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Abstract 

Existing value reuse and prediction schemes use a hardware prediction table or reuse buffer 

to store an instruction’s value history based on its program.  The result cache [17], on the other 

hand, has been proposed to exploit operand value locality by reusing the output values produced by 

any instruction of the same type that has been executed previously using the same input operands.  

However, due to the non-speculative nature of the result cache, it is effective only for long-latency 

instructions.  In this paper, we extend the reuse-based result cache to support speculative execution.  

We call this new scheme the Speculative Result Cache (SRC).  Our simulations show that value 

prediction with the SRC alone can produce speedups of 1%-4% for the SPEC95 integer benchmark 

programs in an 8-issue superscalar processor simulator.  We extend the SRC to construct the 

Combined Dynamic Predictor (CDP) by coupling the SRC with a two-level value predictor [21] and 

dynamically selecting between the two component predictors.  We evaluate how table storage 

should be partitioned among the two components predictors.  We also assign different types of 

instructions to each component predictor so that the instruction’s characteristics match the target 

locality of the predictor.  In our experiments, load instructions are predicted by the SRC while other 

ALU instructions are predicted by the two-level predictor.  This approach outperforms both the 

SRC and the two-level predictor by themselves, achieving higher effective prediction accuracy and 

speedups of 4.17% on the average. 

 

 Keywords: speculated, instruction reuse, value locality, value prediction, combined dynamic 

predictor 
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1. Introduction 

To maximize the performance obtained by increasing the issue width of superscalar 

processors, additional instruction-level parallelism (ILP) must be exposed.  Value reuse and value 

prediction are two methods of exposing additional ILP.  In value reuse [15], the input operands of 

the instruction and the corresponding output are saved in the reuse buffer, which is indexed by the 

instruction’s address.  The next time the instruction is executed, this buffer is checked to determine 

whether the current operand values match previously seen values.  If they do, the stored output 

value can be used immediately without needing to re-execute the instruction.  This approach yields 

a performance improvement by reducing the effective latency for long-latency instructions to one 

cycle, which is the time needed to access the reuse buffer.  This reduction in latency allows 

dependent instructions to execute they normally could, which increases the ILP.  This approach has 

been shown to improve performance by 1–5 percent on the SPEC benchmarks [16]. 

In value prediction [2, 8, 18], a prediction for an instruction output is based on the values 

previously produced for that instruction.  The predicted value then is used as an input for any 

dependent instructions.  This prediction allows the dependent instructions to begin speculative 

execution before the input operands are actually available.  When the actual output of the predicted 

instruction becomes available, it is compared with the predicted value.  If the two values match, the 

prediction is correct and program execution can continue.  If the two values differ, then the 

speculative (dependent) instructions must be squashed and re-executed with the correct input.  This 

approach yields a performance improvement by breaking flow dependences between instructions, 

which exposes additional ILP.  

To be effective, the value reuse buffer must store the input operands and results for as 

many instructions as possible.  Similarly, for each instruction, value prediction needs as large a 

cache of previously seen values as possible since previously seen values are used for the next 

prediction.  Consequently, both of these approaches require large tables, which will be implemented 
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on the processor die itself.  For instance, each entry in the hybrid predictor [13, 21] needs at least 16 

bytes to store the last four unique values produced previously by a single instruction.  Additionally, 

these tables must have a low access time in order to produce any performance benefit. 

While the total possible number of results for all instructions is enormous, our experiments 

with the SPECint95 benchmark suite show that the actual result space for all of the instructions for 

a single benchmark is relatively small.  In other words, while the potential range of values that 

could be produced is enormous, the actual range of values is a much smaller.  For some instructions, 

the output values exhibit a predictable pattern, which is often repeated.  For other instructions, 

different instructions of the same type share the same input operands and therefore produce the 

same output value.  For this paper, the first type of value locality is called output value locality 

while the second is called operand value locality. 

The Combined Dynamic Predictor (CDP) proposed in this paper uses a two-level (TL) 

predictor  [21] – which exploits output value locality – and the Speculative Result Cache (SRC) – 

which exploits operand value locality.  The SRC is a combination of value reuse and value 

prediction.  It predicts the instruction’s input operands (value prediction) and uses those inputs as an 

index to retrieve the output for any instruction of that type and input combination (value reuse). 

