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Abstract. Value reuse improves a processor’s performance by dynamically caching the results of previous instructions into 
the value reuse table and reusing those results to bypass the execution of future instructions that have the same opcode and 
input operands.  However, replacing the least recently used entries with the results of the current instructions could 
eventually fill the value reuse table with instructions that are not frequently executed.  Furthermore, the complex hardware 
that replaces entries and updates the table may necessitate an increase in the clock period.  We propose instruction 
precomputation to address these issues by profiling programs to determine the opcodes and input operands that have the 
highest frequencies of execution, or the highest frequency/latency products (F/LP), these instructions then are loaded into the 
precomputation table before the program executes.  During program execution, the precomputation table is used in the same 
way as the value reuse table, with the exception that the precomputation table does not dynamically replace any entries.  For 
a 2K-entry precomputation table implemented on a 4-way issue machine, this approach produced average speedups of 11.0% 
(frequency) and 12.0% (F/LP), for a mix of 16 SPECint95 and SPEC 2000 benchmarks.  By comparison, a 2K-entry value 
reuse produced an average speedup of 6.7% on the same benchmarks.  We also show that this method is quite independent of 
the program’s input set.  Furthermore, due to the profiling step, this method is especially effective for small table sizes – a 
small (16-entry) precomputation table produces average speedups of 4.1% (frequency) and 4.4% (F/LP) for the same 
programs.  For the same number of table entries, value reuse produces an average speedup of only 1.7%.  Therefore, 
instruction precomputation outperforms value reuse, especially for smaller tables, with the same number of table entries 
while using less area and having a lower access time. 
 
1 Introduction 
 
During its execution, a program may repeatedly perform the same computations.  For example, in a nested pair 
of FOR loops, an add instruction in the inner FOR loop will repeatedly initialize and increment a loop induction 
variable.  For each iteration of the outer FOR loop, the computations performed by that add instruction are 
completely identical.  These operations typically cannot be removed by an optimizing compiler since the initial 
value of the induction variable may change each time the loop is executed, for instance. 

Value reuse [3, 12, 14] exploits this program characteristic by dynamically caching an instruction’s 
opcode, input operands, and result into a value reuse table (VRT).  For each instruction, the processor checks if 
the opcode and input operands for that instruction match an entry in the VRT.  If a match is found, then the 
current instruction is a redundant computation and it can use the result stored in the VRT instead of re-executing 
the instruction.  This reuse increases the amount of instruction-level parallelism (ILP).  Since the VRT is 
accessed before the execute stage in a pipelined processor, value reuse can even reduce the latency of single-
cycle instructions such as integer adds. 

Since the processor constantly updates the VRT, and since the VRT is limited in size, a redundant 
computation could be stored in the VRT, evicted, re-executed, and re-stored.  Consequently, the VRT could hold 
redundant computations that have a very low frequency of execution or are not on the critical path, thus 
decreasing the effectiveness of this method. 

To address this frequency of execution issue, instruction precomputation uses profiling to determine 
the redundant computations with the highest frequencies of execution or with the highest frequency/latency 
products (FL/P).  The opcodes and input operands for these redundant computations are loaded into the 
precomputation table (PT) before the program executes.  During program execution, the PT functions like a 
VRT, but with two key differences: 1) The PT stores only the highest frequency (FL/P) redundant computations 
and 2) the PT does not replace or update any entries (except when the program is loaded).  As a result, this 
approach selectively targets those redundant computations that have a large impact on the program. 

This paper makes the following contributions: 
 

1. Shows that a large percentage of a program is spent repeatedly executing a handful of redundant 
computations. 

2. Shows that computations with the highest frequencies of execution and the highest F/LPs are 
independent of the program input set. 



  
 

3. Describes a novel approach of using profiling to improve the performance of value reuse. 
4. Presents a more cost-effective solution (in terms of the area and the cycle time) than value reuse by 

eliminating the dynamic update and replacement hardware and the associated table fields and by 
reducing the number of ports needed. 

