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Abstract
Expensive design closure issues for large VLSI circuits are caused by design flows

that consist of steps that are independent of each other. The effect of choices made at

different steps on the overall design are ignored. This thesis presents new algorithms

that bridge the gap between early and later stages of the design, by focusing on two

areas, early estimation of performance, and improved mapping algorithms.

A number of time consuming optimizations are carried out at different stages of

the design process to improve performance. However, the improvements that can be

achieved are indeterminate a priori. We address the issue of predicting performance

gains in the context of gate sizing, by developing an algorithm for fast estimation

of possible delay improvement without actually applying the sizing optimization.

This approach is extended to determine the area overhead required for achieving a

specified delay, which allows for comparisons of implementations based on the trade-

offs between area and delay.

We next present a new algorithm for library-based technology mapping that in-

corporates sizing. The circuit is considered in its entirety, rather than in terms of

fanout free trees, which leads to superior solutions when compared to the traditional

approach. Finally, we address the problem of mapping to Silicon-On-Insulator (SOI)

technology, used for implementing high performance designs. Algorithms developed

for bulk CMOS can lead to suboptimal SOI circuits. We present a new algorithm for

library-less technology mapping that take into account the peculiarities of SOI, and

present the improvements obtained by our approach.
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1 Introduction

The International Technology Roadmap for Semiconductors (ITRS) is cited as jus-

tification for a wide variety of theses, and this one is no exception. In the latest

edition [ITR03], the Design Technology Working Group makes the case for the cost of

design as being the greatest threat to the continuation of the semiconductor roadmap.

Due to advances in semiconductor technology, the number of available transistors

scales by a factor of two at each technology node, leading to a corresponding increase

in design complexity. This requires at least a two-fold increase in productivity per

node, without which the cost of implementing a design – in terms of engineer-hours,

CPU-cycles, etc., – can quickly become unmanageable. One of the trends identified

in [ITR03] as an approach to rein in the cost of design, is to use higher levels of ab-

straction in the design process. While this enables the design and implementation of

circuits of increasing complexity, an immediate consequence is the increased separa-

tion of design representations during implementation. This effect is already evident:

RTL typically has little information of physical characteristics such as interconnect

parasitics, which can eventually have a drastic effect on performance parameters such

as area, delay and power. Thus, the greater the separation between representations

of a design, the greater the need for metrics that can predict the performance of the

design at different stages of the design process, so as to avoid hidden surprises at the

end of the process. This thesis presents metrics that predict possible performance

improvements at specific stages of the design flow, hence allowing a designer better

control over the design process.

In the current design methodology, individual stages of the design process are

discrete; improvements in separate stages (such as a better synthesis approach, or a

more efficient routing tool) are difficult to evaluate in a global setting. In particular,

1



while a certain transform may improve the design at that abstraction, it may adversely

impact the final implementation. A designer can conceivably choose to store a number

of implementations, and defer the decision as to which one is the best to later stages.

However, the multitude of options that are available at different stages of the design

process lead to a correspondingly large number of implementations. Additionally,

as we will show later, evaluating even a small number of implementations can be

prohibitively expensive. Thus, the fundamental issue that has to be addressed, in

order to support the implementation of designs of increasing complexity, is the need

for metrics that can accurately predict the effects of various transformations in the

global setting. Such metrics can enable a designer to make decisions that may be

locally sub-optimal, but which are globally optimal. They can also be used to guide

the design process, so that individual transformations are geared towards improving

the performance of the final design, rather than the performance at the current level

of abstraction.

In this thesis, we use the delay of a design as the performance measure, and

study how it is affected by different transforms. The transforms that we focus on are

gate sizing and technology mapping (which will be described shortly). We present

techniques for estimating possible delay improvement under the sizing transform. We

consider the cost (in terms of area) overhead for this delay improvement, and show

how this cost can be estimated quickly, and with high-fidelity. Using this estimation

approach, a designer can quickly determine the best implementation available. We

present a new approach to technology mapping, and use our estimation technique

to guide the mapping algorithm towards the best delay-optimal solution. Another

aspect of technology mapping is that traditional approaches are no longer adequate

when the implementation technology is drastically different. We address this issue

under the context of silicon-on-insulator (SOI), and propose an algorithm that solves

an SOI-specific problem.

1.1 Current Design Methodology

Figure 1.1 presents a broad overview of a typical flow used for implementing digital

designs. The process of going from specification to silicon implementation can broadly

2
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Figure 1.1: Typical Design Methodology

be viewed as one of successive refinement, from the initial specification and RTL im-

plementation to a logic level representation, via high level logic synthesis (technology

independent optimizations, technology mapping), followed by physical synthesis and

design (placement, routing and gate sizing). At each of these stages, various opti-

mizations are carried out, the goal being to improve some performance parameter,

such as delay, area or power. The representation of a design changes as the implemen-

tation progresses through these steps. At the logic level, the design is in the form of a

network of basic logic gates and their interconnections. This is a good representation

of the functionality of the design, but cannot be used to determine the performance

accurately. Technology mapping binds the logic level netlist to cells from a target

3



technology library. The representation of the design is still in the form of a network,

but the gates of the network are not arbitrary logic functions anymore, and specific

characteristics of these gates (such as delay, area, power) are now known. At this level

of abstraction, estimating the performance of the design is more accurate than before,

but is still not close to the final value. This is because later stages can drastically

alter the performance characteristics. For example, a placement and routing solution

can change the load that a gate has to drive, which changes its delay (additionally,

in today’s small geometries, the interconnect delay itself is a significant component

of overall delay).

Thus, as we progress through the design flow, more information about the design

is available, which allows for more accurate estimation of the performance. However,

this means that if a design is not going to meet its performance targets, this will be

known only towards the end of the design process. In this case, the designer has to

move back to previous stages of the design, and try to rectify this problem, by either

re-implementing parts of the design or re-optimizing it, and the subsequent steps have

to be repeated, with no guarantee of meeting the performance goals. This makes the

design flow cyclical, rather than linear. These iterations are expensive in terms of

time, and can lead to significant delays in completing a product.

The problem is that we would like to estimate the performance of a design in the

early stages of the design flow. However, information that would allow the designer

to make this estimation is not available until later stages, at which time it may be too

late. This usually leads to over-designing at early stages, leading to cost-inefficient

designs. In this thesis, we present new approaches that allow for early estimation,

thus helping design closure and avoiding unnecessary cost overheads.

1.2 Previous Approaches

Various approaches that address the problem of early estimation have been suggested.

In [PAB+00] and [CKL+03], a new methodology is presented, which tries to take cog-

nizance of physical design effects in all stages of the design. This leads to more

accurate optimizations, e.g., since synthesis is made ‘placement-aware’, any trans-

form that changes a circuit updates the placement solution immediately. Accurate
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evaluation of any changes in the design is possible, since wire loads (and hence gate

and interconnect delays) can be estimated from the placement. The obvious drawback

of this approach is the run-time; reasonably large designs need more than a few days

for synthesis to complete. More importantly, this approach is not a truly integrated

one, in that the neither the high-level optimizations nor the placement algorithm are

driven by the effect on each other, instead, individual effects are simply evaluated

early and more often than in the traditional design flow. Thus, this methodology

reduces the large iterations of Figure 1.1 to multiple local iterations.

In [SMCK01], a new approach called “Correct-by-Construction” is proposed, in

which high level assumptions are used as specifications for later steps in the design

flow. Thus, the focus switches from optimality to predictability, breaking the loops

seen in Figure 1.1. However, the trade-off involved is not clear – the total time for

implementing a design improves, but the potential performance gains that have been

sacrificed are not quantified. In some sense, this approach is akin to selecting the

“best” available implementation, and using this as the final solution, and hence is

more useful in time-constrained designs, where time to market is more important

than performance. Meeting performance targets for high-performance designs would

be difficult with this approach.

Structured ASICs [MB02,PSS+03,HJLMS03] address the design productivity gap

by targeting regularity in designs. Using regularity ameliorates problems associated

with deep sub-micron designs, such as cross-talk and manufacture issues. As can be

expected, there is a trade-off involved – achieving performance close to that obtained

by a custom ASIC requires significantly higher area.

Other approaches that target early prediction for custom ASICs address specific

optimization parameters, such as power and delay and build a design methodol-

ogy that present the trade-offs between these parameters (e.g., [VS02]). The ef-

fect of specific physical manifestations that can impact design optimality has also

been addressed, e.g., the interaction between placement on wire congestion [KSD02]

and blockages on buffer insertion [HQGA02]. Specific high level estimation of de-

lay [NN98], area [BN02], and power [NN96] have been proposed, but have the draw-

back of not considering physical design effects. Predicting improvements due to gate

sizing, and load-aware technology mapping which is presented in this thesis, is an
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area that has been neglected until now.

1.3 Contributions of this thesis

We highlight our contributions in the context of the design flow presented in Fig-

ure 1.1. As mentioned before, we first consider the circuit sizing step, which is used

to tune gate sizes in order to improve the delay along the critical path. Sizing is

necessarily performed after routing, since the loads due to routing are known only

after the fact. In Chapter 3, we present an fast and accurate algorithm that can

predict what gains can be accrued using the sizing optimization, given a mapped,

placed and routed solution. This allows the designer to evaluate a number of designs

without actually having to perform gate sizing, which is usually an expensive, time

consuming step. This approach provides an estimate of the minimum delay that a

circuit can achieve under the sizing transform. We extend this approach in Chapter 4

to estimate the area cost of sizing a circuit to meet a given delay constraint. This

allows a designer to make comparisons at intermediate delay points. Given a target

delay, the smallest implementation that meets that delay will also have lower power

consumption, and will therefore be the preferred solution. Our approach enables a

designer to make such a selection.

Moving up the design flow, we address the problem of technology mapping. Cur-

rent algorithms recognize the fact that the delay of a gate depends on the load being

driven, and partly address this issue for single-fanout gates. However, these solutions

are suboptimal when the entire circuit (which has gates with multiple outputs) is

taken into consideration. Chapter 5 presents a new algorithm that performs technol-

ogy mapping and correct sizing of gates for optimal delay. Finally, in Chapter 6, we

consider the problems that occur due to the recent shift from bulk CMOS to silicon-

on-insulator implementations. We show how using traditional approaches can lead to

inferior (and in some conditions, erroneous) solutions, and present an algorithm that

maps circuits while making use of the advantages allowed by SOI and avoiding the

drawbacks.

In the current design flow, problems arise due to the iterations needed for timing

closure. This thesis presents techniques that shrinks these cycles, by first allowing a
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designer to determine the ‘goodness’ of his design without having to perform expensive

sizing optimizations, and second integrating technology mapping and sizing, leading

to better quality implementations. These approaches can be extended to higher levels

of abstractions as well, so that the designer has better insight into the performance

of the design even earlier than technology mapping. The approaches presented here

can also be applied to other design methodologies.
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2 Logical Effort

As mentioned before, in this thesis we focus on the delay of the design as a measure

of circuit performance. We use a simple model of delay called logical effort, described

briefly in this section. A significant drawback of this model is in its handling of

multiple fanouts in a circuit. We formalize this drawback as the “Load Distribution

Problem”, and present a solution in Chapter 3. Our improvement over the logical

effort model is used for delay estimation in Chapters 3 and 4. A unique application

to technology mapping is presented in Chapter 5.

The delay of a path of logic in a digital circuit is the sum of the delays of individual

components (logic gates and interconnects) on that path. The delay of a circuit is

the delay of the critical path, i.e., the maximum delay of any path from the inputs

of the circuit to any output. As mentioned previously, our focus in this work is on

estimating and optimizing the delay of a design, for which we need a good method of

modeling the delay of individual gates.

The most accurate model of gate delay can be obtained by considering the transistor-

level description of the gate at the layout-level, extracting all capacitive and resistive

values, and using a SPICE-like formulation to determine switching characteristics.

However, while this is the most accurate known method, it is extremely time con-

suming. It is straightforward to note that the delay of a gate is a function of the load

that is being driven. Intuitively, the larger the load that has to be driven, the slower

the gate is. We can therefore formulate the gate delay as a polynomial function of

load. Higher-order models are naturally more accurate than simple linear ones. An-

other aspect of gate delay is the size of the gate itself. for a given load, the larger the

gate is, the faster it will switch. In this work, we use a simple linear model of gate

delay that captures the dependence of delay on output load (or load capacitance),
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gate size (or equivalently, input capacitance) and gate functionality. This approach

is called the method of logical effort, and has been widely used in a variety of appli-

cation domains [BKKS98,SIS99,DKS+00,SNvGK02] as well as in industry standard

EDA synthesis tools [SKB+96,Mag02].

Using logical effort, the delay of a gate with input capacitance ci is estimated by

modeling it as a linear function of the load cl being driven as:

d = g ×
cl

ci

+ p (2.1)

= g × h + p

= f + p

where

Logical Effort (g) is the complexity of the gate, relative to an inverter. It measures

how much worse the gate is at driving a specified load than an inverter. The

base case of an inverter is taken to have unit logical effort, and complex gates

such as NAND, NOR and XOR have successively higher values of logical effort.

Electrical Effort, or Gain (h = cl

ci
) describes how the electrical environment of

the logic gate affects performance and how the size of the transistors in the

gate determines its load-driving capability. cl is the load being driven and ci is

the input capacitance of the gate under consideration.

Gate Effort (f = gh) is the product of the logical and the electrical efforts of the

gate.

Parasitic Delay (p) expresses the intrinsic delay of the gate due to its own internal

capacitance, and is largely independent of the size of the transistors in the logic

gate.

The importance of this model (as compared to other delay models where the delay

is a function of the load) is that it separates the different components that contribute

to the delay of a gate in a manner that can be used for estimating minimum delays
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and sizing paths of logic, as will be described shortly. Another point to note is that

the actual delay of the gate, is obtained by taking the product of d and τ , which is

an implementation dependent parameter, that varies according to the technology.

2.1 Estimating the Minimum Delay

Equation (2.1) can be used to determine the delay of a gate if its electrical environment

(output and input capacitances) is known. If we are interested in the delay of a path

of logic, it can be obtained by summing the delays of each gate on that path (an

operation that is similar to the approach using other delay models) as follows

D =
∑

di

=
∑

gihi +
∑

pi (2.2)

where di is the delay, gi the logical effort, hi the electrical effort and pi the parasitic

delay of the ith gate on the path.

However, the delay of a given path of logic can change if the sizes of the gates are

varied. For example, increasing the size of an intermediate gate will make it faster,

but this increases the load on its input gate, hence slowing it down. The net effect

may be an improvement or a degradation in the path delay, depending on the gates

involved and the change in size. This leads naturally to the question of what is the

smallest value of path delay, if gate sizes are allowed to change. This is where logical

effort is most useful, as follows.

Similar to the gate logical and electrical efforts, we can also define the path logical

effort

G =
∏

gi (2.3)

and path electrical effort

H =
Cout

cin

(2.4)
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where Cout is the load being driven by the output gate of the path, and cin is the

input capacitance of the first gate on the path.

the path effort, F , for path of logic is simply the product of the path logical and

electrical efforts (this is similar to the relation between gate effort, gate logical effort

and gate electrical effort)

F = G · H (2.5)

the delay of a path of logic is minimized when the path effort is distributed equally

over all gates in the path (this is proved in [SSH99]). this happy state of affairs occurs

when

fi = gihi = F
1

N (2.6)

for a path with N stages.

If each stage on a path has the same effort, Equation (2.2) can be re-written as

D̂ = NF
1

N + P (2.7)

where D̂ is used to represent the minimum delay.

Thus, given a path of logic, logical effort can be used to easily determine the

minimum delay achievable by that path. This computation is efficient, since a single

traversal is enough to determine all required parameters. We note that this model

is fast at the expense of accuracy. These inaccuracies are due to the simple linear

model, but are within permissible limits for the purposes of this work.

2.2 Sizing for Minimum Delay

Once the minimum delay is determined, the individual gate sizes that achieve this

delay can be recovered in a straightforward manner as follows. Recall that each gate

now has an effort f̂ = F
1

N . Since f̂ is also equal to gh, we have
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f̂ = F
1

N

= g × h

= g ×
cout

cin

cin =
g × cout

f̂
(2.8)

The output gate of a path drives a load Cout, hence starting at the output gate,

we can successively determine the gate sizes by traversing the path to the input. At

the end of such a traversal, we will have obtained gate sizes such that the path has a

minimum delay given by Equation (2.7). In current design geometries, interconnect

is an increasing component of load. In [SSH99], extensions have been proposed to ac-

commodate interconnect capacitance into the parasitic component of delay. For long

segments of interconnect, the traditional approach is to add buffers at intermediate

points, logical effort can then be used as before to analyze this circuit.

2.3 Problems in Paradise

For simple paths of logic, where every gate only drives one gate at its output, Equa-

tion (2.7) can be used to determine the minimum delay that is achievable, and Equa-

tion (2.8) can be used to obtain the corresponding gate sizes. However, the biggest

drawback to the method of logical effort occurs when gates drive multiple fanouts,

which is often the case in realistic circuits.

The heuristic used to account for multiple fanouts is to add a new parameter

called the branching effort, b for a gate, defined as

b =
ctotal

cuseful

(2.9)

where ctotal is the total load being driven, and cuseful is the capacitance on the path
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of interest. The branching effort along a path , B, is then

B =
∏

bi (2.10)

where bi is the branching effort of gate i as calculated in Equation (2.9). Of course,

if a gate has only one fanout, its branching effort is unity.

The gate effort (Equation (2.1)) and path effort (Equation (2.5)) are then modified

in order to capture the effect of off-path fanouts as follows

f = gbh (2.11)

F = G · B · H (2.12)

The analysis of a path is then carried out as before, except with the modified values

of efforts. This approach has a few serious drawbacks. Note that only one path of the

circuit is analyzed at a time. In a well designed circuit, a large number of paths will

be close to critical, and using this approach can quickly become impractical. Another

important issue is that this approach compels non-critical fanouts to contribute a load

that scales in proportion to the load of the fanout of interest, which is determined

only by gates on the path being analyzed. This has two disruptive effects. First, the

load on the path under consideration, and hence its delay estimate, is larger than

necessary, due to the contribution of the non-critical fanouts. Second, assumptions

of gate sizes on the path being analyzed affect the loads on the other gates in the

circuit. This may lead to the delay of a different path becoming dominant. The

branching factor does not capture this interaction among different paths in a circuit.