Simulations with the SPECint95 benchmarks show that the CDP outperforms either 

component predictor, with prediction accuracies and speedups up to 98% and 20%, respectively.  

Furthermore, the CDP also uses die area more efficiently because each SRC entry is smaller than 

each TL predictor entry.  In addition to dividing the area between the SRC and TL, we evaluate how 

the instruction prediction should be divided between the two component predictors based on the 

instruction type.  In particular, we use the SRC for load instructions and the TL predicts the outputs 

for the remaining (ALU) instructions. 

The remainder of the paper is organized as follows: Section 2 describes the CDP; Sections 

3 and 4 describe the simulation environment, results, and analysis; Section 5 summarizes some 

related work; and the conclusion is given in section 6. 
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2. The Combined Dynamic Predictor 

The goal of the Combined Dynamic Predictor (CDP) is to exploit the value locality for a 

single instruction and operand value locality from the execution of any instruction of that type.  To 

accomplish that goal, the CDP uses the two-level (TL) and Speculative Result Cache (SRC) to 

exploit the output and operand value locality, respectively. 

 

2.1 Speculative Result Cache 

Several approaches can be used to predict the result of an instruction before it is executed: 

1) If the operands are available and the values of these operands have been previously used by 

this instruction, the previously stored result can be simply reused. 

2) If the operands are available, but the values of these operands have not been previously used 

by this instruction, the previously stored result cannot be reused.  However, if the values of 

these operands were used by another instruction of the same type and that instruction’s 

result was stored, the result of the previously executed instruction can be used as a 

prediction for the current instruction. 

3) If the operands are not available, but the results for that instruction follow a predictable 

pattern, a prediction can be made by exploiting that pattern. 

 

Instruction reuse [15] and the value cache [5] handle the first case while existing value 

predictors [9, 10, 13, 14, 21] handle at least part of the third case.  The result cache [17] and the 

proposed SRC target the second case. 

For example, as shown in Figure 1, arrays A, B, and C each have 100 elements.  The index 

variables for these arrays (i1 and i2) are incremented from 0 to 99 in two different loops.  The 

instructions used to increment i1 and i2 are both addu instructions.  Thus, the results for the i1 addu 

instruction can be used to predict the results for the i2 addu instruction.  Additionally, the slt 
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instruction that is used to determine the end of first loop can also be used to predict the outcome of 

the slt instruction used in the second loop.  This similar behavior of two different instruction 

instances allows the branch instruction (bne) to resolve earlier than normal. 

 

 

Figure 1: Example code that could utilize the Speculative Result Cache 

 

2.1.2 Basic Operation of the Speculative Result Cache 

The basic operation of the SRC is similar to other value predictors, except that it is indexed 

by the values of the instruction’s operands instead of its program address.  The SRC buffers output 

values of each instruction that may need prediction in the future, which are indexed by hashing the 

values of the instruction's input operands.  When a decoded instruction cannot be issued because the 

source instructions that produce its operands have not yet completed, the processor can predict the 

values that will eventually be produced by the source instructions using the SRC. To perform this 

prediction, the processor indexes the SRC using the currently available values of the operands of 

the source instructions. If predictable values are found in the SRC, the instruction can be 

speculatively issued for execution using these predicted values for its input operands. 

While the existing predictors exploit the value locality of an instruction, the SRC is capable 

of detecting the value locality of an operation with the same operands.  Although the addresses of 

two instructions are different, they access the same entry of SRC and predict with high accuracy as 

/* C source code */ 

int i1, i2; 

int A[100], B[100], C[100]; 

 

for (i1=0; i1 < 100; i1++) 

    A[i1] = A[i1]+C[i1]+B[i1]; 

for (i2=0; i2 < 100; i2++) 

    B[i2] = B[i2]+A[i2]; 

LOOP1: 
….. 
addu    $6,$6,1 # update the index 
addu    $2,$2,$3 
addu    $2,$2,$4 
…… 
slt     $2,$6,99 # compare index to loop-bound 
…… 
LOOP2: 
…… 
addu    $5,$5,1 # update the index 
addu    $2,$2,$3 
…… 
slt     $2,$5,99 # compare index to loop-bound 



 6 

long as their access pattern and operands are the same. 

