
UNIVERSITY OF MINNESOTA

This is to certify that I have examined this copy of a doctoral dissertation by

Haifeng Qian

and have found that it is complete and satisfactory in all respects,
and that any and all revisions required by final

examining committee have been made.

Professor Sachin S. Sapatnekar

Name of the Faculty Advisor

Signature of the Faculty Advisor

Date

GRADUATE SCHOOL

Stochastic and Hybrid Linear Equation Solvers
and their Applications in VLSI Design Automation

A Dissertation
Submitted to the Faculty of the Graduate School

of the University of Minnesota
By

Haifeng Qian

in Partial Fulfillment of the Requirements
for the Degree of

Doctor of Philosophy

Sachin S. Sapatnekar, Advisor

May 2006

c© Haifeng Qian 2006

Acknowledgments

Thanks above all to, and half of this thesis belongs to, my advisor, Professor

Sachin S. Sapatnekar. Throughout the four years of doctoral study, his intelligence,

knowledge, and most importantly his keen insight in identifying potential problem

and potential breakthrough, have guided me every step of the way. It has been a

pleasure and an honor working with him.

Thanks to Dr. Sani R. Nassif, who has been an industrial mentor to me.

Through multiple collaborative projects and arranging an internship for me, he

patiently helped me understand real-life problems, and inspired and contributed to

a significant portion of this thesis work.

Thanks to Dr. Haihua Su and Dr. Gi-Joon Nam for the industrial benchmarks

used in all experiments in this thesis. Thanks to Dr. Joseph N. Kozhaya for his

contribution to the ESD chapter.

Thanks to my PhD committee members, Professor George Karypis, Professor

Kia Bazargan, Professor Gerald E. Sobelman and Dr. Sani R. Nassif, for reviewing

my thesis and giving valuable feedbacks.

Thanks to my colleagues in the VEDA lab, Shrirang Karandikar, Rupesh Shelar,

Jaskirat Singh, Vidyasagar Nookala, Sanjay Kumar, Brent Goplen, Tianpei Zhang,

Yong Zhan, Yan Feng, Hongliang Chang, and many others, for their help and

friendship.

i

Abstract

This thesis presents two new linear equation solvers, and investigates their ap-

plications in VLSI design automation. Both solvers are derived in the context of a

special class of large-scale sparse left-hand-side matrices that are commonly encoun-

tered in engineering applications, and techniques are presented that can potentially

extend the theory to more general cases.

The first is a stochastic solver that performs the computation by establishing the

equivalence between linear equations and random walks. It has a desirable locality

feature: a single unknown variable can be evaluated without solving the entire

system. For complete solutions, it is competitive in applications with moderate

accuracy requirement.

The second is a hybrid solver: it combines the random walk technique and

traditional iterative approaches. Given a set of linear equations, if the left-hand-

side matrix satisfies certain conditions, it is proven that an incomplete triangular

factorization can be obtained from random walks, and these factors can be used

as a preconditioner in a traditional iterative linear equation solver to accelerate

its convergence. In other words, the proposed hybrid solver is a stochastically

preconditioned iterative solver. It is argued that our factor matrices have better

quality, i.e., better accuracy-size tradeoffs, than preconditioners produced by ex-

isting incomplete factorization methods. Therefore the hybrid solver requires less

computation than traditional preconditioned iterative solvers to solve a set of linear

equations with the same error tolerance, and the advantage increases for larger and

denser sets of linear equations.

The application of these solvers on several problems in VLSI design is illustrated

in this thesis, namely, power grid analysis, chip-level electrostatic discharge (ESD)

simulation, and quadratic placement. We not only demonstrate the efficiency of

ii

direct usage of the solvers, but also devise a set of application-specific techniques

that are often based on indirect usage of the stochastic solver, due to the fact that

the localized computation process of random walks carries meaningful information

in various scenarios.

For power grid analysis, the locality feature of the stochastic solver enables the

calculation of a single node voltage in DC analysis or a single node voltage at a

single time point in transient analysis, which may potentially translate to dramatic

efficiency improvements in an incremental design environment. Special variations

of the stochastic solver, by introducing hierarchies that fit naturally with power grid

structure, are also derived to speed up complete simulation. To handle early-stage

analysis with uncertainty, the locality feature of random walks is utilized to relate

a single node voltage to the working modes of circuit blocks, and thereby achieve

a fast solution.

For ESD simulation, which requires solving a power grid for up to a few thousand

times with different excitations, a flexible network reduction algorithm based on

random walks is applied to reduce the computational complexity. The locality

feature of random walks naturally leads to the sparsity of the reduced network, and

enables incremental update when the design is modified.

