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Abstract 

This paper analyzes the amount of redundant computation at a global level within selected 
benchmarks of the SPEC 95 and SPEC 2000 benchmark suites.  Local level redundant 
computations are redundant computations that are the result of a single static instruction (i.e. PC 
dependent) while global level redundant computations are redundant computations that are the 
result of multiple static instructions (i.e. PC independent).  The results show that for all 
benchmarks, less than 10% of the input sets account more than 65% of the dynamic instructions; 
an input set is defined as an instruction’s opcode, input operands, and PC.  In addition, for 8 of 
the 15 benchmarks profiled in this paper, less than 10% of the input sets accounted for over 90% 
of the dynamic instructions.  Additionally, less than 1000 (0.14%) of the most frequently 
occurring input sets accounted for 19.4% - 95.5% of the dynamic instructions.  Furthermore, 
more potential for value reuse exists at the global level as compared to the traditional local level.  
For an equal number of input sets – approximately 100 for each benchmark – at both the global 
and local levels, the global level input sets accounted for an additional 1.5% to 12.6% of the total 
number of dynamic instructions as compared to the local level input sets.  As a result, exploiting 
value reuse at the global level should yield a significant performance improvement as compared 
to exploiting reuse only at the local level. 
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1 Introduction 
During its execution, a program tends to repeatedly perform the same computations.  This is due 
to the way that programs are written [Molina 99].  For example, due to a nested loop, an add 
instruction in the inner loop may repeatedly initialize and then increment a loop induction 
variable.  For each iteration of the outer loop, the computations performed by that add instruction 
are completely identical.  
 
In value reuse [Sodani 97, Molina 99], an on-chip table dynamically caches the results of 
previous computations.  The next time the identical computation appears, the value reuse 
hardware accesses the table (using the PC an index), retrieves the result, and forwards the result 
to dependent instructions.  The instruction is then removed from the pipeline since it has finished 
executing.  
 
Value reuse improves the processor’s performance by effectively decreasing the latency of the 
reused instructions.  Decreasing the latency of a reused instruction either directly or indirectly 
reduces the execution time of the critical path; directly if the reused instruction is on the critical 
path and indirectly if the reused instruction produces the value of an input operand for an 
instruction that is on the critical path.  Furthermore, since the reused instruction does not pass 
through all the pipeline stages, the number of resource conflicts (available issue slots, functional 
units, reservation station entries, etc.) decreases.  
 
Since the PC is used to index the value reuse table, traditional value reuse is based on the 
computational history of a single static instruction.  Consequently, previous computations can 
only be reused if that computation was performed for the instruction associated with that 
particular PC.  As a result, while another instruction of the same type, but with a different PC, 
may perform a computation that could be reused by the first instruction, value reuse does not 
occur because the results of the second instruction cannot be accessed by the first. 
  
This paper refers to PC dependent value reuse as local level or local value reuse and PC 
independent value reuse as global level or global value reuse.  In local level value reuse, the 
value reuse table is accessed by using the PC.  Since the PC is used to access the table, only the 
value history for that instruction is accessible.  As a result, for value reuse to occur for that 
dynamic instruction, the static instruction must have previously executed with the same input 
operands.  If not, then the dynamic instruction cannot be reused.  However, in global value reuse, 
the PC is not used to access the value reuse table; instead, the table is accessed by some 
combination of the opcode and input operands.  As a result, the instruction can reuse the output 
of any previously executed instruction that had the same opcode and input operands.  In 
conclusion, since using the PC to access the value reuse table limits "reusability" to that 
corresponding instruction, PC dependent value reuse is referred to as local level value reuse.  On 
the other hand, using the opcode and the input operands (i.e. PC independent value reuse) to 
access the reuse table is called global value reuse. 
 
The goals of this paper are to determine the potential of global value reuse by quantifying the 
amount of redundant computation at the global level and to compare it to the amount of 
redundant computation at the local level.  This paper is organized as follows: Section 2 describes 
some related work.  Section 3 describes the experimental methodology and setup while Section 4 
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presents, analyzes, and discusses the results.  Section 5 discusses future work and Section 6 
concludes. 
 
2 Related Work 
[Sodani 98] analyzed the amount of instruction repetition in the integer benchmarks of the SPEC 
95 benchmark suite.  Their results showed that 56.9% (129.compress) to 98.8% (124.m88ksim) 
of the dynamic instructions were repeated.   However these results were only for instruction 
repetition at the local level.  In addition, they also analyzed the causes of instruction repetition. 
 
[Gonzalez 98] analyzed the amount of instruction repetition in the integer and floating-point 
benchmarks of the SPEC 95 benchmark suite.  Their results showed that 53% (110.applu) to 
99% (104.hydro2d) of the dynamic instructions were repeated.  Furthermore, the geometric 
means of the all the benchmarks, the integer benchmarks only, and the floating-point 
benchmarks only were 87%, 91%, and 83%, respectively.  Therefore, there is not a significant 
difference in the amount of instruction repetition between the integer and floating-point 
benchmarks.  Like [Sodani 98], their results were for instruction repetition at only the local level. 
 
[Sodani 97] implemented a dynamic value reuse mechanism that only exploited local level value 
reuse and tested it with selected SPEC 92 and 95 benchmarks.  Their value reuse mechanism 
reused 0.2% to 26%, 5% to 27%, and 13% to 27% of the dynamic instructions for a 32 entry, a 
128 entry, and a 1024 entry, respectively, value reuse buffer.  It produced speedups of 0% to 
17%, 2% to 26%, and 6% to 43% for a 32 entry, a 128 entry, and a 1024 entry, respectively, 
value reuse buffer.  However, reusing a higher percentage of instructions did not directly 
translate to greater speedup. 
 
[Molina 99], on the other hand, implemented a dynamic value reuse mechanism that exploited 
value reuse at the both the global and local levels.  To test the performance of their value reuse 
mechanism, they simulated selected integer and floating-point benchmarks from the SPEC 95 
benchmark suite.  Their value reuse mechanism produced speedups of 3% to 25%; on average, it 
reused about 30% of the instructions that resulted in a 10% speedup.  While [Molina 99] 
implemented a global reuse mechanism, it did not determine the potential for global value reuse 
nor did it analyze which instructions had the highest frequencies of repetition. 
 
3 Experimental Setup 
To determine the amount of redundant computation at the global level, the opcode, input 
operands, and PC for all dynamic instructions had to be stored.  This paper refers to the opcode, 
input operands, and PC of a dynamic instruction as the “input set” for that instruction.  To reduce 
the memory requirements for storing this information, for duplicate input sets (i.e. redundant 
computations), in addition to storing the input set itself, the total number of times that that input 
set was executed was stored.  The instruction output was not stored because it is purely a 
function of the input set. 
 
