
Evaluating the Efficacy of Statistical Simulation for Design Space Exploration

Ajay Joshi
1
, Joshua J. Yi

2
, Robert H. Bell Jr.

3
, Lieven Eeckhout

4
, Lizy John

1
, and David Lilja

5

1
 - Department of Electrical and Computer Engineering

The University of Texas at Austin, Texas
{ajoshi,ljohn}@ece.utexas.edu

2
- Networking and Computing Systems Group

Freescale Semiconductor, Inc.
joshua.yi@freescale.com

3
- IBM Systems and Technology Group

Austin, Texas
robbell@us.ibm.com

4
- ELIS Department

Ghent University, Belgium
leeckhou@elis.ugent.be

5
- Department of Electrical and Computer Engineering

University of Minnesota at Twin Cities
lilja@ece.umn.edu

Abstract

Recent research has proposed statistical simulation as a

technique for fast performance evaluation of superscalar

microprocessors. The idea in statistical simulation is to

measure a program's key performance characteristics,

generate a synthetic trace with these characteristics, and

simulate the synthetic trace. Due to the probabilistic nature

of statistical simulation the performance estimate quickly

converges to a solution, making it an attractive technique to

efficiently cull a large microprocessor design space.

In this paper, we evaluate the efficacy of statistical

simulation in exploring the design space. Specifically, we

characterize the following aspects of statistical simulation: (i)

fidelity of performance bottlenecks, with respect to cycle-

accurate simulation of the program, (ii) ability to track

design changes, and (iii) trade-off between accuracy and

complexity in statistical simulation models.

In our characterization experiments, we use the Plackett

& Burman (P&B) design to systematically stress statistical

simulation by creating different performance bottlenecks. The

key results from this paper are: (1) Synthetic traces stress at

least the same 10 most significant processor performance

bottlenecks as the original workload, (2) Statistical

simulation can effectively track design changes to identify

feasible design points in a large design space of aggressive

microarchitectures, (3) Our evaluation of 4 statistical

simulation models shows that although a very detailed model

is needed to achieve a good absolute accuracy in

performance estimation, a simple model is sufficient to

achieve good relative accuracy, and (4) The P&B design

technique can be used to quickly identify areas to focus on to

improve the accuracy of the statistical simulation model.

1. Introduction

In computer architecture, the simulation of benchmarks is

a widely used technique for evaluating computer

performance. Computer architects and researchers use

microprocessor models to accurately make performance

projections during the pre-silicon phase of the chip design

process, and also to quantitatively evaluate microprocessor

innovations. Unfortunately, when using a detailed cycle-

accurate performance model, the simulation time may span

several weeks or months. Further compounding this problem

is the growing complexity of microarchitectures (i.e.,

decreasing simulation speed) and the increasing execution-

times of modern benchmarks. Therefore, in order to meet the

time-to-market requirements of a microprocessor, designers

use different simulation models during the various stages of

the design cycle. Although a detailed and highly accurate

cycle-accurate simulator is necessary to evaluate specific

design points later in the design cycle, earlier in the design

cycle, a simulation technique that has a short development

time and can quickly provide performance estimates with

reasonable accuracy is desirable.

Accordingly, computer architecture researchers have

proposed several simulation and modeling techniques that

reduce the time needed to generate quantitative performance

estimates early in the design cycle. These techniques include

analytical modeling of microprocessors [24], statistical

modeling of microprocessors [5], hybrid analytical and

statistical modeling [12], statistical simulation [15], sampling

[22] [25], and reducing the input set of the workload to be

simulated [1].

The basic idea in statistical simulation [15] is to model a

workload's important performance characteristics with a

synthetic trace, and execute the trace in a statistical simulator

to obtain a performance estimate. Since the performance

estimate quickly converges, the simulation speed of statistical

simulation makes it an attractive technique to quickly explore

a large design space.

Although previous work has shown that statistical

simulation has good absolute and relative accuracy and is a

viable tool for design space exploration [11] [14] [23],

researchers and architects are reluctant to use statistical

simulation due to questions such as: (i) What is the absolute

and relative accuracy across a diverse set of processor

configurations?, (ii) Does the synthetic trace stress the same

bottlenecks as the original program to the same degree?, (iii)

Which processor and memory parameters can/cannot be sized

using statistical simulation?, (iv) What is the trade-off

between simulation accuracy and the complexity of various

statistical simulation models?, and (v) Which workload

characteristics are inadequately represented in the synthetic

trace?

The objective of this paper is to answer these questions

and systematically analyze the efficacy of statistical

simulation as a design space exploration tool. Specifically,

we make the following contributions in this paper:

1) We use P&B design-based processor

configurations as a stress test for statistical

simulation, to evaluate the representativeness of

the synthetic trace in terms of its performance

bottlenecks.

2) We characterize and examine the ability of

statistical simulation to track microprocessor

design changes across a diverse set of processor

configurations.

3) We compare the level of accuracy and

complexity between statistical simulation models

that span the range of models that have been

proposed.

4) We show how the P&B design technique can

quickly and precisely identify areas to focus on

to improve the accuracy of the statistical

simulation model.

The remainder of this paper is organized as follows:

Section 2 describes related work, while Section 3 presents a

brief overview of statistical simulation and the framework we

have used in this study. Section 4 describes the benchmarks

used for the evaluation experiments. Section 5 presents the

results from our evaluation of statistical simulation. In

Section 6 we show how the P&B design can be used to

identify areas where one should focus on to improve the

statistical simulation model, and Section 7 summarizes the

conclusions and key results from our work.