 

2.1.3 The SRC Implementation 

Instructions in the execution window are decoded before being issued, which allows 

dependence chains to be constructed before the instructions reach the issue stage.  Once an 

instruction is decoded, the source operands are available to access the SRC.  Figure 2 shows the 

SRC structure and how it is accessed in a superscalar processor pipeline. 
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Figure 2: An implementation of the SRC in a superscalar processor 

 

Each SRC entry contains a tag, result, confidence counter, and valid bits. The size of each 

entry is about 9 bytes, which is half the size of the two-level value predictor [21].  Currently, the 

SRC stores only a single result.  Multiple output values could be stored for better performance with 

a corresponding increase in cost and indexing complexity.  The 4-bit confidence counter is 

incremented or decremented by a fixed amount depending on the result of the prediction when each 

instruction is retired.  When an entry is accessed, the confidence value is compared with the 

confidence threshold required to make a prediction decision.  If the valid bit is not set, the SRC will 
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signal the issue stage to not predict the output value since the value stored in the SRC is invalid.  

This situation occurs when the hashed operand values have not been previously seen.  By the time 

an instruction reaches the issue stage, the results of the SRC will be available.  If this instruction 

cannot be issued due to data dependences, the issue logic can either speculatively issue the 

instruction with the predicted operand values from the SRC or wait until the actual operand values 

become available.  While the second choice forces the existing dependences to be completely 

resolved (and thus eliminates the chance to increase the instruction issue rate), it also eliminates the 

chance of a potentially expensive misprediction. 

The operand values are XORed to create an index into a section of the table determined by 

the instruction type.  Figure 3 illustrates how the index is formed and how it is used to access the 

SRC. 
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Figure 3: SRC Index Formation 

 

Since the MIPS-like architecture simulated in this paper supports two addressing modes for 

loads, register+register and register+offset, the second operand is either the second register value 

or the offset value. 

Since different instruction types produce different output results even when the input 

operands are identical, the SRC is partitioned into different sections based on the instruction type 

specified in the op-code field.  As a result, to minimize its cost while maximizing its performance, 

the SRC stores results only for instructions that have the highest frequencies of occurrence.  
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Furthermore, from these high-frequency instructions, only the instructions with the highest 

frequency times latency products (FLP) are stored.  This product attempts to capture the instructions 

that have the largest impact on performance.  Using the parameters in Table 2, the following table 

shows the instruction frequency, effective latency, and the FLP for each candidate instruction type 

for the SPECint95 benchmarks (benchmarks statistics given in Table 3). 

 

Instruction Type Frequency Effective Latency Frequency * Latency 

INT Add/Sub, etc. 0.635816 1 0.6358 

Load 0.229451 1.123 0.2577 

Store 0.133009 1 0.1330 

INT Multiplication 0.001602 3 0.0048 

FP Add/Sub, etc. 0.000115 2 0.0002 

FP Division 4.24E-06 12 0.0001 

INT Division 2.28E-06 20 0.0000 

FP Multiplication 7.5E-09 4 0.0000 

 

Table 1: SPECint95 Instruction Frequency Time Latency Products.  (The effective latency for the 

load instructions is simply the weighted sum of the products of the hit rate and latency for 

each level in the memory hierarchy.) 

 

As seen in Table 1, the INT ALU, load, and store instructions have the highest FLPs.  Since 

the optimization of the store instructions will not yield any performance benefit, stores are excluded 

from the SRC.  Furthermore, since there are many different types of INT ALU instructions, only the 

highest frequency INT ALU instructions should be stored in the SRC.  Long-latency instructions 

such as FP division, INT division, and FP multiplication have low FLPs and therefore are not 

included in the SRC.  The inclusion of those instruction types will not yield a performance 

improvement since their low instruction frequencies do not significantly contribute to the overall 

execution time.  Since value prediction only applies to the register-writing instructions, and since 
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the add/sub, logical, shift-left, shift-right, and set-less-than (slt) instructions, in addition to loads, are 

the vast majority of register-writing instructions, these instructions are included in the SRC. 

Figure 4: Frequency of register-writing instructions 

 

The SRC entries are allocated according to their relative instruction frequencies.  Using the 

instruction distribution for the SPECint95 benchmarks, shown in Figure 4, we find an 8:8:1:1:1:1 

ratio for load:add/sub:logical:shift-left:shift-right:slt.  For example, in order to build a 24KB SRC, 

2560 possible entries are needed.  Of these available entries, 1024 entries are assigned to both load 

and add/sub instructions while 128 entries are assigned to each of the other four types. 