To determine the amount of global redundant computation, the input set PC was set to 0.  As a 
result, input sets that had the same opcode and input operands, but different PCs, mapped to the 
same input set.  For the local level, the input set PC was simply the instruction’s PC. 
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To gather this data, a modified version of sim-fast from the Simplescalar tool suite [Burger 97] 
was used.  Since sim-fast is only a functional simulator, it is optimized for simulation speed.  As 
a result, it does not account for time; only executes instructions serially; and does not model a 
processor’s pipeline, caches, etc.  sim-fast was used as the base simulator instead of sim-outorder 
for two reasons.  The first reason is that since this paper only profiles the instructions, the 
execution time is unimportant.  Consequently, only a functional simulator is needed.  Secondly, 
since the code that was added to the base simulator accounted for a significant fraction of the 
simulation time, a fast base simulator was needed to reduce the overall simulation time. 
 
The criteria for selecting which benchmarks to profile was that the benchmark had to be written 
in C because the Simplescalar tool suite only has a C compiler.  The benchmark input set that 
was used was the maximum of either: 1) The one that produced the fewest number of dynamic 
instructions or 2) The one that was closest to 500 million dynamic instructions.  Since the input 
set for each dynamic instruction was stored in memory, the number of instructions for each 
benchmark was limited to reduce the memory requirements – which needed to be below the 
machine limit of 50 GB.  However, each benchmark ran to completion.  All benchmarks were 
compiled using gcc 2.6.3 at optimization level O3.  Table 1 lists the benchmarks profiled in this 
paper and some selected characteristics: 
 

Benchmark Suite Type Instructions (M) Input Set 
099.go SPEC 95 Integer 548.2 Train 

124.m88ksim SPEC 95 Integer 120.1 Train 
126.gcc SPEC 95 Integer 1273.3 Test 

129.compress SPEC 95 Integer 35.7 Train 
130.li SPEC 95 Integer 183.3 Train 

132.ijpeg SPEC 95 Integer 553.3 Test 
134.perl SPEC 95 Integer 2391.5 Test 

147.vortex SPEC 95 Integer 2520.1 Train 
164.gzip SPEC 2000 Integer 526.4 Reduced Small 

175.vpr - Place SPEC 2000 Integer 216.9 Reduced Medium 
175.vpr - Route SPEC 2000 Integer 93.7 Reduced Medium 

177.mesa SPEC 2000 Floating-Point 1220.9 Reduced Large 
181.mcf SPEC 2000 Integer 174.7 Reduced Medium 

183.equake SPEC 2000 Floating-Point 715.9 Reduced Large 
188.ammp SPEC 2000 Floating-Point 244.9 Reduced Medium 
197.parser SPEC 2000 Integer 459.2 Reduced Medium 

 
Table 1: Benchmark Characteristics 

 
For the SPEC 2000 benchmarks, reduced input sets were used to reduce the simulation times.  
Benchmarks that used the reduced input sets exhibit similar behavior as compared to when the 
benchmark used the test, train, or reference input sets.  For more information on the reduced 
input sets for these benchmarks, see [KleinOsowski 00]. 
 
175.vpr is a versatile place and route tool.  Executing the benchmark involves first running the 
place function and then the route function (with the output of the place function as the input).  As 
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a result, two separate simulations captured the input sets for these two functions.  Therefore, in 
this paper, the results for the place and route functions are given separately. 
 
4 Results 
The following terms appear in the subsequent subsections: frequency of repetition and 
occurrences.  The frequency of repetition, or frequency, is the number of times that an input set 
occurs (i.e. the number of dynamic instructions with that particular input set).  Therefore, if one 
input set has a frequency of repetition of 1, it is completely unique (only one dynamic instruction 
in the entire program has that input set). 
 
The number of occurrences is the number of times that a particular frequency is present.  See 
Subsection 4.1 for an example of the number of occurrences.  
 
4.1 Distribution of Occurrences for Each Frequency 
The first result is the distribution of occurrences for each frequency.  For example, consider the 
following input sets in Figure 1: 
 

0+1, PC = 0, Frequency = 400 
0+9, PC = 0, Frequency = 350 
1+1, PC = 0, Frequency = 500 
1+2, PC = 0, Frequency = 450 
1+3, PC = 0, Frequency = 500 
1+4, PC = 0, Frequency = 450 
1+5, PC = 0, Frequency = 450 
1+6, PC = 0, Frequency = 450 
1+7, PC = 0, Frequency = 550 

 
Figure 1: Example Input Sets 

 
Therefore, 0+9 occurs 350 times in the program; 0+1 400 times; 1+2, 1+4, 1+5, and 1+6 450 
times each; 1+1 and 1+3 500 times each; and 1+7 550 times.  Table 2 shows the distribution of 
occurrences for each frequency for the input sets in Figure 1. 
 

Range Occurrences Contributing Input Sets 
300-349 0  
350-399 1 0+9 
400-449 1 0+1 
450-499 4 1+2, 1+4, 1+5, 1+6 
500-549 2 1+1, 1+3 
550-599 1 1+7 
600-649 0  

 
Table 2: Distribution of Occurrences for Each Frequency for the Input Sets in Figure 1 

 
After sorting the frequencies into several different range sizes, the logarithmic range size 
produced the most compact results without affecting the content of the results.  Table 3 shows 
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the distribution of occurrences for each frequency for each benchmark for the logarithmic ranges. 
 

 Range 
Benchmark < 101 < 102 < 103 < 104 < 105 < 106 < 107 < 108 < 109 

099.go 580358 107922 75852 64067 11481 618 54 0 0 
124.m88ksim 4496289 27822 5499 6434 720 122 16 0 0 

126.gcc 8797319 2145525 728418 117313 8122 888 62 6 0 
129.compress 413289 249581 17965 1053 289 68 0 0 0 

130.li 145432 83172 173744 20682 460 106 20 0 0 
132.ijeg 8407217 2219849 619779 36934 3893 297 14 1 0 
134.perl 65800155 4277381 527417 57588 3232 2383 388 9 0 

147.vortex 13178369 1250703 151615 30943 14640 2663 176 25 1 
164.gzip 3718958 4276579 686743 21906 3076 166 19 2 0 

175.vpr-Place 7025225 31835 8868 5995 2134 385 15 0 0 
175.vpr-Route 1006428 183494 64103 8611 599 87 3 0 0 

177.mesa 20582763 2591 196781 2593 0 23 291 11 1 
181.mcf 38364541 417713 84431 10012 1399 37 8 0 0 

183.equake 9601311 2604542 101950 5299 2778 1007 67 4 0 
188.ammp 2361735 206934 3639 7380 2333 142 22 1 0 
197.parser 17003501 2431005 223679 14910 4008 404 35 1 0 

 
Table 3: Distribution of Occurrences for Each Frequency 

 
Note that each column is not the cumulative sum of the previous columns, but only the number 
of occurrences between column headings. 
 
Table 3 shows that most of the input sets have a frequency that is less than 1000, although all the 
benchmarks, with the exception of 129.compress, have a few input sets that have frequencies 
over 1,000,000.  147.vortex and 177.mesa have an input set with a frequency of over 
100,000,000. 
 