2. Related Work

In this section, we discuss prior work on statistical

simulation and the characterization techniques that have been

used to evaluate simulation methodologies.

Oskin et al. [16] proposed a hybrid processor simulator,

HLS, which uses statistical and symbolic execution to

evaluate design alternatives. They generated a statistical

profile from a normal distribution of workload characteristics,

and simulated it on a generalized superscalar execution

model. Their results showed good correlations with the

SimpleScalar and MIPS R10K processor models. Bell et al.

[18] improved the correlation of HLS by modeling the

workload at the granularity of the basic block and modifying

the generalized microprocessor simulation model to more

closely reflect components in a modern superscalar processor.

Eeckhout [13] et al. improved the accuracy of

performance predictions in statistical simulation by measuring

conditional distributions and incorporating memory

dependencies using more detailed statistical profiles, and

guaranteeing syntactical correctness of synthetic traces.

Nussbaum and Smith [23] proposed correlating

characteristics such as the instruction type, instruction

dependencies, cache behavior, and branch behavior to the size

of the basic block. They also compared the accuracy of

several models for synthetic trace generation. In [14],

Eeckhout et al. showed that the accuracy of statistical

simulation can be substantially improved by creating an

accurate statistical profile of a workload by using statistical

flow graphs to capture the control flow behavior of a

program. Eeckhout [11] [14] et al. demonstrated that

statistical simulation is capable of efficiently identifying a

region of interest in the early stages of the microprocessor

design cycle while considering performance and power

consumption.

Yi et al. [8] proposed to use the P&B design to choose

processor parameters, to select a subset of benchmarks, and to

analyze the effect of a processor enhancement. Also, Yi et

al. [9] used the P&B design as a characterization technique to

compare simulation techniques.

3. Statistical Simulation Framework

In this paper, we developed an enhanced version of

HLS++ [18] statistical simulation framework, called SS-

HLS++, as our statistical simulation environment. It consists

of three steps: 1) Profiling the benchmark program to measure

a collection of its execution characteristics to create a

statistical profile, 2) Using the statistical profile to generate a

synthetic trace, and 3) Simulating the instructions in the

synthetic trace on a trace-driven simulator to obtain a

performance estimate. Figure 1 illustrates these steps.

In the first step, we characterize the benchmark by

measuring its microarchitecture-independent and

microarchitecture-dependent program characteristics. The

former is measured by functional simulation of the program;

examples include: instruction mix, basic block size, and the

data dependency among instructions. Note that these

characteristics are related only to the functional operation of

the benchmark’s instructions and are independent of the

microarchitecture on which the program executes. On the

other hand, the microarchitecture-dependent characteristics

include statistics related to the locality and branch behavior of

the program. Typically, these statistics include L1 I-cache

and D-cache miss-rates, L2 cache miss-rates, instruction and

data TLB miss-rates, and branch prediction accuracy. The

complete set of microarchitecture-dependent and

microarchitecture-independent characteristics form the

statistical profile of the benchmark.

Figure 1. SS-HLS++ statistical simulation framework

After generating the statistical profile, the second step is

to construct a synthetic trace with similar statistical properties

as the original benchmark. The synthetic trace consists of a

number of instructions contained in basic blocks that are

linked together into a control flow graph, similar to

conventional code. However, instead of actual arguments and

opcodes, each instruction in the synthetic trace is composed

of a set of statistical parameters, such as: instruction type

(integer add, floating-point divide, load, etc.), ITLB/L1/L2 I-

cache hit probability, DTLB/L1/L2 D-cache hit probability

(for load and store instructions), probability of branch

misprediction (for branch instructions), and dynamic data

dependency distance (to determine how far a consumer

instruction is away from its producer). The values of the

statistical parameters describing each instruction are assigned

by using a random number generator following the

distributions of the various workload characteristics in the

statistical profile of the benchmark.

Finally, in the third step, the synthetic trace is executed

on a trace-driven statistical simulator. The statistical

simulator is similar to a trace-driven simulator of real

program traces, except that the statistical simulator

probabilistically models cache misses and branch

mispredictions. During simulation, the misprediction

probability that is assigned to the branch instruction is used to

determine whether the branch is mispredicted, and if so, the

pipeline is flushed when the mispredicted branch executes.

Likewise, for every load instruction and instruction cache

access, the simulator assigns a memory access time depending

on whether it probabilistically hits or misses in the L1 and L2

cache.

Although, these statistical simulation models that have

been recently proposed differ in the complexity of the model

used to generate the synthetic trace, fundamentally, each

model uses the same general framework described in Figure

1. They primarily differ in the granularity (basic block level,

program level, etc.) at which they measure the workload

characteristics in the statistical profile. For this study, we

implemented the following four statistical simulation models:

1) HLS [16]: This is the simplest model where the

workload characteristics (instruction mix, basic

block size, cache miss-rates, branch

misprediction rate, and dependency distances)

are averaged over the entire execution of a

program. This model assumes that the workload

characteristics are independent of each other and

are normally distributed. A synthetic trace of

100 basic blocks is then generated from a normal

distribution of these workload statistics and

simulated on a general superscalar execution

model until the results (Instructions-Per-Cycle)

converge. Since the synthetic instructions are few

in number and are probabilistically generated, the

results converge very quickly.

2) HLS + BBSize: We implemented a slightly

modified version of the model proposed in [23].

In this model, other than the basic block size, all

workloads characteristics are averaged over the

entire execution of the program. However, for

the basic block size, we maintain different

distributions of the basic block size based on the

history of recent branch outcomes.

