
Characterizing and Comparing Prevailing Simulation Techniques

Joshua J. Yi1, Sreekumar V. Kodakara2, Resit Sendag3, David J. Lilja2, Douglas M. Hawkins4

1 - Networking and Computing Systems Group
Freescale Semiconductor, Inc.

joshua.yi@freescale.com

3 - Department of Electrical and Computer Engineering
University of Rhode Island at Kingston

sendag@ele.uri.edu

2 - Department of Electrical and Computer Engineering
University of Minnesota at Twin Cities
{sreek, lilja}@ece.umn.edu

4 - School of Statistics

University of Minnesota at Twin Cities
doug@stat.umn.edu

Abstract
Due to the simulation time of the reference input set, architects often use alternative simulation techniques. Although

these alternatives reduce the simulation time, what has not been evaluated is their accuracy relative to the reference input
set, and with respect to each other. To rectify this deficiency, this paper uses three methods to characterize the reduced input
set, truncated execution, and sampling simulation techniques while also examining their speed versus accuracy trade-off and
configuration dependence. Finally, to illustrate the effect that a technique could have on the apparent speedup results, we
quantify the speedups obtained with two processor enhancements. The results show that: 1) The accuracy of the truncated
execution techniques was poor for all three characterization methods and for both enhancements, 2) The characteristics of the
reduced input sets are not reference-like, and 3) SimPoint and SMARTS, the two sampling techniques, are extremely
accurate and have the best speed versus accuracy trade-offs. Finally, this paper presents a decision tree which can help
architects choose the most appropriate technique for their simulations.

1. Introduction
The SPEC 2000 benchmark suite [Henning00] is the current de facto standard for simulation-based computer

architecture research. The largest input set for each benchmark in this suite is called the reference input set. Although this
input set typically yields the most realistic behavior, it is rarely simulated to completion due to its very long simulation time.

Since these lengthy simulation times preclude a detailed exploration of the design space, computer architects resort to
alternative simulation techniques to reduce the simulation time. These techniques include: reducing the size of the input set,
simulating a piece of the program that is presumed to be representative, and sampling. Although these techniques reduce the
simulation time, what is not clear is how the characteristics and the accuracy of each technique compare to the reference
input set and to each other. Without thoroughly understanding the effects that these techniques can have on the results, the
validity of those results is suspect, which nullifies the point of performing the simulations in the first place.

To address this issue, this paper evaluates the accuracy of the six most prevalent techniques – with respect to the
reference input set – by characterizing them using three different methods. The six techniques are: 1) SimPoint
[Sherwood02], 2) Reduced input sets (MinneSPEC [KleinOsowski02] and SPEC test and train), 3) Simulating the first
Z million instructions only, 4) Fast-forwarding X million instructions and then simulating the next Z million, 5) Fast-
forwarding X million, warming-up the processor for the next Y million, and then simulating the next Z million instructions,
and 6) SMARTS, which is a rigorous, statistically-based sampling technique [Wunderlich03]. The three methods used to
characterize these techniques are the: A) Processor bottleneck, B) Execution profile, and C) Architectural Level
characterizations. After determining the accuracy of these techniques using these characterizations, we then analyze each
from three additional perspectives, namely: their speed versus accuracy trade-off, potential configuration dependence, and the
fidelity of their performance bottlenecks. Finally, this paper quantifies the effect that these techniques can have on the
execution time for two microarchitectural enhancements – simplifying and eliminating trivial computations [Yi02], and next-
line prefetching [Jouppi90]. The purpose of these comparisons is to determine the effect that each technique’s inaccuracies
could have on the apparent speedup of an enhancement, as compared to the actual speedup when using the reference
input set.

The contributions of this paper are as follows:

1. It characterizes the accuracy of the six most popular techniques, with respect to the reference input set, at
the hardware, software, and architectural levels.

2. It compares the speed versus accuracy trade-off of each technique.
3. It examines the potential configuration dependence of each technique.
4. It shows how the induced error of each technique can affect the performance of two enhancements.
5. It presents a decision tree to help architects choose the technique that is best for their simulations.

The remainder of this paper is organized as follows: Section 2 describes the problem, in addition to describing each of

the six techniques. Descriptions of the experimental framework and each characterization method are given in Sections 3 and
4, respectively, while the simulation results are given in Sections 5, 6, and 7. Section 8 describes some related work. Section

9 makes specific recommendations about simulation methodology and Section 10 concludes.

2. Prevailing Simulation Techniques
To reduce the simulation time to a tractable level, several techniques are commonly used to approximate the behavior of

the reference input set. These techniques fall into three categories: 1) Reduced input sets, 2) Truncated execution, and 3)
Sampling.

Reduced Input Sets: The basic idea behind reduced input sets is to modify the reference input set in some way to
reduce the simulation time when using the modified input set. The hope is that the reduced input set still retains the
characteristics of the reference input set, but with a lower simulation time. The primary advantage of using reduced input
sets is that the entire behavior of the program is simulated in detail, including initialization, the main body of the
computation, and cleanup. The main disadvantage is that their results may be very dissimilar compared to those produced by
the reference inputs. In addition, developing reduced input sets can be a very tedious and time-consuming process.
Examples of SPEC 2000 reduced input sets include the test and train input sets from SPEC, and the MinneSPEC
small, medium, and large reduced input sets [KleinOsowski02].

Truncated Execution: In truncated execution, the benchmark is simulated for a fixed number of instructions while
presuming that that arbitrary sample is representative of the entire program. There are three primary variations. In the
simplest case, which we call Run Z, only the first Z million instructions of the benchmark are simulated using the
reference input set, where the value of Z determines the simulation time. A variation on this idea is to fast-forward
through the first X million instructions and then switch to detailed simulation for the next Z million (i.e. Fast-Forward X +
Run Z or FF X + Run Z). This technique potentially improves on Run Z by skipping over the less interesting aspects of the
program. One problem with FF X + Run Z is that, after fast-forwarding, the processor and memory states are “cold” (i.e.
invalid). The solution to this problem is to “warm-up” the processor and memory before starting detailed simulation. One
simple implementation is to perform detailed simulation for Y + Z million instructions after fast-forwarding while tracking
the simulation statistics for only the last Z million. We refer to this technique as Fast-Forward X + Warm-Up Y + Run Z
(FF X + WU Y + Run Z).

Sampling: Population sampling is a statistical technique that is used to infer the characteristics of the population by
extrapolating from the characteristics observed in a subset [Levy99]. The key to good results with population sampling is to
ensure that the subset chosen accurately reflects the overall population. Three primary sampling techniques have been
proposed for use in computer architecture research studies – representative, periodic, and random sampling.