Analyzing every path, and the interactions among all paths is not feasible, because

of the exponential number of such paths in a circuit. Thus, while the method of

logical effort is well suited to analyze single path delays, it cannot be used directly

when critical paths are not well defined, or can change. In the following chapter, we

present an approach that can handle such scenarios.
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C

Figure 2.1: Assigning Capacitance at Multiple Fanouts

2.4 The Load-Distribution Problem

We now formalize the problem that the branching factor tries to solve. Consider the

situation shown in Figure 2.1, with some logic A having two fanouts, B and C, which

eventually drive primary outputs. Each of A, B and C are fanout-free regions of the

circuit. The delay of segment A depends directly on the load being driven, which, in

this case, is the input capacitance of B and C. There are two situations that have to

be considered:

The interaction between A and its outputs Assigning a larger input capaci-

tance to B and C makes them faster, at the cost of increasing the load on A,

and slowing it down, and vice versa. What is the optimum value of capacitance

that should be assigned to the output of A, so that the delay of the entire circuit

is minimized?

The interaction between B and C These two fanout-free regions may have com-

pletely different delays to the primary outputs of the circuit, which are influ-

enced by the constituent logic and their respective input capacitance. If this is

the case, we would like the critical branch to have a larger input capacitance.

On the other hand, if the output branches have the same delay, they should

have the same input capacitance. Thus, if we determine the optimal load that

A should be driving, what is the best distribution of this capacitance to each

fanout?

We refer to these two problems together as the load-distribution problem. This

formalization does not use the heuristic branching factor from logical effort, and

captures the effect of multiple, interacting paths between primary inputs and outputs.
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A solution to this problem is presented in the following chapter, and this solution is

flexible enough that we can apply it, in Chapter 5, to technology mapping as well.

Given a load at a multiple fanout point in the circuit, current algorithms can

determine the best mapping for the logic up to that point. However, this load is

typically estimated using heuristics, and since the mapped solution depends directly

on the load being driven, wrong estimates can lead to sub-optimal solutions.
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3 Fast Estimation of Minimum

Achievable Delay using Circuit

Sizing

As mentioned in Chapter 1, designs can be mapped to different implementations using

diverse approaches, with varying cost criteria. Post-processing transforms, such as

transistor sizing can drastically improve circuit performance, by optimizing critical

paths to meet timing specifications. However, most transistor sizing tools have high

execution times, and the attainable circuit delay can be determined only after running

the tool. In this chapter, we present an approach for fast estimation of possible

benefits due to transistor sizing that can enable a designer to choose one among

several functionally identical implementations. Our algorithm computes the minimum

achievable delay of a circuit with a maximum average error of 5.5% in less than a

second for even the largest benchmarks.

3.1 Introduction

Implementing a design involves synthesis (technology independent optimizations and

technology mapping), placement and routing. In a final timing correction step,

transistors of logic gates are appropriately sized to speed up critical paths, thus

incurring an area overhead for gains in circuit speed. The importance of transis-

tor sizing can be judged by the amount of research carried out both in academia

[FD85,SRVK93,CCW98,SSP02] and in industry [CCH+98,BVSH02]. However, these

optimization tools have large running times, and can take up to a few hours to calcu-
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late the appropriate solution for an industry-sized circuit. In this scenario, it is diffi-

cult for a designer to determine if an implementation will be able to meet performance

goals after transistor sizing, or which circuit out of multiple different implementations

for the same functionality should be chosen for future detailed optimization.

The delay of a circuit is the maximum delay of all PI-to-PO paths of the circuit.

Transistor sizing is applied to the circuit to reduce this delay, in order to meet design

goals. The smallest value of delay that can be obtained in this manner is referred to

as the minimum achievable delay. In this chapter, we present an approach that can

quickly estimate this minimum delay when transistor sizing is applied to a mapped

circuit. Gains due to this optimization vary according to the circuit being sized,

because of a number of factors, such as which logic gates are used, how these gates are

connected, and how much load they drive. The minimum achievable delay captures

how amenable a circuit is to transistor sizing. Thus, while circuits are rarely sized

to the minimum delay value (due to the associated high area overheads), it is a

good measure of circuit quality. Using our tool as a fast estimator of the minimum

achievable delay, a designer can make early comparisons among different solutions

provided by placement and routing for the same functionality, without incurring the

cost of an actual sizing step. Once the designer has chosen one of the candidate

implementations based on this metric, a more exact optimizer can be used to obtain

actual transistor sizes.

Our approach is based on logical effort [SS91, SSH99], which has been described

in Chapter 2. As mentioned there, logical effort is well suited for estimating the

minimum achievable delay of a single path in a circuit, with a heuristic branching

factor used to account for multiple fanouts. However, the critical path of a circuit

changes dynamically according to the choice of distribution of capacitance over mul-

tiple fanouts, which is a constituent of the load distribution problem. An important

contribution and differentiator of the algorithm presented in this chapter is an exact

solution to the load distribution problem. This solution allows us a means of accu-

rately determining the minimum achievable delay of a circuit by implicitly considering

all paths of the circuit at the same time.
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3.2 An Algorithm for Minimum Delay Estimation

Every gate has multiple sizes available, each of which corresponds to an input capac-

itance, Cin. We define CinG
to be the set of all possible values of Cin of a gate G.

A gate may drive multiple fanouts, and the load capacitance being driven, cl, is the

input capacitances of these fanouts, combined with routing capacitances, cr. For a

gate G driving n fanouts, F1, F2, · · ·Fn, the possible values of the load capacitance is

described by the sum of cr and the elements of the set CLG
, defined as

CLG
=

{

n
∑

j=1

cj : ∀cj ∈ CinFj
, j = 1 · · ·n

}

(3.1)

With this terminology, we now present a dynamic programming based approach

for calculating the minimum achievable delay of a circuit. The basic approach is to

traverse the circuit from primary outputs to primary inputs. For each size of a gate,

we are interested in minimizing the maximum delay from the input of the gate to any

primary output PO. This is achieved by computing a delay-Cin curve, each point of

which is represented by DG→PO[ci], ∀ci ∈ CinG
, defined as the maximum delay from G,

with size ci, to any PO. This value is determined by first calculating the delay of the

gate (represented by DG[cini
][cl]) for each load value obtained by cl = cj +cr, cj ∈ CLG

,

and then adding it to the delay (corresponding to the load) from the fanout of the

gate to the primary outputs.

G1G2

G3

G4 Cout1

Cout2

Figure 3.1: Delay-Cin Calculation and Propagation Across Multiple Fanouts
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The details of our approach, which is provably optimal for trees, are presented

in the following subsections. We first present the calculation for gates with single

fanouts, and then show how this calculation can be extended to gates with multiple

fanouts. We use the circuit in figure 3.1 to illustrate the discussion.

Single Fanouts

The output of a gate having a single fanout can be connected to a fixed load, such as

at the primary output, or to another gate, in which case the load being driven depends

on the size of the gate at the output. We present these two scenarios individually for

ease of explanation; the fixed load is actually a special case of the variable load with

only one load value.

1. Fixed Load: Consider gate1 G1 driving a load of Cout1 at a primary output

as an example of this case, as shown in figure 3.1. Calculating the delay-Cin

curve is straightforward; each possible gate size corresponds to a different value

of ci ∈ CinG1
for the gate, and the delay can be calculated using Equation (2.1).

The delay to the primary output is the same as the gate delay in this case.

Therefore,

DG1→PO[ci] = DG1
[ci][cl] (3.2)

= [g ×
cl

ci

+ parasitic delay]G1

where cl = Cout1

For different sizes of G1 in Figure 3.1, Plot I of Figure 3.2 presents the delay

from the input of G1 to the primary output. Since the load is fixed, we obtain

monotonically decreasing values of delay for increasing gate sizes.

2. Variable Load: Next, consider gate G2 driving gate G1. The load seen by G2

is not fixed, as in the previous case, but varies according to the size of G1. The

delay-Cin curve for gate G1 has already been calculated. The delay-Cin curve

1In this discussion, all gates are shown as inverters for illustration purposes only. The method
applies directly to more complex gates, with appropriate values for logical effort and parasitic delay.
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for gate G2 is calculated in a two-step procedure. First, for a particular gate

size of G2, corresponding to an input capacitance of ci ∈ CinG2
, we examine all

sizes of G1, and calculate the delay as shown in Equation (3.3). Here, the load

cl driven by gate G2 is the input capacitance of gate G1, and the parasitics of

the wire connecting the output of G2 to the input of G1. Since there is a single

gate connected to the output, CLG2
≡ CinG1

.

DG2
[ci][cl] = [g × cl

ci
+ parasitic delay]G2

(3.3)

DG2→PO[ci] = mincj∈CLG2

{DG2
[ci][cl] + DG1→PO[cj ]}

where cl = cj + cr ∀cj ∈ CLG2

Next, the delay from the input of G2 to the primary output is obtained by

combining DG2
[ci][cl] with DG1→PO[cj], which is the delay corresponding to the

size of G1 under consideration. Thus, the minimum delay that we can obtain

for the selected size of G2 is determined using Equation (3.4). Note that this

size of G1 that minimizes DG2→PO[ci] may be suboptimal when G1 is considered

in isolation, i.e., it may not be the size that minimizes the delay from G1 to the

primary output.

Delay
G1 → PO

Gate sizes of G1

Sizes of output gate G1

Delay
G2min

Delay
G2 → PO

Gate sizes of G2

Pt. 1

Pt. 2

Plot I

Plot II

Plot III

Figure 3.2: Delay-Cin Curve Propagation Across Gates G1 and G2 from figure 3.1
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For a particular size of gate G2, the delay from G2 to the primary output varies

due to two factors changing simultaneously, the load being driven by G2 (which

corresponds to different sizes of gate G1) and the corresponding delays of G1.

Thus, for the selected size of G2, there is a trade off between selecting larger

sizes of G1 (which reduce the delay of G1 but slow G2 down), and smaller sizes

of G1 (which have higher delays for G1 but decrease the delay of G2).

Equations (3.3) and (3.4) calculate the best solution for the selected size of gate

G2. This calculation is repeated for different sizes of G2, to obtain its complete

delay-Cin curve.

To illustrate this calculation, consider the smallest gate size of G2. For this

size, Plot II in figure 3.2 is the delay from G2 to the output, for different sizes

of G1, corresponding to different values of load capacitance for gate G2. The

minimum delay value of this set is at the point labeled p1, and all other points

that have higher delay can be discarded, as they are suboptimal.

For different sizes of G2, the delay to the primary output is as shown in Plot III

of figure 3.2. Point p2 is the delay for the smallest size of G2, and is obtained

from Plot II as described above. The remaining points in Plot III are obtained

by repeating this calculation for all other sizes of G2.

Multiple Fanouts

The scenarios presented above are the most basic cases, with a single fanout on a

gate. We now consider the case when a gate drives multiple fanouts, such as gate G4

in Figure 3.1. It is in our approach here that we differ the most with respect to the

method of logical effort, since we take into account different values of delays and gate

sizes on each fanout simultaneously. Depending on the sizes of the gates, either of

the paths through gate G2 and gate G3 may have larger delays, and hence could be

critical. Our formulation explicitly accounts for this changing dynamic.

In Figure 3.1, assume the delay-Cin curves of gates G2 and G3 have been calcu-

lated. In this case, CLG4
≡ CinG2

× CinG3
. The load being driven by gate G4, cl, is the

sum of the input capacitances of gates G2 and G3, and the routing capacitance cr. For

a particular size of G4 (and a corresponding value of input capacitance ci ∈ CinG4
), we
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calculate the delay of gate G4 for each value of this load as shown in Equation (3.4).

DG4
[ci][cl] = {g × cl

ci
+ parasitic delay}G4

(3.4)

DG4→PO[ci] = mincj ,ck
{DG4

[ci] + DOP→PO} (3.5)

where DOP→PO = max{DG2→PO[cj], DG3→PO[ck]}

and cl = cj +ck + cr ∀cj ∈ CinG2
, ck ∈ CinG3

Next, the delay to the primary output is calculated by combining DG4
[ci] with the

maximum of the delays of each fanout. In this scenario, the identity of the branch

with the maximum delay to a primary output can change according to which branch

has higher delay. For a particular size of G4, one branch may determine the critical

path, while the other may be critical for another size of G4. The formulation of

Equation (3.6) automatically accounts for this. Thus, for the selected size of G4, we

can determine the optimal size of each of its outputs, in order to obtain the minimum

delay. This procedure is repeated for all sizes of G4, to compute the entire delay-Cin

curve for G4.

Cin

k1

k2

k3

k4

Delay → PO
t1

t′1

t2

t′2t3
t′3t4

t′4

Figure 3.3: Combining Delay-Cin Curves at Multiple Fanouts

It may seem that the size of the set CLG
for a gate G with multiple fanouts is

proportional to the product of the number of sizes of the fanout gates. Assume gate

G drives four outputs, whose delay-Cin curves are represented by k1, k2, k3 and k4,

shown in Figure 3.3. If each fanout has m sizes, each curve has m points, and the size
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of CLG
is m4. However, we can show that most of the values in CLG

are redundant.

For example, consider the tuple T of the first points t1, t2, t3 and t4 from each of the

curves in figure 3.3. A tuple T
′

of the point t1 from curve k1 and any other point

from k2, k3 and k4 (say t
′

2, t
′

3 and t
′

4), is inferior to T for the following reason. There

are two values that are extracted from T and T
′

, the maximum delay to a primary

output, and the sum of the input capacitances represented by these combinations,

which is used as the load in the delay calculation of gate G. The maximum delay is

the same in tuples T and T
′

, but the load presented by T
′

is greater than that of T .

Hence, the delay of G (calculated using Equation (3.4)), and therefore the delay to a

primary output (calculated using Equation (3.6)) is larger in this case. Since we are

interested in minimizing the delay to a primary output, the solution offered by tuple

T
′

will never replace that calculated using T .

The above discussion directly leads to a strategy for efficiently selecting useful

values of cl from the delay-Cin curves of outputs. First, these curves are stored in

order of non-increasing delay (and hence increasing sizes). The first cl is the routing

capacitance cr plus the capacitance corresponding to the maximum-delay points from

each curve, as in tuple T . The next value is obtained by replacing the point with

maximum delay (e.g., t1 of curve k1 in T ), with the next point from the same curve

(t
′

1). This effectively ignores the combination of t1 with remaining points from the

other curves. This process is continued till the maximum delay point is the last point

on its curve. Thus, the total number of combinations is of the order of the sum of

number of points on each curve, rather than the product.

Algorithm

Algorithm 3.1, Minimum Delay Estimation (MDE), presents our algorithm for es-

timating the minimum achievable delay of a circuit. The calculation is based on the

delay-Cin curve computation presented in the previous subsection. All gates are pro-

cessed in topological order, from POs to PIs. At each primary input, the data point

corresponding to the minimum delay is selected, the maximum over all PIs is the

desired minimum achievable delay.

Assume that there are m sizes for each gate in a circuit with N gates, and the
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Algorithm 3.1 MDE: Minimum Delay Estimation

for each gate G whose outputs have been processed do
// calculate the delay-Cin curves for G
for all ci ∈ CinG

do
DG→PO[ci] = ∞
for every cj ∈ CLG

that is not redundant do
// G has n fanouts F1, F2, · · ·Fn

cl =
∑n

j=1
cj + cr

// determine the delay of gate G
DG[ci][cl] = [g × cl

ci
+ parasitic delay]G

// determine maximum delay from any fanout F
// to any PO, using the delay-Cin curves of F
temp = DG[ci][cl] + maxj=1···n(DFj→PO[cj ])
DG→PO[ci] = min(temp, DG→PO[ci])

end for
end for

end for
Minimum Delay = max{minall PI’s{delay to PO}}

maximum fanout on any gate is |FO|. The innermost for loop is executed O(m ×

|FO|) times, as shown previously, and the cost of determining the maximum delay

point is O(|FO|). The second for loop is executed m times, since we assume m sizes

for each gate. Finally, since there are N gates in the circuit, the outermost for loop is

executed N times. Thus, the running time of algorithm MDE is O(N ·m·m·|FO|·|FO|).

However, note that this is a very loose upper bound, since very few gates actually

have |FO| fanouts.

Algorithm MDE is optimal for trees. However, most circuits are DAGs, with recon-

vergent fanouts. The main problem with DAGs is that there are multiple paths from

a particular gate to primary outputs, or between two gates. An implicit assumption of

our algorithm is that the delay-Cin curves at multiple fanout points are independent,

and that we are free to choose the combination of output delays and capacitances

that best suit the current gate. However, with reconvergent fanouts, these choices

are not independent of each other. Selecting a data point on one output restricts

the choices on the other, and determining the relation between different outputs is

intractable for general circuits. However, assuming independence is not unreasonable.
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Figure 3.4: Comparing Implementations w.r.t Unsized and Sized Delays

If the reconvergent paths are completely unbalanced, i.e., their structure and logic

is such that one always has smaller delay than the other, no errors are introduced

due to the manner in which their delay-Cin curves are combined. The smallest Cin

value will consistently be selected for the path with smaller delay. An example of

this situation is if the paths correspond to curves k1 and k4 in figure 3.3. On the

other hand, if the delays of the two paths are roughly of the same order (e.g., if they

correspond to curves k1 and k2), our approach selects approximately similar values

of input capacitances. This may lead to small inaccuracies, since the actual values of

input capacitance may be slightly different. However, the error in delay estimation is

limited, as shown by the results.

Our approach can also be used to obtain actual sizes of all gates in the circuit.

