate dielectrics,” Microelectronics Engineering, vol. 80, pp. 130–133, June 2005.

[44] K.-L. Chen, S. Saller, I. Groves, and D. Scott, “Reliability effects on MOS transis-

tors due to hot-carrier injection,” IEEE Transactions on Electron Devices, vol. 32,

pp. 386–393, February 1985.

[45] J. Stathis, “Physical and predictive models of ultrathin oxide reliability in CMOS

devices and circuits,” IEEE Transactions on Device and Materials Reliability,

vol. 1, pp. 43–59, March 2001.

[46] E. Y. Wu, E. J. Nowak, A. Vayshenker, W. L. Lai, and D. L. Harmon, “CMOS

scaling beyond the 100-nm node with silicon-dioxide-based gate dielectrics,” IBM

Journal of Research and Development, vol. 46, pp. 287–298, March 2002.

[47] A. Krishnan, V. Reddy, S. Chakravarthi, J. Rodriguez, S. John, and S. Krishnan,

“NBTI impact on transistor and circuit: models, mechanisms and scaling effects,”

in Proceedings of the IEEE International Electron Devices Meeting, pp. 14.5.1–

14.5.4, 2003.

[48] S. V. Kumar, C. H. Kim, and S. S. Sapatnekar, “An analytical model for negative

bias temperature instability,” in Proceedings of the International Conference on

Computer-Aided Design, pp. 493–496, 2006.

[49] W. Wang, V. Reddy, A. Krishnan, R. Vattikonda, S. Krishnan, and Y. Cao, “Com-

pact modeling and simulation of circuit reliability for 65-nm CMOS technology,”

IEEE Transactions on Device and Materials Reliability, vol. 7, pp. 509–517, De-

cember 2007.

[50] S. Bhardwaj, W. Wenping, R. Vattikonda, Y. Cao, and S. Vrudhula, “Predictive

modeling of the NBTI effect for reliable design,” in Proceedings of the Custom

Integrated Circuits Conference, (Los Alamitos, CA, USA), pp. 189 –192, IEEE

Computer Society Press, 2006.

146

[51] I. Keller, K. Tseng, and N. Verghese, “A robust cell-level crosstalk delay change

analysis,” in Proceedings of the International Conference on Computer-Aided De-

sign, pp. 147–154, 2004.

[52] P. Li and E. Acar, “A waveform independent gate model for accurate timing analy-

sis,” in Proceedings of the International Conference on Computer Design, pp. 363–

365, 2005.

[53] N. Menezes, C. Kashyap, and C. Amin, “A “true” electrical cell model for tim-

ing, noise, and power grid verification,” in Proceedings of the Design Automation

Conference, pp. 462–467, 2008.

[54] B. Amelifard, S. Hatami, H. Fatemi, and M. Pedram, “A current source model

for CMOS logic cells considering multiple input switching and stack effect,” in

Proceedings of the Conference on Design, Automation and Test in Europe, pp. 568–

573, 2008.

[55] A. Goel and S. Vrudhula, “Current source based standard cell model for accurate

signal integrity and timing analysis,” in Proceedings of the Conference on Design,

Automation and Test in Europe, pp. 574–579, 2008.

[56] S. Raja, F. Varadi, M. Becer, and J. Geada, “Transistor level gate modeling for

accurate and fast timing, noise, and power analysis,” in Proceedings of the Design

Automation Conference, pp. 456–461, 2008.

[57] S. S. Sapatnekar, Timing. Boston, MA: Springer, 2004.

[58] F. Dartu, N. Menezes, and L. Pileggi, “Performance computation for precharacter-

ized CMOS gates with RC loads,” IEEE Transactions on Computer Aided Design

of Integrated Circuits and Systems, vol. 15, pp. 544–553, May 1996.

[59] G. Ono, M. Miyazaki, M. Tanaka, N. Ohkubo, and T. Kuwahara, “Temperature

referenced supply voltage and forward-body-bias control (TSFC) architecture for

minimum power consumption,” in Proceedings of the European Solid State Circuits

Conference, pp. 391–394, 2004.