Representative sampling attempts to extract from a benchmark a subset of its dynamic instructions that matches its
overall behavior when using the reference input set. With the SimPoint [Sherwood02] technique, for example, a
relatively small number of simulation points are chosen to be representative of the behavior of the entire program.
Determining the simulation points first involves profiling the benchmark to identify the candidate simulation points and then
using statistically-based clustering to select a set that is representative of the entire program. After simulation, the results
from each simulation point are weighted to compute the final simulation results. The number of simulation points and the
length of each, determines the overall simulation time.

By contrast, periodic sampling simulates selected portions of the dynamic instruction execution at fixed intervals. The
sampling frequency and the length of each sample are used to control the overall simulation time; SMARTS (Sampling
Microarchitectural Simulation) [Wunderlich03] is a recent example. To improve its accuracy, SMARTS uses statistical
sampling theory to estimate the CPI error of the sampled simulation versus the reference simulation. If the error is higher
than the user-specified confidence interval, then SMARTS recommends a higher sampling frequency. SMARTS also uses
“functional warming” to maintain branch predictor and cache state.

Finally, in random sampling, the simulation results from N randomly chosen and distributed intervals are combined
together to produce the overall simulation results. To reduce the error associated with random sampling, Conte et al.
[Conte96] suggested increasing the number of instructions dedicated to processor warm-up before each sample and/or
increasing the number of samples.

Prevalence of Simulation Techniques: In addition to simulating the reference input set to completion and the above
techniques, a multiplicity of additional permutations exist. For obvious reasons, quantifying the accuracy of all permutations
is infeasible. Therefore, to determine the set of techniques to analyze in this paper, we examined the last ten years of HPCA,
ISCA, and MICRO to determine the most prevalent techniques. Our results show that the four most popular techniques are:
FF X + Run Z (27.3% of all known techniques), Run Z (23.1%), Reduced input sets (18.5%), and simulating the benchmark
to completion (17.8%). Since these four techniques account for almost 90% of all known techniques, we included these four
techniques in the set of candidate techniques studied in this paper. By contrast, we excluded random sampling since it was
rarely used, despite it being a fairly well-known technique. We also included SimPoint and SMARTS in our final set since
they are likely in increase in frequency. Finally, we included FF X + WU Y + Run Z, since it is a more accurate version of FF
X + Run Z. Table 1 shows our final list of the 69 permutations of the candidate techniques. The values of X, Y, and Z were
based on the superset of common permutations that we found in our survey. The specific values for SimPoint and SMARTS
were based on those from [Calder04, Hamerly04, Sherwood02, Wunderlich03, Wunderlich04].

Table 1. The Final Specifics of the Candidate Simulation Techniques (Note: X+Y Mod 100M = 0)

Number of Permutations Technique Permutations

3
SimPoint

(Standard)

Single 100M, Multiple 10M (max_K: 100) and 100M (max_K: 10)
SimPoint 1.0, 7 Random Seeds (seedproj = 1), 100 iterations
Warm-Up: Assume cache hit; 1M for 10M, 0M for 100M [10]

9 SMARTS

Detailed Simulation Length per Sample (U): 100, 1000, 10000
Warm-Up Length per Sample (W): 200, 2000, 20000
Initial Number of Samples (n): 10,000
Configuration: 99.7% Confidence Level, ±3% Confidence Interval [20]]
MinneSPEC small, medium, large

3-5 Reduced
SPEC test, train

4 Run Z Z: 500M, 1000M, 1500M, 2000M
X: 1000M, 2000M, 4000M

12 FF X +
Run Z Z: 100M, 500M, 1000M, 2000M

X: 999M, 1999M, 3999M; 990M, 1990M, 3990M, 900M, 1900M, 3900M
Y: 1M; 10M, 100M 36

FF X +
WU Y +
Run Z Z: 100M, 500M, 1000M, 2000M

3. Experimental Framework

In this paper, we used wattch [Brooks00] as the base simulator. We modified wattch to include: user-configurable
instruction execution latencies and throughputs, and a user-configurable warm-up. To implement SMARTS, we added
periodic sampling, functional warming, and statistical error estimation to wattch.

To characterize the accuracy of each technique, we used a total of 56 different processor configurations. Since these
configurations are associated with a specific characterization method, the configurations are listed in Sections 4.1 and 4.3
along with its method.

The 10 benchmarks that were used in this study, shown in Table 2 along with their input sets, were selected from the
SPEC 2000 benchmark suite because they are all written in C and because these benchmarks represent the most popular
benchmarks that architects typically use [Citron03]. The total simulation time limited the number of benchmarks that we
could simulate. Even then, to simulate the reference input set and the 69 permutations in Table 1 and the 56
configurations for these 10 benchmarks required the simulation of over 1 quadrillion (1015) detailed instructions, which
required approximately 40 CPU-years. All benchmarks were compiled at optimization level O3 using SimpleScalar’s version
of the gcc compiler, version 2.6.3. With the exception of the reduced input sets, the input set for all techniques was the
reference input set.

Table 2. SPEC 2000 Benchmarks and Input Sets

Benchmark small medium large test train reference

gzip smred.log mdred.log lgred.log test.combined train.combined ref.log
vpr-Place
vpr-Route

smred.net
small.arch.in

mdred.net
small.arch.in

N/A
test.net

small.arch.in
train.net

train.arch.in
ref.net

ref.arch.in
gcc smred.c-iterate.i mdred.rtlanal.i N/A cccp.i cp-decl.i 166.i
art N/A N/A -startx 110
mcf smred.in N/A lgred.in test.in train.in ref.in

equake N/A N/A lgred.in test.in train.in ref.in
perlbmk smred.makerand mdred.makerand N/A N/A scrabbl diffmail
vortex smred.raw mdred.raw lgred.raw test.raw train.raw lendian1.raw
bzip2 N/A N/A lgred.source test.random train.compressed ref.source

4. Description of the Characterization Methods

To measure the accuracy of each technique, we used three different characterization methods. Section 4 describes these
methods, while Section 5 presents the results of each.