 

2.2 Implementation of the Combined Dynamic Predictor 

While the SRC exploits operand value locality, most of the existing value predictors [10, 

13, 21] exploit output value locality based on the instruction address.  That is, they simply assume 

that each instruction will produce regular outputs for each instance.  Consequently, saving these 
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results will help predict what value that instruction will likely to produce next.  Since the SRC and 

these predictors exploit different types of value locality, combining the SRC with such a value 

predictor may produce higher prediction accuracy, and therefore, better performance.  This new 

predictor is called the Combined Dynamic Predictor (CDP). 

The two-level predictor presented in [21] detects a periodic recurrence of values.  The last 

four unique values produced by an instruction are stored in each entry of the value history table 

(VHT).  An additional eight bits are used for the Value History Pattern(VHP) which records the 

order in which the four values were produced.  The VHP then indexes the second level of the 

predictor, the Pattern History Table (PHT), which is a table of confidence counters for each stored 

value.  Of the four values, the one with the highest confidence level is picked as the predicted value.  

If that confidence level is higher than the confidence threshold, the predictor returns the value 

corresponding to that confidence counter as the predicted result.  If the confidence level is lower 

than the confidence threshold, no prediction is returned. 
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Figure 5: The Combined Dynamic Predictor (CDP). 

 

When the CDP is accessed, both of the component predictors (SRC or two-level) go to 
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work to (potentially) produce predicted values.  The CDP then selects the predicted value from the 

component predictor with the higher confidence level.  Figure 5 shows the CDP.  Note that the SRC 

is indexed with the operand values while the two-level predictor is indexed with the instruction’s 

address. 

 

3. Simulation Environment 

The simulations are based on the sim-outorder simulator from the SimpleScalar Tool Set 

Version 3.0 [1].  We modified it to include the SRC and the TL predictor.  The base processor model 

is an 8-issue superscalar processor with out-of-order execution.  The predicted output values are 

available one cycle after the predictor is accessed and are forwarded to dependent instructions so 

that they can be issued simultaneously.  Table 2 shows the key base processor model parameters. 

 

Fetch/Decode/Issue Width 8 

Reorder Buffer Size 128 

L1 Data Cache 4-way set-associative, 64KB 

L1 Data Cache Hit Latency 1 cycle 

L2 Data Cache 4-way set-associative, 1024KB 

L2 Data Cache Hit Latency 9 cycles 

Memory Width 32 bytes 

Memory Access Latency 60 cycles 

Integer ALUs 16 

Integer Multipliers 4 

Table 2: Base processor model parameters 

 

The value prediction table is updated when a predicted instruction reaches the writeback 

stage, where the predicted value is compared with the real value.  If the prediction is correct, the 

dependent instructions (if done executing) can be retired with the predicted in the same cycle.  If a 

value is mispredicted, however, the dependent instructions are selectively re-issued to the functional 
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units, based on availability.  The actual misprediction penalty depends on the number of instructions 

to be re-issued.  A bus between the reorder buffer and the functional units is used to directly 

dispatch the misspeculated instructions.  The bus width was configured to match the issue width.  

Thus, as long as the number of misspeculated instructions is less than the issue width, they can be 

re-issued within one cycle, as presented in [13].  If it is greater than the issue width, then the 

misprediction penalty is the number of cycles it takes to re-issue all the dependent instruction.  Both 

the load/store queue and the reorder buffer were configured to have 128 entries. 

Both of the CDP component predictors use a four-bit confidence counter.  The SRC 

counter increments by 3 for a correct prediction and decrements by 1 for an incorrect prediction.  

The SRC confidence threshold is 8.  The TL predictor increments by 2 for a correct prediction and 

decrements by 1 for an incorrect prediction.  The two-level confidence threshold is 13.  The TL 

increment/decrement and the TL confidence thresholds were based on the values given in [13, 21] 

and refined by trial and error while trying to maximize the performance.  The SRC 

increment/decrement and the SRC confidence thresholds were chosen by trial and error while trying 

to maximize the performance. 

