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Abstract
This paper analyzes the amount of redundant computation at a globa leve within selected
benchmarks of the SPEC 95 and SPEC 2000 benchmark suites. Loca level redundant
computations are redundant computations that are the result of asingle static ingtruction (i.e. PC
dependent) while globa level redundant computations are redundant computations that are the
result of multiple atic ingtructions (i.e. PC independent). The results show thet for dl
benchmarks, less than 10% of the input sets account more than 65% of the dynamic instructions;
an input set is defined as an ingtruction’s opcode, input operands, and PC. In addition, for 8 of
the 15 benchmarks profiled in this paper, less than 10% of the input sets accounted for over 90%
of the dynamic ingructions. Additionaly, less than 1000 (0.14%) of the most frequently
occurring input sets accounted for 19.4% - 95.5% of the dynamic ingtructions. Furthermore,
more potentia for vaue reuse exigs at the globa level as compared to the traditiond loca level.
For an equa number of input sets— approximately 100 for each benchmark — at both the global
and locd levels, the globd level input sets accounted for an additiona 1.5% to 12.6% of the totd
number of dynamic ingtructions as compared to the loca leve input sets. Asaresult, exploiting
vaue reuse a the globa level should yield a significant performance improvement as compared
to exploiting reuse only at the local levd.



1 Introduction

During its execution, a program tends to repeatedly perform the same computations. Thisis due
to the way that programs are written [Molina99]. For example, due to a nested loop, an add
ingruction in the inner loop may repeatedly initidize and then increment aloop induction

variable. For each iteration of the outer loop, the computations performed by that add instruction
are completdly identicd.

In value reuse [Sodani 97, Malina 99], an onchip table dynamically caches the results of
previous computations. The next time the identical computation appears, the value reuse
hardware accesses the table (using the PC an index), retrieves the result, and forwards the result
to dependent ingtructions. The indruction is then removed from the pipeine snceit has finished
executing.

Vaue reuse improves the processor’ s performance by effectively decreasing the latency of the
reused indructions. Decreasing the latency of areused ingtruction ether directly or indirectly
reduces the execution time of the critica path; directly if the reused ingtruction is on the critica
path and indirectly if the reused instruction produces the vaue of an input operand for an
ingruction that is on the critical path. Furthermore, since the reused ingtruction does not pass
through al the pipeline stages, the number of resource conflicts (available issue dots, functiona
units, reservation station entries, etc.) decreases.

Since the PC isused to index the value reuse table, traditiona value reuse is based on the
computationd higtory of asingle gatic ingtruction. Consequently, previous computations can
only be reused if that computation was performed for the instruction associated with that
particular PC. Asaresult, while another ingtruction of the same type, but with a different PC,
may perform a computation that could be reused by the first ingtruction, vaue reuse does not
occur because the results of the second instruction cannot be accessed by thefirgt.

This paper refers to PC dependent value reuse aslocd leve or loca vaue reuse and PC
independent vaue reuse as globd leve or globd vduereuse. Inlocd leve vauereuse, the
value reuse table is accessed by using the PC. Since the PC is used to access the table, only the
vaue higory for that ingtruction isaccessble. Asaresult, for vaue reuse to occur for that
dynamic ingruction, the static instruction must have previoudy executed with the same input
operands. If not, then the dynamic ingtruction cannot be reused. However, in globd vaue reuse,
the PC is not used to access the vaue reuse table; instead, the table is accessed by some
combination of the opcode and input operands. As aresult, the instruction can reuse the output
of any previoudy executed ingruction that had the same opcode and input operands. In
conclusion, Since usng the PC to access the value reuse table limits "reusability” to that
corresponding instruction, PC dependent value reuse is referred to asloca level vauereuse. On
the other hand, using the opcode and the input operands (i.e. PC independent vaue reuse) to
accessthereuse tableis caled globa vaue reuse.

The gods of this paper are to determine the potentia of globa vaue reuse by quantifying the
amount of redundant computation at the globd level and to compare it to the amount of

redundant computation at the loca level. This paper is organized as follows: Section 2 describes
some related work. Section 3 describes the experimental methodology and setup while Section 4



presents, analyzes, and discusses the results. Section 5 discusses future work and Section 6
concludes.

2 Related Work

[Sodani 98] andlyzed the amount of ingtruction repetition in the integer benchmarks of the SPEC
95 benchmark suite. Their results showed that 56.9% (129.compress) to 98.8% (124.m88ksim)
of the dynamic ingructions were repeated. However these results were only for ingtruction
repetition at the locd leve. In addition, they also andyzed the causes of ingtruction repetition.

[Gonzdez 98] andyzed the amount of indruction repetition in the integer and floating-point
benchmarks of the SPEC 95 benchmark suite. Their results showed that 53% (110.applu) to
99% (104.hydro2d) of the dynamic instructions were repeated. Furthermore, the geometric
means of the dl the benchmarks, the integer benchmarks only, and the floating- point
benchmarks only were 87%, 91%, and 83%, respectively. Therefore, there is not a significant
difference in the amount of ingtruction repetition between the integer and floating-point
benchmarks. Like [Sodani 98], their results were for ingtruction repetition at only the loca leve.

[Sodani 97] implemented a dynamic va ue reuse mechanism that only exploited local level vaue
reuse and tested it with selected SPEC 92 and 95 benchmarks. Their value reuse mechanism
reused 0.2% to 26%, 5% to 27%, and 13% to 27% of the dynamic instructions for a 32 entry, a
128 entry, and a 1024 entry, respectively, value reuse buffer. It produced speedups of 0% to
17%, 2% to 26%, and 6% to 43% for a 32 entry, a 128 entry, and a 1024 entry, respectively,
vaue reuse buffer. However, reusing a higher percentage of ingructions did not directly

trandate to greater speedup.

[Molina 99], on the other hand, implemented a dynamic value reuse mechanism that exploited
vaue reuse a the both the globa and local levels. To test the performance of their value reuse
mechanism, they smulated sdected integer and floating- point benchmarks from the SPEC 95
benchmark suite. Their value reuse mechanism produced speedups of 3% to 25%; on average, it
reused about 30% of the ingtructions that resulted in a 10% speedup. While [Molina 99]
implemented a globa reuse mechaniam, it did not determine the potentiad for globa value reuse
nor did it analyze which instructions had the highest frequencies of repetition.

3 Experimental Setup

To determine the amount of redundant computation at the globa level, the opcode, input
operands, and PC for dl dynamic ingtructions had to be stored. This paper refers to the opcode,
input operands, and PC of adynamic ingruction asthe “input s&t” for that instruction. To reduce
the memory requirements for storing this information, for duplicate input sets (i.e. redundant
computations), in addition to storing the input set itself, the total number of times that that input
set was executed was stored.  The ingtruction output was not stored because it is purdly a
function of the input s&t.

To determine the amount of globa redundant computation, theinput set PCwassetto 0. Asa
result, input sets that had the same opcode and input operands, but different PCs, mapped to the
sameinput set. For the local levd, the input set PC was smply the ingtruction’s PC.