4.1. Processor Bottleneck Characterization

The first characterization method is a performance bottleneck analysis using a Plackett and Burman design [Plackett46],
or PB design. For architects, the PB design can determine which processor and memory parameters have the largest effect on
the performance, i.e. are the biggest performance bottlenecks. The output of a PB design is a value that is associated with
each input parameter. The magnitude of this number represents the effect that that parameter has on the variability in the
output value, e.g. number of cycles. The parameters with the largest PB magnitudes have the largest effect on the number of

cycles, and represent the largest performance bottlenecks in the processor and memory sub-system.
After calculating the effect that each parameter has on the CPI, we rank the parameters based on their PB magnitudes

(1=Largest magnitude) and then vectorize the ranks. To determine the similarity in the performance bottlenecks of the
reference input set and each technique, we calculate the Euclidean distance between the two rank vectors. Therefore, the
technique that has the smallest Euclidean distance is the one that is the most accurate, i.e. has the set of performance
bottlenecks that is most similar to those of the reference input set. (It is important to note that we verified that using ranks
did not significantly distort the results, as compared to using the PB magnitudes. Rather, using ranks prevented single
parameters from dominating the results, which allowed less significant parameters to have some, limited, effect.)

Finally, our set of processor and memory parameter values is similar to those found in [Yi03].

4.2. Execution Profile Characterization

If the PB design is a hardware-level characterization, then its software-level counterpart is the basic block
characterization. We characterize the basic blocks based on their execution frequencies (BBEF) and their instruction counts
(BBV in SimPoint terminology). In this paper, we define a basic block to be the group of instructions between a branch target
(taken or not taken) up to the next branch. The BBEF is simply the number of times that each basic block is executed. By
comparing the BBEF profiles for the reference input set and each technique, we can determine how accurate that
technique is, in terms of code coverage. The BBV is similar to BBEF except that, instead of incrementing the count by one
each time a basic block is executed, we increment that basic block’s counter by the number of instructions that were executed
in that instance of that basic block. This characterization factors in the number of instructions in each basic block.

We use a χ2 test [Lilja00] to compare the distributions of the reference input set and each technique. If the χ2 test
value is smaller than the χ2 statistic, then the two distributions are considered to be statistically similar. We also use the χ2
test value as a measure of the distance between the two distributions; similar distributions will have a very small χ2 test value.

4.3. Architecture Level Characterization

The last characterization method that we used to compare techniques is at the architectural level. We first vectorize a set
of metrics (IPC, branch prediction accuracy, L1 D-Cache hit rate, and L2 Cache hit rate), after normalizing each metric to
allow for cross-metric comparisons, and then calculate its Euclidean distance from the reference input set. We included
this characterization since these metrics are often used by architects to evaluate their enhancements. However, the principal
deficiency of using architectural level metrics is that, since they average the effect of all factors over time to produce a single
number, the effects of larger interactions may counterbalance each other while obscuring the effects of lower-order
interactions. Table 3 lists the key parameter values for the four configurations used for the architecture level characterization.
These parameter values were chosen based on a survey of several commercial processors.

Table 3. Processor Configurations Used for the Architectural Level Characterization

Parameter Config #1 Config #2 Config #3 Config #4
Decode, Issue, Commit Width 4-Way 8-Way

Branch Predictor, BHT Entries Combined, 4K Combined, 8K Combined, 16K Combined, 32K
ROB/LSQ Entries 32/16 64/32 128/64 256/128

Int/FP ALUs (Mult/Div Units) 2/2 (1/1) 4/4 (4/4) 6/6 (4/4) 8/8 (8/8)
L1 D-Cache Size (KB), Assoc, Lat (Cycles) 32, 2-Way, 1 64, 4-Way, 1 128, 2-Way, 1 256, 4-Way, 1

L2 Cache Size (KB), Assoc, Lat (Cycles) 256, 4-Way, 10 512, 8-Way, 7 1024, 4-Way, 15 2048, 8-Way, 12
Memory Lat (Cycles): First, Following 150, 10 100, 5 300, 20 200, 10

5. Results of Characterization Methods

The next three sections present the results of our analysis of the accuracy and simulation speed for the six techniques
specified in Section 2. Section 5 presents the results for the three characterization methods while Section 6 describes the
speed versus accuracy trade-off of each and the potential configuration dependence that each of these techniques could have.
Finally, in Section 7, we illustrate how the inaccuracies of each technique can affect the apparent speedup results when
evaluating a processor enhancement and a memory hierarchy enhancement.

5.1. Processor Bottleneck Characterization Results and Analysis

Since the number of elements in each vector of ranks is 43, and since the value of each element is a number between 1
and 43, the maximum Euclidean distance between two vectors occurs when the ranks for the two vectors are completely “out-
of-phase”, e.g. <43, 42, 41, … 3, 2, 1> versus <1, 2, 3, … 41, 42, 43>); this distance is 162.75. Figure 1 presents the average
distance for each type of technique, normalized to the maximum distance and scaled to 100.

Across all benchmarks, the accuracy of the reduced input sets varies significantly. In general, the poor accuracy (large
distance) of the reduced input sets is due to two reasons. First, especially in the case of mcf, the percentage of cycles due to
cache misses serviced by main memory is much larger for the reference input set than in any of the reduced input sets.

Consequently, we expect – and find – that the reduced input sets tend to underestimate the rank of memory hierarchy-related
parameters. For example, in gcc, the rank of the memory latency for the reference input set is 3 while its rank for the
SPEC test reduced input set is 41. Second, our results for the basic block analysis, presented in Section 5.2, show that the
execution profiles of the reduced input sets and the reference input set are very different. In other words, using a reduced
input set effectively simulates a different program than when using the reference input set.

With the exceptions of vpr-Place and art, the accuracy of the truncated execution techniques (i.e. Run Z variants) is also
quite poor. Although the distances for FF X + Run Z and FF X + WU Y + Run Z are lower than the distances for Run Z, the
reasons for the poor accuracy of these techniques is the same. First, since the values of X, Y, and Z are chosen arbitrarily,
these three techniques simulate a portion of the program that not only may be uninteresting, but that may also be
unrepresentative of the entire benchmark. Second, given the highly complex phase behavior of some of these benchmarks –
gcc is an excellent example – simulating a few billion instructions, even after fast-forwarding through a few billion
instructions, does not simulate enough phases of the program to elicit a similar set of performance bottlenecks. However,
increasing the period of detailed simulation reduces the appeal of this class of techniques by increasing its simulation time.

In general, there is a very small distance between SimPoint or SMARTS and the reference input set, in terms of their
performance bottlenecks. At the very least, the distances for these two techniques are much lower than that of the other
techniques. Overall, SMARTS is slightly more accurate than SimPoint since, for 6 of the 10 benchmarks, the minimum
distance for SMARTS is lower than the minimum distance for SimPoint (SimPoint has the smaller average distance for 5
benchmarks).