 
Section 2 describes instruction precomputation in more detail.  Section 3 examines the performance of 

instruction precomputation and the effect of using different input sets.  Section 4 compares this approach to 
some related work, Section 5 lists some items of future work, and Section 6 concludes. 
 
 
2 Instruction Precomputation 
 
Instruction precomputation consists of two main steps: profiling and execution.  In the profiling step, the 
redundant computations with the highest frequencies, or highest F/LPs, are found.  An instruction is a redundant 
computation if its opcode and input operands match a previously executed instruction’s opcode and input 
operands. 

After determining the highest frequency (F/LP) redundant computations, those redundant computations 
are loaded into the PT before the program executes.  In the execution step, the PT is checked to see if there is a 
match between a PT entry and each instruction’s opcode and input operands.  If a match is found, then the 
instruction’s result is simply the value in the output field of the matching entry.  As a result, that instruction does 
not need to continue through the remaining stages of the pipeline.  If a match is not found, then the instruction 
continues through the pipeline and executes as normal. 

For instruction precomputation to be truly effective, two key questions about this approach need to be 
answered: 1) While [14] showed that a very high percentage of the dynamic instructions in a program are 
redundant, what percentage of a program’s instructions are due to a limited number of very high frequency 
(frequency/latency) redundant computations?  2) Secondly, what fraction of these redundant computations are 
due to the program itself and what fraction are due to the program’s input set?  Are the same redundant 
computations present across input sets?  In other words, what is the variability of the redundant computations 
due to the benchmark’s input set?  The first question is answered later in this section while the second is 
answered in Section 3. 

Since instruction precomputation does not replace any table entries, for it to be effective, the redundant 
computations that are loaded into the PT must account for a significant percentage of the program’s dynamic 
instruction count.  Otherwise, instruction precomputation will produce very little speedup since it will affect 
only a very small percentage of the dynamic instructions.  Similarly, it also will produce very little speedup if a 
large percentage of the redundant computations are due to the input set or if very few of the same redundant 
computations are produced when using different input sets.  The variability of the redundant computations due 
to the program’s input set directly affects the performance of instruction precomputation since all possible input 
sets for each benchmark cannot be profiled to find the highest frequency (F/LP) redundant computations. 

To answer both of these questions, we profiled the benchmarks shown in Table 1 using two different 
input sets (“A” and “B”) to determine the amount of redundant computation that is present in those benchmarks 
and to determine the effect of the input set on the variability of the highest frequency (F/LP) redundant 
computations.  For this paper, all benchmarks were compiled using gcc 2.6.3 at optimization level O3 and each 
benchmark ran to completion. 

For 099.go, we used a reduced version of the test input set to reduce execution time.  For the same 
reason, some reduced input sets were also used for the SPEC 2000 benchmarks.  Benchmarks that use the 
reduced input sets exhibit similar behavior as compared to when the benchmark uses the test, train, or reference 
input sets.  For more information on the SPEC 2000 reduced input sets, see [11]. 

For 134.perl, the test input set is composed of two “sub-input” sets (Jumble.pl and Primes.pl) while the 
train input set is composed of an additional sub-input set (Scrabbl.pl).  For 175.vpr, the reduced input sets are 
composed of two sub-input sets (Place and Route).  To avoid losing any information about each benchmark’s 
behavior with a different sub-input set, the results for sub-input sets were not combined together.  Instead, they 
are presented separately for the remainder of this paper, with the exception of Figure 1. 

To determine the amount of redundant computation for each instruction, we stored the instruction’s 
opcode and input operands.  Hereafter, the combination of opcode and input operands is referred to as a “unique 
computation”.  To reduce the memory requirements of storing this information, the frequency of execution was 
also stored for each unique computation.  Therefore, each unique computation needed to be stored only once.  
Any unique computation that has a frequency of execution greater than one is a redundant computation.  As a 
result, this profiling method shows not only that a unique computation is redundant, but it also shows the 
amount of redundancy.  Since previous works [3,4,5,8,9,10,12,13,14,15] only show that most unique 
computations are redundant, this unique computation frequency profiling is our first contribution. 