To gather this data, amodified verson of sm-fast from the Smplescdar tool suite [Burger 97]
was used. Since Sm-fagt isonly afunctiond smulator, it is optimized for amulation gpeed. As
aresult, it does not account for time; only executes instructions serialy; and does not mode a
processor’s pipeling, caches, etc. sm-fast was used as the base smulator instead of Ssm-outorder
for two reasons. Thefirgt reason is that since this paper only profiles the ingtructions, the
execution time is unimportant. Consequently, only afunctiond smulator is needed. Secondly,
since the code that was added to the base smulator accounted for a significant fraction of the
amulation time, afast base smulator was needed to reduce the overal smulation time.

The criteriafor sdecting which benchmarks to profile was that the benchmark had to be written
in C because the Smplescaar tool suite only has a C compiler. The benchmark input set that
was used was the maximum of ether: 1) The one that produced the fewest number of dynamic
ingructions or 2) The one that was closest to 500 million dynamic indructions. Since the input
et for eech dynamic ingruction was stored in memory, the number of ingtructions for each
benchmark was limited to reduce the memory requirements — which needed to be below the
meachinelimit of 50 GB. However, each benchmark ran to completion. All benchmarks were
compiled using gec 2.6.3 at optimization level O3. Table 1 lists the benchmarks profiled in this
paper and some selected characteristics:

Benchmark Suite Type Instructions (M) Input Set
099.go SPEC 95 Integer 548.2 Tran
124.m88ksim SPEC 95 Integer 120.1 Tran
126.gcc SPEC 95 | nteger 1273.3 Test
129.compress SPEC 95 I nteger 35.7 Tran
130.1i SPEC 95 Integer 183.3 Tran
132.ijpeg SPEC 95 Integer 553.3 Test
134.perl SPEC 95 Integer 2391.5 Test
147.vortex SPEC 95 Integer 2520.1 Tran
164.9zip SPEC 2000 Integer 526.4 Reduced Small
175.vpr - Place | SPEC 2000 Integer 216.9 Reduced Medium
175.vpr - Route | SPEC 2000 Integer 93.7 Reduced Medium
177.mesa SPEC 2000 | Hoding-Point 1220.9 Reduced Large
181.mcf SPEC 2000 I nteger 174.7 Reduced Medium
183.equake SPEC 2000 | Hoating-Point 715.9 Reduced Large
188.ammp SPEC 2000 | Hoating-Point 244.9 Reduced Medium
197.par ser SPEC 2000 Integer 459.2 Reduced Medium

Table 1: Benchmark Characteristics

For the SPEC 2000 benchmarks, reduced input sets were used to reduce the smulation times.
Benchmarks that used the reduced input sets exhibit smilar behavior as compared to when the
benchmark used the test, train, or reference input sets. For more information on the reduced
input sets for these benchmarks, see [KleinOsowski 00].

175.vpr is aversdile place and route tool. Executing the benchmark involves firgt running the
place function and then the route function (with the output of the place function asthe input). As



aresult, two separate smulations captured the input sets for these two functions. Therefore, in
this paper, the results for the place and route functions are given separately.

4 Results

The following terms gppear in the subsequent subsections: frequency of repetition and
occurrences. The frequency of repetition, or frequency, is the number of timesthat an input set
occurs (i.e. the number of dynamic ingtructions with that particular input set). Therefore, if one
input st has afrequency of repetition of 1, it is completely unique (only one dynamic indruction
in the entire program has that input set).

The number of occurrences is the number of times that a particular frequency is present. See
Subsection 4.1 for an example of the number of occurrences.

4.1 Digtribution of Occurrencesfor Each Frequency
The first result is the distribution of occurrences for each frequency. For example, consder the
following input setsin Figure 1.

0+1, PC = 0, Frequency = 400
0+9, PC =0, Frequency = 350
1+1, PC = 0, Frequency = 500
1+2, PC = 0, Frequency =450
1+3, PC = 0, Frequency = 500
1+4, PC = 0O, Frequency = 450
1+5, PC = 0O, Frequency = 450
1+6, PC = 0, Frequency =450
1+7, PC = 0, Frequency = 550

Figure 1: ExampleInput Sets
Therefore, 0+9 occurs 350 times in the program; 0+1 400 times; 1+2, 1+4, 1+5, and 1+6 450

times each; 1+1 and 1+3 500 times each; and 1+7 550 times. Table 2 shows the digtribution of
occurrences for each frequency for the input setsin Figure 1.

Range | Occurrences] Contributing |nput Sets
300-349 0
350-399 1 j0+9
400-449 1 [0+1
450-499 4 1+2, 1+4, 1+5, 1+6
500-549 2 1+1, 143
550-599 1 1+7
600-649 0

Table 2: Digribution of Occurrencesfor Each Frequency for the Input Setsin Figure 1

After sorting the frequenciesinto severd different range sizes, the logarithmic range size
produced the most compact results without affecting the content of the results. Table 3 shows



the distribution of occurrences for each frequency for each benchmark for the logarithmic ranges.

Range
Benchmark <10 <10° | <10° | <10* | < 10° < 10°|< 10|< 10°|< 10°
099.go 580358 | 107922 | 75852 | 64067 |11481| 618| 54 | 0 | O
124.m88ksim | 4496289 | 27822 | 5499 | 6434 | 720 | 122| 16 | 0 | ©O
126.gcC 8797319 | 2145525 728418(117313| 8122 [ 888 62 | 6 | O
129.compress | 413289 | 249581 | 17965 | 1053 | 289 | 68 | 0 | 0 | O
130.li 145432 | 83172 [173744| 20682 | 460 | 106 | 20 | 0 | O
132.ijeg 8407217 | 2219849(619779| 36934 | 3893 [ 297 14 | 1 | ©
134.per| 65800155| 4277381 |527417| 57588 | 3232 (2383|388 9 | 0O
147.vortex |13178369|1250703| 151615| 30943 | 14640|2663| 176 | 25 | 1
164.97ip 3718958 | 4276579|686743| 21906 | 3076 | 166 | 19 | 2 | O
175.vpr-Place | 7025225 | 31835 | 8868 | 5995 | 2134 |385| 15| 0 | O
175.vpr-Route | 1006428 | 183494 | 64103 | 8611 | 599 | 87 | 3 | 0 | ©
177.mesa [20582763| 2591 [196781| 2503 | O | 23 [291| 11 | 1
181.mcf 38364541| 417713 | 84431 | 10012 | 1399| 37| 8 | 0 | ©O
183.equake | 9601311 |2604542|101950| 5299 | 2778 |1007| 67 | 4 | ©
188ammp | 2361735| 206934 | 3639 | 7380 [ 2333|142 22| 1 | ©
197.parser | 17003501|2431005|223679] 14910 | 4008 | 404 | 35 | 1 | O

Table 3: Digtribution of Occurrencesfor Each Frequency

Note that each column is not the cumulative sum of the previous columns, but only the number
of occurrences between column headings.

