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Abstract
During the course of a program’s execution, a processor performs many trivial

computations; that is, computations that can be simplified or where the result is zero, one, or
equal to one of the input operands.  This study shows that, despite compiling a program with
aggressive optimizations (-O3), approximately 30% of all arithmetic instructions, which account
for 12% of all instructions executed, are trivial computations.  Furthermore, our results show that
the amount of trivial computation is not heavily dependent on the program’s specific input
values.  Since a significant percentage of all instructions are trivial computations, dynamically
detecting and eliminating these trivial computations can greatly reduce the program’s execution
time.  Our results show that eliminating trivial computations dynamically at run-time yields an
average speedup of 8% for a typical processor.  Even for a very aggressive processor (i.e. one
with no functional unit constraints), the average speedup is still 6%.  It also is important to note
that the area cost (i.e. hardware) required to dynamically detect and eliminate these trivial
computations is very low, consisting of only a few comparators and multiplexers.

1 Introduction
Many programs have a significant amount of trivial computation due to the way they are

written and compiled.  A trivial computation is an instruction whose output can be determined
without having to perform the specified computation by either converting the operation to a less
complex one or by determining the result immediately based on the value of one or both of the
inputs.  An example of the first type of trivial computation is a multiply operation where one of
the input operands has a value of two.  In this case, the multiply instruction can be converted to a
shift-left instruction.  Therefore, the instruction has been converted from a complex, long latency
multiply instruction to a simpler, shorter latency shift-left instruction.  An example of the second
type of trivial computation is an add instruction where one of the input operands is equal to zero.
As a result, no computation actually needs to be performed for this instruction – the result is
simply the value of the other input operand.

While it seems as though an optimizing compiler should be able to remove many of these
trivial computations, it often is unable to do so unless the value of the input operands is known at
compile time.  However, the only values that the compiler can determine at compile time are the
values of constants.  As a result, the compiler cannot remove trivial computations that are a
function of the input set.  Furthermore, the compiler may use trivial computations for
initialization purposes.  For example, to set the value of r1 to zero, the following instruction
could be used: add r1, r0, r0, where r0 is a register whose value is always zero.  This study shows
that, due to these two factors, trivial computations can be a significant part of the program’s
overall execution time.  Therefore, dynamically detecting and eliminating these trivial
computations can reduce the program’s execution time.



This paper makes the following contributions:

1. It identifies the different types of trivial computations that remain in programs after
aggressive compiler optimization.

2. It quantifies the amount of trivial computation that is present in programs from the
SPEC 95, SPEC 2000, and MediaBench [Lee97] benchmark suites and shows that the
amount of trivial computation is not heavily dependent on the program’s specific
input values.

3. It determines the speedups that can be obtained by dynamically detecting and
eliminating trivial computations in several different processor models.

The remainder of this paper is organized as follows: Section 2 quantifies the amount of
trivial computation that exists in typical programs, Section 3 presents the speedups results
achieved by detecting and eliminating these trivial computations, Section 4 describes some
related work, and Section 5 summarizes our results and conclusions.

2 Types and Amounts of Trivial Computation
In this study we identify two classes of trivial computations, those that can be bypassed

and those that can be simplified, but not bypassed.   Table 1 shows the types of computations that
are defined as trivial in this study.  The first column shows the type of operation while the
second column shows how the result is normally computed.  The third and fourth columns show
which trivial computations can be bypassed and simplified, respectively.  Note that the add,
subtract, multiply, and divide instructions include both integer and floating-point data types
while the absolute value instruction operates on only floating-point values.

Operation Representation “ Bypassable” “ Simplifiable”
Add X+Y X,Y=0

Subtract X–Y Y=0; X=Y
Multiply X*Y X,Y=0 X,Y=Power of 2
Divide X÷Y X=0; X=Y Y=Power of 2

AND, OR, XOR X&Y, X|Y, X⊕Y X,Y={ 0,0xffffffff} ; X=Y
Logical Shift X<<Y, X>>Y X,Y = 0

Arithmetic Shift X<<Y, X>>Y X,Y={ 0,0xffffffff}
Absolute Value |X| X={ 0, Positive}

Square Root X X=0 X=Even Power of 2

Table 1: Trivial Computations Profiled and Bypassed or Simplified in this Study

Most of these trivial computations are straightforward with the possible exception of the
computation for square root.  For example, for an add instruction, if either input operand is equal
to 0, then the result is equal to the value of the other input operand.  Similarly, for an AND
instruction, if both input operands have the same value, then the result is equal to the value of
either input operand.  For a square root, if the value of X is an even power of 2 (e.g. 4, 16, 64),
then the result can be computed by halving the value in the exponent field.  As the result, the
exponent needs only to be shifted to the right by one bit.  For example, the exponent for 16 is



0100.  By applying this simplification, 0100 is right-shifted by 1 to produce 0010. Using this
new exponent, the result is then 1 *  22, which corresponds to the correct result value of 4.