In Algorithm MDE, we can store the value of the load of each output that induces the

minimum delay. This information can be used in a forward traversal of the circuit, in

order to generate sizes for every gate. A gate with multiple fanins has multiple choices

for its size, which can be resolved by selecting the size imposed by the critical input.

The effect on the non-critical inputs is that they now have a load different from what

was initially assumed. However, the difference in the delays from the primary inputs

to the critical and non-critical inputs can be used to compensate for this. In fact, this

difference can be usually be used to reduce the sizes of the transitive fanin cone of

the non-critical inputs, as long as their delay does not become larger than that of the

critical input. Gate sizes determined in this manner correspond to a circuit sized for
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Figure 3.5: Results for Selected ISCAS and MCNC Benchmark Circuits

minimum delay. However, these sizes can also be used as an initial feasible solution

for an exact sizing tool, instead of using the original unsized circuit. This can lead

to a large improvement in running times of the transistor sizing tool, since a circuit

sized using our approach is closer to the final solution than the initial, unsized circuit.

3.3 Results

In order to validate our algorithm, we generated multiple implementations of ISCAS

and MCNC combinational benchmark circuits using SIS [SSL+92], and a technology

library consisting of minimum sized inverter and two-input NAND, NOR and XOR

gates. This choice of gates was selected simply because they have been calibrated in

order to obtain accurate values of logical effort and parasitic delay with respect to the

models used in our implementation of TILOS [SSH99] describes how these values can
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Figure 3.6: Results for Selected MCNC Benchmark Circuits

be obtained from the reference model. In Appendix A, we present a methodology that

is used for calibrating circuits using SPICE; we use a similar methodology here, except

the calibration is with respect to the models used in our implementation of TILOS.

Each benchmark circuit was mapped using different scripts and options, and randomly

generated wire parasitics were added to each mapped circuit, in order to simulate the

effect of placement and routing considerations. Finally, our implementation of TILOS

was used to determine the minimum delay that sizing could realize. This minimum

delay was compared with the estimates calculated by Algorithm MDE.

Figures 3.5–3.10 presents the comparison of Algorithm MDE with TILOS. For each

implementation, the first bar represents the delay of the unsized circuit. The second

bar is the minimum delay obtained when the mapped circuit is sized using TILOS, and

the last bar is the minimum achievable delay estimated using Algorithm MDE. As can

be seen by the correspondence between the last two bars for each implementation, our
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Figure 3.7: Results for Selected MCNC Benchmark Circuits

results agree with those obtained via TILOS. In every case, the execution time for our

algorithm was less than a second, while our implementation of TILOS took from a few

seconds for C17 up to more than 1500 seconds for C6288. This version of TILOS does

not use incremental timing analysis, which would improve its performance drastically.

However, given the difference in runtimes of the two approaches, our approach will still

be drastically faster than TILOS. The average error between the minimum achievable

delay as predicted by Algorithm MDE and as obtained using our implementation of

TILOS for the circuits shown in Figure 3.5–3.10 is presented in Table 3.1. Including

all benchmark circuits (59 in all), the average error is 6.01%.

Another interesting point to note is that comparisons based on unsized circuit de-

lays can be misleading. Consider Figure 3.4, which presents the normalized unsized

and sized delays of five different implementations of benchmark circuits unreg and

vda. The implementations are ordered in increasing order of unsized delays, repre-
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Figure 3.8: Results for Selected MCNC Benchmark Circuits

sented by the first bar. In terms of unsized circuit delays, implementation 5 is the

fastest, with implementations 2 and 6 being 3% slower, and implementations 13 and

14 being 12% slower. However, after sizing, we observe drastically different behaviour;

implementation 2 is actually 5% faster, implementation 3 achieves the same delay,

and implementations 13 and 14 are 15% faster, as shown by the second bar. Thus,

a naive approach to evaluating implementations would have chosen implementation

5, and would have foregone the superior solutions afforded by implementations 13

and 14. This inversion of which implementation is better after sizing, as compared to

which is better prior to sizing can be seen in circuit vda as well, where implementation

7 is slower than implementation 1 by 20% in terms of unsized delay, but after sizing,

it is 6% faster. In all, comparing multiple implementations of the same circuit shows

that this situation occurs in approximately 10% of all cases.
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Table 3.1: Percentage Error of MDE w.r.t TILOS
Circuit Error% Circuit Error% Circuit Error%
C1908 5.50 C2670 4.53 C3540 4.79
C5315 3.76 C6288 3.42 C7552 4.45
9symml 4.47 apex6 11.59 apex7 4.52
b1 2.32 b9 5.10 c8 3.50
cc 3.64 cht 11.74 cm138a 8.86
cm150a 4.73 cm151a 3.10 cm152a 5.26
cm162a 2.05 cm163a 2.75 cm42 3.99
cm82aa 10.16 cmb 8.00 cordic 6.95
count 6.40 cu 2.42 dalu 3.86
decod 0.65 des 1.97 example2 13.53
f51m 4.41 frg1 6.18 frg2 6.61
i1 10.46 i2 9.17 i3 12.60
i10 2.42 lal 4.84 majority 2.68
mux 12.88 myadder 4.57 pair 3.66
parity 9.74 pcle 1.54 pcler8 5.55
pm1 8.17 rot 4.41 tcon 7.49
term1 6.99 unreg 4.06 vda 6.67
x1 6.64 x2 4.19 x3 7.45

3.4 Conclusion and Future Directions

In this chapter, we have presented an algorithm that quickly and accurately estimates

the performance improvement that can be obtained in a circuit via transistor sizing.

Current placement tools try to provide a solution that is delay-optimal, among other

objectives. However, they ignore the gains that may be obtained via sizing. Our

approach can be used to guide the placement tool, in effect making it “transistor-

sizing aware,” so that the final solution is globally optimal.

The approach for optimally distributing load capacitance over multiple fanouts

presented in this chapter is a general one, which can potentially be applied to other

areas as well. For example, in chapter 5, we integrate it with the technology mapping

problem, to obtain optimal gate sizes during technology mapping. Another area of

application is in determining the area-delay curve of a circuit, which is presented in

the following chapter.
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Figure 3.9: Results for Selected MCNC Benchmark Circuits
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Figure 3.10: Results for Selected MCNC Benchmark Circuits
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4 Fast Estimation of Area-Delay

Trade-offs using Circuit Sizing

Sizing a circuit can improve performance drastically, as seen from the results in Chap-

ter 3. However, since sizing is a time consuming transform, it is difficult to compare

different implementations of a circuit in terms of the cost overhead required for a

particular delay target. In this chapter, we extend the minimum-delay estimator pre-

sented previously to a fast estimator of the complete area-delay trade-off curve of a

given circuit, allowing a designer to choose the most appropriate implementation for

a given delay. We observe excellent fidelity with the actual area-delay curves (98.94%

correct comparisons), with an average error of 5.76% in the area differences predicted.

4.1 Introduction

After a circuit has been placed and routed, it can be sized in order to improve perfor-

mance, incurring cost overheads, which could be area or power. As mentioned in the

previous chapter, the current transistor sizing tools ( [FD85,SRVK93,CCW98,SSP02,

CCH+98,BVSH02]) have large running times – sizing a reasonably large circuit can

take up to a few hours. In Chapter 3, we considered the case of sizing an implemen-

tation to the minimum delay. We now consider the situation where we have a target

delay, which may not be the smallest achievable delay. As before, if a designer is pre-

sented with a number of implementations of the same functionality, he would prefer

selecting only the best for further sizing. This leads to the question of which is the

best implementation, i.e., which implementation will incur the lowest cost, when sized

to meet a particular delay. For convenience, we use the area of the implementation
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as a measure of the cost. There is a direct correlation of area with other measures of

cost, such as power dissipation, sub-threshold leakage and gate leakage, and a similar

approach can be used when the cost function is power, or a weighted combination

of area and power. Answering the question of determining the lowest cost (area)

implementation requires knowledge of the area-delay curve of each implementation,

but these are determined only after sizing has been carried out. We therefore present

an approach that estimates the area-delay curve of a given implementation. We do

not use a sizing tool, and therefore, our approach is fast, and as we will show, the

estimated curve has high fidelity with the actual area-delay curve.

Chapter 3 presents an approach based on of logical effort [SS91, SSH99], for de-

termining the minimum achievable delay of an implementation, if transistor sizing

were to be applied to it. While this is a useful metric to have, it is not sufficient for

comparing circuits that will be sized to arbitrary (non-minimum) delay points. This

drawback is illustrated in the following section, where we present the importance of

determining the entire area-delay curve of an implementation. We then show how

the area-delay curve can be estimated by using the information stored in the mini-

mum achievable delay calculation. Finally, we apply the approach presented here to

comparing different implementations of the same benchmark circuits, and show how

accurate comparisons can be made quickly.

4.2 Problem Formulation

Figure 4.1(a) shows the area-delay curves of multiple implementations of benchmark

circuit C7552. Each implementation was obtained by varying parameters given to

the optimization and synthesis tool. The area-delay curves were obtained using our

implementation of TILOS [FD85]. In these plots, the area of an implementation is

shown on the y-axis, and delay on the x-axis. The extreme right point of each curve

corresponds to the unsized circuit; this has maximum delay and the smallest area,

and successively smaller delay values require larger areas. Note that the curves have

a characteristic point (called the ‘knee’), at which the rate of change of area with

respect to delay changes drastically.

Each curve is bounded by the maximum delay (i.e., the unsized circuit delay)
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Figure 4.1: Area-Delay Curves of 6 Implementations of Benchmark Circuit C7552 (a)
Generated using TILOS and (b) Estimated

and the minimum achievable delay. However, as can be seen, the shape of each

curve can vary significantly. For example, in the curves shown in Figure 4.1(a), the

knee of each curve can either be closer to one of the end points or in the center.

This property varies between different circuits, as can be expected, but it also varies

between implementations of the same circuit. For implementations I1 and I2 of C7552,

the knee is closer to the minimum delay point. Hence, we initially observe large

improvements in delay for relatively small area cost, for these implementations, but

further delay improvement comes at the cost of large increases in area. The situation

is reversed for implementations I5 and I6, where the knee is closer to the maximum

delay point. In this scenario, trying to determine which implementation is the best

at some intermediate delay point without having knowledge of the entire area-delay

curve is difficult.

Suppose a designer wants to determine the best implementation among those

available for some target delay of D1. Calculating the minimum achievable delay

and the unsized circuit delay of all implementations, the designer can determine

that implementations I1, I2, I3 and I4 meet this target delay. At a different target

delay of D2, the implementations that have to be considered are I3, I4, I5 and I6.

Implementations I1 and I2 need not be considered, since their minimum achievable

delay is larger than this value. However, this information is not sufficient, since
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which of these circuits should be selected is still not known. Ideally, he would like

an ordering of these implementations based on the cost, which in this case, is the

area. The required ordering for a delay of D1 is {I3, I4, I2, I1}, and for D2 it is

{I4, I3, I5, I6}. Simply ranking implementations based on the unsized delays and

areas is not enough, e.g., at one delay point, I4 has lower area, and at the other I3 is

better. This situation, of different implementations being the best at different delay

points, is also seen in implementations of other benchmark circuits.

Recall that using a sizing tool to obtain the area-delay curves of one implemen-

tation of a circuit is time-consuming. Obtaining the area-delay curves of multiple

implementations is prohibitively expensive. Our heuristic, presented in the following

section, addresses this issue by estimating the area-delay curve of a given implemen-

tation. These curves can be used to compare different implementations in two ways.

First, given a target delay, we can generate a cost-based ordering based on the esti-

mated area-delay curve of each implementation. Second, instead of calculating the

actual areas at the delay value of interest, we measure the relative area difference be-

tween the implementations. The relative area difference has a good correlation with

the actual area difference, and can be estimated quickly.

The area-delay curves obtained using our approach are as shown in Figure 4.1(b).

A rough comparison with the plots of Figure 4.1(a) shows that this heuristic captures

the behavior of the area-delay curves well. In particular, the shape of the estimated

curve, with respect to the position of the knee matches that seen in the actual area-

delay curves. A complete comparison is made in section 4.4.

4.3 Area-Delay Curve Estimation

Our starting point is Algorithm MDE, presented in chapter 3 and [KS04]. It estimates

the minimum achievable delay of a circuit, by calculating the Delay-Cin curve for

each gate of the circuit. This curve stores the best possible delay from the input

of a gate to any primary output, for each input capacitance value, corresponding to

the gate size. It also implicitly stores the sizes of gates on the path to the primary

output, which achieve this delay. Determining the Delay-Cin curve of a gate that has

a single fanout is relatively straightforward, since using dynamic programming, the
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Delay-Cin curve of the immediate output is the only one that has to be considered.

For gates with multiple fanouts, all points on the Delay-Cin curves of each fanout have

to be considered, and the the number of possible combinations of these points can be

extremely large. However, Delay-Cin curves of multiple fanouts can be combined in a

manner that leads to tractable run times without any loss of information. The Delay-

Cin curve of a gate thus captures the delay characteristics of the entire transitive

fanout cone of the gate in a compact and elegant formulation. Once the Delay-Cin

curves at the primary inputs have been calculated, the minimum achievable delay

of the circuit can be determined by selecting the minimum delay point from these

curves. The gate sizes associated with the selected point can be propagated to the

primary outputs, and adding these sizes gives us an estimate of the area required to

meet the selected (minimum) delay.

Since we are interested in determining the area-delay curve of the implementation,

the obvious approach is to calculate the area with the delays during the Delay-Cin

calculation. However, there are a few problems with this approach. There are multiple

configurations of gate sizes that can achieve the same delay value, and hence multiple

solutions for each delay value have to be stored. These enhanced Delay-Cin curves do

not have the optimal substructure property, and hence we can no longer use dynamic

programming. Finally, every combination of points in the enhanced Delay-Cin curves

of multiple fanouts has to be considered, which further increases the complexity.

We therefore need another approach to estimating the area-delay curve. Recall

that the Delay-Cin curves calculated in Algorithm MDE implicitly store sizes of gates

in the transitive fanout cone required for for achieving the minimum delay for each

value of Cin. Hence, we can size the circuit using points on the Delay-Cin curves

of the primary inputs, and calculate the corresponding area. However, these points

may not be optimal i.e., the area calculated using the above approach may not be

the smallest area for a particular delay. For example, say we have a minimum delay

of d1 for Cin1
and d2 for Cin2

, with corresponding circuit areas of a1 and a2, and

d1 > d2. It is possible that there was a non-minimum delay d′
2 = d1 for an input

capacitance of Cin2
that had a corresponding circuit area a′

2, that is less than a1. The

solution (a′
2, d

′
2) is clearly better than the (a1, d1) solution, but since only minimum

delay points are considered, the superior solution is hidden.
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Figure 4.2: Example Circuit

Consider the circuit shown in Figure 4.2, with two branches of the circuit driving

different loads 1. For some input capacitance of cin, we obtain a number of delay

values, the minimum of which is stored in the Delay-Cin curve, and the other delay

values are discarded. However, we can size the circuit using the minimum as well as

the discarded delay values (this is for the same input capacitance of cin), and calculate

the corresponding areas. These points are shown in Figure 4.3, and the best points

for an area-delay curve perspective are the ones marked by a line. This procedure

can be repeated for other values of Cin, and the union of the solutions obtained gives

us the area-delay curve desired. This is shown in Figure 4.4 for three values of Cin.

Note the intersection in the curves corresponding to cin = 4 and cin = 5, this is an

example of sub-optimality if only the minimum delay points were to be considered.

Thus, we estimate the area-delay curve of a circuit by sizing it for different values

of delay, for every value of Cin and measuring the area. In order to keep the run time

low, rather than sizing for all delay values, we size the circuit for a limited number

of values (in our experiments, we found that selecting 10 sub-optimal delay points

was sufficient). This has an impact on the accuracy of our results, but the effect is

limited, especially since our focus is on comparing implementations, rather than on

determining actual areas.

Our heuristic, called Algorithm ADC (shown in Algorithm 4.1) is obtained by mod-

ifying Algorithm MDE as follows. At the primary inputs, we store sets of Delay-Cin

curves. Each time DG→PO[ci] is updated to a new value, we store the replaced value

1We use inverters for simplicity of presentation; this discussion extends to other gates as well.
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Figure 4.3: Calculating the Area-Delay Curve for one value of cin
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Figure 4.4: Area-Delay Curve of the Circuit in Figure 4.2

as an entry in secondary curves. The minimum delay value from these secondary

curves are then used to size the circuit, and obtain other points on the delay-area

curve. Circuits sized in this manner have greater delay than the minimum achievable

delay, and after area recovery, they have smaller area as well.

The solution obtained using this approach is naturally not exact. However, as

discussed above, since the auxiliary data of points on the secondary curve encode

sizes of the outputs (and particularly, of sizes of multiple fanouts), these solutions

still provide a good representation of the area behavior of the circuit at different

delay points. i.e., though we cannot use the area-delay curves to make absolute

judgments, we can still make comparative judgments between different circuits.

Once the circuit has been sized, we determine the arrival and required times at
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Algorithm 4.1 ADC: Area-Delay Curve Calculation

for each gate G whose outputs have been processed do
if G is not a PI then

Calculate Delay-Cin curve of G as in Algorithm 3.1
else

Calculate Delay-Cin curve as before, but for each ci store all solutions
end if

end for

for each set of Delay-Cin curves of the PIs do
Minimum Delay = max{minall PI’s{delay to PO}}
// forward traversal
Size the circuit based on the selected point. Also determine the arrival time at
each gate
// reverse traversal
Determine the required time at each gate
// area recovery
for each gate G in reverse topological order do

slack = arrival time − required time
while slack > 0 do

reduce the size of G
update the arrival and required times of G and its inputs

end while
end for
Determine area and delay of the sized circuit

end for

each gate, and use the slack to reduce the sizes of the gates. This step can drastically

reduce the area of a circuit, since the non-critical parts of the circuit are usually sized

to be unnecessarily fast.