Table 4A shows the distribution of occurrences for each frequency as a percentage of the sum of 
occurrences while Table 4B shows the cumulative percentage.  Therefore, each column is the 
sum of the occurrences for all the occurrences less than the column label.   

 
 Range 

Benchmark < 101 < 102 < 103 < 104 < 105 < 106 < 107 < 108 < 109 

099.go 69.1 12.8 9.0 7.6 1.4 0.1 0.0 0.0 0.0 
124.m88ksim 99.1 0.6 0.1 0.1 0.0 0.0 0.0 0.0 0.0 

126.gcc 74.6 18.2 6.2 1.0 0.1 0.0 0.0 0.0 0.0 
129.compress 60.6 36.6 2.6 0.2 0.0 0.0 0.0 0.0 0.0 

130.li 34.3 19.6 41.0 4.9 0.1 0.0 0.0 0.0 0.0 
132.ijeg 74.5 19.7 5.5 0.3 0.0 0.0 0.0 0.0 0.0 
134.perl 93.1 6.1 0.7 0.1 0.0 0.0 0.0 0.0 0.0 

147.vortex 90.1 8.5 1.0 0.2 0.1 0.0 0.0 0.0 0.0 
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164.gzip 42.7 49.1 7.9 0.3 0.0 0.0 0.0 0.0 0.0 
175.vpr-Place 99.3 0.4 0.1 0.1 0.0 0.0 0.0 0.0 0.0 
175.vpr-Route 79.7 14.5 5.1 0.7 0.0 0.0 0.0 0.0 0.0 

177.mesa 99.0 0.0 0.9 0.0 0.0 0.0 0.0 0.0 0.0 
181.mcf 98.7 1.1 0.2 0.0 0.0 0.0 0.0 0.0 0.0 

183.equake 78.0 21.1 0.8 0.0 0.0 0.0 0.0 0.0 0.0 
188.ammp 91.5 8.0 0.1 0.3 0.1 0.0 0.0 0.0 0.0 
197.parser 86.4 12.4 1.1 0.1 0.0 0.0 0.0 0.0 0.0 

 
Table 4A: Percentage of the Occurrences for Each Frequency 

 
 Range 

Benchmark < 101 < 102 < 103 < 104 < 105 < 106 < 107 < 108 < 109 

099.go 69.1 81.9 90.9 98.6 99.9 100.0 100.0 100.0 100.0 
124.m88ksim 99.1 99.7 99.8 100.0 100.0 100.0 100.0 100.0 100.0 

126.gcc 74.6 92.8 98.9 99.9 100.0 100.0 100.0 100.0 100.0 
129.compress 60.6 97.2 99.8 99.9 100.0 100.0 100.0 100.0 100.0 

130.li 34.3 54.0 95.0 99.9 100.0 100.0 100.0 100.0 100.0 
132.ijeg 74.5 94.1 99.6 100.0 100.0 100.0 100.0 100.0 100.0 
134.perl 93.1 99.2 99.9 100.0 100.0 100.0 100.0 100.0 100.0 

147.vortex 90.1 98.6 99.7 99.9 100.0 100.0 100.0 100.0 100.0 
164.gzip 42.7 91.8 99.7 100.0 100.0 100.0 100.0 100.0 100.0 

175.vpr-Place 99.3 99.8 99.9 100.0 100.0 100.0 100.0 100.0 100.0 
175.vpr-Route 79.7 94.2 99.3 99.9 100.0 100.0 100.0 100.0 100.0 

177.mesa 99.0 99.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 
181.mcf 98.7 99.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

183.equake 78.0 99.1 99.9 100.0 100.0 100.0 100.0 100.0 100.0 
188.ammp 91.5 99.5 99.6 99.9 100.0 100.0 100.0 100.0 100.0 
197.parser 86.4 98.8 99.9 100.0 100.0 100.0 100.0 100.0 100.0 

 
Table 4B: Cumulative Percentage of the Occurrences for Each Frequency 

 
For 124.m88ksim, 134.perl, 147.vortex, 175.vpr – Place, 177.mesa, 181.mcf, and 188.ammp; at 
least 90% of the occurrences have frequencies less than 10.  For 126.gcc, 129.compress, 
132.ijpeg, 164.gzip, 175.vpr – Route, 183.equake, and 197.parser; at least 90% of the 
occurrences have frequencies less than 100. Finally, for 099.go and 130.li, at least 90% of the 
occurrences have frequencies less than 1000.  Table 5 summarizes the previous sentence. 
 

Range with 90% Cutoff Benchmarks 
< 10 124.m88ksim, 134.perl, 147.vortex, 175.vpr 

– Place, 177.mesa, 181.mcf, 188.ammp 
< 100 126.gcc, 129.compress, 132.ijpeg, 164.gzip, 

175.vpr – Route, 183.equake, 197.parser 
< 1000 099.go,130.li 
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Table 5: Frequency Range With At Least 90% of the Cumulative Occurrences 
 
4.2 Number of Redundant Instructions 
The product of the occurrences and frequency is the number of dynamic instructions for that 
input set.  For example, if three input sets each have a frequency of 500,000, then those input sets 
are executed a total of 1,500,000 times, which corresponds to 1,500,000 dynamic instructions. 
Since Table 3 only shows the number of occurrences for each frequency range, it does not 
indicate which of the benchmarks could show the largest performance gain if a global reuse 
mechanism were implemented.  Table 6A shows the percentage of the products for each 
frequency range while Table 6B shows the cumulative percentage of the products. 
  

 Range 
Benchmark < 101 < 102 < 103 < 104 < 105 < 106 < 107 < 108 < 109 

099.go 0.1 0.4 3.1 27.3 32.0 15.4 21.6 0.0 0.0 
124.m88ksim 4.9 0.6 1.7 10.3 20.6 33.5 28.4 0.0 0.0 

126.gcc 1.8 5.2 17.7 21.4 17.0 17.1 10.5 9.4 0.0 
129.compress 1.4 21.0 9.9 8.6 17.8 41.2 0.0 0.0 0.0 

130.li 0.1 2.2 29.1 22.6 5.6 20.4 19.9 0.0 0.0 
132.ijeg 3.6 12.0 23.1 18.5 18.8 13.5 7.6 3.0 0.0 
134.perl 4.5 3.4 9.0 4.5 4.6 23.5 40.1 10.4 0.0 

147.vortex 1.2 1.2 1.7 4.0 18.1 28.9 13.2 25.7 6.0 
164.gzip 3.2 12.1 37.5 8.2 16.0 7.9 9.2 6.0 0.0 

175.vpr-Place 3.7 0.3 1.3 8.4 31.5 40.0 14.8 0.0 0.0 
175.vpr-Route 2.2 6.2 19.4 23.1 16.2 28.0 5.0 0.0 0.0 