We classify the computations in the fourth column as trivial because their operation can
be simplified.  While those trivial computations cannot be bypassed entirely, as the trivial
computations in the third column can be, they can use less complex hardware, such as shifters, to
compute the correct result.  Note that integer and floating-point instructions of the same type
(e.g. multiply, divide, etc.) are handled differently due to the format of the number.  For
example, in the integer version of X *  2, the result is simply a left shift of X.  Alternatively, the
floating-point version adds one to the exponent of X to simplify its computation.

Figure 1 shows the amount of trivial computation that is present in the benchmark
programs from the SPEC 95, SPEC 2000, and MediaBench suites that we used in this study.
Each pair of results shows the percentage of trivial computations that are present for that
instruction type.  For example, 34.73% of all Integer ADD instructions (ADD) are trivial in the
SPEC benchmarks while only 13.18% are trivial in the MediaBench benchmark suite.  The pair
of bars labeled “Total”  shows the percentage of the total dynamic instructions that are trivial
computations, over all instruction types.

Figure 1: Percentage of Trivial Computations per Instruction Type and per Total Number
of Dynamic Instructions for the SPEC and M ediaBench Benchmarks

These results show that trivial computations account for 12.89% and 5.92% of the total
dynamic instructions in the SPEC and MediaBench benchmarks (11.90% combined),
respectively.  The result for the MediaBench benchmarks surprised us.  Due to the nature of the
benchmarks, our initial expectation was that the MediaBench benchmarks would have a higher
percentage of trivial computations than the SPEC benchmarks.  However, as shown in Figure 1,
this is not the case.

Figure 1 shows that almost all instruction types have a significant percentage of trivial
computations.  However, a high percentage does not necessarily mean that those instructions will
have a significant impact on the program’s overall execution time since they could account for a
very small percentage of the total executed instructions.  For example, nearly 100% of the
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absolute value instructions (FABS) are trivial, but they account for only 0.04% of the total
instructions executed.

To determine whether the trivial computations are a byproduct of the benchmark’s input
set or are a result of the benchmark itself, we profiled the same benchmarks with another input
set.  The results from the second input set, which are not shown here due to space limitations,
were very similar to the results from the first.  This result indicates that trivial computations are
primarily due to the benchmark programs themselves and not due to the specific values of their
inputs.

3 Simulation Results
The results in this section show the speedups that can be obtained by bypassing or

simplifying trivial computations.  These results are based on simulations performed by using a
modified version of the sim-outorder superscalar processor simulator from the SimpleScalar tool
suite [Burger97].

3.1 M ethodology and Benchmarks
Table 2 lists the benchmark programs that were used in this study. All of these

benchmarks were compiled at optimization level -O3 using the SimpleScalar version of gcc.  To
control the execution time, reduced input sets were used for some of the SPEC 2000

Benchmark Suite Input Set
099.go SPEC 95 Train

124.m88ksim SPEC 95 Train
126.gcc SPEC 95 Test

129.compress SPEC 95 Train
130.li SPEC 95 Train

132.ijpeg SPEC 95 Test
134.per l SPEC 95 Test
164.gzip SPEC 2000 Reduced Small
175.vpr SPEC 2000 Reduced Medium

177.mesa SPEC 2000 Reduced Large
181.mcf SPEC 2000 Reduced Medium

183.equake SPEC 2000 Reduced Large
188.ammp SPEC 2000 Reduced Medium
197.parser SPEC 2000 Reduced Medium
255.vortex SPEC 2000 Reduced Medium
300.twolf SPEC 2000 Test
adpcm MediaBench clinton.pcm, clinton.adpcm

epic MediaBench test.image.pgm, test_image.pgm.E
g721 MediaBench clinton.g721, clinton.pcm

mpeg2 MediaBench mei16v2.m2v, rec

Table 2: Benchmarks Profiled and Tested in this Study



benchmarks.  Benchmarks that use a reduced input set exhibit behavior similar to when the
benchmark is executed using the reference input set [KleinOsowski00].  For 134.perl, 175.vpr,
and the MediaBench benchmarks, each input set is composed of two separate inputs.  To avoid
losing any information about each benchmark’s behavior with a different input, the results for
the separate inputs are reported separately.

3.2 Processor Configuration and M odels
  Table 3 shows the base processor configuration used in this study while Table 4 shows

the instruction execution latencies.  The values shown in both tables are representative of the
values that are used in commercially available processors such as the Alpha 21264 and the MIPS
R10000 [Kessler98, Yeager96].