  
 

TABLE 1. Selected Characteristics for the Benchmarks Previously Tested 
Benchmark Suite Type Input Set A Input Set B 

099.go SPEC 95 Integer Train Reduced Test 
124.m88ksim SPEC 95 Integer Train Test 

126.gcc SPEC 95 Integer Test Train 
129.compress SPEC 95 Integer Train Test 

130.li SPEC 95 Integer Train Test 
132.ijpeg SPEC 95 Integer Test Train 
134.perl SPEC 95 Integer Test Train 
164.gzip SPEC 2000 Integer Reduced Small Reduced Medium 
175.vpr SPEC 2000 Integer Reduced Medium Reduced Small 

177.mesa SPEC 2000 Floating-Point Reduced Large Test 
181.mcf SPEC 2000 Integer Reduced Medium Reduced Small 

183.equake SPEC 2000 Floating-Point Reduced Large Test 
188.ammp SPEC 2000 Floating-Point Reduced Medium Reduced Small 
197.parser SPEC 2000 Integer Reduced Medium Reduced Small 
255.vortex SPEC 2000 Integer Reduced Medium Reduced Large 
300.twolf SPEC 2000 Integer Test Reduced Large 

 
After profiling each benchmark, the unique computations were sorted by their frequency of execution. 

Figure 1 shows what percentage of the total instructions are due to the top 2048 (by frequency) arithmetic 
unique computations.  (Only arithmetic instructions are shown here because they are the only instructions that 
we allowed into the PT.) 
 

Figure 1. Percentage of Instructions that are Due to the Top 2048 Arithmetic Unique Computations 
 

As can be seen in Figure 1, the top 2048 arithmetic unique computations account for 14.7% to 44.5% 
(Input Set A) and 13.9% to 48.4% (B) of the total instructions executed by the program.   Similar percentages 
were found for the highest F/LP unique computations when the divisor was the total number of simulated 
cycles.  Furthermore, a small number of unique computations can account for a large percentage of instructions.  
For instance, the top 16 unique computations account for 3.1% to 19.6% (A) and 2.8% to 16.0% (B).  Therefore, 
profiling a program to determine the highest frequency (F/LP) unique computations and putting them into a PT 
can significantly improve the processor’s performance by reducing the effective latency of each instruction that 
matches a unique computation in the PT, even for very small tables.  For a more complete analysis on the 
amounts of unique computations in the SPEC 95 and SPEC 2000, please refer to [18]. 
 
 
3 Results and Analysis 
 
3.1 Methodology and Base Machine Parameters 
 
To determine the performance of instruction precomputation, we modified sim-outorder from the Simplescalar 
tool suite [2] to include a precomputation table.  The PT can be accessed in both the dispatch and issue stages.  

0
5

10
15
20
25
30
35
40
45
50

09
9.g

o

12
4.m

88
ks

im

12
6.g

cc

12
9.c

om
pre

ss
13

0.l
i

13
2.i

jpe
g

13
4.p

erl

16
4.g

zip

17
5.v

pr

17
7.m

es
a

18
1.m

cf

18
3.e

qu
ak

e

18
8.a

mmp

19
7.p

ars
er

25
5.v

ort
ex

30
0.t

wolf

Benchmark

Pe
rc

en
ta

ge
 o

f T
ot

al
 In

st
ru

ct
io

ns

Input Set A
Input Set B



  
 

If a match is found in the dispatch stage, the instruction obtains its result from the PT and is removed from the 
pipeline (i.e. it waits only for in-order commit to complete its execution).  Otherwise, the instruction executes as 
normal.  However, if a match is found in the issue stage, the instruction obtains its result from the PT and is 
removed from the pipeline only if a free functional unit cannot be found.  Otherwise, the instruction executes as 
normal. 

