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Abstract 
During the course of a program’s execution, a 

processor performs many trivial computations; that is, 
computations that can be simplified or where the result is 
zero, one, or equal to one of the input operands. This 
paper shows that, despite compiling a program with 
aggressive optimizations (-O3), approximately 30% of all 
arithmetic instructions, which account for 12% of all 
dynamic instructions, are trivial computations. The 
amount of trivial computation is not heavily dependent on 
the program’s specific input values. Our results show that 
eliminating trivial computations dynamically at run-time 
yields an average speedup of 8% for a typical processor. 
Even for a very aggressive processor (i.e. one with no 
functional unit constraints), the average speedup is still 
6%. It also is important to note that the area cost (i.e. 
hardware) required to dynamically detect and eliminate 
these trivial computations is very low, consisting of only a 
few comparators and multiplexers. 
 
 
1 Introduction 
 

Many programs have a significant amount of trivial 
computation due to the way they are written and 
compiled. A trivial computation is an instruction whose 
output can be determined without having to perform the 
specified computation by either converting the operation 
to a less complex one or by determining the result 
immediately based on the value of one or both of the 
inputs. An example of the former is a multiply operation 
where one of the input operands has a value of two. In this 
case, the multiply instruction can be converted to a shift-
left instruction. An example of the latter type is an add 
instruction where one of the input operands is zero. In this 
case, the result is the value of the other input operand. 

While it seems as though an optimizing compiler 
should be able to remove many of these trivial 
computations, it is unable to do so unless the value of the 
input operands is known at compile time. Furthermore, the 
compiler may use trivial computations, such as 0 + 0, for 
initialization purposes. This paper shows that, due to these 
two factors, trivial computations can be a significant part 

of the program’s overall execution time. Therefore, 
dynamically eliminating these trivial computations could 
reduce the program’s execution time. 

This paper makes the following contributions: 
 

1. It quantifies the amount of trivial computation that 
is present in programs from the SPEC 95, SPEC 
2000, and MediaBench [5] benchmark suites and 
shows that the amount of trivial computation is 
independent of the specific input values.  

2. It determines the speedups that can be obtained by 
dynamically eliminating trivial computations. 

 
The remainder of this paper is organized as follows: 

Section 2 quantifies the amount of trivial computation that 
exists in typical programs, Section 3 presents the speedup 
results achieved by eliminating these trivial computations, 
Section 4 describes some related work, and Section 5 
summarizes our results and conclusions. 
 
2 Types and Amounts of Trivial Computation 
 

In this paper we identify two classes of trivial 
computations, those that can be bypassed and those that 
can be simplified. Table 1 shows the types of 
computations that are defined as trivial in this paper. The 
first column shows the type of operation while the second 
column shows how the result is normally computed. The 
third and fourth columns show which trivial computations 
can be bypassed and simplified, respectively. 

Most of these trivial computations are straightforward 
with the exception of square root. For a square root, if the 
value of X is an even power of 2 (e.g. 4, 16, 64), then the 
result can be computed by halving the value in the 
exponent field. As a result, the exponent needs only to be 
shifted to the right by one bit. For example, the exponent 
for 16 is 0100. By applying this simplification, 0100 is 
right-shifted by 1 to produce 0010. Using this new 
exponent, the square root of 16 is then 1 *  22, or 4. 

We classify the computations in the fourth column as 
trivial because their operation can be simplified. While 
those trivial computations cannot be fully bypassed, they 
can use less complex, lower latency hardware instead. 



 

 
Figure 1. Percentage of trivial computations per instruction type and per total number of dynamic 

instructions for the SPEC and MediaBench benchmarks 
 

Operation Normal Bypassable Simplifiable 

Add X+Y X,Y=0  
Subtract X–Y Y=0; X=Y  

Multiply X*Y X,Y=0 
X,Y= 

Power of 2 
Divide X÷Y X=0; X=Y Y=Power of 2 
AND,  
OR,  
XOR 

X&Y,  
X|Y,  
X⊕Y 

X,Y= 
{ 0,0xffffffff} ;  

X=Y 
 

Logical  
Shift 

X<<Y,  
X>>Y 

X,Y = 0  

Arithmetic  
Shift 

X<<Y,  
X>>Y 

X,Y= 
{ 0,0xffffffff}  

 

Absolute  
Value 

|X| 
X= 

{ 0, Positive}  
 

Square  
Root X  X=0 

X=Even  
Power of 2 

 
Table 1. Trivial computations 

 
Figure 1 shows the amount of trivial computation that 

is present in the benchmark programs from the SPEC 95, 
SPEC 2000, and MediaBench benchmark suites that we 
used in this study. Each pair of results shows the 
percentage of trivial computations that are present for that 
instruction type. The “Total”  bars show the percentage of 
the total instructions that are trivial computations, over all 
instruction types.  