Algorithm 4.1 is almost as fast as Algorithm 3.1. Once the Delay-Cin curves have

been calculated, the actual calculation of arrival and required times only needs two

traversals of the circuit, and sizing each gate requires a maximum of O(m) operations,

if there are m gate sizes available. This is done a fixed number of times, for each set

of Delay-Cin curves that have been calculated. Thus, the running time is dominated

by that of running Algorithm 3.1.
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Table 4.1: Full ADC Comparison
Comparisons ETotal EFalseCircuit

Total False max.(%) avg.(%) max.(%) avg.(%)

C432 102 3 21.85 6.42 11.33 9.51

C499 158 14 21.52 6.38 16.08 7.83

C880 41 3 13.95 4.11 9.89 6.93

C1355 136 10 28.61 8.17 18.11 8.02

C1908 113 4 25.72 5.62 5.22 4.00

C2670 121 1 18.87 3.49 3.28 3.28

C3540 101 5 18.24 4.49 14.51 8.12

C5315 163 8 27.51 7.24 5.09 2.34

C6288 57 10 22.50 4.65 11.62 4.85

C7552 30 2 25.08 7.02 4.70 2.68

Total 1022 60(5.87%)

Max. 28.61 18.11

Avg. 5.76 5.75

4.4 Results

In order to validate our algorithm, we generated multiple implementations of the IS-

CAS combinational benchmark circuits using SIS [SSL+92], and a technology library

consisting of minimum sized inverter and two-input NAND, NOR and XOR gates.

These gates are calibrated to obtain accurate values of logical effort and parasitic

delay with respect to the models used in our implementation of TILOS. Each bench-

mark circuit was mapped using different scripts and options, and randomly generated

wire parasitics were added to each mapped circuit, in order to simulate the effect of

placement and routing considerations. Finally, our implementation of TILOS was

used to determine the actual area-delay curves, against which the estimated curves

obtained by Algorithm ADC can be benchmarked.

The first goal of our approach is to correctly predict which implementation is the

best for different delay points. Our methodology for measuring the effectiveness of

Algorithm ADC is as follows. For the entire range of possible delay values, we select

ten equally spaced delay points. Note that the number of implementations that

can be sized to meet a particular delay value varies by circuit. We make pairwise
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comparisons between all implementations available at the selected delay point, and

determine which implementation is better. In Table 4.1, for each benchmark circuit,

the number of comparisons made are shown in the second column. Next, we make

the same comparison using the delay curves obtained from our implementation of

TILOS. An incorrect comparison is when the ranking according to Algorithm ADC is

different from that obtained from TILOS. As shown in the next column, incorrect

comparisons occur only 5.87% of the time.

Next, we measure the error in the predicted area difference. Let implementations

I1 and I2 have estimated areas of AI1est and AI2est, and assume AI1est < AI2est,

so that I1 is the better implementation. The difference between the estimated areas

of I1 and I2, is calculated as ∆Aest = 100(1 −
A

I1est
A

I2est
). Similarly, the difference

between the areas from the actual area-delay curves, AI1act and AI2act is calculated as

∆Aact = 100(1−
A

I1act
A

I2act
). The absolute error of our approach is E = |∆Aest−∆Aact|,

and the maximum average value of this error over all comparisons are presented in

columns 4 and 5 of Table 4.1. The maximum error is high, but it does not happen

often, and over all circuits, the average error is 5.76%. The last two columns present

the maximum and average errors in area estimation for comparisons that were mis-

predicted. Once again, while the maximum is large, it is rare, and the average error

in this case is 5.75%.
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5 Library Based Technology

Mapping using Logical Effort

In this chapter, we move up the design flow presented in Figure 1.1 in Chapter 1. Thus

far, we have focused on estimating the changes that can be obtained by the sizing

transform, in terms of minimum delay and the cost overhead for a given target delay.

We now combine our solution to the load distribution problem with the mapping

transform, thereby obtaining superior solutions. We also propose a new approach to

library-based technology mapping, which is also based on the method of logical effort.

Our algorithm is close to optimal for fanout-free circuits, and is extended to solve the

load-distribution problem for circuits with fanout. On average, benchmark circuits

mapped using our approach are 32.48% faster than the solutions obtained from SIS.

5.1 Introduction

The logic synthesis portion of design implementation consists of technology inde-

pendent optimization, followed by technology mapping. A number of algorithms

have been proposed for the latter step, such as tree-mapping [Keu87] and DAG-

mapping [KBS98], using load-dependent delay models [TMBW90], constant delay

models [GLH+95,SIS99] as well as using logical effort [HWKMS03]. High-performance

designs require rich libraries, with multiple instances of each cell, which have varying

delay, area and drive capabilities. Technology mapping, therefore, is not simply iden-

tifying the best cells to be used to implement some logic, but also the best instance

of the selected cells.

Traditionally, logical effort has been used as a quick means of estimating the delay
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of a path of logic. Given load and input capacitances, it can also be used to find the

minimum delay that can be achieved by a path, and the corresponding gate sizes

that lead to this minimum delay. Thus, it can be applied to making comparisons

of different implementations of the same functionality for a path, but falls short

when comparing entire circuits. In this work, we apply logical effort to the problem

of minimum-delay technology mapping. Our approach for selecting matches during

technology mapping has a couple of advantages over previous methods. Firstly, size

selection of gates in the solution is implicit in our formulation, and does not have

to be determined during matching. Secondly, the delay model is inherently load-

dependent, and there is no need to enumerate solutions for all possible load values,

as is traditionally done [TMBW90]. This makes our approach faster than current

algorithms for fanout-free circuits.

We also modify the previous solution to the load distribution problem, to accu-

rately handle multiple fanouts. In Chapter 3, this problem was addressed in the

context of sizing a mapped circuit. We use the approach presented there to guide

the technology mapping algorithm at multiple fanout points in the circuit, leading to

mapped circuits that have better performance than solutions obtained by previous

methods.

5.2 Traditional Technology Mapping

In this section, we briefly summarize the state of technology mapping and the draw-

backs of current mapping algorithms.

Cell- or library-based technology mapping is the process of binding a technology

independent logic level description of a circuit to a library of gates in the target

technology. A dynamic-programming algorithm based on tree covering was proposed

in [Keu87], and has served as the basis of later technology mapping algorithms. This

is a two-step algorithm –

• In the matching step, matches for all gates are generated in an input-to-output

traversal of the circuit, and the optimum match (based on its cost and the cost

at its inputs), and the corresponding matches at the inputs, is stored as the

solution for that gate.
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• In the covering step, the solution for the entire circuit is generated by an output-

to-input traversal of the circuit. At the primary outputs, the best match is

selected, and the covering recurses on the inputs of this match.

One of the drawbacks of this approach is that the circuit to be mapped (the “sub-

ject graph”) is partitioned into disjoint fanout-free trees, which are then optimally

mapped. However, this leads to restrictions on the solutions, since matches cannot

cross tree boundaries. In [KBS98], it was pointed out that if duplication at tree

boundaries were to be allowed, DAG-mapping, as opposed to tree-mapping, would

provide superior results. However, [KBS98] does not address the load-distribution

problem, described shortly.

The delay models used in technology mapping fall into the following categories –

Load-Independent Delay Models assume that the delay of a cell does not depend

on the load being driven, which is unrealistic. However, during technology map-

ping (even in the case of fanout-free regions), the load is not known until the

covering step, and assuming load-independence of delay is convenient. Natu-

rally, this model is not widely used.

Load-Dependent Delay Models express delay as a polynomial function of the

load being driven. Higher-order delay functions, such as quadratic functions,

can be used for greater accuracy, although linear functions, as used in [TMBW90],

also suffice. Technology mapping using such a delay function generates optimal

matches for all load values in the matching step. During covering, the actual

value of the load is known, and the corresponding match can be selected as the

solution.

Constant Delay Models assign a fixed delay to each library cell (note that this is

not the same as the load-independent delay models). Technology mapping is

carried out under the assumption that given a load, these cells can be sized in

order to achieve the assigned delay. These models have been used in [GLH+95,

SIS99], but the main drawback is that selecting cells during matching is sensitive

to the load being driven.
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Gain-Based Delay Models express the delay of a gate as a function of the ra-

tio of output-to-input capacitance of the gate, and have been applied to tech-

nology mapping in [HWKMS03]. However, the selection of sizes of gates in

[HWKMS03] is based on an ill-defined parameter called global gain, whose value

is set either by experimentation or relies on the intuition of the designer.

Load-Dependence of Optimal Matches

C
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Figure 5.1: Influence of Load on Solutions

Consider Figure 5.1(a), where output C is the NAND of two inputs, a and b. This

functionality can be obtained by either selecting a NAND2 gate directly, as shown on

the top, or by selecting an INV-NOR2-INV chain as shown at the bottom. It may
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seem that the smaller solution will outperform the larger one. However, consider the

delay equations for each option, assuming the following values: gINV = 1, gNAND2 = 4

3
,

gNOR2 = 5

3
, pINV = 1 and pNAND2 = pNOR2 = 2. The minimum delay that can be

achieved by each option can be calculated using Equation (2.7) of Chapter 2, as

D̂NAND2 =
4

3
×

CL

Ci

+ 2

D̂INV−NOR2−INV =3 ·

[

5

3
×

CL

Ci

]
1

3

+ 4 (5.1)

Figure 5.1(b) plots the minimum delay of Equation (5.1) as a function of the electrical

effort, CL

Ci
. It is obvious that there is no universally better choice in this case – for

small loads, the NAND2 has lower delay, while the INV-NOR2-INV is better for

larger loads.

This issue arises in traditional technology mapping in two contexts. Firstly, we can

see the drawback of constant delay models, where the match generation is independent

of the load. Secondly, at multiple fanout points, approaches using load-dependent

delay models can only estimate the load being driven, and make the appropriate

selection. If this estimate is wrong, suboptimal solutions are generated.

We address this issue by proposing a new approach to technology mapping in the

next section. This approach is optimal for fanout-free structures. We then show how

our algorithm can be combined with a modified version of the solution to the load

distribution problem, in order to obtain mapped solutions that are better than those

obtained by traditional methods.

5.3 Logical Effort Based Technology Mapping

In this section, we show how we extend logical effort in order to map a circuit to a

target library. We first show how fanout-free circuits can be mapped using logical

effort, followed by our approach for multiple fanouts, where we provide a solution to

the load-distribution problem. We finally summarize our overall approach for general

circuits.
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5.3.1 Mapping Fanout-Free Circuits

In the matching step of the traditional technology mapping algorithm, all possible

matches are generated at each gate in the subject graph, and the best match is stored

as a potential solution. For minimum-delay mapping, the best match is determined

on the basis of its delay, plus the maximum delay at its inputs. We use a similar

approach, but rather than delay, we minimize the cumulative path logical effort, G.

For ease of explanation, we first consider a simple path of logic (with each gate having

single fanins), and then present our approach for multiple fanins.

Consider Equation (2.7), which is reproduced below

D̂ = N (GH)
1

N + P (5.2)

As mentioned before, the path electrical effort, H , is the product of the electrical

efforts of gates on the path. However, this product telescopes as shown in Figure

5.2, since the input capacitance of a gate is the load capacitance of its input (e.g.,

cinC
= coutB). Hence, H can be calculated as CL

cin
, where CL is the load being driven

by the last gate, and cin is the input capacitance of the first gate on the path under

consideration. Thus, if the electrical effort of a path is known, its delay can be

calculated using Equation (5.2), without knowing the sizes of each gate on the path.

We show later how the individual gate sizes can be calculated.

A B C D
cin

CL

coutA coutB coutC coutD

cinA
cinB

cinC
cinD

H =
coutA

cinA

×
coutB

cinB

×
coutC

cinC

×
coutD

cinD

= CL

Cin

Figure 5.2: Calculating the Electrical Effort of a Path

During technology mapping, we have the freedom of choosing which gates are

used to implement the required logic. If we temporarily assume that the path has a

fixed number of stages (this will be relaxed shortly), then for a given path electrical

effort, we can see from Equation (5.2), that the minimum delay over all possible

48



implementations is obtained by the implementation that minimizes the path logical

effort, G.

Next, we allow any number of stages for the implementation, and keep track

of the optimal solution for all path lengths of the matches. In this case, at the

primary output, we obtain a set of solutions, each of which implement the logic using

a different path length. We can use Equation (5.2) to determine which of these gives

us the minimal delay.

Once the values of G, H and N that minimize the delay have been determined,

we can calculate the sizes of each gate on the path. As mentioned previously, the

minimum delay is achieved when each stage in the path bears the same amount of

effort, and this effort f̂ = F
1

N [SSH99]. Recall that the stage effort fi of stage i is the

product of its gate logical and electrical efforts. We use this property to determine

the sizes of the gates as follows.

fi = gi · hi = gi ·
couti

cini

⇒ cini
=

gi

fi

· couti (5.3)

Thus, starting from the primary output, where the load CL is known, a traversal

towards the primary input successively determines the input capacitance (and hence

size) of each gate.

Logical effort based technology mapping for a path can therefore be summarized

as follows.

• In the matching step, traverse the path from primary input to primary output.

For each match at a gate, the cost is the product of the logical effort of the

match and the cost at the input of the match. The length of the path is the

length of the input of the match plus 1. For all path lengths, store the best

match.

• At the primary output, determine the combination of G, H and N that minimize

the delay.

• In the covering step, traverse the path from primary output to primary input,

generating the solution as in regular technology mapping. Calculate the correct
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sizes of each gate using Equation (5.3).

We can now generalize this approach to circuits with gates having multiple fanins.

Recall that the minimum delay is achieved by minimizing the cumulative logical effort.

For a gate t with r inputs I1, I2, . . .Ir, we define the critical input Ic to be the input

having the maximum delay from a primary input. Consider the situation where t has

some input capacitance cint
, and the path length from primary inputs to any input of

t is the same. The delay from the primary inputs to each input of t can be determined

using Equation (5.2), with cint
assuming the role of the load. It is now obvious that

the critical input, Ic (the input with maximum delay) will also be the input with

maximum cumulative path effort.

Logical effort based technology mapping for fanout-free circuits can therefore be

carried out in a manner similar to the approach for simple paths. The cost of each

match is now the product of the logical effort of the match, and the maximum of

the costs of its inputs. As before, the delay depends on the length of the path, N .

We therefore record solutions for all values of path length at each gate, and at the

primary outputs, the best delay over all N can be selected, and the corresponding

solution recovered. As we will show in Section 5.4, the average path length N for

typical benchmark circuits is between 2 and 5.

The pseudo-code of our dynamic-programming based approach is presented in

Algorithm 5.1, and we use Figure 5.3 to illustrate it. Here, a simple chain of three

gates, A, B and C is to be mapped to a library of three cells, X, Y and Z, with logical

efforts gX, gY and gZ.

For all legal values of lengths, each gate t keeps track of the accumulated product

of logical efforts Gt, and the corresponding matches Mt. Gt and Mt are indexed

according to the length of the path at the inputs to the match at gate t (plus 1 for

the match at t itself). Assume that we are considering the match of a library pattern

m at gate t, which has logical effort gm and parasitic delay pm, and that the length of

the path from the primary input to t is n. The cumulative logical effort of length n

at input i of the match is Gi[n]. We select the maximum of this value over all inputs,

and take its product with gm, to obtain the cumulative logical effort at the output of

t for a path of length n + 1. Finally, the match corresponding to a selected Gt[n + 1],

and the cumulative parasitic delay Pt[n + 1] is also stored.
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Algorithm 5.1 LE-Based Matching for Fanout-Free Regions

// initialize
for each primary input p do

Gp[0] = 1
end for

// Phase I: Matching
for each gate t in topological order do

// Mt is the set of all matches at t
set Mt[i] = 0 for all i
for each m ∈ M, with logical effort gm do

// I is the set of inputs to m
// calculate cumulative effort Gt[n + 1] from
// the inputs, corresponding to distance n
temp = gm × maxi∈IGi[n]
if Mt[n + 1] = 0 OR temp < Gt[n + 1] then

Gt[n + 1] = temp
Pt[n + 1] = pm + Pi[n]
Mt[n + 1] = m

end if
end for

end for

// Phase II: Selecting Solution
at the primary output, select the combination of G, H and N that minimizes delay

// Phase III: Covering
select matches in a traversal from the primary output to primary inputs, sizing the
matches appropriately
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Figure 5.3: Example of LE-Based Technology Mapping

In the example, the only match of a library pattern at gate A is that of pattern

X, and the corresponding solution for A is GA[1] = gx, MA[1] = X. At gate B,

however, we have two possible matches, the match of X, with solution GB[2] = g2
x,

MB[2] = X, and the match of Y, with solution GB[1] = gy, MB[1] = Y. Thus, B

has two solutions of length 1 and 2. At gate C, all three library patterns match,

generating the following solutions:

• Match of Z: This is straightforward, with the solution being GC[1] = gz,

MC[1] = Z.
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• Match of Y: In this case, the input to the match is A, and the only solution

available is of length 1. Hence, the corresponding solution for C, of length 2, is

GC[2] = gx · gy,MC[2] = Y.

• Match of X: The input to this match is B, which has two solutions. Each of

these leads to two solutions for C, of length 2: GC[2] = gy · gx, MC[2] = X and

of length 3: GC[3] = g3
x, MC[3] = X.

Note that we now have two solutions at circuit node C of length 2, due to the matches

of Y and X. We store the one with the minimum value of cumulative logical effort.

As we have reached the primary output, the matching step is complete. We have

three possible solutions at the primary output, of lengths 1, 2 and 3. The load CL

is known for each solution, and assume that the primary input has a fixed drive

capability of Cin. This fixes the electrical effort H = CL

Cin
, and we can calculate

the minimum delay corresponding to each available solution using Equation (5.2),

and select the minimum. As discussed before, the individual gate sizes can then be

determined using Equation (5.3).

Traditional approaches calculate and store solutions for all possible load values.

We trade this off with generating solutions for different values of path length, N .