Table 3 shows that most of the input sets have a frequency thet is less than 1000, dthough dl the
benchmarks, with the exception of 129.compress, have afew input sets that have frequencies
over 1,000,000. 147.vortex and 177.mesa have an input set with a frequency of over
100,000,000.

Table 4A shows the distribution of occurrences for each frequency as a percentage of the sum of
occurrences while Table 4B shows the cumulative percentage. Therefore, each column isthe
sum of the occurrences for al the occurrences less than the column label.

Range

Benchmark [ <10'|<10°[<10°| <10 <10°|<10°| <10"| <10° | < 10°
099.go 691|128 | 90 | 76 | 1.4 | 01 | 00 | 0.0 | 0.0
124.m88ksm | 991 | 06 | 01 | 01 | 00 | 00 | 00 | 0.0 | 0.0
126.gcc 7461 182 | 62 [ 10 [ 01 [ 00 | 00 | 00 | 0.0
129.compress | 60.6 | 366 | 26 | 02 | 00 | 00 | 0.0 | 0.0 | 0.0
130.li 343|196 | 410] 49 [ 01 | 00 | 00 | 00 | 0.0
132.ijeg 745|197 | 55| 03 | 00 | 00 | 00 | 0.0 | 0.0
134.per| 931 61 | 07 | 01| 00| 00| 00 ] 00| 00
147.vortex 901 | 85 | 1.0 | 02 [ 01 | 00 | 00 | 0.0 | 0.0




164.9zip 4271491 79 | 03 | 00 | 0O | 00O | 0.0 | 0.0
175.vpr-Place | 993 | 04 | 0.1 | 01 | 00 | 0.0 | 0.0 | 0.0 | 00
175.vpr-Route] 79.7 | 145 | 51 | 0.7 | 00 | 0.0 | 00 | 0.0 | 0.0

177.mesa 90| 00| 09 | 0O ] 0O | 0O | 0O | 0O | 0.0
181.mcf 987 11 | 02| 00| 0O | 0O | 0O | 0.0 | 0.0
183.equake | 780|211 | 08 | 00 | 0.0 | 0.0 | 00 | 00 | 0.0
188.ammp 915( 80 | 01 | 03] 01 | 00O | 0O | 0.0 | 0.0
197.par ser 864 ] 124 | 11 | 01 | 00O | OO | 0.0 | 0.0 | 0.0

Table 4A: Percentage of the Occurrencesfor Each Frequency

Range
Benchmark [<10'|<10°|<10°|<10*|<10°[<10°|<10"[<10°| <10’
099.go 69.1 | 81.9 | 90.9 | 98.6 | 99.9 | 100.0 | 100.0 | 100.0 | 100.0
124.m88ksim | 99.1 | 99.7 | 99.8 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
126.gcc 746 | 92.8 | 98.9 | 99.9 | 100.0 | 100.0 | 200.0 | 100.0 | 100.0
129.compress | 60.6 | 97.2 | 99.8 | 99.9 | 100.0 | 100.0 | 100.0 [ 100.0 [ 100.0

130.li 343 | 54.0 | 95.0 | 99.9 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
132.ijeg 745 | 94.1 | 99.6 | 100.0| 100.0 | 100.0 | 100.0 | 100.0 | 100.0
134.per| 93.1 | 99.2 | 99.9 | 100.0| 100.0 | 100.0 | 100.0 | 100.0 | 100.0

147.vortex 90.1 | 98.6 | 99.7 | 99.9 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
164.9zip 42.7 | 91.8 | 99.7 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
175.vpr-Place | 99.3 | 99.8 | 99.9 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
175.vpr-Route] 79.7 | 94.2 | 99.3 | 99.9 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
177.mesa 99.0 | 99.0 | 100.0| 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
181.mcf 98.7 | 99.8 | 100.0 | 100.0| 100.0 | 100.0 | 100.0 | 100.0 | 100.0
183.equake | 78.0 | 99.1 | 99.9 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
188.ammp 915 | 99.5 | 99.6 | 99.9 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
197.par ser 86.4 | 98.8 | 99.9 | 100.0| 100.0 | 100.0 | 100.0 | 100.0 | 100.0

Table 4B: Cumulative Per centage of the Occurrencesfor Each Frequency

For 124.m88ksim, 134.perl, 147.vortex, 175.vpr — Place, 177.mesa, 181.mcf, and 188.ammp; at
least 90% of the occurrences have frequencies less than 10. For 126.gcc, 129.compress,
132.ijpeg, 164.9zip, 175.vpr — Route, 183.equake, and 197.parser; at least 90% of the
occurrences have frequencies less than 100. Finally, for 099.go and 130.li, at least 90% of the
occurrences have frequencies lessthan 1000. Table 5 summarizes the previous sentence.

Range with 90% Cutoff Benchmarks
<10 124.m88ksim, 134.perl, 147.vortex, 175.vpr
— Place, 177.mesa, 181.mcf, 188.ammp
<100 126.gcc, 129.compress, 132.ijpeg, 164.gzip,
175.vpr — Route, 183.equake, 197.parser
< 1000 099.90,130.i




Table 5: Frequency Range With At Least 90% of the Cumulative Occurrences

4.2 Number of Redundant Instructions

The product of the occurrences and frequency is the number of dynamic ingructions for that

input set. For example, if three input sets each have afrequency of 500,000, then those input sets
are executed atotal of 1,500,000 times, which corresponds to 1,500,000 dynamic instructions.
Since Table 3 only shows the number of occurrences for each frequency range, it does not
indicate which of the benchmarks could show the largest performance gain if aglobd reuse
mechanism were implemented. Table 6A shows the percentage of the products for each
frequency range while Table 6B shows the cumulative percentage of the products.

Range
Benchmark [ <10'|<10°|<10°|<10%|<10°|<10°| <10’ | <10°| < 10°

099.go 01| 04 | 31 | 273|320 154|216 | 00 | 00
124.m88ksm | 49 | 06 | 1.7 | 103 | 206 | 335 | 284 | 00 | 0.0
126.gcc 18 | 52 [ 177|214 | 170|171 ]| 105 | 94 | 00
129.compress| 14 | 210 | 99 | 86 | 178 | 412 | 00 | 00 | 0.0
130.li 01 | 22 | 291 | 226 | 56 | 204 | 199 | 00 | 00
132.ijeg 36 | 120|231 | 185|188 | 135| 76 | 3.0 | 00
134.per| 45 | 34 | 90 | 45 | 46 | 235|401 | 104 | 0.0