3) Zeroth Order Control Flow Graph (CFG,

k=0) [14] [18]: In this modeling approach, we

average the workload characteristics at the basic

block granularity (instead of averaging them over

the entire execution of the program). While

building the statistical profile, we create a control

flow graph of the program. This control flow

graph stores the dynamic execution frequencies

of each unique basic block along with the

Statistical Profile

- Instruction Mix
- Basic Block Size
- Data dependency distance
- L1 I-cache miss-rate
- L1 D-cache miss-rate
- L2 cache miss-rate
- D/I TLB miss-rates
- Branch Prediction Accuracy

Benchmark Binary

Synthetic Trace
Generator

Synthetic Trace

Statistical
Simulator

Cache and Branch
Simulator

Microarchitecture
Independent Profiler

transition probabilities to its successor basic

blocks. The workload characteristics (instruction

mix, cache miss-rates etc.) are measured for each

basic block. Since the statistical profile is now at

the basic block level, the size of the profile for

this model is considerably larger than for the first

two. When generating a synthetic trace, we

probabilistically navigate the control flow graph

and generate synthetic instructions based on the

workload characteristics that were measured for

each basic block.

4) First Order Control Flow Graph (CFG, k=1)

[14]: This is the state-of-the art modeling

approach [4]. This approach is the same as the

one described in the Zeroth Order Control Flow

Graph model described above, except that all

workload characteristics are measured for each

unique pair of predecessor and successor basic

blocks in the control flow graph, instead of just

for a unique single basic block. Gathering

workload characteristics at this granularity

improves the modeling accuracy in the synthetic

trace because the performance of a basic block

depends on the context (predecessor basic block)

in which it was executed.

The First Order Control Flow Graph model is the state-

of-the-art statistical simulation model, and we therefore use it

in all the experiments in this paper. In Section 5.3, we

compare the accuracy of the other three models described

above against the accuracy of the First Order Control Flow

Graph model.

Table 1. SPEC CPU 2000 benchmarks and input sets used
in this paper

Benchmark Input Set Type

175.vpr-Place ref.net Integer

175.vpr-Route ref.arch.in Floating-Point

176.gcc 166.i Integer

179.art -startx 110 Floating-Point

181.mcf ref.in Integer

183.equake ref.in Floating-Point

253.perlbmk diffmail Integer

255.vortex lendian1 Integer

256.bzip2 ref.source Integer

4. Benchmarks

We used 9 benchmark programs and their reference

input sets from the SPEC CPU 2000 benchmark suite in this

paper. All benchmark programs were compiled using

SimpleScalar’s version of the gcc compiler, version 2.6.3, at

optimization level –O3. Table 1 lists the programs, their

input sets, and benchmark type. In order to compare the

statistical simulation results for the configurations used in

P&B design to the corresponding results from a cycle-

accurate simulator, we had to run 44 cycle-accurate

simulations of reference input sets for every benchmark

program. To reduce this simulation time, we simulated the

first one billion instructions only for each benchmark.

5. Evaluating Statistical Simulation

In this section we characterize and evaluate the accuracy

of statistical simulation. The objective of our characterization

is to analyze the efficacy of statistical simulation as a design

space exploration tool by stressing it using a number of

aggressive configurations. Using aggressive configurations

affords us an opportunity to evaluate the accuracy of

statistical simulation by systematically exposing a diverse set

of processor performance bottlenecks.
Our evaluation consists of three parts: In Section 5.1 we

evaluate the ability of statistical simulation to identify

important processor performance bottlenecks. Specifically,

we use a P&B design that uses a number of diverse

configurations to evaluate the representativeness of the

synthetic trace in terms of its performance bottlenecks. In

Section 5.2, we measure the relative accuracy of statistical

simulation by examining its ability to accurately track design

changes across 44 aggressive processor configurations.

Finally, in Section 5.3, we measure the absolute and relative

accuracy of the four previously described statistical

simulation models, and discuss the trade-offs between their

complexity and level of accuracy.

5.1. Identifying Important Processor Bottlenecks

Due to their inherent characteristics, different benchmark

programs stress different processor performance bottlenecks

to different degrees. Since architects use benchmark

programs to make quantitative evaluations of various points

in the design space and propose processor enhancements to

relieve specific performance bottlenecks, the synthetic trace

used in statistical simulation should have the same key

microprocessor performance bottlenecks that are present

when simulating the benchmark on a cycle-accurate simulator.

We quantify the representativeness of the synthetic trace by

quantifying the difference between the bottlenecks stressed by

the original workload and the synthetic trace.

For architects, the P&B design [8] can determine which

processor and memory parameters have the largest effect on

performance (cycles-per-instruction) i.e., identify the biggest

performance bottlenecks. The P&B design is a very

economical experimental design technique that varies N

parameters simultaneously over approximately (N + 1)

simulations [20]. Based on the results of the P&B design, we

assign a rank for each performance bottleneck based on its

P&B magnitude. The P&B magnitude represents the

significance of that bottleneck, or more specifically, the effect

that the bottleneck has on the variability in the output value,

e.g., cycles-per-instruction (CPI). The bottleneck that has the

largest impact on the CPI, i.e., the microarchitectural

parameter with the highest P&B magnitude, is the largest

performance bottleneck in the processor core and memory

subsystem. Based on their significance, we assign a rank to

each bottleneck, i.e., the most significant bottleneck has a

rank of 1, while the least significant has a rank of N.
In this study, we evaluated 43 parameters in an out-of-

order superscalar microprocessor related to the L1 I-cache,

L1 D-cache, L2 cache, instruction and data TLB, branch

predictor configuration, integer execution units, and floating

point execution units. To determine the P&B magnitude, and

subsequently the rank, of each bottleneck, we use 44 very

different processor configurations. The configurations

represent the “envelope of the hypercube” of processor

configurations and provide a stress test for statistical

simulation by systematically exposing diverse performance

bottlenecks. To characterize our bottlenecks, the input

parameter values were set to low and high values that were

similar to those found in [8]. To quantify the

representativeness of the synthetic trace, we first vectorize the

ranks (from statistical simulation and cycle-accurate

simulation) and then compute the Euclidean distance between

the pair of vectors. Smaller Euclidean distances indicate that

the ranks from statistical simulation are very similar to those

obtained by simulating the program with a cycle-accurate

simulator. When the vectors of ranks are identical (i.e., the

significance of each bottleneck is the same for both statistical

and cycle-accurate simulation), the Euclidean distance is 0.