 

Benchmark Millions of Instructions Percentage  of Loads Percentage of ALU 
compress 153.3 20.64 41.98 
ijpeg 553.4 17.63 62.39 
gcc 973.2 25.69 37.38 
m88ksim 120.1 18.98 44.40 
li 173.3 25.92 33.65 
go 548.1 21.12 47.62 
perl 1891.5 26.14 35.26 
vortex 2120.1 30.75 30.00 

Table 3: Characteristics of the benchmark programs showing the instruction count and the 

percentage of Load and ALU Instructions.  These two categories were the only types of 

instructions that were predicted. 
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This paper used the following eight programs from SPECint95 benchmark suite: compress, 

gcc, go, ijpeg, li, m88ksim, perl, and vortex.  All the benchmarks were compiled using gcc 2.7 with 

‘-O2’ flag.  The simulations used the train input set and some instructions in the initialization phase 

were skipped in order to concentrate on the main body of the programs.  Table 3 shows the relevant 

benchmark statistics. 

 

4. Performance Evaluation and Analysis 

4.1 Resource Allocation Between Component Predictors 

One evaluation goal was to determine how to partition the available chip area between the 

two component predictors.  These experiments assumed that die space for an additional 64KB of 

storage was available, plus some additional area for control logic.  Several configurations that 

varied the size ratio between the component predictors were evaluated.  For comparison purposes, 

another configuration utilized the available space to make a larger L1 data cache (128 KB). 

SRC size TL Predictor size Total size SRC % Configuration Name 

0 KB 47 KB 47 KB 0 % 47k_TL 

11 KB 47 KB 58KB 19% S11k(type)+TL47k(type) 

22 KB 22 KB 44KB 50% S22k(type)+TL22k(type) 

45 KB 11 KB 56KB 80% S45k(type)+TL11k(type) 

45 KB 0 KB 45 KB 100 % S45k(type) 

Table 4: Simulated CDP configurations.  The SRC % column is the percentage of the total area 

devoted to the SRC.  The configuration names, or similar variants, are used in Figures 9 – 

12.  The (type) field corresponds to what type of instruction the predictor targets; the 

possibilities are: all (default), load, and others (excluding loads).  

 

Table 4 shows the five CDP configurations. These configurations represent an SRC 

allocation of 20%, 50%, and 80% of the designated 64KB area, with the remaining area allocated to 

the TL predictor.  Evaluating these combinations indicates how the available resources should be 



 14 

partitioned among the component predictors while maintaining a constant overall predictor size.  

These configurations were chosen to be the power-of-two sizes that most closely approximate the 

desired distribution of resources. 

 

4.2 Impact of Different CDP Configurations 

Figure 6: IPC Speedups for selected configurations.  The 47k_TL configuration corresponds to a 

standalone 47k two-level predictor.  The S11k+TL47k, S22k+TL22k, and S45k+11k 

configurations correspond to the CDP predictors with 11k, 22k, and 45k allocated to the 

SRC component predictor and 47k, 22k, and 11k, respectively, allocated to the two-level 

predictor.  The 45K_SRC configuration corresponds to a standalone 45k SRC.  In this 

figure, the SRC and TL predictor both predict all types of instructions. 

 

The Combined Dynamic Predictor (CDP) produces speedups up to 8.4% (Figure 6).  For 

most cases except vortex, the SRC outperformed the baseline, while the CDP showed –1.5% to 8% 
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speedup, depending on the configuration.  The biggest gain occurred in m88ksim (8.4% speedup) 

for the S22K + TL22k configuration, while the larger D-cache produced slightly lower 

performance. 

For some benchmarks (go, ijpeg, li, and vortex), due to the relatively low performance of 

the two-level predictor, the CDP does perform worse than the other configurations.  In compress, 

m88ksim, gcc, and perl, however, the speedup of the S11k + TL47k (11k allocated to the SRC and 

47k to the TL predictor) configuration is higher than those of the baseline and larger D-cache.  As 

expected, the CDP does a good job capturing both types of value locality.  This is shown by, for 

most benchmarks, using both component predictors together produces better performance than 

when a single predictor is used. 

Figure 7 illustrates the performance prediction accuracy for the different configurations.  

The performance prediction accuracy is defined as the number of correct predictions divided by the 

total number of instructions executed.  This metric attempts to quantify the impact that the CDP has 

on the entire program.  If the performance prediction accuracy is high, then the predictor is correctly 

predicting a high fraction of the total number of instructions, which should produce noticeable 

speedups. 