Legal values of N depend on the library, and it is usually the case that the number of

values for N is small. Thus, keeping track of N solutions is still faster than keeping

track of solutions for each load value at every gate.

In order to prove the optimality of Algorithm 5.1, we state and prove the following

lemma.

Lemma 1. Let Ic be the critical input of a gate t, as defined previously. After sizing

t and its outputs, Ic is still the critical input of t.

Proof. We first prove the case of symmetric gates, in which the delay characteristics

of each input pin to the output of the gate are the same. The proof for the case of

asymmetric gates is similar, and follows from the proof for symmetric gates.

Consider the situation where we have a match at some gate t, with r inputs,

I1, I2, . . . , Ir, each having cumulative logical effort for path of length n from the

primary inputs GI1
[n], GI2

[n], . . . GIr
[n]. Since gate t is symmetric, the load being
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driven by each of I1, I2, . . . , Ir is equal, and is cint
. Let Ic be the critical input, and

let Ij denote the other non-critical inputs. As mentioned previously, Ic being the

critical input implies that GIc
[n] ≥ GIj

[n] ∀ j. In this case, we select GIc
[n] to be

multiplied with the gate effort of the match at t, gmt
in order to obtain Gt[n + 1].

This means that when the segment is sized, the size of the match at gate t (which

determines the load cint
at the output of any Ij) will be determined by the value

of GIc
[n], and this size will be different from the size determined if we had selected

GIj
[n]. We show that this is in fact the correct choice to make.

As mentioned previously, the sizes of gates are determined by applying Equation

(5.3) in a backward traversal. If the load at the primary output is CL, and there are

k gates from gate t to the primary output in the mapped solution, Equation (5.3)

can be applied to each gate successively, to obtain

cint
=

∏

k gk

f̂k
· CL (5.4)

Note that the stage effort for optimal delay is in the denominator of Equation (5.4),

and f̂ = F
1

N = (G · H)
1

N . Therefore, choosing GIc
[n] induces a size on gate t that

is smaller than that we would have obtained by using GIj
[n]. This means that the

delay GIj
[n] would have induced (say DIj

) would depend on a larger size of gate t.

Since t is now smaller than anticipated by gate Ij , its load on Ij is smaller, and hence

the delay of the branch from an input to gate Ij does not increase (from the value

it would have been, if the solution corresponding to Ij had been used to size t) by

taking the choice of GIc
[n], i.e., Ic is still the critical input of t.

We now turn to the general case of asymmetric gates. In this case, the delay

of each input of the gate to the output can change depending on the functionality.

However, we show that the assertion of Lemma 1 still holds.

Consider asymmetric gate t with two of its inputs, a and b having logical efforts

ga and gb respectively. Let the cumulative logical effort up to each input be Ga and

Gb, and the cumulative logical effort from the output of t to a primary output be

Gk. Since gate t is asymmetric, the capacitance at each input is different, but this

also implies that the logical efforts are in the same ratio i.e., if cinb
= z × cina

, then

gb = z × ga (this follows from the definition of logical effort). There are two cases to
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consider, as follows.

1. Ga > Gb In this case, the solution at input a is selected as it is considered to

be critical. Sizing gate t according to this solution will imply some capacitance

c∗inb
at input b, and we need to show that c∗inb

≤ cinb
.

cina
=

Gk · ga

f̂k
a

· CL

c∗inb
=z × cina

=z ×
Gk · ga

f̂k
a

· CL

=
Gk · gb

f̂k
a

· CL

cinb
=

Gk · gb

f̂k
b

· CL

Since Ga > Gb, f̂a > f̂b and c∗inb
< cinb

.

2. Gb > Ga As in the previous case, the solution at input b is selected, which

implies some capacitance c∗ina
at input a. We need to show that c∗ina

≤ cina
.

cinb
=

Gk · gb

f̂k
b

· CL

c∗ina
=

cinb

z

=
Gk · gb

f̂k
b × z

· CL

=
Gk · ga

f̂k
b

· CL

cina
=

Gk · ga

f̂k
a

· CL

Since Gb > Ga, f̂b > f̂a and c∗ina
< cina

.

In Algorithm 5.1, the value of the cumulative effort for a match at a circuit node
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is calculated based on the previously stored optimal values at its inputs. Naturally,

the value of cumulative effort at a node will be minimum only if the value at its

inputs is minimum. This optimal substructure property of our formulation, along

with Lemma 1, leads to an optimally mapped solution for the entire circuit.

If we map fanout-free regions only, Algorithm 5.1 provides optimal solutions. The

path effort F can be used to calculate the sizes of each match selected on the critical

path. Matches that are not on the critical path can be sized once the critical path has

been fixed. The non-critical paths have a certain amount of slack in the delay that

they have to meet. This slack, and the fact that the critical path is now presenting a

load that is smaller than previously anticipated can be used in a possible optimization,

to control the area of the implementation.

5.3.2 Extensions to Multiple Fanouts

In the case of multiple fanouts, we treat the circuit as a collection of fanout-free

regions. In this case, the critical input of a fanout-free region is not well defined, since

the path having the maximum delay through the region may not lie on the critical

path of the circuit. We therefore use a modified version of Algorithm 5.1, where

instead of storing only one value of Gt[n], we store Gsi→t[n], where s1, s2, . . . , sk are

the inputs of a fanout-free region ending in t (all of si and t are in the fanout-free

region).

We now propose a solution to the load-distribution problem, by extending tech-

niques developed in [KS04]. The circuit is initially divided into fanout-free regions,

and matches for each of the fanout-free regions are generated as described above. In

a primary output to primary input traversal of the circuit, we calculate a Delay-Cin

curve, to be defined shortly, for every input of all fanout-free regions. As before, let t

be the output of a fanout-free region, and let s1, s2, . . . , sk be the inputs. The Delay-

Cin curve of si, Dsi→PO, is the minimum delay of the critical path from si to some

primary output, for different values of input capacitance. The critical path may span

multiple fanout-free regions of the circuit, and Dsi→PO implicitly stores the optimal

values of load at each multiple fanout point, as well as the optimal distribution of

this load to each fanout.
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The Delay-Cin curve of si is calculated as follows. At a primary output, the Delay-

Cin curve consists of a single delay value of zero, for the fixed load being driven. Since

the circuit is traversed from the primary outputs to the primary inputs, the Delay-Cin

curves of each fanout of t are known. Assume that t has l fanouts, F0, F1 . . .Fl. The

load that t has to drive is the sum of the input capacitances of each of the fanouts.

Since the Delay-Cin curves of each fanout have been calculated, for any fanout Fj, if

we select a particular input capacitance, we immediately know the minimum delay of

the critical path from Fj to a primary output. The minimum delay of the critical path

from si for some value of input capacitance cinsi
to a primary output is composed

of the minimum delay of the path within the fanout-free region (i.e., the path from

si to t) and the maximum delay from any fanout of t to a primary output. Say we

have some selection of input capacitances of each fanout of t, and since matching

is complete, we can select the logical effort Gsi→t, electrical effort Hsi→t and path

length Nsi→t that minimize the delay of the path from si to t. Adding to this value

the maximum delay to the primary outputs of any fanout Fj gives us the required

critical path delay for that selection of input capacitances of fanouts. Repeating this

for every combination of input capacitances of the fanouts and selecting the minimum

delay thus obtained gives us Dsi→PO. The crucial point here is that by considering

all combinations of fanout capacitances, we directly address the load-distribution

problem. For one combination of fanout capacitances, some fanout Fi may be the

critical one, for another combination some other fanout Fj may be critical. This

information, as well as what the sizes of the other fanouts are is stored with the

Delay-Cin curve.

Algorithm 5.2 shows how the Delay-Cin curve of input si of a fanout-free re-

gion terminating in t can be calculated. Given an electrical effort, H = CL

cinsi

, the

first procedure, Calculate DCurvesi
is used to calculate the best delay of a fanout-

free region from all the matchings of different lengths that have been generated.

Calculate Dsi→PO of Algorithm 5.2 determines the best load, and the best distribu-

tion of this load to all fanouts, for the given input capacitance, as described above.

Consider the circuit shown in Figure 2.1, and assume that B and C drive fixed loads

at primary outputs. For different input capacitances of B and C, we can calculate the

minimum achievable delay, thereby obtaining the Delay-Cin curves at their inputs. At
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Algorithm 5.2 Calculating the Delay-Cin Curves

Calculate DCurvesi
[CL][cinsi

]
// si is the input, t is the output of the path
for all values of path length n do

temp = n
[

Gsi→t[n] × CL

cinsi

]
1

n

+ Psi→t[n]

if temp < DCurvesi
[CL][cinsi

] then
DCurvesi

[CL][cinsi
] = temp

end if
end for

Calculate Dsi→PO[cinsi
]

// t has l outputs, F0, F1 . . .Fl

for every combination of cinj
of all fanouts Fj do

if the selected combination is not redundant then
CL =

∑l

j=1
cinj

Calculate DCurvesi
[CL][cinsi

]
temp = DCurve[CL][cinsi

] + max
j=1...l

DFj→PO[cinFj
]

if temp < Dsi→PO[cinsi
] then

Dsi→PO[cinsi
] = temp

end if
end if

end for

fanout-free region A, we need to consider all combinations of input capacitances of B

and C. Each such combination is one possible value of load for A. For a particular load

and input capacitance, we can calculate the minimum delay in A using Calculate

DCurve. Combining this with the maximum of delays to primary outputs through

B and C gives us a possible point on the Delay-Cin curve of the input of A. Note

that this delay may be replaced by a smaller one, if, for example, some other value

of load at the output of A induces a delay from the input to a primary output that

is less than the current value.

Although it may seem that the total number of combinations of CinFj
is large (it is

in fact O(|CinF1
| × |CinF2

| × . . . |CinFl
|), where |CinFj

| is the number of possible values

of input capacitance of Fj), it is shown in [KS04] that the number of combinations

that actually have to be considered is much smaller (O(|CinF1
|+ |CinF2

|+ . . . |CinFl
|)),
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which leads to an acceptable run time of our implementation.

Algorithm 5.2 is a dynamic programming algorithm. Note that the Delay-Cin

curves of one fanout-free region are calculated based on the curves at its outputs,

and a particular critical path delay is obtained by simply taking the combination

of the delay of the fanout-free region with the maximum critical path delay of the

outputs. This also exhibits optimal substructure, and hence the delay curves obtained

at primary input encode globally optimal solutions to the load-distribution problem.

This procedure addresses both the components of the load-distribution problem.

Firstly, the globally optimal output and input capacitance for each fanout-free region

is determined. Secondly, the best distribution of the output load into the input

capacitances of the fanout-free regions being driven is determined, thus addressing

the interaction between parallel regions of the circuit.

5.3.3 Summary

The complete approach for logical effort based technology mapping addressing the

load-distribution problem, called MELT (Technology Mapping using Logical Effort:

the order of letters are suggestive of the multiple input-output-input traversals of the

circuit required by our approach) is presented in Algorithm 5.3. After the first three

steps, which have been described previously, we have Delay-Cin curves at the primary

inputs of the circuit. At each primary input, the load that minimizes the delay to

any output is selected. The primary inputs are are processed in decreasing order of

this delay. A forward traversal from the primary inputs using the selected loads fixes

the input and output capacitances and the lengths of each fanout-free region. This

information, in turn can be used to select the matches of the optimal solution.

In Algorithm 5.3, there are two issues that restrict the optimality of the final

solution. Firstly, the processing of each input of a fanout-free region is carried out

independent of other inputs of this region. The solutions generated by different

inputs may contradict each other. Secondly, circuits in general have reconvergent

fanouts. The interaction between multiple, overlapping reconvergent paths is difficult

to analyze efficiently. For both these cases, we use the heuristic of assuming that all

paths are independent, and make the best choice available. The loss of optimality is
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Algorithm 5.3 MELT: Technology Mapping using Logical Effort

Divide the circuit into fanout-free regions

PI→ PO Traversal: generate matches for each fanout-free region using Algo-
rithm 5.1, storing optimal matches for each input of the fanout-free region

PO→ PI Traversal: calculate Delay-Cin curves for each input to the fanout-free
region using Algorithm 5.2

PI→ PO Traversal: select the optimal electrical effort for each fanout-free region,
and the corresponding lengths

Covering: use the assigned output and input capacitances to generate the corre-
sponding optimal covers for each fanout-free region

acceptable when compared with the alternative of calculating the exact solution.

The first step in Algorithm 5.3, that of generating matches, takes time O(|V | +

|E|) · |L| · |N |, where |V | is the number of nodes in the graph, |E| is the number of

edges, |L| is the size of the library, and |N | is the maximum path length. |N | (which

is small, on average) is replaced by the number of loads considered for each match

in the case of traditional approaches. Along with the fact that our library is much

smaller than what would traditionally be used, the matching step of our algorithm

is significantly faster. Since we store solutions for each path length, and each input

to a fanout-free region, if we denote the number of inputs to a fanout-free region

by |FI|, the storage requirement is O(|V | · |FI| · N). Note that this is a very loose

upper bound. We show in the results section that N is relatively small, and while

|FI| can be exponentially large in theory (O(2N), if the entire fanout free region is

a tree of 2-input gates), in practice, it is much smaller. Calculating the Delay-Cin

curves dominates the running time of our algorithm. It can be shown that the time

complexity of this step is O(|FI| · |cin|
2 · |FO|2), where |cin| is the number of possible

values for input capacitances, and |FO| is the number of fanouts at a multiple fanout

point. This bound too, is very loose, and for benchmark circuits, the running time is

of the same order as that of SIS.
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5.4 Results

In order to validate our approach, we have implemented Algorithm 5.3 and used it to

map the ISCAS combinational benchmark circuits. These results were compared with

SIS [SSL+92]. The library used for SIS was generated by calibrating INV, 2-, 3- and

4-input NAND and NOR gates on a 0.1µ technology using the Berkeley Predictive

Technology Model1 [CSS+00]. Twenty sizes of each gate were generated, for a total

library size of approximately 140 elements. These gates were also calibrated in order

to obtain the logical effort and parasitic delays, which constitute the library used

by our algorithm, with seven elements, one for each gate type. In our approach,

calculating gate sizes as described in Section 5.3 can lead arbitrary values (less than

the largest gate size). In order to make a fair comparison with SIS, gate sizes are

normalized to the 20 sizes of each gate that are used by SIS.

The results obtained are as shown in Table 5.1. The first column lists the bench-

mark circuit. The next two, under the title SIS show the best delay obtained for each

circuit using the command map -n 1 in SIS, and the corresponding running time,

T , in seconds. The performance of MELT for the same circuits is as shown. On

average, our algorithm generates circuits that are 25.39% faster than those obtained

using SIS. Interestingly, MELT also has an area improvement of 12.65%. During the

covering step, the load at multiple fanout points is accurately known, and is usually

higher than that estimated by SIS. Complex gates have better delay characteristics

at higher loads, as compared to the equivalent using simple gates, and consequently

MELT makes greater use of complex gates. Since complex gates tend to occupy less

area than the equivalent circuit composed of simple gates, we observe an overall area

improvement.

As mentioned before, we determine and store matches for all values of path lengths

for each input of fanout-free regions of the circuit. These are then examined to obtain

the minimum achievable delays for the fanout-free regions, and therefore, having long

path lengths can lead to large run times. Table 5.2 presents statistics about path

lengths encountered in practice. For each circuit, the column labeled #FFR lists the

number of fanout-free regions, followed by the minimum, average and maximum path

1Available from http://www-device.eecs.berkeley.edu/˜ptm.
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Table 5.1: Technology Mapping: SIS Vs. MELT
SIS MELT % delay

Circuit
Delay(ps) T (s) Delay(ps) T (s) improv.

C17 79.91 0.02 65.72 0.02 17.76
C432 1611.36 0.65 795.93 1.96 50.60
C499 622.59 1.16 609.17 1.20 2.16
C880 656.54 1.07 643.43 1.21 2.00
C1355 686.39 1.50 678.19 2.35 1.19
C1908 1037.01 1.74 868.42 2.31 16.26
C2670 1885.50 2.52 868.82 3.93 53.92
C3540 2148.30 3.64 1218.21 6.20 43.29
C5315 1624.71 6.01 971.36 6.40 40.21
C6288 3020.81 6.87 2893.31 8.91 4.22
C7552 2098.08 7.35 1097.69 10.15 47.68

9symml 1218.36 0.62 346.78 0.31 71.54
alu2 1994.09 1.04 1137.77 1.47 42.94
apex6 634.67 1.89 388.89 1.75 38.73
b9 440.00 0.34 227.89 0.33 48.21
cc 312.75 0.18 157.22 0.14 49.73
cm138a 195.23 0.06 120.11 0.09 38.48
cmb 228.95 0.15 216.70 0.16 5.35
count 692.37 0.36 592.17 0.21 14.47
decod 326.95 0.12 98.50 0.14 69.87
des 3659.99 13.67 833.09 52.84 77.24
example2 691.10 0.71 331.66 0.75 52.01
f51m 753.01 0.31 344.53 0.27 54.25
frg1 472.26 0.33 379.31 0.27 19.68
i5 392.54 1.12 222.76 1.03 43.25
pair 1232.27 4.36 814.31 5.71 33.92
pcler8 397.78 0.20 331.04 0.18 16.78
t 75.45 0.02 74.92 0.01 0.70
ttt2 824.10 0.68 279.97 0.40 66.03
vda 1333.71 3.48 443.30 10.94 66.76
x1 1055.87 1.09 343.81 0.47 67.44
z4ml 301.13 0.14 198.91 0.16 33.95

Average 37.20
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Table 5.2: Path Length Statistics
Path Length Path Length

Circuit #FFR
min. avg. max.

Circuit #FFR
min. avg. max.