When the ranks are completely “out-of-phase” (i.e. <1, 2, 3

… 41, 42, 43> versus <43, 42, 41 … 3, 2, 1>), the Euclidean

distance is at a maximum of 162.75. We normalize the

Euclidean distance between each pair of vectors to this

maximum, and then scale the distance to a 0 to 100 range.

Since the ranks for all bottlenecks are included in the

Euclidean distance, insignificant bottlenecks may deceptively

inflate the Euclidean distance. Additionally, one has to be

careful when interpreting the results based only on the ranks

of the parameters. It is possible that while the Euclidean

distance is fairly high, their significance may be, in fact, quite

similar. In such cases, seemingly large Euclidean distances

are the result of quantization error due to using ranks. To

avoid such a pitfall, we also separately present the normalized

Euclidean distance for the most significant 3, 5, 10, and 20

parameters, in addition to all 43.

Figure 2 shows the normalized Euclidean distance for the

9 benchmarks. The results in this figure show that statistical

simulation can identify the 10 most important bottlenecks for

all programs with good accuracy (normalized Euclidean

distance less than or equal to 15). For all 43 bottlenecks, the

accuracy is very high for 179.art, good for 176.gcc and

183.equake, moderate for 175.vpr-Place, 175.vpr-Route, and

253.perlbmk, and poor for 181.mcf, 255.vortex, and

256.bzip2.

In order to understand the reasons for the difference in

level of accuracy of statistical simulation for different

programs, we analyzed the absolute values of the P&B

magnitude. For 179.art and 183.equake, the absolute values

of P&B magnitudes for the most important and the least

important parameters ranges from 138 (L2 cache size) to 1

(the number of Return Address Stack entries) and 80 (L1 I-

cache size) to 0.4 (I-TLB associativity), respectively. Note

that larger differences in the P&B magnitudes imply larger

performance impacts for that bottleneck. Therefore, in

benchmarks such as 179.art and 183.equake, the importance

of the most and least significant parameter is very distinct.

However, for 256.bzip2, the difference in the significance of

the bottlenecks is less distinct since the range of magnitudes

is only 16. Since the importance of the most and least

significant bottlenecks is not substantially different,

incorrectly estimating the importance of bottlenecks that have

relatively little impact on the CPI does not imply any

additional inaccuracy on the part of statistical simulation.

0

10

20

30

40

50

60

1
7
5
.v
p
r.
P
la
c
e

1
7
5
.v
p
r.
R
o
u
te

1
7
6
.g

c
c

1
7
9
.a
rt

1
8
1
.m

c
f

1
8
3
.e
q
u
a
k
e

2
5
3
.p

e
rl
b
m

k

2
5
5
.v
o
rt
e
x

2
5
6
.b

z
ip

2

A
v
e
ra

g
e

N
o
rm

a
li
z
e
d
 E
u
c
li
d
e
a
n
 D

is
ta
n
c
e
 (
0
-1
0
0
)

Top 3 Bottlenecks Top 5 Bottlenecks Top 10 bottlenecks
Top 15 Bottlenecks Top 20 bottlenecks Top 41 bottlenecks

Figure 2. Normalized Euclidean distance (0 to 100) between
the ranks of processor and memory performance bottlenecks
estimated by statistical simulation and cycle-accurate
simulation. Smaller Euclidean distances imply higher
representativeness of synthetic trace.

In any case, the primary goal of early design space

studies is to identify a range of feasible design values for the

most important performance bottlenecks. Since we observe

that statistical simulation can do so, we conclude that

statistical simulation is useful during early design space

exploration. For programs such as 176.gcc, 179.art, and

183.equake, since the synthetic trace is very representative for

all 43 bottlenecks stressed by the original benchmark

program, statistical simulation may be a valuable tool even

beyond the earliest stages of the design space exploration

studies.

5.2. Tracking Design Changes

During early design space exploration, the ability of a

simulation technique, e.g., statistical simulation, to accurately

predict a performance trend, is a very important feature. Or,

in other words, the relative accuracy of statistical simulation

is more important than its absolute accuracy. If a simulation

Figure 3. Actual and estimated speedup across 43 processor configurations for 9 SPEC CPU2000 benchmarks.

technique exhibits good relative accuracy, it means that the

technique will accurately track performance changes, and

therefore can help to identify the interesting design points that

need to be further analyzed using detailed simulation.

To evaluate the relative accuracy, we used the 44 P&B

configurations that represent a wide range of processor

configurations. It is important to note that while these

processor configurations are not realistic, they enable us to

evaluate whether statistical simulation is accurate enough to

track the processor’s performance across a wide range of

configurations. The approach that we used to characterize the

relative accuracy of statistical simulation was to examine the

correlation between the estimated and actual ranking of the

configurations. In particular, we measured the speedup in

CPI obtained from statistical simulation and cycle-accurate

simulation for 43 configurations relative to the 44
th

configuration, and ranked the 43 processor configurations in

descending order of their speedups. Figure 3 shows the

individual speedups for each configuration for all benchmark

programs. We observe that in general, across all programs,

statistical simulation tracks both local and global speedup

minima/maxima extremely well.