The base machine used 2 integer ALUs, 2 floating-point ALUs, 1 integer multiply/divide unit, 1 
floating-point multiply/divide unit, a 64 entry RUU, a 32 entry LSQ, and 2 memory ports.  The L1 D and I 
caches were set to 32KB, 32B blocks, 2-way associativity, and a 1 hit cycle latency.  The L2 cache was set to 
256KB, 64B blocks, 4-way associativity, and a 12 cycle hit latency.  The first block from memory took 60 
cycles to retrieve while each following block took 5 cycles.  The branch predictor was a combined predictor 
with 8K entries and a 64-entry return address stack. 
 
3.2 Performance and the Effect of the Input Set 
 
This section contains the results for three combinations of input sets used for profiling and execution.  To 
reiterate one key point, the profiling step is used only to determine the highest frequency (F/LP) unique 
computations.  The first combination tested used the same input set for profiling and for execution (i.e. Profile 
with Input Set A, Run with Input Set A; Profile B, Run B).  This represents an approximate upper bound of 
performance for precomputation for this implementation (Section 5 describes some additional enhancement that 
can be made to improve the performance).  While these combinations represent the approximate upper bound in 
performance, it is extremely unlikely that the same input set that is used for profiling also will be used during 
execution.  Furthermore, if the input set has a significant effect on the highest frequency (F/LP) unique 
computations, the performance will be much lower than the upper bound.  As a result, we simulate a second 
combination of input sets – profile the benchmark using one input set, but run the benchmark with another input 
set (i.e. Profile A, Run B; Profile B, Run A).  Finally, to eliminate the peculiarities associated with any single 
input set, we profile two input sets, combine the unique computations together, and then run the benchmarks 
with either input set (i.e. Profile and combine A & B; Run A, and Run B).  The last two combinations show how 
the input set affects the highest frequency (F/LP) unique computations and subsequently the performance of 
instruction precomputation.  

 
3.2.1 Instruction Precomputation Performance Upper Bound 
 
Figure 2 shows the speedup due to instruction precomputation for various numbers of entries in the PT when 
Input Set A is used for profiling and for execution.  As shown in this figure, instruction precomputation 
improves the performance of all benchmarks by an average of 4.6% (16 entries) to 12.2% (2048 entries).  The 
average is the mean weighted by execution time.  The speedups for Profile B, Run B for all benchmarks are 
similar.  Furthermore, the speedups when using the F/LP unique computations are only slightly higher (~0.1%). 
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Figure 2. Percent Speedup Due To Instruction Precomputation for Various Table Sizes; Profile Input Set A, Run Input Set A 
 
3.2.2 Input Set Effect 
 
As mentioned above, the differences in the profile input set and the execution input set could have a deleterious 
effect on the performance of instruction precomputation by substantially affecting which unique computations 
are put into the PT.  Note, however, that the performance is dramatically affected only if the unique 



  
 

computations are radically different between profiling runs.  Conversely, the performance will be relatively 
unaffected if a large percentage of the same unique computations are present in both input sets.  In the latter 
case, the redundant computations are more a function of the benchmark itself rather than the input set.  
 Figure 3 shows the speedup when different input sets are used for the profiling and the execution; that 
is Profile B, Run A.  We see that instruction precomputation improves the performance of all benchmarks by an 
average of 4.1% (16 entries) to 11.0% (2048 entries).  The change in the average speedups between this 
combination and the Profile A, Run A combination (the upper-bound combination) differ by only 0.5% (16 
entries) to 1.2% (2048 entries).  Furthermore, the speedups between the two combinations are nearly identical 
for each benchmark and each PT size.  Similar results also occur for the Profile A, Run B combination.  These 
results show that the highest frequency (F/LP) unique computations are common across benchmarks and are 
not a function of the input set.  This is the second contribution of this work.  Finally, the speedups when using 
the F/LP unique computations are only slightly higher (~0.5%).  The difference in speedups between this 
combination and the Profile A, Run A combination is completely attributable to the slight differences in the 
unique computations that are loaded into each table. 
 