These results show that trivial computations account 
for 12.89% and 5.92% of the total instructions in the 
SPEC and MediaBench benchmarks, respectively. 

Figure 1 shows that almost all instruction types have a 
significant percentage of trivial computations. However, a 
high percentage does not necessarily mean that those 
instructions will have a significant impact on the 
program’s overall execution time since they could account 
for a very small percentage of the total executed 
instructions. For example, nearly 100% of the absolute 

value instructions (FABS) are trivial, but they account for 
only 0.04% of the total instructions executed. 

To determine whether the trivial computations are a 
result of the benchmark itself, or of the benchmark’s input 
set, we profiled the same benchmarks with another input 
set. The results from the second input set were very 
similar to the results from the first [11]. This result 
indicates that trivial computations are primarily due to the 
benchmark programs themselves and not due to the 
specific values of their inputs.  
 
3 Simulation Results  
 
3.1 Benchmarks and Processor Configuration 
 

The results in this section show the speedups that can 
be obtained by bypassing or simplifying trivial 
computations. These results are based on simulations 
performed by using a modified version of the sim-
outorder superscalar processor simulator from the 
SimpleScalar tool suite [1]. 

All of the benchmarks were compiled at optimization 
level -O3 using the SimpleScalar version of gcc. To 
control the execution time, reduced input sets were used 
for some of the SPEC 2000 benchmarks. Benchmarks that 
use a reduced input set exhibit behavior similar to when 
the benchmark is executed using the reference input [4]. 

The base machine was a 4-way issue processor with 2 
integer and 2 floating-point ALUs; 1 integer and 1 
floating-point multiply/divide unit; a 64 entry RUU; a 32 
entry LSQ; and 2 memory ports. The L1 D and I caches 
were set to 32KB, 32B blocks, 2-way associativity, and a 
1 hit cycle latency. The L2 cache was set to 256KB, 64B 
blocks, 4-way associativity, and a 12 cycle hit latency. 
The memory latency of the first block was 60 cycles while 
each following block took 5 cycles. The branch predictor 
was a combined predictor with 8K entries. These 
parameter values are similar to those found in the Alpha 
21264 [3] and the MIPS R10000 [10]. 
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Figure 2. Speedup due to trivial computation bypass/simplification for the SPEC benchmarks  

 

 
Figure 3. Speedup due to trivial computation bypass/simplification for the MediaBench benchmarks 

 
The latencies for the integer functional units were 1, 3, 

and 19 cycles for the integer ALU, multiplier, and divider, 
respectively, while the latencies for the floating-point 
units were 2, 4, 12, and 24 cycles for the floating-point 
ALU, multiplier, divider, and square root unit, 
respectively. 

 
3.2 Discussion and Analysis 
 

The key point that separates this technique from other 
microarchitectural mechanisms is that in this technique 
only a single input operand (the trivial one) needs to be 
available for a non-speculative result to be generated. For 
example, in X *  0, the result can be computed non-
speculatively as soon as 0 is available. This key point 
obviously has an important performance impact in that it 
allows the instruction to “execute”  sooner than would 
normally be possible. Therefore, the speedups obtained 
from this technique are due to earlier scheduling of 
instructions, decreasing the number of resource conflicts, 
and reducing the latency of trivial computations. 

Figures 2 and 3 show the speedups for the SPEC and 
MediaBench benchmarks, respectively. The speedup 
ranges from 1.64% (gzip) to 27.36% (mesa), with an 
execution time-weighted average of 8.84% for the SPEC 
benchmarks. For the MediaBench benchmarks, the 
speedup ranges from 2.97% (epic-Compress) to 13.97% 
(epic-Uncompress), with an average of 4.86%. The 
average speedup across all benchmarks is 8.22%. These 

results show that bypassing and simplifying trivial 
computations can produce significant speedups. 