147vortex | 1.2 | 12 | 1.7 | 40 | 181 | 289 | 132 | 25.7 | 6.0
164.9zip 32 | 121 | 375| 82 | 160 | 79 | 92 | 60 | 00
175vpr-Place | 3.7 | 03 | 1.3 | 84 | 315 | 400 | 148 | 00 | 00
175vpr-Route| 2.2 | 6.2 | 194 | 231 | 162 | 280 | 50 | 0.0 | 00
177mesa | 23 | 00 | 20 | 02 | 00 | 06 | 64.8 | 199 | 102
18Lmcf | 231 | 64 | 136 | 157 | 21.8 | 59 | 134 | 00 | 00
183equake | 34 | 88 | 31 | 20 | 138 | 393 | 225 | 7.1 | 00
188ammp | 1.9 | 15 | 06 | 138 | 26.2 | 195 | 27.4 | 92 | 00
197parser | 75 | 161 | 85 | 105 | 202 | 18.7 | 161 | 24 | 0.0

Table 6A: Percentage of the Occurrences/Frequency Product (Max. Percentage in Bold)

Range
Benchmark [<10'|<10°|<10°[<10%*|<10°| <10°| <10’ | <10°| < 10°
099.go 01 | 06 | 37 | 31.0 | 63.0 | 784 |100.0| 100.0 | 100.0

124.m88ksm § 49 | 55 | 72 | 175 | 381 | 71.6 | 100.0|100.0 | 100.0
126.gcc 18 | 70 | 247 | 46.1 | 63.1 | 80.2 | 90.6 | 100.0 | 100.0
129.compress | 14 | 224 | 324 | 41.0 | 58.8 | 100.0 | 100.0 | 100.0 | 100.0

130.li 01 | 24 | 315 | 54.1 | 59.7 | 80.1 | 100.0| 100.0| 100.0
132.ijeg 36 | 156 | 38.7 | 57.2 | 76.0 | 89.5 | 97.0 | 100.0 | 100.0
134.per| 45 | 79 | 169 | 214 | 26.1 | 49.6 | 89.6 | 100.0| 100.0

147.vortex 12 | 23 | 40 | 81 | 26.2 | 551 | 684 | 94.0 | 100.0
164.9zip 32 | 154 | 528 | 61.0 | 77.0 | 84.8 | 94.0 | 100.0 | 100.0
175.vpr-Place | 3.7 | 40 | 53 | 13.6 | 45.2 | 85.2 | 100.0 | 100.0 | 100.0
175.vpr-Route] 2.2 | 84 | 27.8 | 50.9 | 67.0 | 95.0 | 100.0] 100.0 | 100.0




177.mesa 23 | 23 | 43 | 45 | 45 | 51 | 69.9 | 89.8 | 100.0
181.mcf 231 | 29.6 | 431 | 58.9 | 80.6 | 86.6 | 100.0 | 100.0 | 100.0
183.equake 34 | 122 | 153 | 174 | 31.2 | 70.5 | 92.9 | 100.0 | 100.0
188.ammp 19 | 33 | 39 | 17.7 | 439 | 634 | 90.8 | 100.0 | 100.0
197.par ser 75 | 236 | 321 | 42.7 | 628 | 81.5 | 97.6 | 100.0 | 100.0

Table 6B: Cumulative Per centage of the Occurrences/Frequency Product

From Table 5, more than 90% of the input sets (for frequencies less than 10) for 124.m88ksim,
134.perl, 147.vortex, 175.vpr — Place, 177.mesa, 181.mcf, and 188.ammp account for 4.9%,
4.5%, 1.2%, 3.7%, 2.3%, 23.1%, and 1.9%, respectively, of the total number of instructions.
More than 90% of the input sets (for frequenciesless than 100) for 126.gcc, 129.compress,
132.ijpeg, 164.gzip, 175.vpr — Route, 183.equake, and 197.parser account for 7.0%, 22.4%,
15.6%, 15.4%, 8.4%, 12.2%, and 23.6%, respectively, of the total number of instructions.
Finally, more than 90% of the input sets (for frequencies less than 1000) for 099.go and 130.1i
account for 3.7% and 31.5%, respectively, of the total number of ingtructions. Therefore, more
than 90% of the input sets account for only 1.2% (147.vortex) to 31.5% (130.li) of the total
number of ingructions. For 7 of the 16 benchmarks, more than 90% of the input sets account for
less than 5% of the tota number ingtructions; for 9 of 16 benchmarks, the number is less than
10%; and for 15 of the 16 benchmarks, the number isless than 25%. In other words, with the
exception of 130.li, more than 75% of the instructions come from less than 10% of the input sets.

The key point from Tables 4A, 4B, 6A, and 6B isthat a very small percentage of the input sets
account for a disproportionately large percentage of the total number of instructions. Table 7
shows the percentage of the dynamic ingtructions that are from less than 1024 of the input sets.

Benchmark | Number of Input Set | % of Input Sets | % of Dynamic Instructions
099.go 672 0.07997 37.0
124.m88ksim 858 0.01891 82.5
126.gcc 956 0.00810 36.9
129.compress 357 0.05233 59.0
130.1i 586 0.13833 459
132.ijeg 312 0.00276 24.0
134.perl 397 0.00056 50.4
147.vortex 202 0.00138 449
164.9zip 187 0.00215 23.0
175.vpr-Place 400 0.00565 54.8
175.vpr-Route 689 0.05454 49.1
177.mesa 326 0.00157 95.5
181.mcf 45 0.00012 194
183.equake 71 0.00058 29.5
188.ammp 165 0.00639 56.1
197.par ser 440 0.00224 37.2

Table 7: Percentage of Dynamic I nstructions From Less Than 1024 of the I nput Sets



Table 7 shows that with aredidticaly sized reuse buffer (less than 1024 entries), asgnificant
percentage of instructions can be reused (19.4% - 95.5%).

4.4. Top 100 Input Setsby Occurrence

The following tables, Tables 8A and 8B, show the characteristics of the top 100 input sets, by
occurrence, for each benchmark. (To be more precise, the tables show the characteristics of the
input sets with the top 100 occurrences. As aresult, for some benchmarks, the tables represent
the characterigtics for more than 100 input sets if two input sets have the same number of
occurrences) In Table 8A, the second and third columns show the minimum and maximum
number of occurrences of the input setsin the Top 100 list. The fourth column shows what
percentage of the input sets these Top 100 occurrences represent while the rightmost column
does the same for the total number of ingructions. Table 8B shows the ingtruction types that are
represented in the ligt.