We now use Spearman’s rank correlation coefficient to

measure the relation between the ranks estimated by cycle-

accurate and statistical simulation. The Spearman’s rank

correlation coefficient is calculated as:

RS = 1 – 6 ∑ di
2
/ (n

3
-n)……………………………(i)

where di is the difference between ranks estimated for i
th

configuration and n is the total number of configurations.

The value of RS ranges from -1 to 1. A value of 1 for RS

indicates that statistical simulation correctly estimated the

ranks for all configurations (highest relative accuracy), and a

value of -1 means that the ranks estimated by statistical

simulation are perfectly opposite to the ones estimated from

cycle-accurate simulation (lowest relative accuracy).

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1
7

5
.v

p
r.

P
la

c
e

1
7

5
.v

p
r.

R
o

u
te

1
7

6
.g

c
c

1
7

9
.a

rt

1
8

1
.m

c
f

1
8

3
.e

q
u

a
k

e

2
5

3
.p

e
rl

b
m

k

2
5

5
.v

o
rt

e
x

2
5

6
.b

z
ip

2

A
v

e
ra

g
eS

p
e

a
rm

a
n

's
 R

a
n

k
 C

o
rr

e
la

ti
o

n
 (

0
-1

)

Figure 4. Relative Accuracy in terms of Spearman’s
correlation coefficient between actual and estimated
speedups across 43 processor configurations

Figure 4 shows that the relative accuracy is very good for

all programs (> 0.95). This suggests that for all programs, the

175.vpr-Place

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43

Configuration

S
p

e
e

d
u

p

Actual SS-HLS++
175.vpr-Route

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43

Configuration

S
p

e
e

d
u

p

Actual SS-HLS++
176.gcc

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43

Configuration

S
p

e
e

d
u

p

Actual SS-HLS++

183.equake

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43

Configuration

S
p

e
e

d
u

p

Actual SS-HLS++179.art

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43

Configuration

S
p
e

e
d
u
p

Actual SS-HLS++
181.m cf

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43
Configuration

S
p

e
e

d
u

p

Actual SS-HLS++

253.perlbmk

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43

Configuration

S
p
e

e
d
u

p

Actual SS-HLS++
255.vortex

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43

Configuration

S
p

e
e

d
u

p

Actual SS-HLS++
256.bzip2

0

0.5

1

1.5

2

2.5

3

3.5

4

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43

Configuration

S
p

e
e

d
u

p

Actual SS-HLS++

ranks for the 43 configurations estimated by statistical

simulation are very similar to the ranks estimated from cycle-

accurate simulation.

From these results, we conclude that statistical simulation

can be effectively used to narrow down a large design space

to a few feasible design points. Subsequently, the architect

can use a more accurate simulation technique to further study

these feasible design points.

5.3. Comparing the Accuracy of Statistical

Simulation Models

Researchers have proposed a number of different

statistical simulation models that mainly differ in the

complexity of the model used to generate the synthetic trace.

Fundamentally, each model uses the same general framework

described in Figure 1 and is a refinement of the basic

approach to statistical simulation.

Intuitively, increasing the degree-of-detail in the model

should improve the representativeness of the synthetic trace

and thus its absolute accuracy. However, what is not clear is

how the additional modeling affects the relative accuracy, and

whether there is a good trade-off between the model’s

complexity and its associated absolute and relative accuracy.

In this section, we compare the following 4 modeling

approaches, described in Section 3, namely: HLS,

HLS+BBSize, Zeroth Order Control Flow Graph (CFG,

k=0), and First Order Control Flow Graph (CFG, k=1).

We use the 44 P&B configurations to evaluate and

compare the absolute error, relative accuracy, and the ability

to identify important processor bottlenecks of the four

models. The absolute error (AE) is computed as the

percentage error in CPI between cycle-accurate simulation

(CS) and statistical simulation (SS), that is:

AE = (| CPICS – CPISS|) * 100 / CPICS…………………...(ii)

To calculate the relative accuracy, we use the RS measure

of relative accuracy as described in equation (i). To measure

the fidelity of the processor bottlenecks, we compute the

Normalized Euclidean. Distance between the ranks of the

bottlenecks from cycle-accurate simulation and statistical

simulation for the most significant 5, 20, and all 43

bottlenecks.

Figure 5 shows that increasing the level-of-detail in the

statistical simulation model improves the absolute accuracy

for all benchmarks. For the simplest model, HLS, the AE is

36.8%; for the First Order Control Flow Graph (CFG, k=1),

the most sophisticated model, the AE is 16.7%. Therefore, if

the primary goal is high absolute accuracy, a computer

architect should use as detailed a statistical simulation model

as possible to generate the synthetic traces. It is very

important to note that the average error of 16.7% for the state-

of-the-art statistical simulation model is for the 44 aggressive,

unrealistic configurations. (Note that from our experiments

with using balanced (realistic) configurations, the average

absolute error is 11% for the First Order Control Flow Graph

(CFG, k=1) statistical simulation model, which is very similar

to the level of accuracy in previously published work [4].)

88.6%

0

5

10

15

20

25

30

35

40

45

50

1
7

5
.v

p
r.

P
la

c
e

1
7

5
.v

p
r.