Figure 3. Percent Speedup Due To Instruction Precomputation for Various Table Sizes; Profile Input Set A, Run Input Set B 
 

Although the input set does not dramatically affect the performance, a combination of unique 
computations from two profiling runs could slightly improve the performance when executing the benchmark 
using either input set.  In other words, the Profile and combine A and B, Run A combination may produce 
higher speedups than Profile B, Run A.  Due to space limitations, the results for this combination are not shown.  
However, the differences in the speedups are small (less than 1% on average) and are not consistently higher for 
all PT sizes for this combination. 

In conclusion, the input set does NOT affect the whether or not a unique computation is one of the 
highest frequency (F/LP) unique computations.  Consequently, for the same number of unique computations, the 
speedups using some input sets will be higher than others simply because the unique computations in the table 
account for a higher percentage of the program.  Therefore, the redundant computations are almost completely 
an artifact of the benchmark and are almost completely unaffected by the benchmark’s input set. 
 
3.4 Comparison with Value Reuse 
 
Since instruction precomputation is related to value reuse, it is necessary to compare the speedups of the two 
techniques.  Since our current implementation uses the input operands to index the PT, this implementation of 
value reuse also uses the input operands to index the VRT. 

The following figure compares the speedups of value reuse and instruction precomputation for various 
table sizes.  While value reuse would probably have a longer clock period (due to the need for additional read 
and write ports and for entry replacement hardware) and would require more bits per entry, comparing the 
speedup results is as direct a comparison as possible with our simulation environment. 

In Figure 4, three table sizes are shown – 32, 256, and 2048 entries.  The VR in the legend corresponds 
to value reuse while the IP corresponds to instruction precomputation.  For each benchmark, there are six bars.  
The leftmost three bars correspond to the speedup for the three different value reuse table sizes.  The rightmost 
three bars correspond to the speedup for the three different instruction PT sizes. 
 Figure 4 shows two main results.  First, instruction precomputation outperforms value reuse for almost 
all benchmarks and table sizes.   When the speedup for value reuse is greater, the maximum difference is about 
2%.  However, part of this difference in speedup is due to which unique computations were actually loaded into 
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the table.  For instance, several unique computations have the same frequency (F/LP).  For those unique 
computations, there is no tie-breaking policy to choose which unique computation should go into the table; the 
current policy is first-come.  Therefore, if there were two unique computations that had the same frequency 
(F/LP), for a smaller table, only one of them would make it into the table.  However, the other unique 
computation may be on the critical path more often, thus yielding a higher speedup, than the one in the table.  
As a result, it is possible to increase the speedup for that table size simply by swapping those two unique 
computations.  Determining a good heuristic to break ties is one of our items of future work.  If the unique 
computations were more carefully chosen for each table size, the speedup for instruction precomputation would 
be higher than the speedup for value reuse for all benchmarks and all sizes except for 130.li.  Even then, for this 
benchmark, the difference in the speedups is still less than 2%.  

 

Figure 4. Speedup Comparison Between Value Reuse (VR) and Instruction Precomputation (IP) for Various Table Sizes; 
Profile Input Set A, Run Input Set B  

 
The second main result is that for smaller table sizes, which are less expensive from an area and cycle 

time point-of-view, instruction precomputation has non-trivial speedups (4.1% for a 16-entry table) while value 
reuse has a much smaller speedup (1.7% for a 16-entry table).  The reason that instruction precomputation 
outperforms value reuse for small tables is because instruction precomputation statically determines the unique 
computations (i.e. the ones with the highest frequency or F/LP) that are likely to have the most impact on the 
execution time. 