C17 5 1 2.20 5 cm138a 12 1 4.00 8
C432 79 1 3.11 23 count 48 1 3.23 11
C499 187 1 3.89 15 cmb 17 1 3.47 26
C880 141 1 3.62 22 decod 23 1 3.96 9
C1355 291 1 3.10 15 des 931 1 5.15 19
C1908 213 1 4.25 20 example2 127 1 3.49 15
C2670 251 1 3.95 27 f51m 29 1 3.74 20
C3540 340 1 4.14 22 frg1 29 1 1.69 13
C5315 545 1 4.11 19 i5 177 1 3.25 15
C6288 1456 1 2.83 7 pair 498 1 4.15 34
C7552 797 1 4.49 23 pcler8 42 1 3.00 12
9symml 18 1 3.36 34 t 5 1 3.00 8
alu2 73 1 3.32 33 ttt2 49 1 4.80 25
apex6 302 1 2.85 21 vda 146 1 6.34 23
b9 46 1 3.20 23 x1 82 1 2.89 24
cc 31 1 2.74 13 z4ml 21 1 2.60 11

lengths. We can easily see that though some paths can be large, the average path

length is in fact between 2 and 5.

Table 5.2 also provides some intuition about the performance of our algorithm.

For example, C6288 has a large number of fanout-free regions with small average path

lengths, as compared to other circuits. For small path lengths, the effect of varying

the electrical effort is limited, which in turn restricts the freedom that our algorithm

has, and results in solutions that are very similar to those of that would be obtained

by traditional methods. In contrast, C7552 has fewer, but larger fanout-free regions,

which results in better mapped solutions.

5.5 Conclusion and Future Directions

This chapter presents a new approach to technology mapping, based on the theory

of logical effort. Most of the improvement obtained by our algorithm is due to the
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solution of the load-distribution problem, which allows for accurate assignment of

capacitances at multiple fanout points. This leads to better selection of matches,

since the exact load to be driven is known. We observe an average improvement of

32.48% in terms of delay, as compared to SIS.

In [LWGH95, LWGH97], all possible decompositions of circuits are considered

during the matching step. The algorithm divides the circuit into disjoint ugates,

and applies technology mapping to each such ugate. Our algorithm can be extended

to generate matches in each ugate, and calculate Delay-Cin curves by traversing the

ugates. This approach can also be applied to DAG-mapping [KBS98], which allows

matches across tree boundaries, and therefore can generate better solutions. Here,

multiple fanout points are not well defined initially. However, once the matching has

been done, the fanout points are specified and the Delay-Cin curves can be calculated

as before.
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6 Libraryless Technology Mapping

for Silicon-on-Insulator Technology

We present a technology mapping algorithm for implementing a random logic gate

network in domino logic. The target technology of implementation is Silicon on Insu-

lator (SOI). SOI devices exhibit an effect known as Parasitic Bipolar Effect (PBE),

which can lead to incorrect logic values in the circuit. Our algorithm solves the tech-

nology mapping problem by permitting several transformations during the mapping

process in order to avoid PBE, such as transistor reordering, altering the way that

transistors are organized into gates, and adding pmos discharge transistors. We min-

imize the total cost of implementation, which includes discharge transistors required

for correct functioning. Our algorithm generates solutions that reduce the number of

discharge transistors required by 53%, and reduces the size of the final solution by

6.3% on average. We compare our results with a modification of a current technology

mapping algorithm for bulk CMOS domino logic that reduces the cost of the final

solution, and find that our algorithm outperforms this method.

6.1 Introduction

As the scaling of bulk CMOS proceeds along the roadmap, interest in Silicon on In-

sulator (SOI) as an alternative technology has increased. In addition, manufacturing

processes have matured enough to allow large circuit implementations in SOI at ac-

ceptable defect levels. However, current algorithms used for implementing circuits

in bulk CMOS are inadequate for SOI. The best approaches and traditional design

techniques from bulk CMOS could be disastrous if applied to SOI. An example is the
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use of precharge transistors in bulk CMOS, to offset the charge sharing effect. As we

will show in section 6.3.2, if precharge transistors are used in SOI, we will possibly

obtain circuits that do not function correctly. Current EDA techniques too do not

adequately address the needs of SOI design, and there is a requirement for new algo-

rithms and tools targeted towards SOI designs, since simple modifications to existing

algorithms by adding post-processing steps leads to solutions that are sub-optimal,

as shown in later sections. This chapter address the libraryless technology mapping

problem in the context of SOI. We present an algorithm that maps an arbitrary two-

input logic gate network to domino logic in a manner that eliminates the “Parasitic

Bipolar Effect” (PBE) [LCJ+97,Chu98] by applying transformations such as reorder-

ing transistor stacks in the gate, altering the structure of the gates to reduce their

susceptibility to PBE, and inserting pmos pre-discharge transistors at appropriate

points in the circuit. We take an approach of using metrics for area and delay that

will generally be acceptable for any SOI implementation. The corresponding loss of

detail is compensated by the reduction in complexity of the algorithm. The map-

ping step can be followed by a post-processing step that is specific to a given set of

SOI technology parameters, possibly including transistor sizing, which our work does

not address. During the mapping, the algorithm minimizes the cost of the imple-

mentation: for example, for an area objective, it would minimize the total number of

transistors, including pre-discharge transistors. The techniques that we use to control

PBE operate by ensuring that the body voltage of the SOI device never becomes very

high, so that PBE is never triggered. This yields an added side benefit of reducing

the timing hysteresis exhibited by SOI circuits due to variations in the body voltage.

In narrowing the range of permissible voltages for the body (to reduce the PBE), we

make the timing behavior of the circuit more predictable.

This chapter is organized as follows. We briefly introduce SOI and domino logic,

and present problems typical to SOI implementations and solutions to these, with

emphasis on overcoming PBE. We then present our algorithm, which performs the

technology mapping specifically taking PBE into consideration. We also present a

simple alteration to the technology mapping algorithm currently used for mapping

into bulk CMOS domino logic that reduces the number of discharge transistors re-

quired. The efficacy of our approach, and extensions to it are shown in the results
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section, wherein we present cost functions that minimize the area and delay of the

solution. We conclude with directions for future work.

6.2 Background

6.2.1 Silicon-on-Insulator

SOI has long been used in a variety of fields, such as radiation-hardened and high-

voltage applications [BR00], [KS98]. SOI circuits have attractive properties as com-

pared to bulk CMOS, such as reduced source- and drain-to-substrate capacitances,

no body effect in series stacks of transistors and suitability for reduced Vdd opera-

tion for given performance [CP99,Ant97]. In addition, due to reduced capacitances,

SOI devices consume less power [TCW97, JCC97]. Moreover, since transistors are

isolated from each other by an insulator, they require smaller area. In spite of be-

ing smaller, faster and consuming less power than bulk CMOS, SOI has not found

widespread use in the VLSI community until recently. However, recent advances in

manufacturing processes coupled with a realization of the limitations of bulk CMOS

technology have led to a renewed interest in SOI. Increased understanding of how

SOI devices behave, and possible solutions to their quirks has lead to a wider accep-

tance of SOI in the VLSI community. Recently, SOI has been used in a number of

high end microprocessor designs, e.g. IBM Power PC [AAC+99, BAC+00], HP-PA

8700 [HP00], and others [KPK+99,CAC+99], as well as other high performance logic

circuits [STMTS00,HL01,MKA+01].

The manufacturing process of SOI is very similar to that of bulk CMOS. One of

the processes used for SOI fabrication is SIMOX [KS98]. The preliminary step is to

implant a layer of silicon dioxide beneath the surface of the silicon wafer. This is the

“Insulator” in Silicon-on-Insulator. Transistors are created by masking and doping

exposed regions on the layer of silicon above the silicon dioxide. Once transistors

are fabricated in this manner, they are isolated from other devices by another layer

of silicon dioxide, called Shallow Trench Isolation (STI). This structure is shown in

figure 6.1. Due to this structure, the bodies of individual transistors are electrically

isolated from the rest of the circuit, unlike bulk CMOS circuits where the body is
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Figure 6.1: SOI Transistor Fabrication, and Presence of the Parasitic Bipolar Tran-
sistor

identical to the substrate or well, which is connected to a supply node. Hence, the

body potential in SOI is free to seek its own level [WSA98], and is determined to a

large extent by the voltage levels at the source and drain of the transistor, due to

leakage currents. Changes in the gate voltage also affect the body potential due to

capacitive coupling. Thus, if the gate is held low and drain and source are at a logic

high for an extended period of time, charge accumulates in the body due to leakage

current and impact ionization [Ant97]. This causes the body potential to increase.

This variance in body voltage is the main source of problems associated with SOI. The

change in body voltage of a device results in different switching speeds at different

time instants. Also, switching speeds across a circuit can vary due to different devices

having different body voltages. Another problem that a high body voltage can cause

is called the Parasitic Bipolar Effect (PBE), and is described in more detail in section

6.3.

6.2.2 Domino Logic

Domino logic [KLL82] is a favored approach for implementing timing critical circuits

due to their high performance. The basic structure of a domino gate is as shown in

figure 6.2(a). During precharge, the dynamic node is charged to a high logic value,

and the output of the gate is set to logic zero. During the evaluate phase the n-

clock transistor switches on, and depending on the inputs to the pull down network,

the dynamic node is either discharged or retains its charge. If the dynamic node
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switches, the output of the gate goes to a logic high value. OR logic functionality is

obtained in domino by connecting n-transistors in parallel in the pull down network.

Similarly, AND functionality can be obtained by connecting n-transistors in series.

More complicated logic operations are obtained by combining these basic operations.

An example circuit, shown in figure 6.2(a), implements the logic function (A + B +

C) ∗ D.

Note that the n-clock transistor shown in the figure is only required for domino

gates connected to primary inputs. The outputs of domino gates change only during

the evaluate phase of the clock cycle, during the precharge phase they are held low.

Hence, any n-transistors driven by these outputs will be off during precharge. For a

domino gate, this means that if its inputs are coming from another domino gate, the

pull down network will not switch on during precharge, and hence there is no need

for an n-clock transistor. Such a configuration is sometimes referred to as footless

domino.

6.3 Parasitic Bipolar Effect in SOI

6.3.1 Issues with SOI Implementations

The advantages of SOI listed in the previous section come at a cost. Prominent among

these are the hysteretic Vt variation [PC98], in which the behavior of a transistor varies

according to its previous switching history. Another serious problem associated with

SOI devices is the PBE, described in more detail in the following sections.

6.3.2 Parasitic Bipolar Effect

PBE occurs in certain circuit topologies and switching patterns, such as stack OR-

AND structures. The topology typically involves an off transistor situated high in

the stack, with the source and drain voltages in the high state. Over a period, this

causes the body voltage to be high. When the source is subsequently pulled down,

either by the clocked evaluation transistor in dynamic circuits or by an input signal, a

large forward body bias is developed across the body-source junction, causing bipolar
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current to flow through the lateral parasitic bipolar transistor (shown in figure 6.1).

The parasitic bipolar current and the FET current (caused by noise and aggravated

by the low Vt) result in a loss of charge on the dynamic node.

This can be illustrated by an example from [LCJ+97]. For the circuit shown in

figure 6.2(a), consider a steady state condition with inputs A = 1, B = 0, C = 0 and

D = 0. Transistor A is on, and the other n-transistors in the pulldown logic network

are off. Hence, as the dynamic node charges to a high value during precharge, node

1 is charged to a potential of Vdd − Vthreshold. Recall that transistors B and C are

off at this point. Under this set of conditions, the bodies of transistors A, B and C
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charge to a high value over a sufficiently large period of time. Now if signal A switches

low, the potential at node 1 remains at its high logic value since transistor D is off.

Moreover, the switching event on A sets the body voltage for device A to be low (due

to strong capacitive coupling), but leaves the body voltages of B and C to be high.

In the evaluate phase, if D is switched on (with A, B and C off), node 1 is suddenly

pulled down. This causes the parasitic bipolar transistor to switch on, since the base

and collector of the parasitic transistor are high while the emitter has been pulled

low, and a large current can flow through transistors B and C. If this current is large

enough, it can pull the voltage at the dynamic node to a level small enough to switch

the output of the gate to a high value. Thus, even though the output node should

have evaluated to low, it ends up as a high. In this manner, the PBE can result in

a wrong evaluation if not accounted for in an SOI implementation. This value will

eventually be brought to its correct value by the keeper, but this is liable to take

time and may cause erroneous circuit behavior temporarily, or even permanently if

any state bits are altered in the interim.

It is interesting to note that this is a typical configuration in bulk CMOS imple-

mentations that requires the use of precharge transistors, as shown in figure 6.2(c).

In bulk CMOS, charge sharing is a significant problem, and precharge transistors are

used to ameliorate its effects at the cost of a slight performance penalty. If any of

the transistors A, B or C are on during evaluate, with transistor D off, charge on the

dynamic node may be distributed to Node 1, and the potential on the dynamic node

may drop low enough for the output inverter to switch erroneously. In figure 6.2(c), a

precharge transistor controlled by the clock connects node 1 to VDD. This transistor

charges the intermediate node 1 to a high value during precharge, and redistribution

of charge does not occur. SOI circuits, however, exhibit much lower drain and source

capacitances, and charge sharing is not as problematic as the parasitic bipolar effect.

Using precharge transistors rather than predischarge transistors as in the example

above, will almost guarantee breakdown of correct circuit operation even without the

sequence of transistor switchings described above.
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6.3.3 Solutions to the PBE

There are a several solutions for handling the PBE, and we will enumerate these as

follows:

1. The keeper pmos device can be sized up to provide some resistance to the PBE,

but such a choice comes at the expense of a performance penalty due to the

increased capacitance that it presents at the dynamic node and particularly at

the output node.

2. Body contacts connected to the ground lines in the case of nmos, or V dd in the

case of pmos transistors can be added selectively to some devices in the circuit,

but this results in an increased area and input capacitance, and is a choice that

is generally avoided by SOI circuit designers [BR00].

3. If the cost is acceptable, parallel stacks can be broken up by transistor replica-

tion. For example, (A+B+C)∗D can be re-implemented as A∗D+B∗D+C∗D

(D is replicated three times in this example). If this implementation is con-

nected to ground, there are no paths for transistor bodies to charge high, since

parallel stacks have been eliminated. A drawback of this approach is the cost

requirement of duplicating logic for each finger of a potentially wide parallel

stack.

4. The stack of transistors in a gate may be reordered to reduce its susceptibility

to the PBE. For the gate in figure 6.2(a), if the parallel stack of transistors A,

B and C is moved to the bottom of the gate, so that the sources of all three

transistors are connected to ground, it will not be possible to excite the PBE.

This approach exploits the reduced charge sharing effect and reduced delay

dependency on stack ordering in SOI technology.

5. The above procedure works only if there is only one parallel stack per gate. If

this condition is not met, it may be possible to remap the Boolean logic to the

gates to ensure that each gate contains no more than one parallel stack, which

can then be reordered within the gate to connect it to ground.
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6. Intermediate nodes in a stack may be predischarged in every clock cycle. In

figure 6.2(b), a clock-driven p-discharge transistor has been added to the circuit.

Such a transistor can be used to connect intermediate points in the circuit (such

as node 1) to ground. Thus, during every precharge cycle these intermediate

nodes are discharged, and the bodies of transistors in the pulldown network

are not permitted to charge to a high voltage level. The drawback of using

p-discharge transistors is the additional load on the clock network.

7. Complex domino structures with the output inverters replaced by static NAND

or NOR gates may be used to break up large parallel logic trees [CP99].

One approach to performing these optimizations is to start with the original design

in bulk silicon, analyze it to identify potential sources of the PBE, and apply the above

transformations to eliminate them. The main criticism of such an approach is that

the solutions obtained are local in nature. For example, while a particular mapping

may be optimal for bulk CMOS, it becomes non-optimal if it requires a large number

of p-discharge transistors. A better approach would be to perform the mapping from

logic gates to the transistor level, keeping the requirement of p-discharge transistors

in mind. In section 6.5 we propose an algorithm that performs such a mapping.

In this work, we avoid the first three transformations of sizing the keeper, adding

body contacts and splitting parallel stacks using duplication, since they can cause

significant cost increases, and instead, focus on the rest. We perform our procedure

at the time of synthesis, prior to circuit sizing, and note that the transformation that

sizes the keeper is more appropriately applied after or during the transistor sizing

step. In applying the remaining transformations, we will penalize the addition of

clock-connected transistors and additional transistors required due to gate reorga-

nization, since they represent a cost-increasing transformation. Reordering changes

delay, but since diffusion capacitances are relatively low, we ignore them as a first

order approximation.
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6.4 Technology Mapping for Domino Logic

Synthesis of domino circuits is more complicated than that of static circuits. The

added complexity is due to the monotonic nature of domino logic which forces it

to implement only non-inverting functions. Therefore, domino logic can only be

mapped to a network of non-inverting functions, where needed logic inversions must

be performed at either primary inputs and/or primary outputs. Any random logic

network can be transformed into a network of non-inverting functions by finding a

unate network representation1.

Generating a unate network from a binate random logic network may require

logic duplication since both positive and negative signal phases may be needed. An

algorithm for finding the minimum logic duplication necessary when transforming a

binate random logic network into an inverter free unate network has been developed

in [PBR96]. Binate-to-unate network conversion will at most double the amount of

original logic (with typical overheads being much smaller) and will not increase the

number of logic levels.

However, in order to avoid the complexity of [PBR96], we use a simple bubble

pushing algorithm to generate the unate network. In our implementation we simply

attempt to push inverters as far back as possible (i.e., towards the primary inputs),

by applying DeMorgan’s laws where necessary. If inverters cannot be pushed through

a gate, e.g., when both positive and negative phases of a signal are required, logic

duplication is necessary. After a unate network representation has been created, the

network can then be technology mapped to domino gates. Note that starting from

an initial decomposed network consisting of 2-input AND-OR gates and inverters,

the unate network thus obtained will only consist of 2-input AND-OR gates, since all

inverters have been removed in the unating process.