147

[60] K. Bowman, J. Tschanz, C. Wilkerson, S. Lu, T. Karnik, V. De, and S. Borkar,

“Circuit techniques for dynamic variation tolerance,” in Proceedings of the Design

Automation Conference, pp. 4–7, 2009.

[61] Y. Taur and T. H. Ning, Fundamentals of modern VLSI devices. Cambridge, UK:

Cambridge University Press, Second Edition, 2009.

[62] P. R. O’Brien and T. L. Savarino, “Modeling the driving point characteristic of

resistive interconnect for accurate delay estimation,” in Proceedings of the Interna-

tional Conference on Computer-Aided Design, pp. 512–515, 1989.

[63] Z. Li, C. N. Sze, C. J. Alpert, J. Hu, and W. Shi, “Making fast buffer insertion

even faster via approximation techniques,” in Proceedings of the Asia and South

Pacific Design Automation Conference, pp. 13–18, 2005.

[64] S. Ghosh, S. Bhunia, and K. Roy, “CRISTA: A new paradigm for low-power,

variation-tolerant, and adaptive circuit synthesis using critical path isolation,”

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

vol. 26, pp. 1947–1956, November 2007.

[65] Y. S. Su, D. C. Wang, S. C. Chang, and M. S. Malgorzata, “Performance optimiza-

tion using variable-latency design style,” IEEE Transactions on Very Large Scale

Integration Systems, vol. 19, no. 10, pp. 1874–1883, 2011.

[66] L. Benini, E. Macii, M. Poncino, and G. D. Micheli, “Telescopic units: A new

paradigm for performance optimization of VLSI designs,” IEEE Transaction on

Computer-Aided Design of Integrated Circuits and Systems, vol. 17, pp. 220–232,

March 1998.

[67] Y. Chen, H. Li, J. Li, and C. K. Koh, “Variable-latency adder (VL-adder): new

arithmetic circuit design practice to overcome NBTI,” in Proceedings of the Inter-

national Symposium on Low Power Electronics and Design, pp. 195–200, 2007.

[68] Berkeley Logic Synthesis and Verification Group, 2007. ABC: a system for sequen-

tial synthesis and verification, release 70930.

[69] F. Somenzi, 2012. CUDD: CU Decision Diagram Package.

148

[70] J. Cong and K. Minkovich, “Mapping for better than worst-case delays in LUT-

based FPGA designs,” in Proceedings of the International Symposium on Field

Programmable Gate Arrays, pp. 56–64, 2008.

[71] http://en.wikipedia.org/wiki/Buddhism#Middle Way.

[72] S. C. Seth and V. D. Agrawal, “A new model for computation of probabilistic

testability in combinational circuits,” Integration, The VLSI Journal, vol. 7, pp. 49–

75, April 1989.

[73] F. Hu and V. D. Agrawal, “Enhanced dual-transition probabilistic power estimation

with selective supergate analysis,” in Proceedings of the International Conference

on Computer Design, pp. 366–372, 2005.

[74] S. Gupta and S. S. Sapatnekar, “BTI-aware design using variable latency units,” in

Proceedings of the Asia and South Pacific Design Automation Conference, pp. 775–

780, 2012.

[75] S. V. Kumar, C. H. Kim, and S. S. Sapatnekar, “NBTI-aware synthesis of digital

circuits,” in Proceedings of the Design Automation Conference, pp. 370–375, 2007.

[76] X. Chen, Y. Wang, Y. Cao, Y. Ma, and H. Yang, “Variation-aware supply voltage

assignment for minimizing circuit degradation and leakage,” in Proceedings of the

International Symposium on Low Power Electronics and Design, (New York, NY,

USA), pp. 39–44, ACM, 2009.

[77] J. Srinivasan, S. V. Adve, B. Pradip, and J. A. Rivers, “Lifetime reliability: toward

an architectural solution,” IEEE Micro, vol. 25, pp. 70–80, May 2005.

[78] J. Abella, X. Vera, and A. Gonzalez, “Penelope: The NBTI-aware processor,” in

Proceedings of the International Symposium on Microarchitecture, (Washington,

DC, USA), pp. 85–96, IEEE Computer Society, 2007.