Finally, while the speedups for using the highest F/LP unique computations were about the same as 
using the highest frequency unique computations, this difference can be much greater if the benchmark has large 
amounts of unique computations with long latencies.  Benchmarks that are likely to have these types of unique 
computations are signal processing and multimedia benchmarks.  For these benchmarks, it would probably be 
very costly from an area and time standpoint for value reuse to implement an effective replacement mechanism 
that accounted for the instruction’s execution latency.  

However, the performance of value reuse shows that the instruction precomputation approach of 
statically capturing the highest frequency (F/LP) unique computations and then using those precomputed results 
does not always yield the best speedup results. This proves the efficacy of dynamic replacement for some 
benchmarks.  But this adds additional ports to the PT and will increase the PT access time, thereby negating an 
important advantage of instruction precomputation. 

While instruction precomputation requires the profiling step to determine the unique computations that 
should be inserted into PT, this profiling cost is amortized over the ALL the execution runs for this benchmark.  
Value reuse, however, incurs its cost for each execution run.  Furthermore, this profiling shifts some of the 
design complexity from the hardware to the software. 
 In conclusion, instruction precomputation produces speedups that are almost always higher than the 
speedups produced by value reuse for the same table size.  Not only does instruction precomputation match or 
exceed (in most cases) the performance of value reuse, it does so at a lower area cost and with a potentially 
lower access time.  Furthermore, instruction precomputation can easily use the instruction’s execution latency to 
determine the unique computations that could yield the most performance difference.  This is likely to be 
particularly beneficial for multimedia applications.  Finally, large tables are not required for non-trivial 
speedups, especially in the case of 177.mesa. 
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4 Related Work 
 
Sodani and Sohi in [14] implemented a dynamic value reuse mechanism.  Their mechanism produced speedups 
of 0% to 17%, 2% to 26%, and 6% to 43% for a 32 entry, a 128 entry, and a 1024 entry, VRT, respectively.  
While the speedups in that paper are comparable to those in this paper, our approach has a smaller area footprint 
and a potentially lower cycle time.  However, their approach does things that our current implementation does 
not do, including: dynamically replacing entries and reusing non-arithmetic instructions, including loads.  
Implementing instruction precomputation for load instructions would improve the performance even more. 

In [12], Molina et. al. implemented a dynamic value reuse mechanism that exploited value reuse at the 
both the global (PC-independent) and local-levels (PC-dependent).  However, their approach is very area-
intensive.  As can be expected, their speedups are somewhat dependent on the area used.  For instance, their 
value reuse mechanism produced speedups of 3% to 25% with an average of 10% when using a 221KB table.  
When the table area is decreased to a more realistic 36KB, the reported speedups dropped to 2% to 15% with an 
average of 7%.   While the speedups between our 2048-entry table and their 200KB version are comparable, our 
approach uses almost an order of magnitude less area. 
  Citron and Feitelson [3, 4, 5] proposed using distributed value reuse tables that are accessed in parallel 
with the functional units.  While this approach produced speedups up to 20%, it targets only long latency 
instructions such as multiply, divide, and square root.  In addition to targeting different instructions, using a 
distributed table, and producing lower speedups, one other difference compared to our approach is that their 
approach employs dynamic entry replacement while our current implementation does not. 

Huang and Lilja introduced basic block reuse in [9, 10], which is value reuse at the basic block level.  
By reusing basic blocks instead of just instructions, this approach produced speedups of 1% to 14% with an 
average of 9%.  In addition to targeting basic blocks instead of individual instructions (as our approach does) 
and producing lower speedups, this approach consumes a much larger amount of area.  In this approach, each 
table entry requires at least 60 bytes of area (depending on the tag widths and next block identifier width). 

In [17], Weinberg and Nagle proposed using value reuse to reduce the latency of pointer traversals by 
caching the elements of a pointer chain.  This approach reduced the execution latency by up to 11.3%.  
However, this approach differs with ours in three respects: 1) It only targets pointers, 2) It uses dynamic 
replacement (which our current implementation does not do), and 3) It consumes a very large amount of area 
(approximately 600KB). 