Technology mapping has traditionally used library based methods. In [ZS98], the

authors presented a library free algorithm for technology mapping. Library free ap-

proaches have the advantage of searching a large solution space, while library based

1A unate network is one where all signals transitions occur in one direction only, either high-
to-low or low-to-high. For domino logic to function correctly, all inputs to a domino gate can only
make a single low-to-high transition during the evaluate cycle. Hence only unate functions can be
mapped to domino logic.
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methods are restricted by the size of the libraries. Since nmos pulldown networks

for domino gates can be larger than their static counterparts, any precharacterized

library can only explore a fraction of the exponential number of possible gate func-

tionalities. A parameterized library overcomes this limitation although it is restricted

by the use of more approximate delay models. Parameterized libraries have been used

successfully to design industrial circuits, e.g., in [BF98].

The algorithm of [ZS98] uses a dynamic programming based approach. A set of

tuples2 of {W, H, C} (width, height and cost corresponding to a pull down network

configuration) are associated with each logic gate of the network. The cost here

may be the number of transistors, the number of logic levels, or the delay. The

values of maximum gate width and height determine the number of tuples associated

with each gate. The input network of 2-input AND-OR nodes is traversed from

primary inputs to primary outputs, and sub-solutions for each node for all possible

configurations of {W, H} are calculated based on the sub-solutions of its inputs. Note

that, depending on the inputs, a gate may not have all combinations of {W, H} and in

practice, only a fraction of Wmax ×Hmax tuples are associated with each gate. When

calculating the sub-solution of a node, all permissible configurations of the input nodes

are enumerated, and the best ones are selected. Once all valid tuples for a node have

been calculated, the {1, 1} tuple is constructed by selecting the best (lowest cost) sub-

solution for that logic gate, and converting this partial structure into a domino gate

by adding the clock transistors, the output inverter and a keeper transistor. Thus, the

cost of a {1, 1} configuration is the lowest cost among all other configurations plus 5.

The basic operations for combining input tuples to form the tuples of the current node

are AND and OR. These operations are as follows. An AND operation requires a series

connection of inputs. Hence, the {W1, H1} and {W2, H2} solutions of the input nodes

are combined to form the {max(W1, W2), H1 +H2} solution. Similarly, {W1, H1} and

{W2, H2} solutions of the inputs can be combined as {W1 + W2, max(H1, H2)} for

an OR node. A more detailed explanation of combining inputs of an AND and OR

node (along with our enhancements) is presented in the next section. The algorithm is

2An n-tuple is simply a set of n ordered elements. In [ZS98], 3-tuples are used as explained in
the text, in our work we associate 6-tuples with intermediate solutions as explained in the following
sections.
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described above illustrated briefly in Algorithm 6.1. For further details, the interested

reader is referred to [ZS98].

Algorithm 6.1 Technology Mapping for Domino Circuits

// Process each node in topological order from inputs to outputs
for each node n whose inputs have been processed do

for each {W, H} configuration of the inputs do
if n is OR then
{Wnew, Hnew} = {W1 + W2, max(H1, H2)}

end if
if n is AND then
{Wnew, Hnew} = {max(W1, W2), H1 + H2}

end if
if {Wnew, Hnew} is a valid configuration then

costnew = cost1 + cost2
end if
if costnew is better than the original cost then

update cost for configuration {Wnew, Hnew}
end if

end for
{1, 1} = convert configuration with lowest cost into a gate

end for

This algorithm guarantees optimal-cost solutions. Note that the best sub-solution

of a input node may not necessarily end up as part of the final solution. Thus, local

optimal solutions are avoided if they are not globally optimal. Finally, at the primary

outputs, the best solution in terms of the cost function is selected. This specifies a

domino circuit that implements the input network logic with minimum cost. The cost

function in the above algorithm has been taken to be the total number of transistors in

the implementation, but this may also be modified to minimize the maximum number

of levels from primary inputs to primary outputs, in order to reduce the maximum

input-to-output delay of a domino implementation.

This algorithm is easily illustrated with the help of an example. Consider the

circuit in figure 6.3, and assume that the maximum number of transistors allowed

in series and in parallel are 4. This simple circuit consists of 2 AND nodes and

1 OR node. The AND nodes are driven by the primary inputs, which have only
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{1, 1, 7}
{2, 1, 2} {2, 2, 4}

{2, 2, 10}

{1, 1, 9}
{1, 2, 16}

Figure 6.3: Technology Mapping for Domino Logic

one possible tuple associated with them : {1, 1, 1}. These can be combined in an

AND operation to form the tuple {2, 1, 2}, for which the transistor structure is as

shown. Since there is only one tuple for this gate, it is used to construct the tuple

corresponding to W = 1, H = 1, {1, 1, 7}. The two solutions for each of the AND

nodes can be combined in 4 possible ways, but due to symmetry we have only three

unique combinations - {1, 2, 16}, {2, 1, 10} (repeated twice) and {2, 2, 4}. Note that

when a gate from an input node is used (corresponding to the {1, 1} solution), an

extra transistor is needed in the next level. For the OR node, the {2, 2} solution is

clearly the best, and it is used to form the corresponding {1, 1} solution, with a cost

of 9.

We use this basic approach in our algorithm with modifications to the cost function

calculation in order to properly account for the PBE.

6.5 An Algorithm for SOI Mapping

We follow the basic algorithmic framework of [ZS98], presented in brief in section

6.4. As before, each node in the input network is associated with a set of tuples
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corresponding to one {W, H} solution of the subtree rooted at the current node. W

and H represent the width and height of the pull down network of the domino gate;

the maximum values are user-specified.

Our objective in this work is to reduce the number of discharge transistors required

to avoid PBE. An area objective (in terms of number of transistors) follows logically

from this as the cost function to minimize. Hence we choose our initial cost associated

with each tuple to be the number of transistors required to implement the logic

correctly, as well as to avoid PBE. A delay objective can also be used as the cost

function; in this case the actual cost function is a combination of delay and number

of discharge transistors used.

In addition to the cost associated with each tuple, we also store pdis, the number of

potential discharge transistors required by the configuration, and parb, which tracks

whether or not a given tuple has a parallel branch at the bottom of its structure.

The potential discharge transistor count is used to guide tuple combination and gate

formation. Depending on the actual operation performed (i.e., AND or OR), pdis is

converted to actual discharge transistors, else its value is propagated to the next level.

Since OR is the only operation that introduces parallel stacks, parb is set to true in an

OR operation and is propagated in an AND operation depending on the combination

of input tuples (this will be explained in greater detail shortly). As mentioned in the

previous section, the solutions of the input gates are combined to form the solutions

for the current node. In case of multiple solutions being available, the lowest cost

solution is selected. Ties for the lowest cost solutions are resolved by the pdis values.

We now explain the concepts of pdis and parb, which are central to our algorithm.

The parameter pdis is used to account for the discharge transistors that will have to

be added to eliminate the PBE. From the explanation of section 6.3.2, we see that

the PBE can be excited only in the presence of one or more parallel stacks. This

provides a path for the bottom of the stack to get charged to a high value (the top

of the stack is charged via a path from the precharge transistor). Additionally, at

least one transistor is required beneath a parallel stack to excite the PBE; when this

transistor switches on, the common node for the stack will be pulled low, possibly

resulting in the PBE. Hence, the bottom of a parallel stack is one potential discharge

point. The parameter parb keeps track of whether a given intermediate structure
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Figure 6.4: Potential Discharge Points and p-discharge Transistors

has a parallel branch at the bottom or not. In the final solution, if this point is

connected to ground, no discharge transistors are required. On the other hand if

it is not connected to ground, all intermediate points as specified by pdis will have

to be discharged. Hence, in an OR operation, we set parb to true to account for

the presence of a parallel stack. For an AND operation, it is set to the value of

the tuple being placed at the bottom of the stack. In addition, we conditionally

increment pdis by one for an AND operation, since the intermediate point in a series

stack may have to be discharged. In figure 6.4(a), the series connection of A ∗ B has

introduced an intermediate discharge point. If A∗B were converted to a domino gate,

or combined with other transistors in series, there would be no need to discharge this

point. However, if it is connected in parallel with another configuration (as shown

in the figure), this point becomes a potential discharge point for the OR tuple too -

which will have to be discharged if the OR configuration is not connected directly to

ground. Intermediate points in OR structures have to be discharged because of the

following possible scenario. When A = 0, B = C = 1, there is a path form the top

of the stack to the drain of transistor A. The source and drain of transistor A can

now potentially go high, causing the body voltage of A to increase and thus leading

to PBE.

Now consider a more complex case. Let us assume that two structures of the

form shown in figure 6.4(a) have to be ANDed together - A ∗B + C and D ∗ E + F .
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Each of them has 1 potential discharge point, at the junction of A and B, and D and

E. The AND operation will introduce one more potential discharge point. However,

when these two parallel stacks are connected in series, the structure on the top will

never be connected to ground. Hence, its potential discharge points always have to be

discharged by the addition of p-discharge transistors. In addition, the intermediate

point introduced by the AND operation also has to be discharged. This is shown in

figure 6.4(b). To sum up, for an AND operation we need to perform the following

computation -

pdis = pdisbottom; (6.1)

discharge transistors = pdistop + 1;

cost = costbottom + costtop + discharge transistors;

parb = parbbottom;

Note here that the cost of a particular tuple includes not only the cost of im-

plementing the logic, but also the discharge transistors required for avoiding PBE.

Thus, when we select a lowest cost solution from various available solutions, we obtain

an implementation that minimizes the cost while simultaneously avoiding PBE. The

cost may be area, measured in terms of the total number of transistors required to

correctly implement the required functionality, or the delay, in terms of the number

of levels traversed by an input signal.

This leads to another interesting optimization that is used in our algorithm. Since

our aim is to minimize the cost of the implementation as well as the total number

of discharge transistors used, we can use the information implicit in pdis and parb to

determine which input tuple is on the top in the series connection and which is on

the bottom. If only one input has a parallel branch, we place this at the bottom,

in the assumption that it could potentially be connected to ground. However, if

both inputs have parb == true, i.e., both inputs have parallel branches, the tuple

order is determined by pdis. We select the tuple with the larger pdis to be at the

bottom of the stack since this introduces fewer discharge transistors (ofcourse, all of

these calculations are made under the optimistic assumption that the bottom of this
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Algorithm 6.2 Algorithm for Mapping SOI Circuits

for each node n whose inputs have been processed do
if n is OR then
combine or(inputs) ;

end if
if n is AND then
combine and(inputs) ;

end if
if multiple tuples obtained for the same W, H then

Select tuple with lowest cost
if costs are equal then

Select tuple with lowest pdis

end if
end if
create domino gate

end for

combine or

W = Winput1 + Winput2 ; H = max(Hinput1, Hinput2);
cost = costinput1 + costinput2 ;
pdis = pdisinput1 + pdisinput2 ; parb = true;

combine and

if parbinput1 && parbinput2 then
top = min(pdisinput1 , pdisinput2 );
bottom = max(pdisinput1 , pdisinput2 );

else
top = input with (parb == false) ;

end if
W = max(Wtop, Wbottom); H = Htop + Hbottom;
total dis trans. = pdistop + 1;
cost = costtop + costbottom + total dis trans ;
pdis = pdisbottom; parb = parbbottom;

create domino gate

Select tuple with lowest cost
Add p-clock transistor, output inverter and feedback transistor
if tuple has primary inputs then

Add n-clock transistor
end if
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stack could potentially be connected directly to ground. If this does not happen, the

ordering of parallel stacks in series is irrelevant). Consider the circuit shown in figure

6.5, wherein A ∗ B + C is to be ANDed with E. If the structure on the left is used

(with E at the bottom), we have to add two discharge transistors. However, if the

circuit on the right is used (with E on the top, and the parallel stack on the bottom),

we have two potential discharge points, but no immediate discharge transistors. If

this structure is then connected to ground, the potential discharge points will not

have to be discharged, as explained previously. Note that this switching of stacks

can also be done for circuits mapped for regular bulk CMOS. As we will show in the

results section, using this technique as a stand-alone optimization is not as effective

as our algorithm.

For an OR operation, we only need to add the pdis values of the input tuples, and

set the parb parameter to true:

pdis = pdisinput1 + pdisinput2 ; (6.2)

cost = costinput1 + costinput2 ;

parb = true;
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Note that though the pdis seems to function in an identical manner, for OR and

AND structures, their interpretation is quite different. In both cases, pdis refers to

the number of points that must potentially be discharged.

However, in case of an AND, these points will have to be discharged only in case

of an OR operation, for OR they will have to be discharged only if the stack is not

directly connected to ground.

The algorithm is presented in listing 6.2. Each node is processed in topological

order, from primary inputs to primary outputs. This ensures that the inputs of the

current node being processed have been processed previously, and the corresponding

sub-solutions for the inputs are available. We then combine the inputs of the node

being processed in functions combine or or combine and, depending on the function-

ality of the node. These functions carry out the calculations presented previously.

In addition, combine and also determines the order of its inputs in the series stack

as a function of the input values of parb and pdis. For multiple solutions for a given

{W, H} pair, we select the tuple with the lowest cost (which includes the number of

discharge transistors). Ties on cost are split according to the value of pdis.

A final comment on the algorithm is that we need to maintain two costs for each

tuple. The first specifies the optimal cost if the partial structure is connected to

ground, and the second if it is not. At the time of gate formation, the appropriate

value is used in determining the optimal cost. For convenience, these details are

omitted in the pseudocode in listing 6.2.

This algorithm is an example of a dynamic programming approach to solving an

optimization problem. Each node stores all possible solutions, with associated costs,

as defined by the cost function. Locally optimal solutions need not be part of a

globally optimal solution, however by enumerating all possible solutions at each node

we are guaranteed an optimal solution at the output. This assertion holds for all cost

function that are monotonic increasing as we proceed from inputs to outputs. The

cost functions that we address in this work are area and delay metrics, which also

include the number of discharge transistors have this property, and hence the final

solution obtained is optimal.

83



6.6 Results

The algorithm presented in section 6.5 has been implemented in C++ and has been

tested on ISCAS benchmark circuits. In all cases, we chose the maximum width and

height of the pull down network of a domino gate to be 5 and 8 respectively. Such

a large value for a pull down network is valid for SOI due to the reduced source

and drain capacitances. Since SOI has lower source/drain capacitances than bulk

CMOS, charge sharing is not a major problem and can be handled by the weak

pullup. By adding at most one p-discharge transistor at each node, we minimize its

detrimental effect on charge sharing. While circuit performance does degrade slightly

when compared with having a precharge transistor, this is a minor cost to pay to avoid

circuit malfunction3. For comparison purposes, we have implemented a bulk CMOS

mapping algorithm that maps circuits without regard to potential discharge points.

This algorithm is referred to as Domino Map. p-discharge transistors are added in a

post-processing step. We compare this solution with different approaches to mapping

circuits for SOI, including our algorithm with area and delay cost functions.

6.6.1 Rearrange Stacks Map

The first three columns next to each circuit name in table 6.1 show the cost associated

with the solution obtained from Domino Map, specifically listing the total number of

domino transistors (Tlogic), the number of pmos discharge transistors added (Tdisch)

and the sum of these two, which is the total number of transistors(Ttotal). We then

ran our algorithm without regard to potential discharge points as in Domino Map,

but added a post-processing step that rearranges series stacks (generated by AND

operations) so as to move parallel sections with a large number of potential discharge

points closer to ground. The reasons for doing this have been discussed in the previous

section. The solution obtained is listed in the columns under RS Map. We found

an average reduction of 25.4% in the number p-discharge transistors, and a 3.44%

reduction in the total number of transistors. As can be seen, simply re-ordering

3Another option to avoiding the detrimental affect of the p-discharge transistors is to remap the
logic, avoiding PBE-inducing structures. However, this will result in a larger number of domino gate
levels, leading to an even larger delay.
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transistor stacks leads to some decrease in the number of discharge transistors.

6.6.2 SOI Domino Map

The results of applying algorithm SOI Domino Map of listing 6.2 to the benchmark

circuits are presented in table 6.2. Comparing the results obtained from Domino Map

and SOI Domino Map, it is clear that though the number of domino logic transistors

required in SOI may be more, this increase is more than compensated by the fewer

number of p-discharge transistors required, thus saving on the total number of tran-

sistors used. The average reduction in the number of discharge transistors is 53%.

The last two columns list the reduction in the total number of transistors required

for the implementation. We obtain an average reduction of 6.29%, even though the

number of logic transistors (without p-discharge) has increased.

Thus, while a simple reordering of series stacks does result in some cost benefit,

it is still only half the reduction of our algorithm.

6.6.3 Penalizing Clock Connected Transistors

Realizing the effects of loading on the clock network, we then applied algorithm

SOI Domino Map to the same circuits, assigning a cost for the clock-driven transistors

that is k times the cost of a regular transistor, where k is a user specified value.

The clock connected transistors include p-clock and n-clock transistors in the domino

gates along with the p-discharge transistors. On the one hand, the effect of including

the cost of the p-clock and n-clock transistors of the gate is to make gate formation

operation more expensive (the cost of the {1, 1} solution for each tuple makes it less

likely to be selected), and the algorithm prefers to include as many transistors in each

pull down network as possible. Incrementing the cost of the p-discharge transistors,

on the other hand, pushes the algorithm towards forming domino gates early, so as to

avoid the overhead of the p-discharge transistors. As the results show, our algorithm

chooses a result balanced between these extremes, and as the cost of clock driven

transistors is increased, the solutions reduce the number of gates and p-discharge

transistors, along with an increase in the total number of transistors required for the
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implementation4. The columns labeled Tclock is the number of transistors connected

to the clock network. This figure is obtained by adding the number of p-discharge

transistors to the clock transistors in the domino gates. The last column shows

the percentage reduction in the number of clock-driven transistors, on average we

reduce this figure by 3.82%. An interesting observation is that the number of clock

connected transistors does not change significantly as k is varied. Also note that

not much improvement is obtained for circuits that have a relatively small number

of clock connected transistors. This is to be expected, since there is less freedom to

choose between different solutions. Larger circuits, on the other hand, provide the

algorithm with a greater number of options, and we obtain more improvement for

these.