177.mesa 2.3 0.0 2.0 0.2 0.0 0.6 64.8 19.9 10.2 
181.mcf 23.1 6.4 13.6 15.7 21.8 5.9 13.4 0.0 0.0 

183.equake 3.4 8.8 3.1 2.0 13.8 39.3 22.5 7.1 0.0 
188.ammp 1.9 1.5 0.6 13.8 26.2 19.5 27.4 9.2 0.0 
197.parser 7.5 16.1 8.5 10.5 20.2 18.7 16.1 2.4 0.0 

 
Table 6A: Percentage of the Occurrences/Frequency Product (Max. Percentage in Bold) 

 
 Range 

Benchmark < 101 < 102 < 103 < 104 < 105 < 106 < 107 < 108 < 109 

099.go 0.1 0.6 3.7 31.0 63.0 78.4 100.0 100.0 100.0 
124.m88ksim 4.9 5.5 7.2 17.5 38.1 71.6 100.0 100.0 100.0 

126.gcc 1.8 7.0 24.7 46.1 63.1 80.2 90.6 100.0 100.0 
129.compress 1.4 22.4 32.4 41.0 58.8 100.0 100.0 100.0 100.0 

130.li 0.1 2.4 31.5 54.1 59.7 80.1 100.0 100.0 100.0 
132.ijeg 3.6 15.6 38.7 57.2 76.0 89.5 97.0 100.0 100.0 
134.perl 4.5 7.9 16.9 21.4 26.1 49.6 89.6 100.0 100.0 

147.vortex 1.2 2.3 4.0 8.1 26.2 55.1 68.4 94.0 100.0 
164.gzip 3.2 15.4 52.8 61.0 77.0 84.8 94.0 100.0 100.0 

175.vpr-Place 3.7 4.0 5.3 13.6 45.2 85.2 100.0 100.0 100.0 
175.vpr-Route 2.2 8.4 27.8 50.9 67.0 95.0 100.0 100.0 100.0 
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177.mesa 2.3 2.3 4.3 4.5 4.5 5.1 69.9 89.8 100.0 
181.mcf 23.1 29.6 43.1 58.9 80.6 86.6 100.0 100.0 100.0 

183.equake 3.4 12.2 15.3 17.4 31.2 70.5 92.9 100.0 100.0 
188.ammp 1.9 3.3 3.9 17.7 43.9 63.4 90.8 100.0 100.0 
197.parser 7.5 23.6 32.1 42.7 62.8 81.5 97.6 100.0 100.0 

 
Table 6B: Cumulative Percentage of the Occurrences/Frequency Product 

 
From Table 5, more than 90% of the input sets (for frequencies less than 10) for 124.m88ksim, 
134.perl, 147.vortex, 175.vpr – Place, 177.mesa, 181.mcf, and 188.ammp account for 4.9%, 
4.5%, 1.2%, 3.7%, 2.3%, 23.1%, and 1.9%, respectively, of the total number of instructions. 
More than 90% of the input sets (for frequencies less than 100) for 126.gcc, 129.compress, 
132.ijpeg, 164.gzip, 175.vpr – Route, 183.equake, and 197.parser account for 7.0%, 22.4%, 
15.6%, 15.4%, 8.4%, 12.2%, and 23.6%, respectively, of the total number of instructions.  
Finally, more than 90% of the input sets (for frequencies less than 1000) for 099.go and 130.li 
account for 3.7% and 31.5%, respectively, of the total number of instructions.  Therefore, more 
than 90% of the input sets account for only 1.2% (147.vortex) to 31.5% (130.li) of the total 
number of instructions.  For 7 of the 16 benchmarks, more than 90% of the input sets account for 
less than 5% of the total number instructions; for 9 of 16 benchmarks, the number is less than 
10%; and for 15 of the 16 benchmarks, the number is less than 25%.  In other words, with the 
exception of 130.li, more than 75% of the instructions come from less than 10% of the input sets. 
 
The key point from Tables 4A, 4B, 6A, and 6B is that a very small percentage of the input sets 
account for a disproportionately large percentage of the total number of instructions.  Table 7 
shows the percentage of the dynamic instructions that are from less than 1024 of the input sets.  
 

Benchmark Number of Input Set % of Input Sets % of Dynamic Instructions  

099.go 672 0.07997 37.0 
124.m88ksim 858 0.01891 82.5 

126.gcc 956 0.00810 36.9 
129.compress 357 0.05233 59.0 

130.li 586 0.13833 45.9 
132.ijeg 312 0.00276 24.0 
134.perl 397 0.00056 50.4 

147.vortex 202 0.00138 44.9 
164.gzip 187 0.00215 23.0 

175.vpr-Place 400 0.00565 54.8 
175.vpr-Route 689 0.05454 49.1 

177.mesa 326 0.00157 95.5 
181.mcf 45 0.00012 19.4 

183.equake 71 0.00058 29.5 
188.ammp 165 0.00639 56.1 
197.parser 440 0.00224 37.2 

 
Table 7: Percentage of Dynamic Instructions From Less Than 1024 of the Input Sets 

 



 10

Table 7 shows that with a realistically sized reuse buffer (less than 1024 entries), a significant 
percentage of instructions can be reused (19.4% - 95.5%).  
 
4.4. Top 100 Input Sets by Occurrence 
The following tables, Tables 8A and 8B, show the characteristics of the top 100 input sets, by 
occurrence, for each benchmark.  (To be more precise, the tables show the characteristics of the 
input sets with the top 100 occurrences.  As a result, for some benchmarks, the tables represent 
the characteristics for more than 100 input sets if two input sets have the same number of 
occurrences.)  In Table 8A, the second and third columns show the minimum and maximum 
number of occurrences of the input sets in the Top 100 list.  The fourth column shows what 
percentage of the input sets these Top 100 occurrences represent while the rightmost column 
does the same for the total number of instructions.  Table 8B shows the instruction types that are 
represented in the list. 
 

 Occurrences   
Benchmark Minimum Maximum % of Input Sets % of Total Instructions 

099.go 340375 11785454 0.01214 21.0 
124.m88ksim 79063 4660428 0.00324 62.6 

126.gcc 694953 27584059 0.00085 21.9 
129.compress 20600 648118 0.02477 51.9 

130.li 84971 4058778 0.03187 40.7 
132.ijeg 183032 16339592 0.00124 19.9 
134.perl 2282917 60464845 0.00023 34.6 

147.vortex 1479010 150761871 0.00078 40.6 
164.gzip 167914 19703045 0.00145 21.5 

175.vpr-Place 283292 6588115 0.00163 37.3 
175.vpr-Route 61965 1862986 0.00958 35.6 

177.mesa 1310736 124783523 0.00110 86.9 
181.mcf 75142 5471245 0.00030 22.7 

183.equake 608828 16323043 0.00119 37.4 
188.ammp 190011 22467568 0.00469 53.6 
197.parser 291888 11138791 0.00055 25.7 