0

10

20

30

40

50

60

70

80

gzip vpr-Place vpr-Route gcc art mcf equake perlbmk vortex bzip2

N
o

rm
al

iz
ed

 E
u

cl
id

ea
n

 D
is

ta
n

ce

SimPoint SMARTS Reduced Run Z FF+Run Z FF+WU+Run Z

Figure 1. The Normalized Euclidean Distance Away from the reference Input Set for Each Type of
Simulation Technique for the Performance Bottleneck Characterization. For Each Technique, the Average

(Mean) Distance is Shown Along with the Minimum and Maximum Distance (Error Bars).

It is important to note that large differences in the ranks for parameters that are not significant can increase the apparent
distance for a technique. To examine if this is the case, Figure 2 shows the difference in the SimPoint and SMARTS
distances, with respect to the reference input set, i.e. ||SimPoint – reference|| – ||SMARTS – reference||. Figure 2
only shows the results for the most accurate (smallest Euclidean distance) permutation of each technique.

The parameters along the X-axis are sorted in ascending order of reference input set rank for each benchmark.
Therefore, the same index in different benchmarks may correspond to different parameters. This plotting allows us to
examine the effect of each parameter in decreasing order of significance for each benchmark. The difference in the distances
for parameter N is the difference in the distances when only the N most significant parameters are included in the distance
calculations.

For all benchmarks except for gcc, there is very little difference between the Euclidean distances for SimPoint and
SMARTS, at least for the most significant parameters. Therefore, we conclude that for these benchmarks, with the exception
of mcf, SMARTS is slightly more accurate than SimPoint; for mcf, SimPoint is slightly more accurate than SMARTS. For
gcc, there is a difference in the Euclidean distances starting at parameter 3 (memory latency) because SimPoint
underestimates the significance of the memory latency for this benchmark. This is due to the fact gcc has very complex phase
behavior and that for this specific SimPoint configuration (multiple 10M simulation points), phase transitions are typically
not chosen to be simulation points [Calder04], which subsequently underestimates the effect of the memory latency.
However, increasing the maximum number of simulation points, e.g. using 1M simulation points with a max_K of 300, can
minimize or eliminate this problem.

-30

-25

-20

-15

-10

-5

0

5

10

15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

Parameter (Decreasing Significance)

D
if

fe
re

n
ce

 in
 E

u
cl

id
ea

n
 D

is
ta

n
ce

gzip vpr-Place vpr-Route gcc art mcf equake perlbmk vortex bzip2

Figure 2. Difference in the SimPoint and SMARTS Euclidean Distances in Ascending Order of Rank

In conclusion, the results in this section show that the reduced input set and truncated execution techniques are very
inaccurate compared to the results obtained by the reference input set. By contrast, SimPoint and SMARTS are both very
accurate techniques, although SimPoint slightly underestimates the effect of the memory latency in gcc.

5.2. Execution Profile and Architectural Level Characterization Results and Analysis

In this section, we examine how the techniques compare to the reference input set when using the execution profile
and architectural level characterizations. Since the results from both of these characterizations are fully coherent with those
presented in the previous section, and due to space limitations, we omit tables of these results. Furthermore, since the results
of the BBEF and BBV are virtually identical, we discuss only the results of the BBV characterization below.

For the execution profile characterization, the results show that almost all permutations for all techniques executed a
statistically similar set of basic blocks as the reference input set executed. However, the reason that the execution profiles
for almost all permutations were statistically similar is because there were an extremely large number of basic blocks for the
reference input set which results in a very large χ2 statistic. That being stated, the results from this characterization show
that the reduced input set and truncated execution techniques still have very different execution profiles than the
reference input set. This result is not surprising since truncated execution simulates a small portion of the program and
since reduced input sets do not simulate the same pieces of the benchmark at the same frequencies as the reference input
set. On the other hand, the execution profiles for SMARTS and SimPoint are very similar to that of the reference input
set, although SMARTS is more similar.

The conclusions from the results of the architectural level characterization are the same as the conclusions from the
performance bottleneck and the execution-profile characterizations. Namely, the reduced input set and truncated execution
techniques yield very different architectural metrics than does the reference input set while the architectural metrics for
SimPoint and SMARTS are much more similar. These results, of course, are not surprising given the results of the other two
characterizations.

It is extremely important to note that since these three characterizations examine the accuracy of the six techniques from
different perspectives, the coherency of the results indicate that the accuracy of each technique is not merely a fortuitous
averaging of inaccuracies, but rather an intrinsic property of the technique. Therefore, although the conclusions are the same
for all three characterizations, this coherency across all three bolsters the validity of the conclusions and the efficacy of the
characterizations.

6. An Analysis of Speed versus Accuracy Trade-off and Potential Configuration Dependence
6.1 Speed versus Accuracy Trade-off Analysis

It is typically assumed that increased simulation speed comes at the cost of reduced simulation accuracy such that the
ideal technique minimizes the loss of accuracy while maximizing the simulation speed. Although accuracy is the pre-eminent
characteristic, speed emerges as an important consideration when the accuracies of several techniques are similar.

To accurately determine the speed versus accuracy trade-off (SvAT) of these techniques, we stipulated that all
simulations run on the same machine to eliminate differences in the processor, memory sub-system, network, operating
system, etc. Due to the number of simulations (approximately 30,000 for this analysis), all test cases were simulated only
once. Therefore, measurement error could very slightly alter the results. In total, approximately 50 configurations, which
represent the envelope of the hypercube of potential configurations, were simulated for each technique.

Figures 3 and 4 presents the SvAT graphs of gcc and mcf, respectively, which were fairly representative of all

benchmarks and were the most interesting. Speed and accuracy are on the X and Y axes, respectively. The speed of a
technique is simply the total simulation time of that technique as a percentage of the reference input set’s total simulation
time while the accuracy of that technique is the Manhattan distance between the CPI vectors for the technique and the
reference input set. (We used the Manhattan distance instead of the Euclidean distance in this analysis since it more
clearly presented the results.) We included the cost of generating simulation points (for SimPoint) and simulation checkpoints
(for SimPoint and the truncated execution techniques) into the simulation speed. (Note: SimPoint 2.0 [SimPoint04]
dramatically reduces the time to determine simulation points. It was not available when we started this study. However, for
gcc and mcf, the cost of generating simulation checkpoints is the dominant non-simulation cost.) The cost of generating the
reduced input sets and the initial profiling of SMARTS was not included as these costs were not quantified in
[KleinOsowski02] and [Wunderlich03], respectively. However, for SMARTS, the simulation times of the simulations that
did not sample at a high enough frequency were included in the cost, i.e. required additional simulations. (Across all
benchmarks, the average number of simulations for each SMARTS permutation ranged from 1 to 1.59, with a maximum of 6.
Using slightly higher-than-recommended sampling frequencies can reduce the maximum number of simulations to about 3
[Wunderlich04].) Including or excluding the cost of a technique merely moves/stretches the technique’s lines right or left,
respectively. Finally, only the highest accuracy permutation of each technique is presented for the FF X + Run Z, FF X + WU
Y + Run Z, and SMARTS techniques. The legend specifies the exact permutation.