6.6.4 Depth Optimization

We now address the minimization of the delay of an implementation. As an approx-

imation of the delay, we set the cost function to be the depth, i.e., the maximum

number of levels of domino gates that a signal passes through from primary inputs

to primary outputs. A more accurate delay model would require characterization of

every possible pulldown network, and this is not feasible for a libraryless approach.

As before, Domino Map, reduces the number of levels required for an implementation,

and discharge transistors are added as a post-processing step. In SOI Domino Map, the

number of discharge transistors needed is included as a part of the cost. The results

of running each of these algorithms are as presented in table 6.4. The second column

next to each circuit name shows the maximum number of 2-input AND/OR gates in

the original network that a signal passes through, from primary inputs to primary

outputs. The columns under Domino Map list the number of transistors required for

implementing the logic functionality, the number of discharge transistors added in the

post-processing phase, the total cost of the solution, and the number of levels in the

solution. The corresponding columns under SOI Domino Map are similarly calculated

using the new cost function, so that the discharge transistors are included during

the mapping phase. Reducing the number of levels in an implementation drives a

4The figures in table 6.3 represent the number of transistors, not their weighted cost
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solution towards favoring complex gates. As in the previous section, trying to reduce

the number of discharge transistors drives the solution in the opposite direction, i.e.,

towards smaller gates. As can be seen from the results, algorithm SOI Domino Map

reduces the number of levels for a few circuits, and increases them for others, in com-

parison with Domino Map. The key result, though, is that the sum of number of levels

and discharge transistors is reduced. We obtain an average reduction of 49.76% in

discharge transistors required, and a 6.36% reduction in the number of levels.

6.7 Conclusion

We have presented an algorithm that maps gates in a logic network to a domino

implementation suitable for use in SOI circuits. As the results in section 6.6 show,

the lowest cost solution for domino mapping in bulk silicon technology is not an

effective solution in the context of SOI. Our algorithm minimizes a specified cost

function, which includes the discharge transistors required. This cost function can

be as area cost or a delay cost. We also show how we can apply the algorithm by

skewing the cost of clock transistors in order to reduce the load on the clock network.

A similar approach can be used to derive a solution with as few gates as possible, by

increasing the relative cost of gate formation. In fact, this technique can be applied

to mapping for bulk CMOS too, in order to reduce the load on the clock network.

A further improvement is from the observation that the n-clock transistors are

required only for gates that have primary inputs. Gates whose inputs come from

other domino gates do not need these transistors, since these inputs are always low

during precharge, and footless domino may be used instead. Hence, the pull down

network will never be switched on during precharge. The big advantage of using this

scheme for SOI is that even if a parallel stack has potential discharge points, if these

are connected to ground it is not necessary to actually discharge them.

Our mapping algorithm assumes the worst case scenario, in which particular struc-

tures susceptible to breakdown have to be discharged correctly. However, breakdown

will only occur for a particular sequence of input logic values. We have not taken

this into account in our algorithm, and incorporating this information could lead to

better solutions. In fact, this could be used for solving the hysteresis effect [PC98] in
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SOI too. Once a transistor netlist has been obtained from the logic level description

of the circuit as presented in this chapter, a followup technology-specific optimization

step can be used to obtain further delay improvements.
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Table 6.1: Comparison of Domino Map and Rearrange Stacks Map
Circuit Domino Map RS Map Reduction in Tdisch Total Reduction

Tlogic Tdisch Ttotal Tlogic Tdisch Ttotal ∆Tdisch % ∆Ttotal %
cm150 73 19 92 73 15 88 4 21.05 4 4.35
mux 73 21 94 73 18 91 3 14.29 3 3.19
z4ml 127 16 143 127 12 139 4 25.00 4 2.80
cordic 199 38 237 202 23 225 15 39.47 12 5.06
frg1 244 78 322 239 43 282 35 44.87 40 12.42
b9 365 87 452 367 57 424 30 34.48 28 6.19
apex7 663 124 787 662 106 768 18 14.52 19 2.41
c432 655 167 822 675 128 803 39 23.35 19 2.31
c880 1163 198 1361 1182 153 1335 45 22.73 26 1.91
t481 1448 232 1680 1458 193 1651 39 16.81 29 1.73
c1355 1856 130 1986 1856 86 1942 44 33.85 44 2.22
apex6 1889 319 2208 1896 275 2171 44 13.79 37 1.68
c1908 1924 208 2132 1924 171 2095 37 17.79 37 1.74
k2 2425 345 2770 2441 278 2719 67 19.42 51 1.84
c2670 2467 422 2889 2481 341 2822 81 19.19 67 2.32
c5315 5498 830 6328 5510 603 6113 227 27.35 215 3.40
c7552 8088 1082 9170 8138 760 8898 322 29.76 272 2.97
des 9069 1416 10485 9097 929 10026 487 34.39 459 4.38

Average 25.41 3.44
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Table 6.2: Comparison of Domino Map and SOI Domino Map
Circuit Domino Map SOI Domino Map Reduction in Tdisch Total Reduction

Tlogic Tdisch Ttotal Tlogic Tdisch Ttotal ∆Tdisch % ∆Ttotal %
cm150 73 19 92 73 15 88 4 21.05 4 4.35
mux 73 21 94 73 15 88 6 28.57 6 6.38
z4ml 127 16 143 127 12 139 4 25.00 4 2.80
cordic 199 38 237 206 18 224 20 52.63 13 5.49
frg1 244 78 322 245 20 265 58 74.36 57 17.70
f51m 297 71 368 309 31 340 40 56.34 28 7.61
count 333 71 404 365 22 387 49 69.01 17 4.21
b9 365 87 452 367 29 396 58 66.67 56 12.39
9symml 424 107 531 440 39 479 68 63.55 52 9.79
apex7 663 124 787 667 59 726 65 52.42 61 7.75
c432 655 167 822 706 99 805 68 40.72 17 2.07
c880 1163 198 1361 1223 81 1304 117 59.09 57 4.19
t481 1448 232 1680 1495 54 1549 178 76.72 131 7.80
c1355 1856 130 1986 1856 46 1902 84 64.62 84 4.23
apex6 1889 319 2208 1928 183 2111 136 42.63 97 4.39
c1908 1924 208 2132 1949 109 2058 99 47.60 74 3.47
k2 2446 348 2794 2527 114 2641 234 67.24 153 5.48
c2670 2467 422 2889 2498 244 2742 178 42.18 147 5.09
c5315 5498 830 6328 5510 474 5984 356 42.89 344 5.44
c7552 8088 1082 9170 8164 637 8801 445 41.13 369 4.02
des 9069 1416 10485 9122 581 9703 835 58.97 782 7.46

Average 53.00 6.29
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Table 6.3: Comparison of the Number of Transistors Under Different Weights of pdis

Circuit k = 1 k = 5 %Improv
Tlogic Tdisch Ttotal #G Tclock Tlogic Tdisch Ttotal #G Tclock

cm150 73 15 88 3 21 73 15 88 3 21 0.00
mux 73 15 88 3 21 73 15 88 3 21 0.00
z4ml 134 13 147 9 39 134 13 147 9 39 0.00
cordic 222 19 241 14 52 217 19 236 13 51 1.92
frg1 283 20 303 19 58 277 21 298 18 57 1.72
count 374 22 396 28 77 374 22 396 28 77 0.00
b9 367 29 396 29 87 373 26 399 30 86 0.11
c8 331 42 373 26 94 325 42 367 25 92 2.12
f51m 405 42 4 47 27 104 391 38 429 26 98 5.76
9symml 571 57 628 34 132 482 36 518 33 106 19.69
apex7 739 67 806 54 175 733 67 800 53 173 1.14
x1 825 63 888 65 193 816 60 876 64 188 2.59
c432 799 93 892 52 197 804 89 893 53 194 1.52
i6 1155 67 1222 67 201 1155 67 1222 67 201 0.00
c1908 992 117 1109 77 259 957 111 1068 78 254 1.93
t481 1916 77 1993 132 325 1927 70 1997 135 316 2.77
c499 2016 46 2062 130 440 2016 46 2062 130 440 0.00
c1355 2016 46 2062 130 440 2016 46 2062 130 440 0.00
dalu 2073 182 2255 158 446 2065 177 2242 158 441 1.12
k2 3127 109 3236 195 481 3142 107 3249 195 475 1.24
apex6 2418 206 2624 158 520 2516 185 2701 160 504 3.07
rot 2520 290 2810 174 627 2449 262 2711 172 595 5.10
c2670 2608 247 2855 162 642 2614 244 2858 163 641 0.15
C5315 5755 535 6290 433 1501 5754 515 6269 439 1491 0.66
c3540 6659 634 7293 427 1501 6377 552 6929 412 1393 7.93
des 9818 600 10418 594 1581 9390 493 9883 586 1453 8.09
c7552 7519 584 8103 582 1853 7376 508 7884 580 1759 5.07
Average 3.82

91



Table 6.4: Depth and Discharge Transistor Optimization
Circuit L Domino Map SOI Domino Map Reduction in Tdisch Reduction in L

Tlogic Tdisch Ttotal L Tlogic Tdisch Ttotal L ∆Tdisch % ∆L %

z4ml 16 182 22 204 7 176 12 188 6 10 45.45 1 14.29
cm150 10 268 35 303 9 193 20 213 7 15 42.86 2 22.22
mux 10 268 35 303 9 193 19 212 7 16 45.71 2 22.22
cordic 12 373 40 413 9 310 19 329 8 21 52.50 1 11.11
f51m 30 534 75 609 25 598 49 647 20 26 34.67 5 20.00
c8 11 591 80 671 6 564 44 608 6 36 45.00 0 0.00
frg1 14 607 102 709 12 503 52 555 11 50 49.02 1 8.33
b9 10 659 106 765 9 537 47 584 6 59 55.66 3 33.33
count 21 741 76 817 7 672 56 728 9 20 26.32 -2 -28.57
c432 34 981 125 1106 26 1229 107 1336 25 18 14.40 1 3.85
apex7 17 974 139 1113 11 1111 82 1193 7 57 41.01 4 36.36
9symml 21 1038 174 1212 14 800 70 870 12 104 59.77 2 14.29
c1908 32 1292 251 1543 16 1625 167 1792 14 84 33.47 2 12.50
x1 12 1490 233 1723 9 1364 106 1470 8 127 54.51 1 11.11
i6 6 2109 237 2346 4 2143 133 2276 4 104 43.88 0 0.00
c1355 20 2640 244 2884 7 2456 44 2500 7 200 81.97 0 0.00
t481 23 2794 196 2990 17 3301 97 3398 16 99 50.51 1 5.88
rot 27 2768 514 3282 11 3259 320 3579 14 194 37.74 -3 -27.27
apex6 21 3816 584 4400 15 4222 315 4537 12 269 46.06 3 20.00
k2 21 4181 324 4505 13 3847 143 3990 12 181 55.86 1 7.69
c2670 31 4052 521 4573 16 4207 281 4488 14 240 46.07 2 12.50
dalu 23 3795 786 4581 10 2747 249 2996 12 537 68.32 -2 -20.00
c3540 42 7675 1341 9016 19 9021 601 9622 20 740 55.18 -1 -5.26
c5315 36 8216 1074 9290 17 9409 493 9902 17 581 54.10 0 0.00
c7552 42 10374 1172 11546 29 10747 501 11248 22 671 57.25 7 24.14
des 26 14068 2653 16721 14 21313 944 22257 14 1709 64.42 0 0.00
Average 49.76 6.36
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Appendix A

Generating Libraries for

Technology Mapping

Technology mapping maps a (technology independent) netlist of logic gates to a

library of cells that have been characterized in terms of parameters such as delay,

area and power. In Chapter 5 we present a new approach to technology mapping,

that optimizes the delay of a given circuit. In order to validate our approach, we

need a library that has been characterized to obtain the logical effort and parasitic

delay of each cell. Additionally, in order to verify the improvements obtainable by

our approach, we need a library that can be used with the traditional approach.

We target a 0.1µ technology, and cell libraries for this generation are not currently

available. Thus, we need two libraries, one for the traditional approach and one that

can be used by MELT (called the MELTing Library). In this appendix, we describe

the approach taken in order to generate these libraries.

We describe the methodology used for calibrating inverters in detail. The other

gates used in our library (NAND2, NAND3, NAND4, NOR2, NOR3, NOR4, AOI21,

AOI22, AOI211, AOI221, AOI222, AOI31, AOI32, AOI33, OAI21, OAI22, OAI211,

OAI221, OAI222, OAI31, OAI32, OAI33 – 22 logic functions in all) are calibrated in a

similar fashion. The actual values extracted for the MELT library are then presented;

the equivalent traditional technology library has 440 gates, and is not presented here.
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A.1 Caliberating the Inverter
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Figure A.1: Inverter Delay

Figure A.1(a) shows the delays of inverters of different sizes as a function of output

capacitance. This data was obtained using SPICE. The set of points labeled 0.1µ is

the delay of an inverter with n-transistor width of 0.1 microns, and a p-transistor

sized in order to have equal rise delay. As expected, the delay of the inverter rises as

the load being driven increases. The other data sets plot the delay of inverters having

different widths of the n-transistors – 0.5, 1.0 and 5.0µ, each of which have varying

dependence of delay on load. A casual inspection is enough to convey the strong

linearity of this dependence. A least-squares algorithm can be used to determine a

linear approximation for the delay function. Rather than selecting a large number of

inverters, we choose a varying granularity of inverter sizes; more small inverters and

fewer inverters of large sizes. We use gnuplot in order to perform this approximation,

and obtain the characterization shown in Table A.1. The function used is

delay = slope × load + intercept (A.1)

These values are used in the library used for traditional technology mapping. As

can be seen, the error is very small, and is less than 1% for all parameters. Note
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n-width slope % error intercept % error
0.1 8.43 0.05 10.97 0.64
0.2 4.21 0.09 10.31 0.62
0.3 2.83 0.15 9.86 0.69
0.4 2.13 0.21 9.59 0.76
0.5 1.72 0.26 9.34 0.79
0.6 1.45 0.32 9.17 0.83
0.7 1.24 0.40 9.07 0.89
0.8 1.09 0.49 9.02 0.97
0.9 0.98 0.52 8.86 0.95
1.0 0.89 0.53 8.70 0.90
1.2 0.78 0.47 8.41 0.70
1.5 0.64 0.40 8.14 0.52
1.8 0.54 0.51 8.11 0.55
2.0 0.48 0.55 8.16 0.52
2.5 0.36 0.36 8.35 0.26
3.0 0.30 0.38 8.33 0.23
3.5 0.26 0.40 8.27 0.21
4.0 0.23 0.43 8.22 0.20
4.5 0.21 0.46 8.19 0.20
5.0 0.19 0.52 8.17 0.20

Table A.1: Linear approximation of delay as a function of load

the small values of the slopes for larger gate sizes. This is indicative of the delay

independence of load for these larger gates.

Next, consider the plots of Figure A.1(b). This is the same data as that used in

Figure A.1(a), but is plotted with the electrical effort on the x-axis. An interesting

trend is immediately apparent, and this is indeed the basis of logical effort – the

delay of an inverter is a linear function of the electrical effort, independent of its

size. The exception is the smallest inverter, and we believe this discrepancy is due to

deep sub-micron effects that arise at small geometries. We can once again perform a
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least-squares approximation to in order to express delay as such a linear function:

delay = g × h + p (A.2)

= 4.21 × h + 8.67 (A.3)

= 4.21(1 × h + 2.11) (A.4)

We assume the logical effort of an inverter to be unity, which allows us to extract

a delay unit τ = 4.21. τ ties the theory of logical effort to a particular fabrication

process. The logical effort equivalent of Table A.1 is shown in Table A.2.

n-width g p
any 1 2.11

Table A.2: LE-equivalent of Table A.1

Thus, we have reduced a library of 20 inverters to a library with a single inverter,

which can be used in MELT. Note that the inverter could have been calibrated using

more than twenty sizes; while this would increase the size of the traditional library,

we would only need one gate for the library used in MELT.

A.2 The MELT Library

The logical efforts and parasitic delays of gates used in the MELTing Library are

presented in Table A.3. We calibrate each input of asymmetric gates, this data is

also shown. We note here that the actual values of parasitic delays are much higher

than those predicted by theory. This is due to technology being targetted – for small

devices, internal capacitances have a larger effect on delay than before. It is also

interesting to note the clear trend of complex gates having higher values of logical

effort. This is to be expected, and in general, for driving large loads on critical paths,

simple gates are preferred.

A more complete library can have multiple, possibly orthogonal, dimensions, e.g.,

for gates with different threshold voltages, different sizes of internal transistors, etc.

This increases the library size, and such gates may not be amenable to logical effort.
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However, optimizing circuits using vt assignment is usually a post-processing step,

and need not be considered during technology mapping.
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Gate Logical Effort Parasitic Delay

INV 1.00 2.11
NAND2 1.30 3.02
NAND3 1.47 3.94
NAND4 1.61 4.77
NOR2 1.53 3.25
NOR3 1.97 4.13
NOR4 2.42 4.22
AOI21 2 1.88 5.41
AOI21 1 1.41 3.66
AOI22 1.79 9.19
AOI211 2 3.44 9.12
AOI211 1 1.73 4.46
AOI221 2 6.57 14.11
AOI221 1 1.09 3.29
AOI222 2.31 7.62
AOI31 3 1.96 7.82
AOI31 1 1.49 8.31
AOI32 3 1.94 12.65
AOI32 2 2.19 4.76
AOI33 2.13 14.21
OAI21 2 1.81 6.69
OAI21 1 1.49 4.63
OAI22 1.82 6.31
OAI211 2 2.02 8.94
OAI211 1 1.45 4.47
OAI221 2 2.02 9.91
OAI221 1 1.58 6.32
OAI222 1.99 7.94
OAI31 3 2.41 10.36
OAI31 1 1.25 3.98
OAI32 3 2.48 12.86
OAI32 2 1.80 5.02
OAI33 2.42 10.29

Table A.3: The MELTing Library
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