The performance prediction accuracy of the S11k+TL47k is quite respectable, ranging 

from 15% - 48%, and is higher than other configurations in most of the benchmarks.  These 

performance prediction accuracies show that the CDP predictor accurately predicts the values for a 

significant number of the benchmarks.  An increase in the performance prediction accuracy does not 

directly translate into an increase in speedup, however, because the speedup depends on many other 

factors, such as latency, numbers of dependent instructions, etc. 
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Figure 7: Performance Prediction Accuracy of the SRC.  The S11k+TL47k, S22k+TL22k, and 

S45k+11k configurations correspond to the CDP predictors with 11k, 22k, and 45k 

allocated to the SRC component predictor and 47k, 22k, and 11k, respectively, allocated to 

the two-level predictor.  The 45K_SRC configuration corresponds to a standalone 45k 

SRC.  In this figure, both the SRC and TL predictor predict all instructions. 

 

4.3 Impact of Predicting Different Types of Instructions 

Since the SRC predicts the output values right after an instruction is decoded, and since all 

INT ALU instructions have a single cycle latency, there does not seem to be much benefit in 

predicting the outputs for these instructions (their actual results are available in a single cycle later 

anyway), unless there are many dependent instructions and these dependent instructions cause 

resource conflicts.  Therefore, what is the performance impact of the using the SRC to predict only 

longer latency instructions, such as loads, while the TL predictors predicts the remaining 

instructions (selected INT ALU instructions) or all types of instructions. 
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Figure 8: IPC Speedups for selected configurations.  The S11k+TL47k, S22k+TL22k, and 

S45k+11k configurations correspond to the CDP predictors with 11k, 22k, and 45k 

allocated to the SRC component predictor and 47k, 22k, and 11k, respectively, allocated to 

the two-level predictor.  The 45K_SRC configuration corresponds to a standalone 45k 

SRC.  In this figure, the SRC predicts only loads while the TL predictor predicts all 

instructions. 

 

For each configuration, the speedups for most benchmarks in Figure 8 are slightly higher 

than those in Figure 6 (SRC predicts all instructions). Especially, the performance of li and vortex 

using CDP configurations turns out to be higher than that of the baseline architecture since those 

two programs include more load instructions than others and they are more accurately predicted by 

the SRC. Thus, limiting the SRC to loads while using the TL predictors to predict all instructions 

improves the performance.  Furthermore, since limiting the SRC to predict only loads improved the 
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performance, we extended this approach to limit the TL predictor to predict only INT ALU 

instruction further improve the performance.  Figure 9 shows the results for this configuration. 

 

Figure 9: IPC Speedups for selected configurations.  The S11k+TL47k, S22k+TL22k, and 

S45k+11k configurations correspond to the CDP predictors with 11k, 22k, and 45k 

allocated to the SRC component predictor and 47k, 22k, and 11k, respectively, allocated to 

the two-level predictor.  The 45K_SRC configuration corresponds to a standalone 45k 

SRC.  In this figure, the SRC predicts only loads while the TL predictor predicts 

remaining instructions (INT ALU). 

 

The speedups for all benchmarks except ijpeg in Figure 9 are slightly higher than those in 

Figure 8 (SRC predicts loads) and Figure 6 (SRC predicts all instructions). S11k+TL47k 

configuration produced the best performance, speedup of 4.17% on the average, ranging from 0.1% 

up to 21% depending on the benchmarks. On the other hand, S22k+TL22k configuration 

outperforms others in overall, higher than larger D-cache configuration except li and compress. By 
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limiting the predicted instructions based on their types, the results showed that CDP configurations 

worked better than the baseline regardless of value locality pattern and instruction types. 

The performance is due to one of two reasons: 1) more entries in TL available to the INT 

ALU instructions, which decreases the number of conflicts while enhancing the accuracy of both 

predictors, 2) the SRC does a better job of capturing the value locality for loads while TL does a 

better job of capturing the value locality of INT ALU instructions.  The second reason would imply 

that the loads exhibit more operand value locality than output value locality while the reverse would 

be true for INT ALU instructions. 

 

4.4 The Cost and Performance Tradeoff 

Figures 10: The cost performance tradeoff for selected predictors (Lower cost/performance = better 

cost performance tradeoff). The 47k_TL configuration corresponds to a standalone 47k 

two-level predictor. The 45K_SRC configuration corresponds to a standalone 45k SRC 

that only predicts loads.  In the S22k(Loads)+TL22k configuration, the SRC 

corresponds predicts only loads and the TL predictor predicts all instructions.  In the 
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S22k(Loads)+TL22k(ALU) configuration, the SRC corresponds predicts loads and the 

TL predictor predicts only INT ALU instructions. 