0

10

20

30

40

50

60

0 1 2 3 4 5 6 7 8 9 10

Percentage of Reference Execution Time

A
cc

ur
ac

y
(M

an
h

at
ta

n
 D

is
ta

n
ce

 o
f

C
P

Is
) SimPoint (1-100, X-100, X-10) Reduced (Sm, Md, Tst, Trn)

Run (500, 1000, 1500, 2000) FF+ Run (X: 1000, Z: 100, 500, 1000, 2000)
FF+WU+Run (X+Y: 999+1, Z: 100, 500, 1000, 2000) SMARTS (U: 10000, W: 200, 2000, 2000)

Figure 3. Simulation Speed versus Accuracy Trade-Off Graph of gcc

0

50

100

150

200

250

300

0 1 2 3 4 5 6 7 8 9 10

Percentage of Reference Execution Time

A
cc

u
ra

cy
 (M

an
h

at
ta

n
 D

is
ta

n
ce

 o
f

C
P

Is
) SimPoint (1-100, X-100, X-10) Reduced (Sm, Lg, Tst, Trn)

Run (500, 1000, 1500, 2000) FF+ Run (X: 4000, Z: 100, 500, 1000, 2000)
FF+WU+Run (X+Y: 3999+1, Z: 100, 500, 1000, 2000) SMARTS (U: 100, W: 200, 2000, 2000)

Figure 4. Simulation Speed versus Accuracy Trade-Off Graph of mcf

The first key conclusion that we draw from these two figures is that the SvAT of reduced input set and the truncated
execution techniques is very poor. Not only is their accuracy very poor, their poor accuracy is compounded by slow
simulation times. In particular, the train input set has the worst SvAT since its accuracy ranks towards the bottom and

since its simulation time is significantly longer than any of the other technique. Therefore, these two techniques, from the
viewpoints of simulation accuracy and speed, do not offer any advantages compared to SimPoint and SMARTS.

It is interesting to note that due to gcc’s highly complex phase behavior, increasing the detailed simulation period of the
truncated execution techniques does not automatically confer higher accuracy. Rather, blithely increasing the simulation
period can simultaneously decrease both the simulation accuracy and speed.

The second key conclusion shown in Figures 3 and 4 is that, on average, SMARTS is the most accurate technique, which
was one of the key conclusions of Section 5. (The accuracy of all nine SMARTS permutations was very similar.) Although
the average accuracy of SimPoint is not quite as good as SMARTS, SimPoint has a better SvAT than does SMARTS, even
after including the cost of generating the simulation points (which is zero if the architect uses those found on the SimPoint
web page) and including the cost of generating the checkpoints (the cost of which is amortized by successive runs and can be
decreased by picking early simulation points [Perelman03]). Therefore, if the architect’s principal concern is accuracy, then
SMARTS is the most appropriate technique. However, if the architect is willing to sacrifice a little accuracy for increased
simulation speed (and who isn’t around deadline time?), then SimPoint is the most appropriate technique.

In summary, from the perspective of a SvAT, the best techniques are, listed in order: SimPoint, SMARTS, FF X + Run
Z, FF X + WU Y + Run Z, Run Z, and reduced input sets, although there is a large separation between the two sampling
techniques and the others.

6.2 Potential Configuration Dependence

Another relevant consideration for architects is how the accuracy of these techniques changes based on the processor
configuration. The accuracy of the ideal technique will remain constant across a broad range of configurations. A predictable
and stable accuracy allows trends to emerge from the noise of error. To quantify the magnitude of this potential problem, we
calculated the percentage error between the CPIs of each technique and the reference input set and then determined the
frequencies of the CPI error for all configurations. A technique has a configuration dependence when there are a large
number of configurations in the higher CPI error ranges and/or if error does not trend. Figure 5 shows the percentage of
configurations that fell into each range of CPI errors for that specific permutation across all benchmarks. For each technique,
two permutations, worst (left) and best (right), are shown. A permutation was selected as the worst or best when it had the
lowest or highest percentage, respectively, of configurations in the 0% to 3% error range.

Figure 5 shows three key results. First, since the CPI accuracy of the reduced input set and truncated execution
techniques is extremely poor, both of these types of techniques have a significant configuration dependence. The second key
result is that SMARTS has virtually no configuration dependence. Even for the worst permutation, in almost 80% of all
configurations, SMARTS still yields a CPI value that is within 3% of the actual reference input set CPI. In the best
permutation, this percentage climbs to almost 98%. However, this percentage is slightly less than the target of 99.7% of the
configurations being within ±3% of the reference input set’s CPI [Wunderlich03]. Nevertheless, given the “extreme”
nature of the configurations – they represent configurations at the envelope of the hypercube of potential configurations – we
conclude that SMARTS has virtually no configuration dependence. Finally, for SimPoint, in the worst permutation, there is a
significant configuration dependence that largely disappears in the best permutation. However, even in the best permutation,
the percentage of configurations for which the CPI error is greater than 3% is higher than the best case for SMARTS.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1-100M
X-10M

Test
Large

1500M
500M

1000M+100M

4000M+100M

999M+1M+1000M

3999M+1M+1000M

U:100, W
:200

U:10000, W
:20000

P
er

ce
nt

ag
e

 o
f C

o
nf

ig
ur

at
io

ns

> 30%

27% to 30%

24% to 27%

21% to 24%

18% to 21%

15% to 18%

12% to 15%

9% to 12%

6% to 9%

3% to 6%

0% to 3%

Figure 5. Configuration Dependence: Histogram of CPI Error (Relative to reference) for All Benchmarks

Although the results in Figure 5 show the frequency of CPI errors across all benchmarks, we found that the results
presented in Figure 5 were fairly typical for each benchmark and that any one benchmark was not an “outlier” in terms of its
frequency of CPI error.