To determine the effect of the functional unit 
availability on the speedup, we varied the number of 
functional units. Due to space limitations, these results are 
not presented. However, even in the most unrealistic case 
in which the base processor has 4 of each type of 
functional unit, the speedup results are still quite good, 
with an average of 6.5% speedup for the SPEC 
benchmarks, 4.5% for the MediaBench benchmarks, and 
6.2% overall [11]. This result demonstrates that the 
speedups shown in Figures 2 and 3 are not due primarily 
to the trivial computation elimination hardware acting like 
a pseudo-functional unit, but rather are due to the latency 
reduction and early instruction scheduling allowed by 
simplifying and bypassing the trivial computations. 
 
4 Related Work 
 

After extensive searches through several indexes, 
digital libraries, and the web, we found only a single 
publication directly on trivial computation [8]. In this 
paper, Richardson restricted the definition of trivial 
computations to certain multiplications (by 0, 1, and –1), 
divisions (X ÷ Y with X = { 0, Y, -Y} ), and square roots of 
0 and 1. The two key differences between this previous 
work and our current study are the types of benchmarks 
that were used, and the scope of the definition of trivial 
computations. The first difference is that Richardson 
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studied only floating-point benchmarks (SPEC 92 and 
Perfect Club) while we studied a mix of integer, floating-
point, and multimedia benchmarks. The second difference 
is that Richardson restricted the definition of trivial 
computations to the above 8 types while we defined the 26 
types shown in Table 1. Not surprisingly, as a result of 
both differences, the average speedup of 2% that he 
reported was much lower than our 8% when comparing 
similar processor configurations. Richardson asserted that 
the lack of previous work on trivial computation was not 
due to its novelty, but due to a lack of knowledge as to 
how often trivial computations would occur. 

While there has been a definite lack of published 
material on trivial computation, several papers have 
described the related technique of value reuse [2, 6, 7, 9]. 
With value reuse, an on-chip table dynamically caches the 
opcode, input operands, and result of previously executed 
instructions. For each instruction, the processor checks if 
the current instruction's opcode and input operands match 
a cached entry. If there is a match, the processor reuses the 
result that is stored in the table instead of re-executing the 
instruction, thus bypassing the execution of the current 
instruction. 

There are several differences between value reuse and 
our approach of bypassing trivial computations. The first 
and biggest difference is that value reuse requires the use 
of an on-chip table. For example, Molina et al. [6] used a 
221KB table to achieve an average speedup of 10%. In 
contrast, the trivial computation approach that we propose 
uses only a small amount of area (a few comparators and 
multiplexors). The second difference is that each 
instruction that is bypassed using value reuse had to have 
been previously executed at least once. With trivial 
computation, in contrast, the instruction can be bypassed 
the first time it is encountered. Finally, the last difference 
is that for value reuse, both input operands must be 
available since they are both needed to access the value 
reuse table. Trivial computations, on the other hand, can 
be bypassed when only a single input operand is available. 
For example, if X *  0 were a frequently occurring 
computation, value reuse would need to have both input 
operands available before the instruction can be bypassed 
while trivial computation would need only the second 
input operand (0) to be available.  
 
5 Conclusion 
 

This paper presents a dynamic method of detecting and 
eliminating trivial computations to improve processor 
performance. A trivial computation is a computation that 
can be converted into a faster and less complex one or can 
be bypassed completely by setting the output value to 
zero, one, or to the value of one of the input operands. 
This paper shows that for a set of benchmarks from the 
SPEC 95, SPEC 2000, and MediaBench benchmark 
suites, a significant percentage of the computations for 

each instruction type are trivial and that nearly 12% of the 
total dynamic instructions are trivial. The compiler, due to 
a lack of run-time information or for initialization reasons, 
cannot remove these trivial computations. Furthermore, 
this paper demonstrated that the trivial computations are 
mainly a function of the benchmark and not of the 
benchmark’s input values. Finally, dynamically 
eliminating trivial computations, through simplification or 
bypass, produced an average speedup of 8.2% for a typical 
processor and an average speedup of 6.2% for a processor 
without any functional unit constraints. 
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