R
o

u
te

1
7

6
.g

c
c

1
7

9
.a

rt

1
8

1
.m

c
f

1
8

3
.e

q
u

a
k

e

2
5

3
.p

e
rl

b
m

k

2
5

5
.v

o
rt

e
x

2
5

6
.b

z
ip

2

A
v

e
ra

g
e

%
 E

rr
o

r
in

 C
P

I

HLS HLS+BBSize CFG(k=0) CFG(k=1)

Figure 5. Comparison between absolute accuracy of 4
statistical simulation models on the 44 extreme processor
configurations

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1
7

5
.v

p
r.

P
la

c
e

1
7
5

.v
p

r.
R

o
u

te

1
7

6
.g

c
c

1
7

9
.a

rt

1
8

1
.m

c
f

1
8

3
.e

q
u

a
k

e

2
5

3
.p

e
rl

b
m

k

2
5

5
.v

o
rt

e
x

2
5

6
.b

z
ip

2

A
v

e
ra

g
e

S
p

e
a

rm
a

n
's

 R
a

n
k
 C

o
rr

e
la

ti
o

n

HLS HLS+BBSize CFG (k=0) CFG(k=1)

Figure 6. Relative accuracy based on the ability to rank 43
configurations in order of their speedup

Figure 6 shows the relative accuracy of the 4 simulation

models based on the ability of statistical simulation to rank 43

diverse processor configurations in order of their speedups

(RS). The figure shows that although there is a large

improvement in relative accuracy between the HLS and

HLS+BBSize, additional modeling yields only slight

improvements in the relative accuracy.

Figure 7 shows the results of processor bottleneck

characterization for the four statistical simulation models.

The accuracy of the HLS model is good enough to identify

only top 3 performance bottlenecks for all programs except

181.art and 256.bzip2. By increasing the complexity of the

HLS+BBSize model allows statistical simulation to correctly

identify the order of the Top 3, 10, 20, and all 43 bottlenecks.

The two statistical simulation models, Zeroth Order Control

Flow Graph (CFG, k=0) and First Order Control Flow

Graph (CFG, k=1), only marginally improves the accuracy to

of statistical simulation to identify the performance

bottlenecks.

0

10

20

30

40

50

60

70

80

90

100

1
7
5
.v

p
r.

P
la

c
e

1
7
5
.v

p
r.

R
o

u
te

1
7
6
.g

c
c

1
7
9
.a

rt

1
8
1
.m

c
f

1
8
3
.e

q
u

a
k
e

2
5
3
.p

e
rl

b
m

k

2
5
5

.v
o

rt
e
x

2
5

6
.b

z
ip

2

A
v
e
ra

g
e

N
o

rm
.
E

u
c
li
d

e
a
n

 D
is

ta
n

c
e
 (

0
-1

0
0

)

HLS HLS+BBSize CFG(k=0) CFG(k=1)

(a) Top 5 bottlenecks

0

10

20

30

40

50

60

70

80

90

100

1
7

5
.v

p
r.

P
la

c
e

1
7

5
.v

p
r.

R
o

u
te

1
7

6
.g

c
c

1
7

9
.a

rt

1
8

1
.m

c
f

1
8

3
.e

q
u

a
k

e

2
5

3
.p

e
rl

b
m

k

2
5

5
.v

o
rt

e
x

2
5

6
.b

z
ip

2

A
v

e
ra

g
e

N
o

rm
.

E
u

c
li

d
e

a
n

 D
is

ta
n

c
e

 (
0

-1
0

0
)

HLS HLS+BBSize CFG(k=0) CFG(k=1)

(b) Top 20 bottlenecks

0

10

20

30

40

50

60

70

80

90

100

1
7

5
.v

p
r.

P
la

c
e

1
7

5
.v

p
r.

R
o

u
te

1
7

6
.g

c
c

1
7

9
.a

rt

1
8

1
.m

c
f

1
8

3
.e

q
u

a
k

e

2
5

3
.p

e
rl

b
m

k

2
5

5
.v

o
rt

e
x

2
5

6
.b

z
ip

2

A
v

e
ra

g
e

N
o

rm
.

E
u

c
li

d
e

a
n

 D
is

ta
n

c
e

 (
0

-1
0

0
)

HLS HLS+BBSize CFG(k=0) CFG(k=1)

(c) Top 43 bottlenecks

Figure 7. Bottleneck characterization for 4 statistical
simulation models.

In summary, from these results, we conclude that if

absolute accuracy is the primary goal, then the computer

architect should use the most detailed state-of-the art

statistical simulation model, Control Flow Graph (k=1).

However, we observe that an increase in the absolute

accuracy of statistical simulation does not result in a

commensurate increase in its relative accuracy. Interestingly,

a simple statistical model such as HLS+BBSize has the ability

to yield very good relative accuracy, although the absolute

accuracy is lower. Therefore, one key result from this paper

is that simple statistical simulations models have a good

relative accuracy, which makes them an effective tool to make

design decisions early in the design cycle when the time and

resources for simulator development are very limited.

6. Challenges and Opportunities for Improving

Statistical Simulation

If the synthetic trace models all of the key workload

characteristics that affect a benchmark’s performance, the

ranks of the bottlenecks from statistical simulation should be

very similar to those found using cycle-accurate simulation,

such that the Euclidean distance is close to 0. Therefore, by

analyzing how well the statistical simulation technique

identifies the processor bottlenecks, one can determine which

bottlenecks are well represented in the synthetic trace and

also identify which bottlenecks need additional modeling

effort.