Although the absolute accuracies may not be perfect, with the exception of the best permutation for SMARTS, another
key question regarding configuration dependence is: “Is the relative accuracy constant?” For the reduced input set and
truncated execution techniques, the relative accuracy is not constant, in that the CPI error for these two types of techniques is
not consistently positive or negative. Rather, as is especially prominent in gcc, for the same permutation, there are significant
numbers of configurations that have CPI errors that are both less than -27% and greater than 27%. Therefore, for these
techniques, the CPI error does not trend. For SimPoint and SMARTS, the relative accuracy is quite good, as least for the
most accurate permutation of each technique. Even for gcc, the CPI error is consistently positive or negative. This conclusion
confirms the results for SimPoint presented in [Perelman03].

In conclusion, the results in this section show that the reduced input set and truncated execution techniques have severe
configuration dependences because their CPI results are very inaccurate and the CPI error does not trend. By contrast,
SimPoint and SMARTS have very little, if any, configuration dependence because the CPI error is generally small and
consistent. From a pure CPI error point-of-view, however, the accuracy of SMARTS is almost perfect.

7. The Impact of the Simulation Technique on the Evaluation of Enhancements
The characterization methods examined above can be used to quantify the differences between the results produced with

the reference input set and with each technique. What is not readily apparent, however, is whether there is a correlation
between these differences and the effect a specific simulation technique has on the simulation results. What is more important
is whether these different simulation techniques would lead us to different conclusions when evaluating a new architectural
feature. For instance, one technique may lead us to conclude that a new architectural enhancement will produce some degree
of speedup, while the errors induced by another technique may lead us to the opposite conclusion.

As an empirical attempt to determine the correlation between the accuracy of a technique and the observed simulation
results produced when evaluating an enhancement, we quantify the induced error due to each technique for two
microarchitectural enhancements, Simplifying and Eliminating Trivial Computations (TC) [Yi02] and Next-Line Prefetching
(NLP) [Jouppi90]. We chose these two enhancements since TC targets the processor core and NLP targets the memory
hierarchy. Furthermore, TC is a non-speculative enhancement while NLP is speculative.

Figure 6 shows the difference between the apparent speedup of each technique and the speedup of the reference
input set, i.e. SpeedupTechnique – Speedupreference, for gcc with processor configuration #2. We present this specific
benchmark-configuration combination since it most clearly presents the effects that inaccuracies can have. The conclusions
from the other benchmark-configuration combinations are similar, but less obviously so. The results in Figure 6 reflect the
results of the three accuracy characterizations. In particular, the speedups for the reduced input set and the truncated
execution techniques are very different from the speedups obtained with the reference input set. These differences are
solely attributable to the fundamental inaccuracy of these techniques when they are compared to the reference input set.
Perhaps even more troubling is that the speedups for these methods are not consistently higher or lower than the speedup for
the reference input set. This lack of consistency precludes the prospect of accounting for the magnitude and the direction
(positive or negative) of the error when examining speedup results.

The SimPoint results show that the two most accurate permutations – at least for this analysis – are the single 100M and
the multiple 10M. Since the multiple 10M permutation is the most accurate permutation for this benchmark according to all
three characterizations, it is not surprising to find that its apparent speedup is close to the speedup when using the
reference input set; the difference in speedups is only 2.54%. Although the accuracy of the single 100M permutation is
similar to that of some of the truncated execution permutations, according to the performance bottleneck characterization, the
difference in speedups for this permutation and the reference input set is only 0.35%. This small difference is due purely
to coincidence, that is, while the CPIs of the base processor and the processor with NLP are significantly different for this
permutation and the reference input set (approximately 94% difference in the CPIs for the base processors and the
processors with NLP), for this permutation, the CPIs fortuitously offset to produce a speedup that is very close to the
reference input set.

The reason that the speedup for the multiple 100M permutation is an additional 13.05% higher than the speedup for the
reference input set is because SimPoint underestimates the effect of the memory latency, which was identified by the
performance bottleneck analysis. Finally, since the single 10M permutation is quite inaccurate, it is not surprising to see that
its speedup error is larger than the other three permutations.

Overall, the SMARTS results show that all nine permutations are, at worse, very accurate. From an accuracy point of
view, the nine permutations are arranged in increasing order of accuracy from left to right. Naturally, the speedup error –
generally – decreases from left to right. In fact, for the most accurate permutations (U=10,000), the difference in speedup is
less than 0.6%. Given the results of the three accuracy characterizations, the small differences in speedups are not surprising.

Finally, the conclusions that we draw from the speedup results for the TC enhancement are similar to those from the
NLP enhancement, although since the average speedup is much lower (less than 10%), it is difficult to make definite
conclusions based on those results.

-40

-30

-20

-10

0

10

20

30

40

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 3 0 3 1 3 2 3 3 3 4 3 5 3 6 3 7 3 8 3 9 4 0 4 1 4 2 4 3 4 4 4 5 4 6 4 7 4 8 4 9 5 0 5 1 5 2 5 3 5 4 5 5 5 6 5 7 5 8 5 9 6 0 6 1 6 2 6 3 6 4 6 5 6 6 6 7 6 8 6 9

SimPoint (1-100, X-100, 1-10, X-10) Reduced (Sm, Md, Tst, Trn)
Run FF+Run
FF+WU+Run SMARTS (U: 100, 1000, 10000)

Figure 6. Differences in Speedups due to Next-Line Prefetching between Each Technique and the
reference Input Set, i.e. Technique – reference, with gcc and Processor Configuration #2

8. Related Work
Although we found several papers that were somewhat related to this paper, we did not find any papers that

comprehensively evaluated the accuracy of all techniques. The papers that did evaluate the accuracy of techniques did so in
the context of comparing the results of a new technique to the results when using the reference input set. The most
relevant related work falls into two categories: simulation methodology and simulator validation.

Simulation Methodology: Yi et al. [Yi03] proposed using a PB design as a means of introducing statistical rigor into
simulation methodology. More specifically, they used a PB design to identify the most significant parameters to help choose
parameter values, to select a statistically different set of benchmarks, and to measure the effect that an enhancement has on
the processor. The first two applications attempt to improve the simulation setup phase while the last application improves
the analysis phase.

Eeckhout et al. [Eeckhout02] used statistical data analysis techniques to determine the statistical similarity of benchmark
and input set pairs. To quantify the similarity, they used metrics such as instruction mix, branch prediction accuracy, cache
miss rates, number of instructions in a basic block, and maximum amount of parallelism inherent to the benchmark. After
characterizing each benchmark with these metrics, they used statistical techniques such as principal component and cluster
analysis to cluster the benchmarks and input set pairs together.

