Runtime variability in scientific parallel applications

W. Heirman, J. Dambre, D. Stroobandt, J. Van Campenhout
ELIS Department, Ghent University, Belgium

Sponsored by IAP-V PHOTON & IAP-VI photonics@be,
Belgian Science Policy Office
Outline

• Variability in simulation: what & why?
• Measurements in SPLASH-2
• Effects on fidelity and relative accuracy
• Overview of possible solutions
• Conclusions
Variability in simulation

- Simulations heavily used to predict performance of architectural or other improvements
- Variation in performance measurements (program runtime, transactions per second)
- What if variation > performance delta? → wrong conclusions!
Variability: causes

- Non-determinism in Operating System
 - (background tasks)
 - (external: network, user input)
 - scheduler
 - VM management
- Non-determinism in Parallel application
 - locks: synchronization races
 - magnified by: task queues (changes in load balance), convergence (#iterations can depend on sequence)
Variability: existing work

- Alameldeen & Wood (HPCA‘03, MICRO‘06)
 - “Variability is a well-known phenomenon in real systems, but is nearly universally ignored in simulation experiments”
 - Commercial applications: request-driven (task queues!)
 - Large variations in IPC, transactions/sec
 - Solution: use multiple simulations & statistics (non-overlapping confidence intervals to compare architectures)
Variability: existing work

- Wenisch et. al. (MICRO‘06)
 - Measure User-IPC:
 - Good (near-linear) correlation between U-IPC (measurement) and transactions/sec (performance)
 - Less variation in U-IPC, thus allows higher accuracy
 - Simflex: sampling methodology using stored state

- Lepak et. al. (PACT‘03)
 - ‘Redeeming IPC’: insert delay to remove variability
Variability: existing work - scientific applications

• Bienia et. al.: PARSEC benchmark suite
 - Characterization of variability of *architecture-independent* benchmark properties
 - Low for most applications, but:
 • What with architecture-*dependent* properties (=performance indicators)
 • Measured on long (~15 second) input sets, what with input sets suitable for microarchitectural simulations (i.e. Simics/GEMS: x100,000 slowdown, ~1s runtime)
Outline

- Variability in simulation: what & why?
- **Measurements in SPLASH-2**
- Effects on fidelity and relative accuracy
- Overview of possible solutions
- Conclusions
Simulation platform

- Simics + directory-based coherence, interconnect simulation
- 16 processors (UltraSPARC), Solaris 9
- SPLASH-2 benchmarks
- Introduce variability by waiting → difference in scheduler initial state
- Study performance while changing the interconnection network
Variability: program runtime

Program runtime

70% 80% 90% 100% 110% 120%

barnes cholesky fft flam lu ocean, cont radiosity radix raytrace water, sp

Mesh Torus Reconfig.
Variability: IPC

![Variability: IPC](image)
Variability: L2 miss latency

Average L2 miss latency

![Diagram showing variability in L2 miss latency for different benchmarks and topologies. The x-axis represents benchmarks (barnes, cheeaky, fft, film, lu, ocean, cont, radiosity, radix, raytrace, water, sp), and the y-axis represents latency percentage (40% to 120%). The chart includes box plots for each benchmark showing variability across different topologies: Mesh, Torus, and Reconfig.](image-url)
Instructions executed

Instructions executed (total)

[Diagram showing box plots for different benchmarks such as barnes, cholesky, fft, film, lu, ocean, cont, radix, raytrace, water, sp, mesh, torus, reconfig. The chart displays the percentage of instructions executed across various cases, with error bars indicating variability.]
User instructions executed

User instructions executed (total)

94% 96% 98% 100% 102%

barnes cholesky fft film lu ocean_cont radiosity radix raytrace water sp

Mesh Torus Reconfig.
Observations

- Variability in runtime: 5 to 10%, can be as big as improvement of better network
- # instructions changes (spinlocks), # user instructions constant for most (but not all) benchmarks
- Low-level metrics (L2-miss latency): larger difference, less variability, but not always effect on total performance
Outline