[79] A. Tiwari and J. Torrellas, “Facelift: hiding and slowing down aging in multicores,”

in Proceedings of the International Symposium on Microarchitecture, (Washington,

DC, USA), pp. 129–140, IEEE Computer Society, 2008.

149

[80] U. R. Karpuzcu, B. Greskamp, and J. Torrellas, “The BubbleWrap many-core: pop-

ping cores for sequential acceleration,” in Proceedings of the International Sympo-

sium on Microarchitecture, (Washington, DC, USA), pp. 447–458, IEEE Computer

Society, 2009.

[81] L. Zhang and R. P. Dick, “Scheduled voltage scaling for increasing lifetime in the

presence of NBTI,” in Proceedings of the Asia and South Pacific Design Automation

Conference, (Piscataway, NJ, USA), pp. 492–497, IEEE Press, 2009.

[82] J. Shin, V. Zyuban, P. Bose, and T. M. Pinkston, “A proactive wearout recovery

approach for exploiting microarchitectural redundancy to extend cache SRAM life-

time,” in Proceedings of the International Symposium on Computer Architecture,

(New York, NY, USA), pp. 353–362, ACM, 2008.

[83] L. Li, Y. Zhang, J. Yang, and J. Zhao, “Proactive NBTI mitigation for busy func-

tional units in out-of-order microprocessors,” in Proceedings of the Conference on

Design, Automation and Test in Europe, (3001 Leuven, Belgium), pp. 411–416,

European Design and Automation Association, 2010.

[84] T. Siddiqua and S. Gurumurthi, “A multi-level approach to reduce the impact of

NBTI on processor functional units,” in Proceedings of the Great Lakes Symposium

on VLSI, (New York, NY, USA), pp. 67–72, ACM, 2010.

[85] D. R. Bild, G. E. Bok, and R. P. Dick, “Minimization of NBTI performance degra-

dation using internal node control,” in Proceedings of the Conference on Design,

Automation and Test in Europe, (3001 Leuven, Belgium), pp. 148–153, European

Design and Automation Association, 2009.

[86] A. Calimera, E. Macii, and M. Poncino, “NBTI-aware clustered power gating,”

ACM Transactions on Design and Automation of Electronic Systems, vol. 16, pp. 1–

25, November 2010.

[87] M. Chen, V. Reddy, J. Carulli, S. Krishnan, V. Rentala, V. Srinivasan, and Y. Cao,

“A TDC-based test platform for dynamic circuit aging characterization,” in Pro-

ceedings on the International Reliability Physics Symposium, pp. 2B.2.1–2B.2.5,

2011.

150

[88] SimplesScalar LLC, 2003. http://www.simplescalar.com.

[89] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: a framework for architectural-

level power analysis and optimizations,” in Proceedings of the International Sym-

posium on Computer Architecture, (New York, NY, USA), pp. 83–94, ACM, 2000.

[90] SPEC CPU utility programs, 2000. http://www.spec.org/cpu2000/Docs/utility.html.

[91] A. J. KleinOsowski and D. J. Lilja, “MinneSPEC: a new SPEC benchmark work-

load for simulation-based computer architecture research,” Computer Architecture

Letters, vol. 1, no. 1, pp. 7–10, 2002.

[92] A. B. Kahng, L. Bin, L.-S. Peh, and K. Samadi, “Orion 2.0: A fast and accurate

NoC power and area model for early-stage design space exploration,” in Proceedings

of the Design, Automation and Test in Europe, (3001 Leuven, Belgium), pp. 423–

428, European Design and Automation Association, April 2009.

[93] N. S. Kim, K. Flautner, D. Blaauw, and T. Mudge, “Circuit and microarchitectural

techniques for reducing cache leakage power,” IEEE Transactions on Very Large

Scale Integrated Systems, vol. 12, pp. 167–184, February 2004.

[94] Y. Meng, T. Sherwood, and R. Kastner, “Exploring the limits of leakage power

reduction in caches,” ACM Transactions on Architecture and Code Optimization,

vol. 2, pp. 221–246, September 2005.

[95] S. Bhunia and S. Mukhopadhyay, Low-power variation-tolerant design in nanome-

ter silicon. New York: Springer, 2010.