For quadratic placement, the hybrid linear equation solver is applied in each

iteration to compute new locations for circuit modules and cells. The hybrid solver

is compared against traditional preconditioned iterative solvers by measuring the

actual amount of computation needed to solve sets of linear equations with the same

error tolerance, and exhibits significant speedup. A trend is observed that the larger

and denser the left-hand-side matrix is, the more the hybrid solver outperforms

traditional methods, as predicted by our theory.

iii

Contents

1 Introduction 1

2 Stochastic Linear Equation Solver 10

2.1 A Brief History . 10

2.2 The Generic Algorithm . 13

2.3 A Simple Example . 18

2.4 Two Speedup Techniques . 20

2.4.1 Creating Homes . 20

2.4.2 Bookkeeping . 22

2.5 Runtime Trends . 23

3 Hybrid Linear Equation Solver 27

3.1 An Initial Hybrid Solver . 28

3.1.1 The Sequential Monte Carlo Method 28

3.1.2 A Prototype Solver . 29

3.2 Proof of Incomplete Factorization 32

3.2.1 The Approximate Factorization 33

3.2.2 The Incomplete Non-zero Pattern 37

3.2.3 The Diagonal Component 40

iv

3.3 The Hybrid Solver and its Comparison with ILU 42

3.4 Implementation Issues . 45

3.4.1 Stopping Criterion . 45

3.4.2 Exact Computations for One-step Walks 47

3.4.3 Reusing Walks . 49

3.4.4 Matrix Ordering . 52

3.4.5 Random Number Generator 54

3.5 Extension . 54

3.5.1 Asymmetric Matrix . 55

3.5.2 Random Walk Game with Scaling 56

4 Application in Power Grid Analysis 60

4.1 Static and Transient Analysis . 62

4.1.1 DC Analysis . 63

4.1.2 RC Transient Analysis . 65

4.1.3 RKC Transient Analysis . 68

4.2 Locality . 71

4.3 Hierarchies . 72

4.3.1 Principles . 73

4.3.2 Transient Hierarchy . 78

4.3.3 Benefits of Hierarchy . 80

4.3.4 Variations of Hierarchy . 82

4.4 Simulation Results . 83

5 Application in Early-stage Power Grid Analysis 92

5.1 Problem Statement . 92

5.2 Proposed Solution . 101

v

5.3 Simulation Results . 105

6 Application in Chip-level Electrostatic Discharge Simulation 109

6.1 ESD Modeling . 110

6.2 Proposed Solution . 116

6.3 Simulation Results . 120

7 Application in Quadratic Placement 124

7.1 Quadratic Placement . 124

7.2 Numerical Results . 127

8 Conclusion 133

A Proof of Lemma 2 136

B Proof of Convergence for Section 4.1.3 137

vi

List of Tables

2.1 Observed convergence behavior for the simple example. 19

2.2 The time complexity of the stochastic solver on artificial test cases. 25

4.1 Power grid DC analysis results. 87

4.2 Power grid RC transient analysis results. 89

4.3 Power grid RKC transient analysis results. 90

5.1 Largest single-point voltage-drop analysis results. 106

5.2 Numbers of node voltage violations reported. 107

5.3 Largest average voltage-drop analysis results. 108

6.1 ESD benchmarks and runtimes. 120

6.2 Complete ESD simulation results. 121

6.3 Runtime-accuracy tradeoff of ESD simulation. 122

6.4 ESD resimulation results. 123

7.1 Computational complexity comparison between the hybrid solver

and traditional ICCG for the first set of benchmarks. 130

7.2 Computational complexity comparison between the hybrid solver

and traditional ICCG for the second set of benchmarks. 131

7.3 Physical runtimes of the hybrid solver. 132

vii

7.4 Runtimes of the Waterloo Placer with different solvers. 132

viii

List of Figures

1.1 The choice of linear solver for different applications. 3

2.1 An instance of a random walk “game.” 13

2.2 A random walk game equivalent to the example equation set. 19

3.1 One step in Gaussian elimination. 38

3.2 An example of reusing random walks. 50

3.3 A random walk in the modified game with scaling. 57

4.1 A part of a typical power grid model. 61

4.2 A representative node in a power grid. 63

4.3 Rules for the transient RC analysis “game.” 67

4.4 Companion model of a pair of inductors. 69

4.5 A wire segment model. 70

4.6 Estimated voltages at a single node. 71

4.7 Hierarchical strategy in [89]. 73

4.8 Algorithm flow in [89]. 74

4.9 The original resistive network with external connections replaced. . 74

4.10 The imaginary circuit interpretation of a DC macromodel. 78

4.11 The imaginary circuit interpretation of a transient macromodel. . . 79

4.12 Walk length reduction in the hierarchical algorithm. 81

ix

4.13 The original graph and the extracted virtual layer. 83

4.14 Tradeoff between runtime and error margin. 85

4.15 Accuracy-runtime tradeoff for solving the benchmark Industry1. . . 85

4.16 Accuracy-runtime tradeoff for solving the benchmark Industry2. . . 86

5.1 A small example problem. 94

5.2 A small example of equation (5.2). 97

5.3 Near-worst-case working mode of GSRC floorplan n30a. 107

6.1 ESD simulations for HBM and CDM events. 111