 
Table 8A: Characteristics of the Input Sets for the Top 100 Occurrences 

 
Benchmark Instruction Type 

099.go ADDIU, ADDU, BEQ, BNE, JAL, JUMP, LUI, LW, SLL, SLTI, SUBU, SW 

124.m88ksim 
ADDIU, ADDU, AND, ANDI, BEQ, BNE, DLW, JAL, JR, JUMP, LBU, LUI, 
LW, MFHI, MFLO, MULTU, OR, ORI, SLL, SLLV, SLTI, SLTIU, SLTU, 
SRL, SRLV, SUBU, SW 

126.gcc ADDIU, ADDU, AND, ANDI, BEQ, BGEZ, BLEZ, BLTZ, BNE, LB, LHU, 
LUI, LW, NOR, OR, SLL, SLT, SLTI, SLTIU, SRA 

129.compress 
ADDIU, ADDU, AND, ANDI, BC1F, BEQ, BGTZ, BLEZ, BLTZ, BNE, JAL, 
JR, JUMP, LBU, LUI, LW, SB, SLL, SLLV, SLT, SLTI, SLTU, SRA, SUBU, 
SW 
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130.li ADDIU, ADDU, AND, ANDI, BEQ, BNE, JAL, JR, JUMP, LB, LUI, LW, 
ORI, SLL, SLTI, SLTIU, SLTU, SRA, SW 

132.ijeg ADDIU, ADDU, AND, ANDI, BEQ, BGEZ, BNE, JAL, JR, JUMP, LUI, LW, 
MFLO, OR, SH, SLL, SLLV, SLT, SLTI, SRA, SUBU, SW 

134.perl ADDIU, ADDU, ANDI, BEQ, BNE, JAL, JALR, JR, JUMP, LB, LH, LUI, 
LW, SB, SLL, SLT, SLTIU, SLTU, SW 

147.vortex ADDIU, ADDU, ANDI, BEQ, BLEZ, BNE, JAL, JR, LHU, LUI, LW, ORI, 
SLL, SLTU, SW 

164.gzip ADDIU, ADDU, BEQ, BNE, JAL, JR, JUMP, LBU, LHU, LUI, LW, ORI, SB, 
SH, SLTI, SLTIU, SLTU, SW 

175.vpr-Place 
ADDIU, ADDU, BC1F, BC1T, BEQ, BGTZ, BNE, C_LT_D, CVT_D_S, 
CVT_S_W, JAL, JR, JUMP, L_D, L_S, LUI, LW, MTC1, ORI, SLL, SLT, 
SLTI, SW 

175.vpr-Route ADDIU, ADDU, BC1F, BC1T, BEQ, BNE, C_EQ_D, C_LT_S, CVT_D_S, 
JAL, JR, L_D, LH, LUI, LW, MTC1, S_D, SLL, SLT, SW 

177.mesa 
ADDIU, ADDU, AND, ANDI, BEQ, BGTZ, BLEZ, BNE, JAL, JR, JUMP, 
LB, LBU, LHU, LUI, LW, NOR, ORI, SB, SLL, SLTI, SLTIU, SLTU, SRA, 
SRL, SUBU, SW, XORI 

181.mcf ADDIU, ADDU, BEQ, BGEZ, BLEZ, BNE, JAL, JR, JUMP, LUI, LW, SLT, 
SUBU, SW 

183.equake 
ADDIU, ADDU, ANDI, BC1F, BEQ, BLEZ, BLTZ, BNE, FADD_D, 
FMUL_D, JAL, JUMP, L_D, LB, LBU, LUI, LW, MFC1, MTC1, ORI, S_D, 
SLL, SLT, SLTI, SRL, SW 

188.ammp ADDIU, ADDU, ANDI, BC1F, BEQ, BLTZ, BNE, FMOV_D, FMUL_D, JAL, 
JR, JUMP, L_S, LBU, LHU, LUI, LW, MFC1, MTC1, ORI, SLL, SLT, SW 

197.parser ADDIU, ADDU, AND, ANDI, BEQ, BNE, JAL, JR, JUMP, LB, LHU, LUI, 
LW, NOR, ORI, SLL, SLTU, SRA, SUBU, SW 

 
Table 8B: Characteristics of the Input Sets for the Top 100 Occurrences 

 
Two conclusions can be drawn from Tables 8A and 8B.  First of all, Table 8A confirms the 
conclusion drawn from Tables 4A, 4B, 6A, and 6B that a very small percentage of the input sets 
account for a disproportionately large number of the dynamic instructions.   
  
Although Tables 4A, 4B, 6A, 6B, and 8A show that a very small percentage of the input sets 
account for a disproportionately large number of the dynamic instructions, not all the input sets 
in that small percentage will yield the same performance gain or will consume the same amount 
of area in the value reuse table.  For instance, while a double floating-point divide takes multiple 
cycles to execute – and therefore is an ideal candidate for reuse, storing two 64-bit double words 
(input operands) and one (128-bit) quad word is very expensive in terms of area.  Furthermore, 
comparing two 64-bit numbers could delay the actual reuse of the instruction by a cycle.   
However, what is not clear for these instructions is whether the large reduction in the execution 
latency is worth the additional cost in area and a comparatively longer access time.  Similarly, 
reusing the input set for a store instruction probably would not increase the performance as much 
as the frequency of repetition would indicate because stores are probably not on the critical path.  
However, for load instructions, either the target address for the load can be reused or the data 
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returned by the load can reused (which is essentially last-value prediction).  Finally, reusing the 
input sets for move instructions (move to or from the high or low register and to or from the 
integer or floating-point registers), does not improve the performance because the instruction 
does not generate an output.  In this case, the instruction only performs an action (a register 
write), which has to occur in program order. Therefore, the second conclusion from Tables 8A 
and 8B is that not all the instructions in the Top 100 occurrences can be reused or will have the 
same performance gain when reused. 
 
4.5 Comparison of Global Level Value Locality in Integer and Floating-Point 
After comparing the results of 177.mesa, 183.equake and 188.ammp against the other 13 
benchmarks for Tables 4A, 4B, 6A, 6B, 7, and 8A, there does not appear to be any significant 
differences between the integer and floating-point benchmarks.  One slight difference appears in 
Table 8B; for the floating-point benchmarks, input sets from floating-point instructions are in the 
Top 100 occurrences.  This is expected since these benchmarks contain a significantly higher 
percentage of floating-point instructions.  However, since only three floating-point benchmarks 
were profiled, no definite conclusions can be made at this time. 
  
4.6 Comparison to Traditional (Local) Value Reuse 
One of the key questions that this paper tries to answer is how much more locality is available 
and can be exploited at the global level than at the local level?  This section compares the global 
and local level results for the: 
 
1. Cumulative Percentage of the Occurrences/Frequency Product 
2. Percentage of Instructions Covered by the Input Sets From the Top 100 Occurrences 
 
4.6.1 Cumulative Percentage of the Occurrences/Frequency Product 
For the cumulative percentage of the occurrences/frequency product, if there is more locality at 
the global level, then the global cumulative percentages should be lower, for a given frequency 
range, than that of the local cumulative percentages. 
  