Appendix A

Proof of Theorems for CSM

Waveform Sensitivities

Proof of Theorem 1

At each time step, combining the nonlinear Equation (3.23) with (3.29), and A,B given

by (3.24), (3.25), we can write α(t) as:

α(t) =
BC1

A

∂V n
o

∂vbp
+
hC2

A

∂V n
C2

∂vbp
+
B

A

(
h
∂Ip
∂vbp

+
∂Qp
∂vbp

−
∂Qnp
∂vbp

)
(1)

Writing Ip, Qp as linear functions of vbp, vbn from (3.4), (3.5), we get

α(t) =
BC1

A

∂V n
o

∂vbp
+
hC2

A

∂V n
C2

∂vbp
+
B

A

[
h
∂IZp
∂Vo

∂Vo
∂vbp

LI(vbp, vbn)+

∂QZp
∂Vo

∂Vo
∂vbp

LQ(vbp, vbn)− ∂QZ,np
∂V n

o

∂V n
o

∂vbp
LnQ(vbp, vbn)+

hIZp

(
aI +

∂aI
∂Vo

∂Vo
∂vbp

vbp +
∂bI
∂Vo

∂Vo
∂vbp

vbn

)
+

QZp

(
aQ +

∂aQ
∂Vo

∂Vo
∂vbp

vbp +
∂bQ
∂Vo

∂Vo
∂vbp

vbn

)
−

QZ,np

(
anQ +

∂anQ
∂V n

o

∂V n
o

∂vbp
vbp +

∂bnQ
∂V n

o

∂V n
o

∂vbp
vbn

)]

where LI and LQ are defined as in Equations (3.6) and (3.7), respectively, and LnQ

151

152

corresponds to the evaluation of LQ at time step n. Further, ∂VC2/∂vbp can be calculated

using Equation (3.26).

Recognizing that ∂Vo
∂vbp

= α, and at time step n, αn = ∂V no
∂vbp

, collecting all terms

multiplied by α, the result of Equation (3.32) follows immediately. The derivation of

Equation (3.33) is analogous. Note that {aI , aQ, bI , bQ} are independent of body bias,

being functions of (Vi, Vo) only, but appear as functions of (vbp, vbn) since Vo dynamically

changes with body bias during simulation. �

Proof of Theorem 2

The derivation of σ follows along the same lines as for α and β. At each time step,

combining the nonlinear Equation (3.23) with (3.31), and A,B given by (3.24), (3.25),

we can write σ(t) as:

σ(t) =
BC1

A

∂V n
o

∂∆T
+
hC2

A

∂V n
C2

∂∆T
+
B

A

(
h
∂Ip
∂∆T

+
∂Qp
∂∆T

−
∂Qnp
∂∆T

)
(2)

Writing Ip, Qp as second order functions of ∆T from (3.10), (3.11), we get

σ(t) =
BC1

A

∂V n
o

∂∆T
+
hC2

A

∂V n
C2

∂∆T
+
B

A

[
h
∂IZp
∂Vo

∂Vo
∂∆T

SI(∆T)+

∂QZp
∂Vo

∂Vo
∂∆T

SQ(∆T)− ∂QZ,np
∂V n

o

∂V n
o

∂∆T
SnQ(∆T)+

hIZp

(
cI + 2rI∆T +

∂cI
∂Vo

∂Vo
∂∆T

∆T +
∂rI
∂Vo

∂Vo
∂∆T

∆T 2

)
+

QZp

(
cQ + 2rQ∆T +

∂cQ
∂Vo

∂Vo
∂∆T

∆T +
∂rQ
∂Vo

∂Vo
∂∆T

∆T 2

)
−

QZ,np

(
cnQ + 2rnQ∆T +

∂cnQ
∂V n

o

∂V n
o

∂∆T
∆T +

∂rnQ
∂V n

o

∂V n
o

∂∆T
∆T 2

)]

where SI and SQ are defined as in Equations (3.12) and (3.13), respectively, and SnQ cor-

responds to the evaluation of SQ at time step n. Further, ∂VC2/∂∆T can be calculated

using Equation (3.26).

Since ∂Vo
∂∆T = σ, and at time step n, σn = ∂V no

∂∆T , collecting all terms multiplied

by σ on left hand side, the result of Equation (3.34) follows immediately. Note that

{cI , cQ, rI , rQ} are again independent of temperature, being functions of (Vi, Vo) only.