6.2 A DC model for chip-level CDM simulation. 113

6.3 A full view of the DC model for chip-level CDM simulation. 114

x

Chapter 1

Introduction

This thesis presents two new linear equation solvers. The problem statement is

simply to solve a set of linear algebraic equations Ax = b, where A is a given

square nonsingular matrix, often referred to as the left-hand-side matrix, b is a

given vector, often referred to as the right-hand-side vector, and x is the unknown

solution vector to be computed. The first solver is a stochastic solver based on

random walks. The second solver is a hybrid solver: it combines the random walk

technique and traditional iterative approaches. Both solvers are presented and

proven in the context of a special class of left-hand-side matrices, and techniques

are provided that can potentially extend the theory to more general cases.

The solution of linear equations has been studied for hundreds of years, and

the majority of the solvers fall into two main categories: direct solvers that are

based on matrix factorization, and iterative solvers that begin with an initial guess

and repeatedly refine the solution vector. Although the basic techniques in both

categories can be dated back to the time of C. F. Gauss, the last few decades have

seen significant progress in computational efficiency. For direct solvers, dramatic

performance improvements have been achieved by matrix ordering techniques [2]

1

[15] [19] [24] [25]; for iterative solvers, powerful Krylov subspace methods [3] [70],

as well as multigrid methods [29], have been developed.

These mathematical innovations have been driven by engineering applications.

For example, partial differential equations are involved in many engineering prob-

lems, and their discretization is a major source of large-scale systems of linear

equations that constantly demand more efficient linear solvers. In recent years,

with the exponential growth in circuit complexity, VLSI design automation has

emerged as another application domain for large-scale linear solvers. Efficient solu-

tions to systems of linear equations are required at several steps of the design cycle,

such as circuit simulation (especially power grid analysis), thermal analysis, and

quadratic placement. All of these problems involve large-scale sparse left-hand-side

matrices: the dimension of A can be millions or more, but the average number of

non-zero entries per row is typically below a hundred. All discussion in this thesis

is limited to such large-scale sparse matrices, and any reference to the density of a

matrix implies a relative density metric defined as the average number of non-zero

entries per row. When a matrix is said to be denser than another, such a statement

refers to the relative density comparison between two matrices that are both sparse.

In VLSI design automation applications, it is often needed to solve Ax = b

multiple times, with the same left-hand-side matrix A, but with different right-

hand-side vectors b. Such multiple solutions are referred to as re-solves.

The competition between direct solvers and iterative solvers is an open argu-

ment, and there is much disagreement over which solvers are suitable for what

scenarios. However, Figure 1.1 is an attempt to discuss the relative strength and

weakness of the solvers, and provides a rough guideline for the choice among them

given different applications. The x-axis represents the density of the left-hand-side

matrix A, and can be measured by the average number of non-zero entries per row.

2

Figure 1.1: The choice of linear solver for different applications, as a function of

the density of A and the number of re-solves.

Three applications in VLSI design automation are marked on the x-axis: the aver-

age number of non-zeroes per row in power grid matrices is typically around 4; for

thermal matrices under finite difference discretization, this number is about 7; for

placement matrices, this number ranges from 7 to 17 in our benchmarks. The y-axis

is the number of re-solves needed: the number of times that the linear equations

are to be solved with the same left-hand-side matrix A, but with different right-

hand-side vectors b. When the density of the matrix is low, direct solvers are the

preferred method; when the density is above a certain point, iterative solvers be-

come superior to direct solvers, due to the fact that the time and space complexity

of a direct solver increases dramatically with the matrix density. The convergence

of iterative solvers can be improved if the equation set is multiplied by a precondi-

tioner matrix on both sides, at the overhead cost of building the preconditioner [70].