Parameters Final Values
# of Integer ALUs 2

# of FP ALUs 2
# of Integer M ultipliers/Dividers 1

# of Floating-Point Multipliers/Dividers 1
# of Instruction Fetch Queue Entries 32

Decode, Issue, Commit Width 4-Way
# of Reorder Buffer Entries 64

# of Load-Store Queue Entries 32
# of M emory Ports 2

L1 D-Cache Size, Associativity, Block Size,
Replacement Policy, Latency

32KB, 2-Way, 32 Bytes,
Least Recently Used, 1 cycle

L1 I -Cache Size, Associativity, Block Size,
Replacement Policy, Latency

32KB, 4-Way, 32 Bytes,
Least Recently Used, 1 cycle

L2 Unified Cache Size, Associativity, Block Size,
Replacement Policy, Latency

256KB, 4-Way, 64 Bytes,
Least Recently Used, 12 cycles

M emory Latency (First, Following Blocks) 60 Cycles, 5 Cycles
Branch Predictor Type, Configuration Combined Predictor, 8K Entries

Branch M isprediction Penalty 3 Cycles

Table 3: Base Processor Configuration

Functional Unit Latency (Cycles)
Integer ALU 1

Integer M ultiply 3
Integer Divide 19

Floating-Point ALU 2
Floating-Point M ultiply 4
Floating-Point Divide 12

Floating-Point Square Root 24

Table 4: Function Unit Latencies in Cycles



While we were able to find very little published work on this subject, we assumed that
some commercial processors already eliminate trivial computations to some degree.  (See
Section 4 for a detailed description of previous work.)  Therefore, to account for this possibility,
we defined the following three processor models.

In the “aggressive”  processor model, trivial computations that can be bypassed are
eliminated in either the issue stage or the execute stage, depending on when the input operand(s)
are available. Trivial computations that can be simplified continue through the pipeline to
execute on a different (i.e. lower latency) functional unit.  The “realistic”  machine is the same as
the aggressive machine with the exception that trivial multiplies and divides can be eliminated
only in the issue stage (i.e. they cannot be eliminated in the execute stage).  In the “conservative”
machine, all trivial computations can be eliminated only in the issue stage, with the exception of
floating-point ALU instructions.  These instructions can be eliminated in either the issue stage or
the execute stage.  Table 5 summarizes the pipeline stages in which bypassable and simplifiable
trivial computations can be eliminated for each processor model.  Of these three models, the
realistic machine is probably the closest to what is currently implemented in existing commercial
processors in terms of trivial computation elimination.

Trivial Computation Issue Stage Execute Stage

Bypassable
Integer ALU

Aggressive
Realistic

Conservative

Aggressive
Realistic

Bypassable
Floating-Point ALU

Aggressive
Realistic

Conservative

Aggressive
Realistic

Conservative

Bypassable
M ultiply and Divide

Aggressive
Realistic

Conservative
Aggressive

Simplifiable
M ultiply and Divide

N/A Aggressive

Bypassable Square Root
Aggressive
Realistic

Conservative

Aggressive
Realistic

Conservative

Simplifiable Square Root N/A
Aggressive
Realistic

Conservative

Table 5: Summary of the Processor M odels

The key implementation point, and the point that separates this technique from other
microarchitectural mechanisms, such as value reuse (see Section 4), is that in this technique only
a single input operand, the trivial one, needs to be available for a non-speculative result to be
generated.  For example, in X *  0, the result can be computed non-speculatively as soon as the 0
value is available.  This key point obviously has an important performance impact in that it
allows the instruction to “execute”  sooner than would normally be possible.  Therefore, the
speedups obtained from this technique are due to earlier scheduling of instructions in the pipeline



(i.e. the single input operand factor), decreasing the number of resource conflicts, and reducing
the execution latency of trivial computations.

3.3 Discussion and Analysis
Figures 2 and 3 show the speedups for all three processor models for the SPEC and

MediaBench benchmarks, respectively.  The rightmost two sets of bars show the average

Figure 2: Speedup Due to Trivial Computation Bypass and Simplification for the
SPEC Benchmarks

Figure 3: Speedup Due to Trivial Computation Bypass and Simplification for the
M ediaBench Benchmarks
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speedups for each benchmark suite and the overall speedups (i.e. for both benchmark suites
together).

The second key result is that in almost all of the benchmarks, the speedups for all three
processor models are very similar.  The only two exceptions are 300.twolf and epic-Uncompress.
This is an extremely important result in that it proves that most of the performance improvement
is not due to the trivial computations that commercial processors may already be eliminating.
Since the differences in the speedups are the result of which trivial computations are eliminated
in each processor model, not eliminating the trivial computations that commercial processors
may be eliminating shows the impact of those trivial computations on the overall performance.
Therefore, since the differences in the speedups between the processor models are small, and
since the realistic processor model best represents commercial processors, the trivial
computations that commercial processors may be eliminating have very little impact on the
program’s execution time.  On the other hand, these results show that the trivial computations
that account for most of the performance improvement are present in all processor models.
Therefore, if commercial processors currently are eliminating various types of trivial
computation, they probably are not targeting the trivial computations with the most impact.