 

One consideration concerning value prediction is the table size.  While an extremely large 

table may show good speedup, its large size makes it impractical to implement.  On the other hand, 

if might be worthwhile to implement a very small predictor, like the CDP or SRC, that provides an 

incremental improvement in IPC.  The cost of this predictor (measured in area) may justify its 

implemented in spite of the small IPC improvement. 

Figure 10 shows the cost-performance tradeoff where the predictor area in KB represents the 

cost while IPC represents the performance.  The units for the cost performance tradeoff are KB/IPC.  

Therefore, the smaller the bar, the better the cost performance tradeoff.  Configurations have a 

lower cost performance tradeoff if the area to implement the predictor is small, the IPC is high, or a 

combination of both. 

The last three configurations (45K_SRC, S22k(Loads)+TL22k, and 

S22k(Loads)+TL22k(ALU))  are shown because they have about the same area as the TL predictor.  

For all benchmarks, the larger d-cache configuration has the worst (highest) cost performance 

tradeoff while the SRC by itself (45k_SRC) has the best (lowest) cost performance tradeoff.  While 

the TL predictor cost performance tradeoff is better than that of the d-cache for all benchmarks, its 

cost performance tradeoff is worse than the cost performance tradeoff for both CDP configurations 

for all benchmarks.  These results indicate that the CDP, due to the SRC component predictor, is a 

better use of area than the TL predictor alone while the its performance is similar or better than that 

of the TL predictor.   

 Furthermore, for the different CDP instruction allocation prediction configurations, on 

average, the cost performance tradeoff from best to worst is: SRC(Load)+TL(ALU), 

SRC(Load)+TL(All), and SRC(All)+TL(All).  In the first configuration, the SRC predicts only 

loads while the TL predicts only INT ALU instructions; in the second configuration, the SRC 
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predicts only loads while the TL predictors all instructions; finally, in the last configuration, both 

predictors predict all instructions.  These results are independent of the area allocated to either 

component predictor.  Therefore, these results indicate that the SRC(Load) + TL(ALU) is the most 

effective (i.e. best cost performance tradeoff) implementation of the CDP, regardless of how much 

area is allocated to each predictor. 

Finally, it is worth mentioning that the 11k SRC had the best cost performance tradeoffs.  

The cost performance tradeoffs for these two configurations ranged from 2.489 (ijpeg) to 10.684 

(gcc) when the SRC predicts loads only and 3.129 (ijpeg) to 13.414 (gcc) when the SRC predicts 

for all instructions.  These cost performance tradeoffs are approximately 4 and 5 times better for the 

two configurations when compared against the TL predictor.  This result shows that even a small 

SRC can provide similar performance benefits as the two-level predictor, at a small fraction of the 

area. 

 

5. Related Work 

 Sodani and Sohi [15] investigated the potential of value reuse with a reuse buffer that stored 

the inputs and outputs of each executed instruction.  In addition to reusing the results from previous 

instructions, they tried to reuse the results for wrong-path execution.  This approach yielded 

speedups of 1−5 percent for the SPECint benchmarks [16]. Huang and Lilja [6] extended 

instruction-level value reuse to basic block-level reuse.  This approach dynamically detects a 

dependence chain and compares all of the inputs of the basic block to make a prediction.  This 

block-level reuse produces slightly greater performance improvements than instruction-level reuse 

since a larger number of instructions reused.  Harbison [5] used a value cache, indexed by the 

instruction address, to store the instruction’s result, dependence information, and the execution 

phase.  The value cache produced speedups of about 2.0 on a stack machine by eliminating 

hardware-level common subexpressions.  
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 Richardson [17] proposed a scheme that targeted floating-point instructions.  This scheme 

used a tabulation method to store the return values of function calls with no side-effects using 

software and a result cache to store long-latency instruction results.  The result cache was indexed 

by XORing the most significant bits of the instruction’s operands.  This mechanism reduced the 

execution time of some of the SPECfp82 benchmarks by 15%−44%.  However, since this result 

cache requires that the actual operands be used to produce the index and these operands are not 

available until right before the instructions are issued, its best performance is for long-latency 

operations, such as floating-point division. 