Such an extra computational cost can be justified when the system of equations is

to be solved for multiple right-hand-side vectors, and therefore, when the number

3

of re-solves goes above a certain point1, preconditioned iterative solvers become

the preferred choice: after paying the overhead of building a preconditioner, it can

be used repeatedly for different right-hand-side vectors to achieve lower re-solve

runtimes. The shaded region in Figure 1.1 represent applications that involve a

relatively dense matrix A and require a relatively large number of re-solves. For

these applications, it is worthwhile to build a more computationally expensive pre-

conditioner with higher quality, as the overhead is easily amortized. In fact, the

target applications of our proposed hybrid solver lie in the shaded region2.

We now define some terms and notations that underpin the discussion through-

out this thesis3. Let us first consider various factorizations of the left-hand-side

matrix A:

• LU factorization: The equation A = LU is referred to as the LU factor-

ization of matrix A, where L is a lower triangular matrix with all diagonal

entries being 1, and U is an upper triangular matrix. This specific form of LU

factorization is unique when it exists, and is also known as Doolittle factor-

ization in the literature, and in this thesis, any reference to LU factorization

always implies Doolittle factorization.

• Cholesky factorization: If A is symmetric and positive definite, the equa-

tion A = CCT is referred to as the Cholesky factorization of A, where C is a

lower triangular matrix referred to as the complete Cholesky factor.

1One may argue that preconditioning is beneficial, and sometimes required, even for a single

right-hand-side vector. For this reason, the region labeled “Iterative solver” in Figure 1.1 should

be read not as iterative solvers without any preconditioning, but rather as ones with a simple

preconditioner: for example, a diagonal preconditioner is commonly used in practice.
2The shaded region covers a corner of the direct solver domain because the hybrid solver may

outperform direct solvers for those applications with marginal density.
3The readers are referred to [19] [25] [70] [83] for a more complete treatment of the basics.

4

• LDL factorization: A slight variation of Cholesky factorization, the equa-

tion A = LDLT is referred to as the LDL factorization of A, where L is the

same matrix L in the LU factorization, and D is a diagonal matrix with all

positive diagonal values.

• Incomplete Cholesky factor: If A is symmetric and positive definite and

C is its Cholesky factor, a lower triangular matrix B is referred to as an

incomplete Cholesky factor of A if it satisfies the conditions that4 BBT ≈ A,

and that if Bi,j 6= 0 then Ci,j 6= 0, ∀i, j.

There are simple relations among these factor matrices: U = DLT and C =

L
√

D, where
√

D is a diagonal matrix in which each entry is the square root of the

corresponding entry in D.

Definition 1 Matrix A is referred to as an R-matrix if it satisfies the following

four properties:

1. Ai,i > 0, ∀i.
2. Ai,j ≤ 0, ∀i 6= j.

3. Ai,j = Aj,i, ∀i 6= j.

4. Matrix A is irreducibly diagonally dominant.

To explain the last condition, let us define the correspondence between matri-

ces and graphs. Given a symmetric matrix A of dimension N , let G be a undi-

rected graph with N nodes labeled 1, 2, · · · , N , such that an undirected edge ex-

ists between two nodes i 6= j if and only if Ai,j 6= 0. This graph G is referred

to as the matrix graph of A, and each node in G corresponds to a specific row

4Here, BBT ≈ A in the numerical sense, for example, if matrix
(
I − (BBT)−1A

)
has small

absolute eigenvalues.

5

and a specific column in A. The ith row of matrix A is said to be diagonally

dominant if |Ai,i| ≥
∑

j 6=i |Ai,j|; it is said to be strictly diagonally dominant if

|Ai,i| >
∑

j 6=i |Ai,j|. Matrix A is said to be irreducibly diagonally dominant if all

rows are diagonally dominant, and in every connected component of the matrix

graph of A, at least one node corresponds to a row that is strictly diagonally dom-

inant. The first and fourth conditions together also imply that an R-matrix is

positive definite [83]. Due to the third and fourth conditions, R-matrices form a

subset of M-matrices5 that are well studied in the literature [70] [83].

For clarity of the presentation, most of the discussion in this thesis is limited

to R-matrices, with the exception that Section 3.5 is dedicated to extending the

theory to more general matrix types.

Again, the shaded region in Figure 1.1 contains the challenging problems that

are of interest. For such relatively dense R-matrices A, the most widely used linear

equation solver is the Incomplete Cholesky factorization preconditioned Conjugate

Gradient (ICCG) method [3] [42] [70], which uses
(
BBT

)−1
as the preconditioner,

where B is an incomplete Cholesky factor of A. There are various existing tech-

niques to produce B for ICCG. All of these perform Gaussian elimination on A,

and use a specific strategy to drop insignificant entries during the process. The

following are two widely used methods.