 In order to determine the overall importance of a

bottleneck across all benchmarks, we first find the sum of the

rank of each individual parameter for all the benchmark

programs. The parameter with the smallest sum of ranks is,

on average, the most significant bottleneck that affects

performance across all programs. By using this method, we

can rank each parameter based on its average significance

across all the benchmarks. For each bottleneck, we calculate

the difference between its ranks obtained from cycle-accurate

simulation and statistical simulation. The maximum

difference is 42, so we normalize the distance to obtain a

normalized difference between ranks, and then scale it

between 0 and 100.

Table 2 shows the rank of each bottleneck across the 9

benchmark programs, and the normalized difference between

ranks shows how well that bottleneck is modeled in the

synthetic trace. The table has been sorted in the ascending

order of the parameters that are well represented in the

synthetic trace i.e., the number of FP ALUs is the most well-

modeled parameter and I-TLB size is the least.

From Table 2, we conclude that the synthetic trace does

not model the effect of the following microarchitectural

parameters accurately: the I-TLB size, the L1 D-Cache size,

the latency of integer multiply execution units, the L2 Cache

Block Size, and the number of BTB entries. It is interesting

that out of the top 10 least well-modeled bottlenecks, 8 are

related to the data locality and control flow predictability of

the program. This suggests that in order to improve the

representativeness of the synthetic trace, and thus the

accuracy of statistical simulation, researchers must expend

effort to improve the modeling of data locality and control

flow predictability in the synthetic trace.

The key advantage of using the P&B design to analyze

the strengths and weaknesses of statistical simulation is that it

separates the program characteristics that are not modeled

very accurately, but which have a large impact on

performance (such as branch predictor type, number of LSQ

entries, etc.) from the parameters that are also not accurately

modeled, but have very little performance impact. This

allows us to efficiently allocate our efforts to only improve

modeling deficiencies that actually make a significant impact

on the accuracy of statistical simulation.

Table 2. Significance (Rank) of a processor bottleneck
(Parameter) and how well (Normalized difference between
ranks) the bottleneck is modeled in the synthetic trace. A
smaller distance indicates that the parameter is well modeled.

RANK PARAMETER

NORMALIZED

DIFFERENCE

BETWEEN

RANKS (0-100)

37 I-TLB Size 44.2

20 L1 D-Cache Size 39.5

26 Int Multiply Latency 30.2

27 L2 Cache Block Size 30.2

39 BTB Entries 27.9

41 Number of Integer Mult/Div Units 25.6

22 I-TLB Page Size 23.3

29 L1 D-Cache Block Size 20.9

9 LSQ Entries 18.6

12 BTB Associativity 18.6

10 Branch Predictor Type 14.0

16 Memory Ports 14.0

34 FP Square Root Latency 14.0

36 FP Divide Latency 14.0

42 Instruction Fetch Queue Entries 14.0

4 Int Divide Latency 11.6

6 Number of RUU Entries 11.6

13 Branch Misprediction Penalty 11.6

17 I-TLB Latency 11.6

25 I-TLB Associativity 11.6

8 FP ALU Latencies 9.3

10 Memory Latency First 9.3

14 Memory Bandwidth 9.3

19 Int ALUs 9.3

30 L2 Cache Associativity 9.3

38 Number of FP Mult/Div 9.3

4 L1 I-Cache Latency 7.0

7 L1 I-Cache Block Size 7.0

40 L1 I-Cache Associativity 7.0

3 L1 I-Cache Size 4.7

2 L2 Cache Latency 2.3

30 L1 D-Cache Associativity 2.3

1 L2 Cache Size 2.3

15 FP Multiply Latency 0.0

21 D-TLB Associativity 0.0

22 D-TLB Size 0.0

24 Speculative Branch Update 0.0

28 Integer ALU Latencies 0.0

33 Return Address Stack Entries 0.0

35 L1 D-Cache Latency 0.0

43 Number of FP ALUs 0.0

7. Conclusions

Since detailed cycle-accurate simulation models require

long simulation times, computer architects have proposed

statistical simulation as a time-efficient alternative for

performing early design space exploration studies. But the

concern for many architects is that statistical simulation may

not perform well for processor configurations that are

drastically different than the ones that have been used in

previous evaluations, i.e., it is suited only for evaluating

incremental changes in processor architectures. The objective

of this paper was to evaluate the efficacy of statistical

simulation as a design space exploration tool, in wake of

these issues and concerns to using statistical simulation.

In this paper, we use the Plackett & Burman (P&B)

design to measure the representativeness of the synthetic

trace. The configurations used in P&B design provide a

systematic way to evaluate the accuracy of statistical

simulation by exposing various performance bottlenecks.

The key results from this paper are:

1) At the very least, synthetic traces stress the same

10 most significant processor performance

bottlenecks as the original workload. Since the

primary goal of early design space studies is to

identify the most significant performance

bottlenecks, we conclude that statistical

simulation is indeed a very useful tool.

2) Statistical simulation has good relative accuracy

and can effectively track design changes to

identify feasible design points in a large design

space of aggressive microarchitectures.

3) Our evaluation of four statistical simulation

models shows that although a very detailed

model is needed to achieve a good absolute

accuracy in performance estimation, a simple

model is sufficient to achieve good relative

accuracy. This is very attractive early in the

design cycle when time and resources for

developing the simulation infrastructure are

limited.

4) Computer architects can use the P&B design to

quickly identify areas to focus on to improve the

accuracy of the statistical simulation model. We

applied this technique to the state-of-the-art

statistical simulation model and observed that

dataflow and control flow predictability must be

modeled more accurately in the synthetic trace to

further improve the accuracy of statistical

simulation.

From these results, we conclude that statistical

simulation, with its ability to identify key performance

bottlenecks and accurately track performance trends using a

simple statistical simulation model, is a valuable tool for

making early microprocessor design decisions. In addition,

we feel that the methodology used in this paper also provides

a framework for researchers to further evaluate and improve

the accuracy of statistical simulation.