For several benchmarks, the realistic processor model produces a slightly higher speedup
than the aggressive processor model.  While this result is counter-intuitive, the lower speedup for
the aggressive processor model is due to increased Integer ALU contention.  For simplifiable
trivial computations, the shifter in an Integer ALU is used to reduce the complexity of the
operation.  Therefore, since the aggressive processor model targets the largest number of
simplifiable trivial computations, this increased use of the Integer ALU’s shifter results in greater
contention and, thus, a lower speedup for the aggressive processor model compared to the
realistic processor model.

Finally, we simulated several other machine configurations to determine the effect of the
functional unit availability on the speedup.  Due to space limitations, these results are not
presented.  However, even in the most unrealistic case in which we have 4 of each type of
functional unit, the speedup results are still quite good, giving approximately 6.5% speedup for
the SPEC benchmarks, 4.5% for the MediaBench benchmarks, and 6.2% overall.  This result
demonstrates that the speedups shown in Figures 2 and 3 are not due primarily to the trivial
computation elimination hardware acting like a pseudo-functional unit, but rather are due to the
latency reduction and early instruction scheduling allowed by simplifying and bypassing the
trivial computations.

4 Related Work
After extensive searches through several indexes, digital libraries, and the web, we found

only a single publication directly on trivial computation [Richardson92].  In this paper,
Richardson restricted the definition of trivial computations to certain multiplications (by 0, 1,
and –1), divisions (X ÷ Y with X = { 0, Y, -Y} ), and square roots of 0 and 1.  The two key
differences between this work and our current study are: 1) The types of benchmarks that were
used and 2) The scope of the definition of trivial computations.  The first difference is that
Richardson studied only floating-point benchmarks (SPEC 92 and Perfect Club) while we
studied a mix of integer, floating-point, and multimedia benchmarks.  The second key difference
is that Richardson restricted the definition of trivial computations to the above 8 types while we
defined the 26 types shown in Table 1.  Not surprisingly, as a result of both differences, the
average speedup of 2% that he reported was much lower than our 8% when comparing similar



processor configurations.  Richardson asserted that the lack of previous work on trivial
computation was not due to its novelty, but due to a lack of knowledge as to how often trivial
computations occur.

While there has been a definite lack of published material on trivial computations, several
papers have described the related technique of value reuse [Citron98, Gonzalez98, Huang99,
Molina99, Oberman95, and Sodani97].  With value reuse, an on-chip table dynamically caches
the opcode, input operands, and results of previously executed instructions.  For each instruction,
the processor checks if the current instruction's opcode and input operands match a cached entry.
If there is a match, the processor reuses the result that is stored in the table instead of re-
executing the instruction, thus bypassing the execution of the current instruction.

There are several differences between the reuse technique and our approach of bypassing
trivial computations.  The first and biggest difference is that value reuse requires the use of an
on-chip table.  For example, Molina et al. [Molina99] used a 221KB table to achieve an average
speedup of 10%.   In contrast, the trivial computation approach that we propose uses only a small
amount of area.  The second difference is that each instruction that is bypassed using value reuse
had to have been previously executed at least once.  With trivial computation, in contrast, the
instruction can be bypassed the first time it is encountered.  The third difference between these
approaches is that for value reuse, both input operands must be available, since they are both
needed to access the value reuse table. Trivial computations, on the other hand, can be bypassed
when only a single input operand is available.  For example, if X *  0 were a frequently occurring
computation, value reuse would need to have both input operands available before the instruction
can be bypassed while trivial computation would need only the second input operand (0) to be
available.

5 Conclusion
This study presents a dynamic method of detecting and eliminating trivial computations

to improve processor performance.  A trivial computation is a computation that can be converted
into a faster and less complex one or can be bypassed completely by setting the output value
tozero, one, or to the value of one of the input operands.  This study shows that for a set of
benchmarks from the SPEC 95, SPEC 2000, and MediaBench benchmark suites, a significant
percentage of the computations for each instruction type are trivial and that nearly 12% of the
total dynamic instructions are trivial.   The compiler, due to a lack of run-time information,
cannot remove these trivial computations.  Furthermore, this study demonstrated that the trivial
computations are mainly a function of the benchmark and not of the benchmark’s input values.
Finally, dynamically eliminating trivial computations, through simplification or bypass,
produced an average speedup of 8.2% for a typical processor and an average speedup of 6.2% for
a processor without any functional unit constraints.

Finally, as items of future work, we are planning to examine the power consumption
aspect of eliminating trivial computations, as well as eliminating trivial computation to improve
the performance and table utilization of value reuse.
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