Occurrences

Benchmark | Minimum Maximum |% of Input Sets} % of Total Instructions
099.go 340375 11785454 0.01214 21.0
124.m88ksim | 79063 4660428 0.00324 62.6
126.gcc 694953 27584059 0.00085 21.9
129.compress | 20600 648118 0.02477 51.9
130.li 84971 4058778 0.03187 40.7
132.ijeg 183032 16339592 0.00124 19.9
134.perl 2282917 60464845 0.00023 34.6
147.vortex | 1479010 150761871 0.00078 40.6
164.9zip 167914 19703045 0.00145 215
175.vpr-Place | 283292 6588115 0.00163 37.3
175.vpr-Route] 61965 1862986 0.00958 35.6
177.mesa 1310736 124783523 0.00110 86.9
181.mcf 75142 5471245 0.00030 22.7
183.equake 608828 16323043 0.00119 374
188.ammp 190011 22467568 0.00469 53.6
197.par ser 291888 11138791 0.00055 25.7

Table 8A: Characteristics of the Input Setsfor the Top 100 Occurrences

Benchmark Ingtruction Type
099.go ADDIU, ADDU, BEQ, BNE, JAL, JUMP, LUI, LW, SLL, SLTI, SUBU, SW
ADDIU, ADDU, AND, ANDI, BEQ, BNE, DLW, JAL, JR, JUMP, LBU, LUI,
124.m88ksim LW, MFHI, MFLO, MULTU, OR, ORI, SLL, SLLV, SLTI, SLTIU, SLTU,
SRL, SRLV, SUBU, SW
126.q¢c ADDIU, ADDU, AND, ANDI, BEQ, BGEZ, BLEZ, BLTZ, BNE, LB, LHU,
' LUI, LW, NOR, OR, SLL, SLT, SLTI, SLTIU, SRA
ADDIU, ADDU, AND, ANDI, BC1F, BEQ, BGTZ, BLEZ, BLTZ, BNE, JAL,
129.compress PR, JUMP, LBU, LUI, LW, SB, SLL, SLLV, SLT, SLTI, SLTU, SRA, SUBU,
SW
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ADDIU, ADDU, AND, ANDI, BEQ, BNE, JAL, JR, JUMP, LB, LUI, LW,

1300 JoRi SLL, SLTI SLTIU, SLTU, SRA, SW
1325 |ADDIU. ADDU, AND, ANDI, BEQ, BGEZ, BNE, JAL, R, JUMP, LUI, LW,
MFLO, OR, SH, SLL, SLLV, SLT, SLTI, SRA, SUBU, SW
134par! _[ADDIU, ADDU, ANDI, BEQ, BNE, JAL, JALR, 3R, JUMP, LB, LH, LU,
' LW, SB.SLL, SLT, SLTIU, SLTU, SW
47 vortex_JADDIU, ADDU, ANDI, BEQ, BLEZ, BNE, JAL, JR, LHU, LUI, LW, OR],
SLL, SLTU, SW
1oaqzip_|ADDIU. ADDU, BEQ, BNE, JAL, 1, JUMP, LBU, LHU, LUI, LW, ORI, 6.
' SH. SLTI, SLTIU, SLTU, SW
ADDIU, ADDU, BCIF, BCIT, BEQ, BGTZ, BNE, C LT D, CVT D S,
175vpr-Place [cvT S W, JAL, JR, JUMP, L D, L_S, LUI, LW, MTCL ORI, SLL, SLT,

SLTI, SW

175.vpr-Route

ADDIU, ADDU, BC1F, BC1T, BEQ, BNE,C EQ D,C LT S, CVT D_S,
JAL, JR, L D, LH, LUI, LW, MTCL, S D, SLL, SLT, SW

ADDIU, ADDU, AND, ANDI, BEQ, BGTZ, BLEZ, BNE, JAL, JR, JUMP,

177.mesa LB, LBU, LHU, LUI, LW, NOR, ORI, SB, SLL, SLTI, SLTIU, SLTU, SRA,
SRL, SUBU, SW, XORI
181.mcf ADDIU, ADDU, BEQ, BGEZ, BLEZ, BNE, JAL, JR, JUMP, LUI, LW, SLT,
SUBU, SW
ADDIU, ADDU, ANDI, BC1F, BEQ, BLEZ, BLTZ, BNE, FADD_D,
183.equake JFMUL_D, JAL,JUMP,L_D, LB, LBU, LUI, LW, MFC1, MTC1, ORI, S D,
SLL,SLT, SLTI, SRL, SW
188.ammp ADDIU, ADDU, ANDI, BC1F, BEQ, BLTZ, BNE, FMOV_D, FMUL_D, JAL,
JR, JUMP,L_S LBU, LHU, LUI, LW, MFC1, MTC1, ORI, SLL, SLT, SW
197 parser ADDIU, ADDU, AND, ANDI, BEQ, BNE, JAL, JR, JUMP, LB, LHU, LUI,

LW, NOR, ORI, SLL, SLTU, SRA, SUBU, SW

Table 8B: Characteristics of the Input Setsfor the Top 100 Occurrences

Two conclusions can be drawn from Tables 8A and 8B. Firgt of al, Table 8A confirmsthe
conclusion drawn from Tables 4A, 4B, 6A, and 6B that a very small percentage of the input sets
account for a disproportionately large number of the dynamic ingtructions.

Although Tables 4A, 4B, 6A, 6B, and 8A show that avery smal percentage of the input sets
account for a disproportionatdly large number of the dynamic ingructions, not dl the input sets

in that smdl percentage will yield the same performance gain or will consume the same amount

of areain the vdue reuse table. For instance, while a double floating-point divide takes multiple
cyclesto execute — and therefore is an ided candidate for reuse, storing two 64-bit double words

(input operands)

and one (128-bit) quad word is very expendve in terms of area. Furthermore,

comparing two 64-hit numbers could delay the actud reuse of the ingtruction by acycle.
However, what is not clear for these ingtructions is whether the large reduction in the execution
latency is worth the additional cost in areaand a comparatively longer accesstime. Similarly,
reusing the input set for a store ingtruction probably would not increase the performance as much

as the frequency

of repetition would indicate because stores are probably not on the critica path.

However, for load ingructions, either the target address for the load can be reused or the data
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returned by the load can reused (which is essentidly last-vaue prediction). Findly, reusing the
input sets for move ingructions (move to or from the high or low register and to or fromthe
integer or floating-point registers), does not improve the performance because the ingtruction
does not generate an output. In this case, the ingtruction only performs an action (a register
write), which has to occur in program order. Therefore, the second conclusion from Tables 8A
and 8B isthat not dl theindructionsin the Top 100 occurrences can be reused or will have the
same performance gain when reused.

4.5 Comparison of Global Leve Value Locality in Integer and Floating-Point

After comparing the results of 177.mesa, 183.equake and 188.ammp againg the other 13

benchmarks for Tables 4A, 4B, 6A, 6B, 7, and 8A, there does not appear to be any significant
differences between the integer and floating-point benchmarks. One dight difference appearsin
Table 8B; for the floating-point benchmarks, input sets from floating- point ingructions are in the
Top 100 occurrences. Thisis expected since these benchmarks contain a significantly higher
percentage of floating-point ingructions. However, snce only three floating-point benchmarks
were profiled, no definite conclusons can be made at thistime.

4.6 Comparison to Traditional (Local) Value Reuse

One of the key questions that this paper tries to answer is how much more locdity is available
and can be exploited at the globd leve than at the local level? This section compares the globa
and locd levd resultsfor the:

1. Cumulative Percentage of the Occurrences/Frequency Product
2. Percentage of Instructions Covered by the Input Sets From the Top 100 Occurrences

4.6.1 Cumulative Per centage of the Occurrences/Frequency Product
For the cumulative percentage of the occurrences/frequency product, if there is more locdlity at
the globd level, then the globa cumulative percentages should be lower, for a given frequency

range, than that of the local cumulative percentages.