Simulator Validation: Black and Shen [Black97] iteratively improved the accuracy of their performance model by
comparing the cycle count of their simulator, which targeted a specific architecture, against the cycle count of the actual
hardware. Their results show that modeling, specification, and abstraction errors were still present in their simulation model,
even after a long period of debugging. Their work showed the need for extensive, iterative validation before the results from
a performance model can be trusted.

Desikan et al. [Desikan01] measured the amount of error, as compared to the Alpha 21264 processor, that was present in
an Alpha version of the SimpleScalar simulator. Their results showed that the simulators that model a generic machine (i.e.
non-specific machine, such as SimpleScalar) generally report higher IPCs than simulators that are validated against a real
machine. On the other hand, unvalidated simulators that targeted a specific machine usually underestimated the performance.

Gibson et al. [Gibson00] described the types of errors that were present in the FLASH simulator when compared to the
custom-built FLASH multi-processor system. To determine which errors were present in the FLASH simulator, they
compared the simulated execution time from the FLASH simulator against the actual execution time of the FLASH
processor. Their results showed that the margin of error (the percentage difference in the execution time) of some simulators
was more than 30%, which is higher than the speedups that are often reported for specific architectural enhancements.

9. Recommendations
Based on the results of the three characterization methods, the speed versus accuracy trade-off, and the configuration

dependence analysis, we make the following recommendations for performing simulation-based architecture studies.
Recommendation #1: Improve the documentation of simulation methodologies. From our survey of simulation

methodologies, the number of unknown techniques accounted for half of all papers over the last ten years, and approximately
one-third of the papers in recent years. Inadequately documenting how the results were obtained prevents other researchers
from verifying those results or building upon them. More importantly, results that are presented without adequate
documentation or justification of the simulation methodology may be considered to be suspect.

Recommendation #2: Sampling-based simulation techniques, such as SimPoint and SMARTS, should be used when
the goal is to get reference-like results. Simulation with reduced input sets should be viewed as using a completely different
benchmark program than what is obtained when using the reference input set. Given its generally low level of accuracy,
the truncated execution technique should not be used since any conclusions that are drawn from the results using this
technique may simply be a figment of the technique, rather than a bona fide effect. Due to the very high levels of accuracy
and their very low simulation times, we highly recommend that sampling-based techniques – as epitomized by SimPoint and
SMARTS – be used instead. While this may seem to be an intuitively obvious recommendation, the fraction of papers that
used reduced input sets or truncated execution techniques actually increased from 68.9% in the eight years prior to the
introduction of SimPoint, to 82.1% in the conferences that occurred after SimPoint was introduced. Finally, benchmarks from
old benchmark suites should not be used unless there is compelling reason to do so; especially so since SimPoint and
SMARTS are both fast and accurate. In our survey, we found a surprising number of papers that used benchmarks that were
more than five years old. (So as not to sound too preachy, we would like to point out that we have been guilty of some of
these problems ourselves.)

Recommendation #3: Suggestions for selecting a simulation technique. Based on the results presented in the previous
three sections and from our experience in this study, Figure 7 presents the detailed ordering of the six techniques for several
different categories. The Technical Factors branch orders the techniques based on the conclusions from the three
characterizations (performance bottleneck, execution profile, and architectural metrics), the speed versus accuracy trade-off,
and the configuration dependence analysis.

Figure 7. Decision Tree for the Selection of a Simulation Technique

The Complexity to Use category reflects the number and complexity of the changes that are needed to support that

technique. Since the reduced input sets do not require any simulator changes, they have the lowest complexity to use.
SMARTS has the highest complexity to use since it requires changes to the simulator to support periodic sampling,
functional warming, and statistical calculations. The other four techniques have a medium complexity of use because they
could require minor changes to the simulator to support fast-forwarding, warm-up, and early termination. The Cost to
Generate category is the amount of effort that is needed “create” each technique. Since SimPoint requires minimal user
intervention to find a benchmark’s simulation points, it has the lowest cost. Note, however, that for some compiler-based
studies, the architect may need to repeatedly generate new simulation points to reflect the status of various levels of code
optimization. On the other end of the spectrum, SMARTS and reduced input sets have the highest costs to generate since new

SMARTS parameters (U, W) may need to be found or new input sets need to be created for each benchmark suite.
The Processor Component Analysis branch orders the techniques based on how similar their performance bottlenecks are

within each of the processor’s major components (i.e. Instruction Fetch, Execute, and Memory Hierarchy). After eliminating
the parameters that are less significant than the dummy parameters (i.e. noise), we then compute the Euclidean distance
between each technique and the reference input set. Then to facilitate comparisons across techniques and components, we
divide the Euclidean distance by the number of significant parameters in the reference input set. By focusing on specific
components, this analysis determines which techniques should be used for which components.

While these results confirm the results obtained in the previous sections, there are some interesting results. For each of
the three components and each benchmark, SMARTS and SimPoint show the best behavior. For gzip, equake and vpr-Route,
Run Z is not appropriate for any of the components and therefore should not be used. Reduced input sets are not appropriate
when focusing on Instruction Fetch and Memory Hierarchy parameters for gcc and vpr-Place. On the other hand, for gzip, the
reduced input sets are very similar to the reference input set and are as accurate as SimPoint and SMARTS.

In summary, for different processor components and for a particular benchmark, the accuracy of a technique with respect
to the others may change. However, SimPoint and SMARTS are the best overall techniques.

10. Conclusion

With the advent of popular execution-driven simulators such as SimpleScalar, simulating the reference input set of a
SPEC 2000 benchmark to completion is not an option for most computer architects. Consequently, architects have proposed
several alternative simulation techniques with the intent of decreasing the simulation time. Prevailing and emerging
techniques fall into the categories of: 1) Reduced input sets, 2) Truncated execution, and 3) Sampling. In this paper, we
characterized the accuracy of the MinneSPEC and SPEC reduced input sets; Run Z, FF X + Run Z, and FF X + WU Y + Run
Z from the truncated execution category; and SimPoint and SMARTS from the sampling category.

We used three characterizations to determine the accuracy of each technique, with respect to the reference input set.
First, we used the statistical Plackett and Burman design to perform a performance bottleneck characterization of each
technique. Second, we performed an execution profile analysis by tallying the basic block execution frequencies and
instruction counts. Third, we used several architectural performance metrics as the final characterization method. After
evaluating accuracy of these techniques with the previous three characterizations, we evaluated the speed versus accuracy
trade-off and the potential configuration dependence of each technique. Finally, we then showed how the induced error of
each technique can affect the performance of two microarchitectural enhancements.