8. Acknowledgements

This research is supported in part by NSF grant 0429806,

the IBM Systems and Technology Division, IBM CAS

Program, Intel, the University of Minnesota Digital

Technology Center, and the University of Minnesota

Supercomputing Institute. Lieven Eeckhout is a Postdoctoral

Fellow of the Fund for Scientific Research – Flanders

(Belgium) (F.W.O Vlaanderen) and is also supported by Ghent

University, IWT, the HiPEAC Network of Excellence, and the

European SCALA project No. 27648.

9. References

[1] A. KleinOsowski and D. Lilja. MinneSPEC: A New SPEC

Benchmark Workload for Simulation-Based Computer

Architecture Research. Computer Architecture Letters, vol. 1,

June 2002.

[2] B. Kumar and E. Davidson. Computer system design using a

hierarchical approach to performance evaluation.

Communications of ACM, vol. 23, pp. 511-521, Sept. 1980.

[3] D. Burger and T. Austin. The SimpleScalar Toolset, version

2.0. University of Wisconsin-Madison Computer Sciences

Department Technical Report #1342, 1997.

[4] D. Lilja. Measuring Computer Performance. Cambridge

University Press, 2000.

[5] D. Noonburg and J. Shen. A framework for statistical

modeling of superscalar processor Performance. International

Symposium on High-Performance Computer Architecture,

February 1997.

[6] J. Henning. SPEC CPU2000: Measuring CPU Performance in

the New Millenium. IEEE Computer, vol. 33 no. 7, pp. 28-35,

July 2000.

[7] J. Yi and D. Lilja. Effects of Processor Parameter Selection on

Simulation Results. MSI Report 2002/146, 2002.

[8] J. Yi, D. Lilja, and D. Hawkins. A Statistically Rigorous

Approach for Improving Simulation Methodology.

International Symposium on High Performance Computer

Architecture, 2003.

[9] J. Yi, S. Kodakara, R. Sendag, D. Lilja, and D. Hawkins.

Characterizing and Comparing Prevailing Simulation

Techniques. International Symposium on High Performance

Computer Architecture, 2005.

[10] K. Skadron, P. Ahuja, M. Martonosi, and D. Clark. Branch

Prediction, Instruction-Window Size, and Cache Size:

Performance Trade-Offs and Simulation Techniques. IEEE

Transactions on Computers, vol. 48, no. 11, pp. 1260-1281,

November 1999.

[11] L. Eeckhout and K. De Bosschere. Early Design Phase

Power/Performance Modeling through Statistical Simulation.

International Symposium on Performance Analysis of Systems

and Software. November 2001.

[12] L. Eeckhout and K. De Bosschere. Hybrid Analytical-

Statistical Modeling for Efficiently Exploring Architecture

and Workload Design Spaces. International Conference on

Parallel Architectures and Compilation Techniques. 2001

[13] L. Eeckhout, K. De Bosschere, and H. Neefs. Performance

Analysis through Synthetic Trace Generation. International

Symposium on Performance Analysis of Systems and

Software. April 2000.

[14] L. Eeckhout, R. Bell Jr., B. Stougie, K. De Bosschere, and L.

John. Improved Control Flow in Statistical Simulation for

Accurate and Efficient Processor Design Studies. International

Symposium on Computer Architecture, June 2004

[15] L. Eeckhout, S. Naussbaum, J.E. Smith, and K.De Bosschere.

Statistical Simulation: Adding Efficiency to the Computer

Designer’s Toolbox. IEEE Micro, vol. 23 no.5, pp. 26-38,

Sept/Oct 2003

[16] M. Oskin, F. Chong, M. Farrens. HLS: Combining Statistical

and Symbolic Simulation to Guide Microprocessor Design.

International Symposium on Computer Architecture, pp. 71-

82, June 2000

[17] R. Bell, Jr. and L. John. Improved Automatic Testcase

Synthesis for Performance Model Validation. International

Conference on Supercomputing (ICS ’05), June 2005.

[18] R. Bell, Jr., L. Eeckhout, L. John and Koen De Bosschere.

Deconstructing and Improving Statistical Simulation in HLS,

Workshop on Duplicating, Deconstructing and Debunking, in

conjunction with ISCA ’04, June 2004.

[19] R. Carl and J.E. Smith. Modeling Superscalar Processor via

Statistical Simulation. Workshop on Performance Analysis

and Its Impact on Design. June 1998

[20] R. Plackett and J. Burman. The Design of Optimum

Multifactorial Experiments. Biometrika, vol. 33 no. 4, pp.

305-325, June 1946

[21] R. Savedra-Barrera, A.J. Smith, E. Miya. Machine

characterization based on an abstract high-level machine

language. IEEE Transactions on Computers, vol. 38, pp.

1659-1679, Dec. 1989.

[22] R. Wunderlich, T. Wenish, B. Falsafi, and J. Hoe. SMARTS:

Accelerating microarchitecture simulation via rigorous

statistical sampling. International Symposium on Computer

Architecture, June 2003.

[23] S. Nussbaum and J.E. Smith. Modeling Superscalar

Processors via Statistical Simulation. International Conference

on Parallel Architectures and Compilation Techniques, pp 15-

24, Sept 2001

[24] T. Karkhanis and J.E.Smith. A First-Order Superscalar

Processor Model. International Symposium on Computer

Architecture. June 2004.

[25] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder.

Automatically characterizing large scale program behavior.

ASPLOS-X, pp. 45-57, Oct 2002.