For convenience, Table 6B is restated bel ow:

Range
Benchmark [<10'|<10°|<10°|<10%*|<10°|<10°| <10’ | <10°| < 10°
099.go 01 | 06 | 37 | 310 | 63.0 | 78.4 | 100.0 | 100.0 | 100.0
124.m88ksm | 49 | 55 | 7.2 | 175 | 38.1 | 71..6 | 100.0| 100.0 | 100.0
126.gcC 18 | 70 | 247 | 46.1 | 63.1 | 80.2 | 90.6 | 100.0 | 100.0
129.compress | 1.4 | 22.4 | 324 | 41.0 | 58.8 | 100.0 | 100.0 | 100.0 | 100.0
130.li 01 | 24 | 315 | 54.1 | 59.7 | 80.1 | 100.0 | 100.0 | 100.0
132.ijeg 36 | 156 | 38.7 | 572 | 76.0 | 89.5 | 97.0 | 100.0 | 100.0
134.per| 45 | 79 | 169 | 214 | 26.1 | 49.6 | 89.6 | 100.0| 100.0
147 .vortex 12 | 23 | 40 | 81 | 262 | 55.1 | 68.4 | 94.0 | 100.0
164.9zip 32 | 154 | 528 | 61.0 | 77.0 | 84.8 | 94.0 | 100.0 | 100.0
175.vpr-Place | 37 | 40 | 53 | 136 | 45.2 | 85.2 | 100.0 | 100.0 | 100.0
175.vpr-Route] 2.2 | 84 | 27.8 [ 50.9 | 67.0 | 95.0 | 100.0 | 100.0 | 100.0
177.mesa 23 | 23 | 43 | 45 | 45 | 51 | 69.9 | 89.8 | 100.0
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181.mcf 231 ] 296 | 43.1 | 589 | 80.6 | 86.6 | 100.0 | 100.0 | 100.0
183.equake 34 | 122 | 153 | 174 | 31.2 | 70.5 | 92.9 | 100.0 | 100.0
188.ammp 19 | 33 | 39 | 17.7 | 439 | 634 | 90.8 | 100.0 | 100.0
197.par ser 75 | 236 | 321 | 42.7 | 628 | 81.5 | 97.6 | 100.0 | 100.0

Table 6B (Restated): Cumulative Per centage of the Occur rences/Frequency Product,
Global

Table 9A shows the cumulative percentage of the products for the locd level while Table 9B
shows the difference in the global and local cumulative percentages for each frequency range.

Range
Benchmark [<10'[<10°|<10°[<10*|<10°| <10°| <10" | <10°| < 10°
099.go 08 | 55 | 273 | 58.3 | 81.1 | 92.2 [ 100.0 | 100.0 | 100.0

124.m88ksm | 52 | 58 | 9.2 | 200 | 429 | 75.3 | 100.0 | 100.0 | 100.0
126.gcc 9.0 | 19.2 | 370 | 56.2 | 79.2 | 89.9 | 92.7 | 100.0 | 100.0
129.compress | 15 | 25.1 | 33.6 | 45.2 | 61.6 | 100.0 | 100.0 | 100.0 | 100.0

130.li 10 | 10.3 | 43.2 | 55.7 | 62.5 | 91.8 | 100.0 | 100.0 | 100.0
132.ijeg 44 | 234 | 471 | 64.7 | 83.0 | 94.1 | 97.0 | 100.0 [ 100.0
134.per| 6.7 | 90 | 20.1 | 223 | 29.2 | 55.7 | 92.0 | 100.0 | 100.0

147.vortex 1.7 | 28 | 59 | 16.1 | 37.3 | 66.4 | 84.9 | 100.0 | 100.0
164.9zip 11.0| 286 | 57.0 | 62.2 | 78.0 | 86.3 | 94.0 | 100.0 | 100.0
175.vpr-Place | 3.7 | 41 | 75 | 305 | 61.8 | 93.3 | 100.0 | 100.0 | 100.0
175.vpr-Route ] 4.7 | 158 | 421 | 61.0 | 77.1 | 98.7 | 100.0 | 100.0 | 100.0
177.mesa 23 | 43 | 43 | 45 | 45 | 54 | 87.9 | 100.0| 100.0
181.mcf 238 | 314 | 464 | 708 | 81.6 | 87.6 | 100.0 | 100.0 | 100.0
183.equake 69 | 132 | 154 | 176 | 36.5 | 82.0 | 94.8 | 100.0 | 100.0
188.ammp 19 | 33 | 51 | 304 | 476 | 69.9 | 100.0 | 100.0 | 100.0
197.par ser 146 | 294 | 353 | 488 | 71.0 | 854 | 97.6 | 100.0] 100.0

Table 9A: Cumulative Per centage of the Occurrences/Frequency Product, L ocal

Range
Benchmark [<10'[<10°[<10°|<10*|<10°[<10°| <10" [ <10°| <10’
099.go -0.7 | -49 |-236|-273|-181|-138| 00 | 0.0 | 0.0
124.m88ksm | -02 | -02 | -20 | -25 | -48 | -38 | 00 | 00 | 0.0
126.gcc -72 [-122]-123]-101[-160[ -97 | -20 | 00 | 0.0
129.compress | -01 | -27 | -12 | -42 [ -28 | 00 | 00 | 0.0 | 0.0
130.li -09 | -80 |-11.7] -16 | -27 [-11.7| 00 | 00 | 0.0
132.ijeg 08| -77| -84]-75|-70| -46 | 00 | 00 | 00
134.per| 22| -11]-32]-09|-32|-61]-23] 00 | 00
147.vortex | -05 | -04 | -19 | -80 [-11.1|-113|-165] -6.0 | 0.0
164.gzip -78 [-132] 42| -12|-10|-25] 00 | 00 | 00
175.vpr-Place § 0.0 | -0.1 | -22 |-168|-166| -81 | 0.0 | 0.0 | 0.0
175.vpr-Route] -25 | -75 | -143[-10.1|-100] -37 | 00 | 0.0 | 0.0
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177.mesa 00 | -20| 00 | 00 | 00 | -0.2 [-18.0|-10.2| 0.0
181.mcf -07|-18|-33 |-119| -10| -11 | 00 | 00 | 0.0
183.equake | -35| -1.0 | 00 | -02 | -54 |-115] -18 | 00 | 0.0
188.ammp 00| 00 | -12 |-127| -37 | -65 | -92 | 00 | 0.0
197.par ser -71 | -57]-32]-61|-82]-39| 00| 00 | 0.0

Table 9B: Differencein the Global and Local (Global — L ocal) Cumulative Per centages of
the Occurrences/Frequency Product; Differences within 0.1% and for Global Cumulative
Per centages under 100% arein Bold

As Table 9B clearly shows, the globd level has alower cumulative percentage a each frequency
range, for globa cumulative percentages less than 100%, for dl benchmarks and frequency
ranges except for 132.ijpeg: < 10"; 164.gzip: < 10”; 175.vpr — Place: < 10*; 177.mesa 10%, 10°,
10%, and 10°; 183.equake: 10%; 188.ammp: 10! and 10%; 197.parser: 10”. Thedifferencein
cumulative percentages that are within 0.1% are shown in boldface type (only for globa
cumulative percentages below 100%). Note that the cumulative locd leve percentages can

never be lower than the cumulative globd level percentages for any given frequency range.