• Variability in simulation: what & why?
• Measurements in SPLASH-2
• Effects on fidelity and relative accuracy
• Overview of possible solutions
• Conclusions
Fidelity and relative accuracy

- Experiment to compare performance of two architectures
- Fidelity:
 “torus is better than mesh network”
- Relative accuracy:
 “torus is 10% better than mesh network”
- Variability:
 - Each measurement has confidence interval: \(\mu \pm \sigma \)
 - Improvement: \((\mu_2 - \mu_1) \pm \sqrt{\sigma_1^2 + \sigma_2^2} \)
 - Performance improvement: 10±5%, 5±5%, 2±5%
Variation of miss latency improvement
Variation of runtime improvement

![Graph showing variation in runtime improvement with respect to L2 miss latency.](image)
Improvement: confidence intervals
Outline

- Variability in simulation: what & why?
- Measurements in SPLASH-2
- Effects on fidelity and relative accuracy
- Overview of possible solutions
- Conclusions
Solution - ‘easy’ way

- multiple measurements & statistics
- Alameldeen & Wood, HPCA 2003
- N measurements $x_1..x_N$ with average μ and standard deviation σ
- Using Student’s t-distribution: $t = f(N, p)$
 for instance: $N = 4$, $p = 95\%$: $t = 2.13$
- ‘Actual’ performance will be, with probability p, in the range
 \[[\mu - t \cdot \sigma, \mu + t \cdot \sigma] \]
- Comparing two architectures: simulate until confidence intervals no longer overlap
Multiple simulations: runtime
Multiple simulations: L2 miss latency
Solutions

- Multiple simulations: guarantees (probable) correctness
- But in reality: only limited simulation time available

\[
\frac{\text{#days to ISCA deadline} \times \text{# machines available}}{\text{# benchmarks} \times \text{# architectures}}
\]
Low-level vs. high-level metrics

- Not all metrics are created the same
- Difference in magnitude of
 - variation
 - differentiation between architectures
- Low-level metrics often perform better, but:
 Effect of low-level improvement on high-level performance should always be checked
 (i.e. communication improvement on non-communicating applications!)
Low-level vs. high-level metrics

Possible methodology:
- Choose a good low-level metric (e.g. miss or packet latency for network studies)
- Characterize its variability, and determine the required number of simulations = N
- Run performance measurements N times for each architecture under test and each benchmark

→ Reliable low-level performance per architecture
- Determine relationship between low-level metric and high-level performance \textit{per benchmark}, again using sufficient (but possibly >>N) simulations, but probably only a few architectures are needed

→ Compute reliable high-level performance figures
Simulator detail versus input set size

- One reviewer commented:
 “use of in-order processor simulation influences results”
- Emergence of a trade-off:
 Detailed simulator (high accuracy)
 vs.
 Large data set / multiple runs (low variability)
- Lowest combined error ??
 (for given simulation time)
Matched-pair sample comparison

SimFlex [Wenisch et. al., MICRO‘06]

- Sampling methodology
- For one architecture: full simulation, store some architectural state at fixed points
- Subsequent architectures: sample, each can load state to avoid long warm-up period
- E.g.: network simulation: store cache state (long-living), reconstruct network state (buffer contents, short-living)
Matched-pair sample comparison

• Avoids variability:
 - each sample is started from the same state
 - short simulations so no time for variability to build up

• Drawbacks:
 - uses sampling (which sample set? bias?)
 - state not always re-usable for all types of architectural studies
Outline

- Variability in simulation: what & why?
- Measurements in SPLASH-2
- Effects on fidelity and relative accuracy
- Overview of possible solutions
- Conclusions
Conclusions

- Variability in parallel programs is a problem, also in scientific benchmarks
- Up to 10% variation in program runtime, IPC, miss latency
- Influence on absolute accuracy
- Much higher influence on performance improvement measurements
- Take care when comparing architectures!
- No definitive solution; improvements through multiple simulations, use of other metrics, matched-pair sample comparison