For convenience, Table 6B is restated below: 
 

 Range 
Benchmark < 101 < 102 < 103 < 104 < 105 < 106 < 107 < 108 < 109 

099.go 0.1 0.6 3.7 31.0 63.0 78.4 100.0 100.0 100.0 
124.m88ksim 4.9 5.5 7.2 17.5 38.1 71.6 100.0 100.0 100.0 

126.gcc 1.8 7.0 24.7 46.1 63.1 80.2 90.6 100.0 100.0 
129.compress 1.4 22.4 32.4 41.0 58.8 100.0 100.0 100.0 100.0 

130.li 0.1 2.4 31.5 54.1 59.7 80.1 100.0 100.0 100.0 
132.ijeg 3.6 15.6 38.7 57.2 76.0 89.5 97.0 100.0 100.0 
134.perl 4.5 7.9 16.9 21.4 26.1 49.6 89.6 100.0 100.0 

147.vortex 1.2 2.3 4.0 8.1 26.2 55.1 68.4 94.0 100.0 
164.gzip 3.2 15.4 52.8 61.0 77.0 84.8 94.0 100.0 100.0 

175.vpr-Place 3.7 4.0 5.3 13.6 45.2 85.2 100.0 100.0 100.0 
175.vpr-Route 2.2 8.4 27.8 50.9 67.0 95.0 100.0 100.0 100.0 

177.mesa 2.3 2.3 4.3 4.5 4.5 5.1 69.9 89.8 100.0 
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181.mcf 23.1 29.6 43.1 58.9 80.6 86.6 100.0 100.0 100.0 
183.equake 3.4 12.2 15.3 17.4 31.2 70.5 92.9 100.0 100.0 
188.ammp 1.9 3.3 3.9 17.7 43.9 63.4 90.8 100.0 100.0 
197.parser 7.5 23.6 32.1 42.7 62.8 81.5 97.6 100.0 100.0 

 
Table 6B (Restated): Cumulative Percentage of the Occurrences/Frequency Product, 

Global 
 
Table 9A shows the cumulative percentage of the products for the local level while Table 9B 
shows the difference in the global and local cumulative percentages for each frequency range.   
 

 Range 
Benchmark < 101 < 102 < 103 < 104 < 105 < 106 < 107 < 108 < 109 

099.go 0.8 5.5 27.3 58.3 81.1 92.2 100.0 100.0 100.0 
124.m88ksim 5.2 5.8 9.2 20.0 42.9 75.3 100.0 100.0 100.0 

126.gcc 9.0 19.2 37.0 56.2 79.2 89.9 92.7 100.0 100.0 
129.compress 1.5 25.1 33.6 45.2 61.6 100.0 100.0 100.0 100.0 

130.li 1.0 10.3 43.2 55.7 62.5 91.8 100.0 100.0 100.0 
132.ijeg 4.4 23.4 47.1 64.7 83.0 94.1 97.0 100.0 100.0 
134.perl 6.7 9.0 20.1 22.3 29.2 55.7 92.0 100.0 100.0 

147.vortex 1.7 2.8 5.9 16.1 37.3 66.4 84.9 100.0 100.0 
164.gzip 11.0 28.6 57.0 62.2 78.0 86.3 94.0 100.0 100.0 

175.vpr-Place 3.7 4.1 7.5 30.5 61.8 93.3 100.0 100.0 100.0 
175.vpr-Route 4.7 15.8 42.1 61.0 77.1 98.7 100.0 100.0 100.0 

177.mesa 2.3 4.3 4.3 4.5 4.5 5.4 87.9 100.0 100.0 
181.mcf 23.8 31.4 46.4 70.8 81.6 87.6 100.0 100.0 100.0 

183.equake 6.9 13.2 15.4 17.6 36.5 82.0 94.8 100.0 100.0 
188.ammp 1.9 3.3 5.1 30.4 47.6 69.9 100.0 100.0 100.0 
197.parser 14.6 29.4 35.3 48.8 71.0 85.4 97.6 100.0 100.0 

 
Table 9A: Cumulative Percentage of the Occurrences/Frequency Product, Local 

 
 Range 

Benchmark < 101 < 102 < 103 < 104 < 105 < 106 < 107 < 108 < 109 

099.go -0.7 -4.9 -23.6 -27.3 -18.1 -13.8 0.0 0.0 0.0 
124.m88ksim -0.2 -0.2 -2.0 -2.5 -4.8 -3.8 0.0 0.0 0.0 

126.gcc -7.2 -12.2 -12.3 -10.1 -16.0 -9.7 -2.0 0.0 0.0 
129.compress -0.1 -2.7 -1.2 -4.2 -2.8 0.0 0.0 0.0 0.0 

130.li -0.9 -8.0 -11.7 -1.6 -2.7 -11.7 0.0 0.0 0.0 
132.ijeg -0.8 -7.7 -8.4 -7.5 -7.0 -4.6 0.0 0.0 0.0 
134.perl -2.2 -1.1 -3.2 -0.9 -3.2 -6.1 -2.3 0.0 0.0 

147.vortex -0.5 -0.4 -1.9 -8.0 -11.1 -11.3 -16.5 -6.0 0.0 
164.gzip -7.8 -13.2 -4.2 -1.2 -1.0 -1.5 0.0 0.0 0.0 

175.vpr-Place 0.0 -0.1 -2.2 -16.8 -16.6 -8.1 0.0 0.0 0.0 
175.vpr-Route -2.5 -7.5 -14.3 -10.1 -10.0 -3.7 0.0 0.0 0.0 
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177.mesa 0.0 -2.0 0.0 0.0 0.0 -0.2 -18.0 -10.2 0.0 
181.mcf -0.7 -1.8 -3.3 -11.9 -1.0 -1.1 0.0 0.0 0.0 

183.equake -3.5 -1.0 0.0 -0.2 -5.4 -11.5 -1.8 0.0 0.0 
188.ammp 0.0 0.0 -1.2 -12.7 -3.7 -6.5 -9.2 0.0 0.0 
197.parser -7.1 -5.7 -3.2 -6.1 -8.2 -3.9 0.0 0.0 0.0 

 
Table 9B: Difference in the Global and Local (Global – Local) Cumulative Percentages of 
the Occurrences/Frequency Product; Differences within 0.1% and for Global Cumulative 

Percentages under 100% are in Bold  
 
As Table 9B clearly shows, the global level has a lower cumulative percentage at each frequency 
range, for global cumulative percentages less than 100%, for all benchmarks and frequency 
ranges except for 132.ijpeg: < 107; 164.gzip: < 107; 175.vpr – Place: < 101; 177.mesa: 101, 103, 
104, and 105; 183.equake: 103; 188.ammp: 101 and 102; 197.parser: 107.  The difference in 
cumulative percentages that are within 0.1% are shown in boldface type (only for global 
cumulative percentages below 100%).  Note that the cumulative local level percentages can 
never be lower than the cumulative global level percentages for any given frequency range. 
 