To evaluate the accuracy, speed versus accuracy, configuration dependence, and the apparent effect on the speedup for
the 69 permutations of the 6 techniques for 10 benchmarks, we simulated over 1000 trillion detailed instructions, which
required approximately 40 CPU-years of simulation time.

Our results lead to several important conclusions. First, the accuracy of the reduced input set and truncated execution
techniques was very poor for all three characterizations and the poor accuracy of these two techniques is not offset by faster
simulation speed, which further diminishes their utility. Second, these two techniques have significant configuration
dependences because they have a high frequency of large CPI errors and because the CPI error does not trend. Third, as a
result of these inaccuracies, the speedup results for these techniques did not predictably trend.

Fourth, our results showed that, for all three characterizations and for the configuration dependence analysis, SimPoint
and SMARTS are both very accurate techniques. Fifth, while SMARTS is slightly more accurate, SimPoint has a better speed
versus accuracy trade-off, i.e. SimPoint is faster. Finally, the most accurate permutation of both techniques produces very
accurate estimates of the apparent speedup.

The final contribution of this paper is a decision tree to help architects choose the most appropriate technique(s) across
on a wide range of categories.

Acknowledgements

We would like to especially thank Brad Calder, Roland Wunderlich, Jeremy Lau, and Michael Van Biesbrouck for
answering our many SimPoint and SMARTS related questions. We would also like to thank Brad Calder, Ying Chen, Lieven
Eeckhout, Chris Hescott, Baris Kazar, Jin Lin, Keith Osowski, Michael Tobin, Hans Vandierendonck, Keqiang Wu, and
Roland Wunderlich for their helpful comments on previous drafts of this work; Ben Kochie and Birali Runesha for their help
and infinite patience in helping us finish our simulations; and to Jin Lin, Venkatesan Packirisamy, Kiran Yellajyosula, and
Pen-Chung Yew for helping us set-up our simulations and allowing us to monopolize their computers.

This work was supported in part by National Science Foundation grants CCR-9900605 and EIA-9971666, the IBM
Corporation, Compaq's Alpha Development Group, and the Minnesota Supercomputing Institute.

References
[Black98] B. Black and J. Shen, “Calibration of Microprocessor Performance Models”, IEEE Computer, Vol. 31, No. 5, May

1998, Pages 59-65.
[Burger97] D. Burger and T. Austin, “The SimpleScalar Tool Set, Version 2.0”, University of Wisconsin-Madison Computer

Sciences Department Technical Report #1342, 1997.

[Brooks00] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A Framework for Architectural-Level Power Analysis and
Optimizations”, International Symposium on Computer Architecture 2000.

[Calder04] B. Calder, J. Lau, and M Van Biesbrouck, Personal Communications.
[Citron03] D. Citron, “MisSPECulation: Partial and Misleading Use of SPEC CPU2000 in Computer Architecture Conferences”,

Panel Discussion in International Symposium on Computer Architecture 2003.
[Conte96] T. Conte, M. Hirsch, and K. Menezes, “Reducing State Loss for Effective Trace Sampling of Superscalar Processors”,

International Conference on Computer Design, 1996.
[Desikan01] R. Desikan, D. Burger, and S. Keckler, “Measuring Experimental Error in Microprocessor Simulation”, International

Symposium on Computer Architecture, 2001.
[Eeckhout02] L. Eeckhout, H. Vandierendonck, and K. De Bosschere, “Workload Design: Selecting Representative Program-Input

Pairs”; International Conference on Parallel Architectures and Compilation Techniques, 2002.
[Gibson00] J. Gibson, R. Kunz, D. Ofelt, M. Horowitz, J. Hennessy, and M. Heinrich, “FLASH vs. (Simulated) FLASH: Closing

the Simulation Loop”, International Conference on Architectural Support for Programming Languages and Operating
Systems, 2000.

[Hamerly04] G. Hamerly, E. Perelman, and B. Calder, “How to Use SimPoint to Pick Simulation Points”, ACM SIGMETRIC
Performance Evaluation Review, 2004.

[Henning00] J. Henning, “SPEC CPU2000: Measuring CPU Performance in the New Millennium”, IEEE Computer, Vol. 33, No. 7,
July 2000; Pages 28-35.

[Jouppi90] N. Jouppi, "Improving Direct-Mapped Cache Performance by the Addition of a Small Fully-associative Cache and
Prefetch Buffers," International Symposium on Computer Architecture, 1990.

[KleinOsowski02] A. KleinOsowski and D. Lilja, “MinneSPEC: A New SPEC Benchmark Workload for Simulation-Based Computer
Architecture Research”, Vol. 1, June 2002.

[Levy99] P. Levy and S. Lemeshow, “Sampling of Populations: Methods and Applications”, John Wiley and Sons, 1999.
[Lilja00] D. Lilja, “Measuring Computer Performance”, Cambridge University Press, 2000.
[Perelman03] E. Perelman, G. Hamerly, and B. Calder, “Picking Statistically Valid and Early Simulation Points”, International

Conference on Parallel Architectures and Compilation Techniques, 2003
[Plackett46] R. Plackett and J. Burman, “The Design of Optimum Multifactorial Experiments”, Biometrika, Vol. 33, Issue 4, June

1946, Pages 305-325.
[Sherwood02] T. Sherwood, E. Perelman, G. Hamerly and B. Calder, “Automatically Characterizing Large Scale Program Behavior”,

International Conference on Architectural Support for Programming Languages and Operating Systems, 2002.
[SimPoint04] http://www.cs.ucsd.edu/~calder/simpoint
[Wunderlich03] R. Wunderlich, T. Wenisch, B. Falsafi, and J. Hoe, “SMARTS: Accelerating Microarchitectural Simulation via

Rigorous Statistical Sampling”, International Symposium on Computer Architecture, 2003.
[Wunderlich04] R. Wunderlich, Personal Communications.
[Yi02] J. Yi and D. Lilja, “Improving Processor Performance by Simplifying and Bypassing Trivial Computations”,

International Conference on Computer Design, 2002.
[Yi03] J. Yi, D. Lilja, and D. Hawkins, “A Statistically-Rigorous Approach for Improving Simulation Methodology”,

International Symposium on High-Performance Computer Architecture, 2003.