Azam et. al. In [1] proposed adding a dynamic reuse buffer and an extra pipeline stage (to access the 
reuse buffer) to decrease the base processor’s power consumption.  While one of the goals of this approach was 
to maintain the same performance as the base processor (i.e. the one without the reuse buffer and the extra 
pipeline stage) while decreasing the power consumption, it was not clear if the performance goal was met. 

In summary, all the previous approaches produce comparable or lower speedups while consuming 
either a little more area or, in some cases, an order of magnitude more area.  The other key difference is that the 
above approaches also target non-arithmetic instructions and use dynamic replacement, while our current 
version does not require these additions to produce comparable or better performance. 

Gabbay and Mendelson in [6,7] presented an approach that used profiling to enhance the performance 
of value prediction. The value prediction hardware only predicts the values for instructions that have good value 
locality and a high probability of a correct prediction, as determined by the profiler.  While this approach 
enhances value prediction, it parallels our instruction precomputation approach of profiling and selectively 
targeting certain instructions. 
 
 
5 Future Work 
 
This work spawns several other avenues of research.  First of all, we plan to investigate different heuristics to 
guide which unique computations should make be inserted in the table in the case of a tie.  Secondly we plan to 
investigate different replacement methods including: 1) Targeting instructions on the critical path and 2) Filling 
the PT with program phase specific unique computations.  The second replacement method would use temporal 
based profiling to capture the unique computations that are present in different parts of the code.  In addition to 
improving the performance, this will hopefully also decrease the PT size.  Third, we plan to look at different 
ways of decreasing the area including: 1) Partitioning the table by opcodes and 2) Choosing unique 
computations that have smaller width input operands, such as immediates and offsets. 

We also plan to look at the invariability of unique computations across programs.  We feel that it is 
possible to find a set of unique computations that are common to many or all programs.  In addition to 
simplifying the profiling step, this would also solve the side-effect of flushing the PT on a context switch.  In 
addition to this potential solution, we are looking into other means of solving this context switch side effect. 



  
 

Since the PT is filled with the highest frequency instructions, using instruction precomputation may 
yield significant speedups while also dramatically decreasing the power consumption.  We plan to look into the 
potential power savings of this approach. 

Finally, we are currently investigating using this profiling and precomputation approach to enhance the 
performance of other mechanisms such as branch prediction, data and instruction prefetching, and basic block 
reuse. 
 
 
6 Conclusion 
 
This paper presents a novel approach to value reuse that we call instruction precomputation.  This approach uses 
profiling to determine the unique computations with the highest frequencies of execution or the highest F/LPs.  
These unique computations are, in all likelihood, the ones that are on the critical path.  Those unique 
computations are then preloaded into the PT before the program begins execution.  For each instruction, the 
opcode and input operands are compared to the opcodes and input operands in the PT.  If there is a match, then 
the instruction is removed from the pipeline.  Otherwise, the instruction executes as normal. 

For a 2048 entry PT implemented on a 4-way issue machine, this approach produces speedups of 1.6% 
to 45.4%, with an average speedup of 11.0%.  Furthermore, the speedup for instruction precomputation is 
greater than the speedup for value reuse for almost all benchmarks and table sizes.  In addition to the generally 
superior performance, instruction precomputation also consumes less area and has a lower table access time 
(which could affect the cycle time) than value reuse. 

We find that this technique is almost completely independent of the program’s input set.  Therefore, 
profiling a representative benchmark is sufficient to produce significant speedups when any input set is used.   

This approach exhibits excellent potential and can be further refined by targeting other types of 
instructions (such as loads), designing a heuristic to carefully select which unique computations are inserted into 
the table, implementing a replacement policy that fine-tunes the PT entries to store only unique computations 
that are most likely on the critical path, and customizing the PT entries to specific regions of code.  Furthermore, 
we believe that this technique can be used to improve the performance of hardware-based techniques such as 
branch prediction, prefetching, and basic block reuse. 
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