Therefore, as expected, the global cumulative percentages increase more slowly than the local 
cumulative percentages and for all benchmarks and frequency ranges, the global cumulative 
percentage is lower than (for most cases) or equal to the local cumulative percentage.  
Consequently, significantly more reuse possibilities exist at the global level as compared to the 
local level because the all input sets have higher frequencies. 
 
4.6.2 Percentage of Instructions Covered by Input Sets From the Top 100 Occurrences 
Table 10 compares the percentage of instructions due to the input sets from the Top 100 
occurrences for both the global and local levels.  The number of input sets in this table is the 
same for both the global and local levels and is the number of input sets in the Top 100 
occurrences at the global level. 
 

  Percentage of Total Instructions  
Benchmark Number of Input Sets Global Local Difference (Global – Local) 

099.go 102 21.0 14.2 6.8 
124.m88ksim 147 62.6 57.6 5.0 

126.gcc 100 21.9 13.1 8.8 
129.compress 169 51.9 48.0 3.9 

130.li 135 40.7 36.0 4.7 
132.ijeg 140 19.9 14.4 5.5 
134.perl 161 34.6 27.1 7.5 

147.vortex 114 40.6 28.2 12.4 
164.gzip 126 21.5 19.7 1.8 

175.vpr-Place 115 37.3 25.4 11.9 
175.vpr-Route 121 35.6 26.4 9.2 

177.mesa 229 86.9 76.4 10.5 
181.mcf 117 22.7 21.2 1.5 

183.equake 146 37.4 24.8 12.6 
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188.ammp 121 53.6 47.5 6.1 
197.parser 109 25.7 21.7 4.0 

 
Table 10: Percentage of Instructions Due to the Input Sets from the Top 100 Occurrences 

for Both the Global and Local Levels 
 
As expected, the input sets for the Top 100 occurrences at the global level cover a higher 
percentage of instructions for all benchmarks as compared to the input sets for the Top 100 
occurrences at the local level.  Therefore, a global value reuse mechanism could reuse an 
additional 1.5% (181.mcf) to 12.6% (183.equake) of the total number of dynamic instructions as 
compared to the local level. 
 
4.6.3 Global vs. Local Comparison 
The conclusion from Subsections 4.6.1 and 4.6.2 is that there is more performance potential for 
value reuse at the global level as compared to the local level.  However, in spite of these results, 
it is difficult to determine the performance difference between these two approaches.  The 
performance difference depends on the following three factors: 1) The number of reused 
instructions on the critical path for both approaches, 2) The average number of redundant input 
sets in the local value reuse table, and 3) The precise implementation of the global value reuse 
mechanism. 
 
For the first factor, it is reasonable to assume that distribution of reused instructions that are on 
the critical path for the two approaches is similar.  Therefore, this factor should not be the 
primary contributor to the performance difference.  The second factor is essentially an efficiency 
metric.  If the local value reuse table holds several redundant PC-independent input sets, then 
some of its entries are wasted – when compared to the global value reuse table.  If there are very 
few unique input sets in the local value reuse table, then the potential performance difference 
between the two approaches will be greater.  Finally, the third factor determines the area of and 
access time to the global value reuse hardware.  For the same area, the global value reuse table 
may have fewer entries as compared to the local value reuse table if more hardware, such as 
comparators, is needed.  Furthermore, the access time of the global value reuse table could be 
higher, which would obviously affect the performance. 
 
Therefore, the most accurate way of comparing these two approaches is to implement and then 
compare them. 
 
However, these two approaches could be complementary, i.e. combining the two approaches 
could provide better performance than by using either one individually.  While the local level 
value locality is a subset of the global level value locality (i.e. at the global level, fewer input sets 
account for all the dynamic instructions), due to implementation differences, the local level reuse 
mechanism could have a lower access time and a lower area cost.  Therefore, combining the two 
approaches could provide better performance than using either one individually. 
 
5 Future Work 
These results generate several ideas that warrant further investigation.  First of all, how much 
performance can be gained by only exploiting global level value reuse?  What kind of global 
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value reuse mechanism is most efficient in terms of access time and area?  Should this global 
value reuse mechanism only target certain types of instructions, such as the instructions in Table 
8B?  
 
Secondly, how does that performance gain compare to only exploiting value reuse at the local 
level?  In terms of the area, is that performance gain cost-effective? 
 
Third, can global and local level value reuse mechanisms be combined to produce a more 
effective (area-wise or performance-wise) value reuse mechanism?  Can these two approaches be 
combined to yield a value reuse mechanism that has the best qualities of each approach? 
 
6 Conclusion 
This paper presents an analysis of the potential for global value reuse and compares the amount 
of redundant computation at the global level to the amount of redundant computation at the local 
level. 
 
For all benchmarks, less than 10% of the input sets account at least 65% of the dynamic 
instructions and for 8 of the 15 benchmarks – when 175.vpr is counted a single benchmark, less 
than 10% of the input sets account for over 90% of the dynamic instructions.  Furthermore, 
19.4% - 95.5% of the dynamic instructions are the results of less than 1000 of the most 
frequently occurring input sets.   
 
For an equal number of input sets (approximately 100 for each benchmark) for both the global 
and local levels, the input sets for the global level account for an additional 1.5% to 12.6% of the 
total number of dynamic instructions.  Therefore, more opportunity for reuse exists at the global 
level as compared to the local level. 
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9 Appendix – Amount of Repetition 
Section 5 suggested the idea of selective value reuse, or in other words, only reusing the values 
for only certain types of instructions.  One potential implementation of this idea is to have a 
separate table for each instruction type to be reused.  However, this idea is more effective if there 
are relatively few input sets for those instruction types.  Table 11 shows the number of input sets 
for a particular instruction type as a fraction of the number of dynamic instructions for ADDIU, 
ADDU, BEQ, BNE, and LW.  These instruction types were the only reusable instruction types 
that were common to all the benchmarks and that were present in the Top 100 occurrences.  The 
average amount of repetition is also shown.  The entries that have a lower amount of repetition 
than the average (i.e. a higher number than the average) are in boldface type. 
 