Therefore, as expected, the globa cumulative percentages increase more dowly than the loca
cumulative percentages and for dl benchmarks and frequency ranges, the globa cumulative
percentage is lower than (for most cases) or equa to theloca cumulative percentage.
Consequently, significantly more reuse possibilities exist at the globa level as compared to the
local level because the al input sets have higher frequencies.

4.6.2 Per centage of Instructions Covered by Input Sets From the Top 100 Occurrences
Table 10 compares the percentage of ingtructions due to the input sets from the Top 100
occurrences for both the globd and locd levels. The number of input setsin thistable isthe
same for both the globa and locd levels and is the number of input setsin the Top 100
occurrences a the globa level.

Per centage of Total Instructions

Benchmark | Number of Input Sets | Global Local | Difference (Global — L ocal)
099.go 102 21.0 142 6.8
124.m88ksim 147 626 57.6 50
126.gcc 100 219 131 8.8
129.compress 169 519 480 3.9
130.1i 135 40.7 36.0 47
132.ijeg 140 199 144 55
134.per| 161 346 271 7.5
147.vortex 114 40.6 28.2 12.4
164.gzip 126 215 19.7 1.8
175.vpr-Place 115 37.3 254 11.9
17/5.vpr-Route 121 35.6 264 9.2
177.mesa 229 869 76.4 10.5
181.mcf 117 2.7 212 15
183.equake 146 374 248 12.6
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188.ammp | 121 536 475 6.1
197.parser | 109 25.7 217 4.0

Table 10: Percentage of Instructions Due to the Input Setsfrom the Top 100 Occurrences
for Both the Global and Local Levels

As expected, the input sets for the Top 100 occurrences at the global level cover a higher
percentage of ingructions for al benchmarks as compared to the input sets for the Top 100
occurrences a the local level. Therefore, agloba value reuse mechanism could reuse an
additiona 1.5% (181.mcf) to 12.6% (183.equake) of the total number of dynamic ingtructions as
compared to the local level.

4.6.3 Global vs. Local Comparison

The conclusion from Subsections 4.6.1 and 4.6.2 is that there is more performance potentid for
vaue reuse at the globa level as compared to the local level. However, in spite of these results,
it isdifficult to determine the performance difference between these two approaches. The
performance difference depends on the following three factors: 1) The number of reused
ingtructions on the critical path for both approaches, 2) The average number of redundant input
setsin the loca vaue reuse table, and 3) The precise implementation of the globa vaue reuse
mechanism.

For the firgt factor, it is reasonable to assume that distribution of reused ingtructions that are on
the critical path for the two approachesis similar. Therefore, this factor should not be the
primary contributor to the performance difference. The second factor is essentidly an efficiency
metric. If thelocal value reuse table holds severa redundant PC-independent input sets, then
some of its entries are wasted — when compared to the global value reusetable. If there are very
few unique input satsin the locad vaue reuse table, then the potentid performance difference
between the two approaches will be greater. Finally, the third factor determines the area of and
accesstimeto the globa vaue reuse hardware. For the same areg, the global value reuse table
may have fewer entries as compared to the local vaue reuse table if more hardware, such as
comparators, is needed. Furthermore, the access time of the global vaue reuse table could be
higher, which would obvioudy affect the performance.

Therefore, the most accurate way of comparing these two gpproachesis to implement and then
compare them.

However, these two approaches could be complementary, i.e. combining the two approaches
could provide better performance than by using ether oneindividudly. Whilethe locd leve
vaue locdity isasubset of the globa level vaue locdity (i.e. a the globd leve, fewer input sets
account for al the dynamic ingtructions), due to implementation differences, the loca leve reuse
mechanism could have alower accesstime and alower areacost. Therefore, combining the two
approaches could provide better performance than using either oneindividudly.

5 Future Work

These results generate severd ideas that warrant further investigation. First of al, how much
performance can be gained by only exploiting globa leve vaue reuse? What kind of globa
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vaue reuse mechanism is most efficient in terms of access time and area? Should thisglobd
vaue reuse mechanism only target certain types of indructions, such astheingructionsin Table
8B?

Secondly, how does that performance gain compare to only exploiting vaue reuse a the locd
level? Interms of the areg, isthat performance gain cost-effective?

Third, can globa and local leve va ue reuse mechanisms be combined to produce amore
effective (area-wise or performance-wise) vaue reuse mechanism? Can these two approaches be
combined to yield a vaue reuse mechanism that has the best qualities of each approach?

6 Conclusion

This paper presents an analyss of the potentia for globa vaue reuse and compares the amount
of redundant computation at the globd level to the amount of redundant computation at the loca
leve.

For dl benchmarks, less than 10% of the input sets account at least 65% of the dynamic
indructions and for 8 of the 15 benchmarks — when 175.vpr is counted a Sngle benchmark, less
than 10% of the input sets account for over 90% of the dynamic ingtructions. Furthermore,
19.4% - 95.5% of the dynamic ingtructions are the results of less than 1000 of the most
frequently occurring input sets.

For an equa number of input sets (gpproximately 100 for each benchmark) for both the global
and locd levels, theinput sets for the globa level account for an additiona 1.5% to 12.6% of the
tota number of dynamic ingructions. Therefore, more opportunity for reuse exigs at the globa
level as compared to thelocd leve.
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9 Appendix — Amount of Repetition

Section 5 suggested the idea of sdlective vaue reuse, or in other words, only reusing the values
for only certain types of ingructions. One potentia implementation of thisideaisto have a
separate table for each ingruction type to be reused. However, thisideais more effective if there
are rdaively few input setsfor those ingtruction types. Table 11 shows the number of input sets
for aparticular ingruction type as afraction of the number of dynamic ingructionsfor ADDIU,
ADDU, BEQ, BNE, and LW. These ingruction types were the only reusable instruction types
that were common to al the benchmarks and that were present in the Top 100 occurrences. The
average amount of repetition isaso shown. The entries that have alower amount of repetition
than the average (i.e. a higher number than the average) are in boldface type.