153

but appear as functions of ∆T since Vo dynamically changes with temperature during

simulation. �

	Acknowledgements
	Dedication
	Abstract
	List of Tables
	List of Figures
	Introduction
	Variability in Nanometer CMOS Technology
	Motivation and Goal for the Thesis
	Our Contributions
	Organization of the Thesis

	Background
	Process and Temperature Variations in Circuits
	Process Variations
	Temperature Variations
	Statistical Timing Analysis
	Fast Postsilicon Delay Estimation

	Aging Variations
	Bias Temperature Instability
	BTI Modeling: Constant Stress Model
	BTI Modeling: Stress-Relaxation Model
	Effect of BTI on Circuits

	Variation-Aware Current Source Models
	Variability-Aware Timing
	Current Source Models: An Overview
	CSMs for Variability-Aware Designs
	Our Contributions

	CSM Sensitivity Model Development
	Independence of Body Bias and Temperature Effects
	CSM Body Bias Sensitivity Model
	CSM Temperature Sensitivity Model
	CSM Complete Sensitivity Model

	Compact CSM Formulation
	Table Size Reduction for Conventional CSMs
	Modifications for Sensitivity Tables

	The Macromodel Solver
	Using the Macromodel in a Solver
	Newton-Raphson Solver

	Formulation Of Waveform Sensitivity Model
	Waveform Sensitivity Models
	Simplified Waveform Sensitivity Models
	Complete Waveform Sensitivity Model

	Experimental Results
	Reduction in CSM Sensitivity Table Size
	Speedup due to Waveform Sensitivity Models
	Accuracy of the Waveform Sensitivity Models

	BTI-Aware Design using Variable Latency Units
	Variable Latency Units (VLUs)
	Average-Case Computation
	Hold Logic Generation
	VLUs at the Architectural-Level

	VLUs and BTI
	Motivation
	BTI Degradation Model and Delay Monotonicity

	Multioutput Hold Logic: Concept
	Multioutput Hold Logic: Theory
	Tabulating the Effects of Aging on VLUs
	Supersetting Trends

	Rejuvenation: Nonmonotone BTI Models
	BTI-Resilient VLUs
	Static MOHL VLU Implementation
	Adaptive MOHL VLU Implementation Using Body Biases
	Practical Issues

	Experimental Results
	Evaluation Methodology
	Area Overhead and Throughput Enhancements
	Benchmark Categorization

	Variation-Aware Design of Variable Latency Units
	Preliminaries
	The Impact of Variations on VLUs
	Variation-Aware Hold Logic
	The Pessimistic Approach
	The Enumerative Approach
	A Clustered Approach for VAHL

	Enabling Practical Path Clustering
	Qualitative Criteria for Path Clustering
	Reducing the Expense of Path Clustering
	Node Cluster Generation: Node Closeness Metric
	A Block-Based Algorithm for Node Cluster Generation

	Generating Path Clusters and VAHL
	The Relation Between Node Clusters and Path Counts
	Path Clustering
	Generation of VAHL

	Experimentation and Results
	Tabulation of Results
	Analysis and Discussion
	Runtime
	Choice of Threshold Values
	Validation of Our Scheme

	Employing Circadian Rhythms to Enhance Power and Reliability
	BTI Mitigation: Circadian Rythms
	Background and Motivation
	Circadian Rhythms for Circuits

	GNOMO: Greater-Than-NOMinal Vdd Operation
	Circuit Recovery through Power Gating
	Idle Time Generation – Practical Considerations
	Idle Time Generation – Implementation

	Architectural Implementation of GNOMO
	Processor Details
	Simulation Framework

	Power Analysis
	Changes in Power as a Function of Vdd,g
	Power Savings in Delay Guardbanding
	Overall Power Dissipation
	Choosing the Optimal GNOMO Supply Voltage

	Results
	Delay Degradation Reduction
	Area and Power Savings in BTI Compensation
	Overall Power Savings
	Analyzing the Architectural Performance Penalty

	Conclusions
	References
	 Appendix A. Proof of Theorems for CSM Waveform Sensitivities