 Tullsen and Seng [19] proposed a method that saves valuable chip area by using the values 

that are already available in the register file.  They found that at least 75% of the time, the value 

loaded from memory is either already in the register file, or was recently there.  For this approach, 

the instruction uses the value currently in the destination register as a prediction for the new value.  

Compiler support is used to increase the prediction opportunities for this method.  This method 

produced speedups of up to 11% for the SPECint95 benchmarks and up to 13% for the SPECfp95 

benchmarks. 

 Lipasti et al [8, 9] investigated the potential of improving ILP by using value prediction for 

load instructions.  With limited additional hardware, this approach produced speedups of 4%−12% 

on the DEC 21164 and PowerPC 620 processors.  While several predictors (finite-context, two-

level, and TL [10, 13, 14, 21]) have been proposed to improve the prediction accuracy, Gonzalez 

and Gonzalez [4] suggest  that the increase in ILP due to value prediction is limited due to the 

misprediction penalty. 

 The SRC approach differs from value reuse since the operands are speculatively used to 

index the SRC instead of waiting for the actual input operands.  As a result, because the speculative 

inputs are available before the actual inputs, the SRC effectively extends value reuse to shorter 

latency instructions than [5, 6, 15, 17].  The SRC shares three similarities with value prediction.  

First of all, both approaches make a prediction for one or more input operands.  Secondly, after 
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making a prediction for an input, the following dependent instructions can be speculatively 

executed.  Finally, both approaches verify the prediction and restore the correct architectural state if 

a misprediction occurs.  However, the SRC and value predictor have one key difference.  Each 

entry in the SRC is not implicitly tied to a specific instruction (via the instruction address) as in 

value prediction, but can make a prediction for any instruction that matches of the input operands.  

Since the CDP is the combination of the SRC and a two-level value predictor, the comparison to 

value reuse and value prediction is the same as the SRC. 

 

6. Conclusion 

Most existing value predictors [8, 10, 13, 21] exploit only instruction output value locality.  

On the other hand, the result cache [17], however, exploits operand value locality by reusing the 

values produced by any of the previously executed instructions of the same type with the same 

operands.  Due to its non-speculative nature, the result cache can be accessed only when the 

instructions are ready to be issued.  As a result, since most integer instructions in a superscalar 

processor complete within a single cycle, the result cache can provide only limited performance 

improvement for integer programs. 

This paper presented the Combined Dynamic Predictor (CDP), which is composed a 

conventional two-level (TL) value predictor [21] and the Speculative Result Cache (SRC).  The 

SRC extends the result cache to speculate on the input operands.  As a result, the SRC exploits 

operand value locality while the two-level value predictor exploits output value locality.  

Simulations show that the SRC can produce speedups up to 7% for an 8-issue out-of-order 

superscalar processor for the SPECint95 benchmarks.  The reason the TL value predictor was used 

in the CDP was that it has good prediction accuracy and substantial performance benefit. 

The CDP exploits both operand value locality and output value locality by dynamically 

selecting between the predicted values produced by its two component predictors, always choosing 

the predicted value the value with the higher confidence level.  The CDP can produce speedups of 
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up to 20% on a 8-issue out-of-order superscalar processor for the SPECint 95 benchmarks.  The 

CDP outperforms either component predictor when each is used separately. 

This paper further evaluated directing instructions based on their type to one or the other 

component predictor.  To compensate for the late prediction of the SRC in the pipeline, the SRC 

was configured to predict load instructions while the two-level predictor predicted other ALU 

instructions.  This configuration produced the best performance of all the configurations tested, 

resulting in up to 20% speedup. 

From a cost performance tradeoff standpoint, the cost-performance tradeoff analysis 

revealed that the CDP is more effective than the two-level predictor and that allocating the load 

instructions to the SRC while allocating the remaining instructions to the two-level predictor is the 

most effective CDP implementation.  Finally, the results show that even a small, “standalone” SRC 

can provide a modest performance increase while using a small area. 

In conclusion, the best value prediction approach for integer programs is obtained by 

dynamically selecting between a predictor that exploits operand value locality and another that 

exploits output value locality.  Furthermore, assigning different types of instructions to each 

predictor outperforms previous allocation strategies since different types of instructions show 

different types of value locality behaviors. 
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