  Instruction Type 
Benchmark Average ADDIU ADDU  BEQ  BNE  LW 

099.go 0.00085 0.00094 0.00103 0.00094 0.00033 0.00048 
124.m88ksim 0.03778 0.07949 0.03644 0.00059 0.01432 0.01722 

126.gcc 0.00926 0.00739 0.01907 0.01164 0.00954 0.00514 
129.compress 0.01912 0.01946 0.01614 0.00458 0.00226 0.00361 

130.li 0.00231 0.00421 0.00095 0.00098 0.00200 0.00146 
132.ijeg 0.02040 0.02103 0.02380 0.00066 0.00060 0.00465 
134.perl 0.02955 0.02076 0.03625 0.02292 0.03660 0.01259 

147.vortex 0.00581 0.00959 0.00484 0.00027 0.00484 0.00249 
164.gzip 0.01654 0.00517 0.02123 0.00176 0.00270 0.00982 

175.vpr-Place 0.03261 0.02960 0.00062 0.00035 0.00100 0.00048 
175.vpr-Route 0.01350 0.01742 0.01034 0.00704 0.00681 0.00506 

177.mesa 0.01703 0.01403 0.01587 0.00001 0.01474 0.00027 
181.mcf 0.22252 0.33165 0.02858 0.00852 0.21953 0.01610 

183.equake 0.01721 0.00620 0.03483 0.01243 0.00845 0.01892 
188.ammp 0.01055 0.00592 0.00593 0.00213 0.06983 0.00036 
197.parser 0.04285 0.02932 0.10837 0.00829 0.03322 0.02301 

 
Table 11: Amount of Repetition (Input Sets/Dynamic Instructions for that Instruction 
Type) for Selected Instruction Types.  Table Entries Above the Average are in Bold. 

 
Note that from a value reuse perspective, a lower amount of repetition should produce greater 
performance gains. 
 
Table 11 shows that for ADDIU, 8 of the 16 benchmarks have repetition amounts greater than 
the average while ADDU, BNE, BEQ, and LW have 7, 2, 3, and 1 benchmarks, respectively.  
From another point-of-view, 2 benchmarks have 5 instruction types, 9 benchmarks have 4 
instruction types, 3 benchmarks have 3 instruction types, and 2 benchmarks have 2 instruction 
types with a lower repetition amount than the average. 
 
Therefore, given that the repetition amounts for some of the instruction types are higher than the 
average, partitioning a value reuse table into smaller tables based on the instruction type is 
probably not a good idea.  Since these instruction types account for a significant percentage of 
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the dynamic instructions, their higher-than-average repetition amounts could lead to a higher 
replacement rate within the value reuse table, which consequently could reduce the performance.   
 
Table 12 shows the repetition amounts for the top 4, 8, and 16 instruction types, sorted by 
number of dynamic instructions.  
 

 Instruction Types  
Benchmark 4 8 16 Instruction Types 

099.go 0.00070 0.00074 0.00083 LW, ADDU, ADDIU, SLL, LUI, SW, BNE, BEQ, 
SLT, JR, JAL, JUMP, SLTI, SUBU, BLEZ, SLTIU 

124.m88ksim 0.06225 0.04507 0.03815 LW, SW, ADDIU, ADDU, BNE, BEQ, LUI, SRL, 
OR, SLL, ANDI, AND, JR, SLTI, JAL, SLTU 

126.gcc 0.00942 0.00901 0.00841 LW, ADDIU, SW, ADDU, BNE, BEQ, SLL, LHU, 
LUI, JR, JAL, SLTIU, SLT, LB, JUMP, SLTI 

129.compress 0.01394 0.01279 0.01311 ADDIU, LW, SW, ADDU, LBU, BNE, BEQ, SB, 
SLL, LUI, JR, JAL, SLT, SLLV, SLTI, BGTZ 

130.li 0.00261 0.00246 0.00230 LW, SW, ADDIU, ADDU, BEQ, BNE, LBU, JR, 
JUMP, ANDI, JAL, SLL, SB, SLTU, SRA, SLTIU 

132.ijeg 0.01662 0.01622 0.01617 
ADDU, ADDIU, LW, SLL, LBU, SUBU, BNE, 
SW, SRA, SB, SLTI, BEQ, MFLO, MULT, JUMP, 
OR 

134.perl 0.02206 0.02415 0.02482 LW, ADDIU, SW, ADDU, BEQ, BNE, JR, LBU, 
SB, SLL, BGTZ, JAL, JUMP, SLTIU, LB, LUI 

147.vortex 0.00549 0.00491 0.00546 LW, SW, ADDU, ADDIU, BEQ, BNE, JR, SLL, 
JAL, ANDI, SLTU, LHU, LUI, SB, LBU, JUMP 

164.gzip 0.00784 0.00991 0.01546 
ADDIU, ADDU, LBU, BNE, LW, BEQ, SLTU, 
SLL, LHU, ANDI, XOR, SW, SH, SRL, JUMP,  
LUI 

175.vpr-Place 0.00466 0.00355 0.00812 
LW, ADDU, SLL, ADDIU, SW, BEQ, SLT, BNE, 
L_S, BGTZ, MTC1, JUMP, FMUL_S, S_S, JR,  
JAL 

175.vpr-Route 0.00733 0.01284 0.01148 LW, ADDU, SW, SLL, ADDIU, L_S, BNE, SLT, 
C_LT_S, LH, BEQ, JR, JAL, BC1T, BC1F, MTC1 

177.mesa 0.00915 0.01324 0.01512 ADDIU, ADDU, BEQ, LW, BNE, LBU, SW, LB, 
JUMP, SB, ANDI, SLTU, SUBU, SLL, LUI, SRA 

181.mcf 0.29958 0.24564 0.22545 
LW, SW, ADDIU, ADDU, BNE, BEQ, SLT, 
SUBU, BGEZ, BLEZ, SLTU, SLL, LUI, JUMP, 
SLTI, SRA 

183.equake 0.01918 0.01789 0.01751 
ADDIU, ADDU, LW, L_D, BNE, BEQ, SW, SLL, 
FMUL_D, FADD_D, S_D, SLTI, L_S, MTC1, 
LUI, ANDI 

188.ammp 0.01360 0.01108 0.01008 LW, BNE, ADDIU, ADDU, SW, JUMP, BEQ, 
SLT, LB, L_S, ANDI, SLL, LBU, S_S, JR, JAL 

197.parser 0.04525 0.03850 0.04145 LW, ADDIU, ADDU, BNE, SW, LB, BEQ, SLL, 
SLT, LBU, SUBU, JR, JAL, JUMP, AND, ANDI 

 



 20

Table 12: Amount of Repetition for the Top 4, 8, and 16 Instruction Types, Sorted by the 
Number of Dynamic Instructions; Instruction Types are Given in Descending Order of 

Number of Dynamic Instructions 
 
For all three numbers of instruction types, the highest amount of repetition (smallest fraction) is 
for 099.go while the lowest amount of repetition (highest fraction) is for 181.mcf.  For all the 
benchmarks except for 099.go and 181.mcf, the ratio of input sets to dynamic instructions is on 
the order of 1:100 or 1:1000; for 099.go and 181.mcf, the ratio of input sets to dynamic 
instructions is on the order of 1:10,000 and 1:1, respectively.  Therefore, with the exception of 
181.mcf, there is a very high amount of repetition for all the benchmarks.  
 
Furthermore, from Table 12, there does not appear to be any discernable pattern to the amount of 
repetition as more instruction types are included. 