Ingtruction Type
Benchmark JAverage] ADDIU| ADDU| BEQ | BNE LW

099.go 0.00085 §0.00094| 0.00103]0.00094{ 0.00033 | 0.00048
124.m88ksim | 0.03778 ] 0.07949| 0.03644|0.00059| 0.01432 | 0.01722
126.gcc 0.00926 §0.00739( 0.01907{0.01164| 0.00954 | 0.00514
129.compress | 0.01912 § 0.01946| 0.01614|0.00458( 0.00226 | 0.00361
130.li 0.00231 §0.00421 | 0.00095|0.00098| 0.00200 | 0.00146
132.ijeg 0.02040 §0.02103] 0.02380|0.00066| 0.00060 | 0.00465
134.per| 0.02955 §0.02076| 0.03625|0.02292| 0.03660 | 0.01259
147.vortex ]0.00581 §0.00959|0.00484|0.00027|0.00484 | 0.00249
164.gzip 0.01654 §0.00517]0.02123]0.00176{ 0.00270 | 0.00982
175.vpr-Place } 0.03261 } 0.02960| 0.00062|0.00035| 0.00100 | 0.00048
175.vpr-Route | 0.01350 § 0.01742] 0.01034]|0.00704| 0.00681 | 0.00506
177.mesa ] 0.01703 §0.01403|0.01587|0.00001| 0.01474 | 0.00027
181.mcf 0.22252 §0.33165| 0.02858|0.00852| 0.21953 | 0.01610
183.equake [0.01721 §0.00620|0.03483|0.01243| 0.00845 | 0.01892
188.ammp  § 0.01055 | 0.00592| 0.00593|0.00213] 0.06983 | 0.00036
197.parser ]0.04285 §0.02932|0.10837|0.00829| 0.03322 | 0.02301

Table 11: Amount of Repetition (Input SetDynamic Instructionsfor that Instruction
Type) for Selected Instruction Types. Table Entries Abovethe Average arein Bold.

Note that from a value reuse perspective, alower amount of repetition should produce greater
performance gains.

Table 11 showsthat for ADDIU, 8 of the 16 benchmarks have repetition amounts greater than
the average while ADDU, BNE, BEQ, and LW have 7, 2, 3, and 1 benchmarks, respectively.
From another point-of-view, 2 benchmarks have 5 ingruction types, 9 benchmarks have 4
ingtruction types, 3 benchmarks have 3 ingruction types, and 2 benchmarks have 2 ingtruction
types with alower repetition amount than the average.

Therefore, given that the repetition amounts for some of the ingruction types are higher than the

average, partitioning a vaue reuse table into smdler tables based on the ingtruction typeis
probably not agood idea. Since these ingtruction types account for a significant percentage of
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the dynamic ingtructions, their higher-thanaverage repetition amounts could lead to a higher
replacement rate within the vaue reuse table, which consequently could reduce the performance.

Table 12 shows the repetition amounts for the top 4, 8, and 16 instruction types, sorted by
number of dynamic ingtructions.

Instruction Types

Benchmark 4 8 16 | Instruction Types
LW, ADDU, ADDIU, SLL, LUI, SW, BNE, BEQ,
099.go 0.00070| 0.00074|0.00083 SLT. JR, JAL. JUMP. SLTI. SUBU. BLEZ, SLTIU
. LW, SW, ADDIU, ADDU, BNE, BEQ, LUI, SRL,
124.m88ksim | 0.06225( 0.04507 0'03815|OR, SLL. ANDI, AND. JR. SLTI. JAL, SLTU
LW, ADDIU, SW, ADDU, BNE, BEQ, SLL, LHU,
126.gcc 0.00942| 0.00901 0'00841|LU|, JR,JAL. SLTIU, SLT, LB, JUMP, SLTI
DDIU, LW, SW, ADDU, LBU, BNE, BEQ, SB,
129.compress §0.01394|0.01279(0.01311 SLL.LUIL JR, JAL, SLT, SLLV, SLTI, BGTZ
. LW, SW, ADDIU, ADDU, BEQ, BNE, LBU, JR,
130.1i 0.00261| 0.00246 O'OOZSOIJUMP, ANDI, JAL, SLL. SB, SLTU, SRA. SLTIU
DDU, ADDIU, LW, SLL, LBU, SUBU, BNE,
132.ijeg 0.01662| 0.01622|0.01617 }SW, SRA, SB, SLTI, BEQ, MFLO, MULT, JUMP,
OR
LW, ADDIU, SW, ADDU, BEQ, BNE, Jr, LBU,
134.perl 0.02206| 0.02415|0.02482 SB. SLL. BGTZ, JAL. JUMP, SLTIU, LB, LUI
LW, SW, ADDU, ADDIU, BEQ, BNE, JR, SLL,
147.vortex [0.00549|0.00491|0.00546 JAL. ANDI, SLTU, LHU, LUL, SB. LBU, JUMP
DDIU, ADDU, LBU, BNE, LW, BEQ, SLTU,
164.9zip 0.00784|0.00991|0.01546SLL, LHU, ANDI, XOR, SW, SH, SRL, JUMP,
LUI
LW, ADDU, SLL, ADDIU, SW, BEQ, SLT, BNE,
175.vpr-Place §0.00466|0.00355|0.00812JL_S, BGTZ, MTC1, JUMP, FMUL_S, S S, JR,

JAL

175.vpr-Route

0.00733|0.01284

LW, ADDU, SW, SLL, ADDIU, L_S, BNE, SLT,

00148} | T s, LH, BEQ, JR, JAL, BCIT, BCIF, MTCL

DDIU, ADDU, BEQ, LW, BNE, LBU, SW, LB,

177.mesa [ 0.00915|0.01324| 001512k A B e G Lot SR
LW, SW, ADDIU, ADDU, BNE, BEO, SLT,
181.mcf  |0.20958| 0.24564|0.22545|SUBU, BGEZ, BLEZ, SLTU, SLL, LUI, JUMP,
SLTI, SRA
DDIU, ADDU, LW, L_D, BNE, BEQ, SW, SLL,
183.equake |0.01918/0.01789|0.0175L[FMUL_D, FADD D, S D, SLTI, L_S, MTCL,
LUI, ANDI
LW, BNE, ADDIU, ADDU, SW, JUMP, BEQ,
188ammp ~ [0.01360 0.01108] 001008 5 AD T PR S ISR
197.parser | 0.04525|0.03850|0.04145]=V: ADDIU, ADDU, BNE, SW, LB, BEQ, SLL,

SLT, LBU, SUBU, JR, JAL, JUMP, AND, ANDI
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Table 12: Amount of Repetition for the Top 4, 8, and 16 I nstruction Types, Sorted by the
Number of Dynamic Instructions; I nstruction Types are Given in Descending Order of
Number of Dynamic Instructions

For dl three numbers of indruction types, the highest amount of repetition (smalest fraction) is
for 099.go while the lowest amount of repetition (highest fraction) isfor 181.mcf. For dl the
benchmarks except for 099.go and 181.mcf, theratio of input setsto dynamic ingtructionsis on
the order of 1:100 or 1:1000; for 099.go and 181.mcf, the ratio of input setsto dynamic
ingructionsis on the order of 1:10,000 and 1:1, respectively. Therefore, with the exception of
181.mcf, thereis a very high amount of repetition for dl the benchmarks.

Furthermore, from Table 12, there does not appear to be any discernable pattern to the amount of
repetition as more ingtruction types are included.
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