• ILU(0) applies a pattern-based strategy, and allows Bi,j 6= 0 only if Ai,j 6= 0

[70].

• ILUT applies a value-based strategy, and drops an entry from B if its value

5A nonsingular matrix is said to be an M-matrix if it satisfies the first two conditions in

Definition 1, and all entries of its inverse matrix are nonnegative. It is provable based on the

first, second and fourth conditions in Definition 1 that an R-matrix must be an M-matrix. An M-

matrix is not necessarily an R-matrix, because it may not satisfy the third and fourth conditions

in Definition 1.

6

is below a threshold, which is typically determined by multiplying the norm

of the corresponding row of A by a small constant [70].

A more advanced strategy can be a combination of pattern, threshold and other

size limits such as maximum number of entries per row. In later chapters, the pro-

posed hybrid solver is compared against these traditional incomplete factorization

methods using both theoretical argument and numerical tests.

The content of this thesis is organized as follows:

• Chapter 2 presents a stochastic linear equation solver. It is neither a direct

solver nor an iterative solver, but belongs to an often-ignored third category

that took root in [22] [87], and has a desirable locality feature: a single

unknown variable can be evaluated without solving the entire system. We

propose two new techniques that dramatically improve the performance, and

properties of the resulting solver are investigated.

• Chapter 3 presents a hybrid linear equation solver, the centerpiece of this the-

sis. The solver is derived by combining the stochastic solver with traditional

iterative techniques. A mathematical proof is presented that an incomplete

LDL factorization of an R-matrix can be obtained by random walks, and used

to precondition any iterative solver. It is argued that the resulting incomplete

LDL factors have better quality, i.e., better accuracy-size tradeoffs, than the

incomplete Cholesky factors produced by traditional methods, and that the

improvement increases for larger and denser matrices. We also provide tech-

niques that can potentially extend the theory to more general cases beyond

R-matrices, and speculate on future challenges.

• Chapter 4 applies the stochastic solver on power grid analysis. The locality

feature of the stochastic solver enables the calculation of a single node voltage

in DC analysis or a single node voltage at a single time point in transient

7

analysis, which may potentially translate to dramatic efficiency improvement

in an incremental design environment. Special variations of the stochastic

solver are also derived, by introducing hierarchies that fit naturally with power

grid structure, to speed up complete simulation. For example, DC analysis

of a 71K-node power grid with C4 packaging takes 4.16 seconds; a 348K-

node wire-bond DC power grid is solved in 93.64 seconds; RKC analysis of a

642K-node power grid takes 2.1 seconds per timestep.

• Chapter 5 applies the stochastic solver on early-stage power grid analysis. To

handle uncertainty, an exact integer linear programming (ILP) method is first

developed, and then the locality feature of random walks is utilized to relate

a single node voltage to the working modes of circuit blocks, and thereby

achieve an effective heuristic. A circuit of 43K nodes is analyzed within 70

seconds, and the worst-case scenarios found correlate well with the results

from an ILP solver.

• Chapter 6 applies the stochastic solver on chip-level electrostatic discharge

(ESD) simulation. A flexible network reduction algorithm based on random

walks is applied to reduce the computational complexity. The locality feature

of random walks naturally leads to the sparsity of the reduced network, and

enables incremental update when the design is modified. A complete ESD

check of a benchmark with a 2.3M-node VDD net and 1000 I/O pads is per-

formed in 13 minutes, and 10 resimulations for incremental changes take a

total of 9 minutes.

• Chapter 7 applies the hybrid solver on quadratic placement, which is an exam-

ple application that lies in the shaded region in Figure 1.1. The hybrid solver

computes new locations for circuit modules and cells in each placement iter-

ation, and its performance is compared against both ICCG with ILU(0) and

8

ICCG with ILUT, by measuring the actual amount of computation needed

to solve linear equations with the same error tolerance. The hybrid solver

shows a speedup of up to 7.1 times over ICCG, and a trend is observed that

the larger and denser the left-hand-side matrix is, the more the hybrid solver

outperforms traditional methods, as predicted by our theory.

9

Chapter 2

Stochastic Linear Equation Solver

In this chapter, we study a stochastic solution to a set of linear equations, Ax = b,

given that A is an R-matrix. The basic framework is rooted in previous mathe-

matical works of [22] [87], and we develop two new techniques that significantly

improve the efficiency of a stochastic solver.

This chapter is organized as follows. Section 2.1 provides a summary of previ-

ous works that use random walks to solve systems of linear equations. Section 2.2

presents the generic algorithm of the stochastic solver, followed by a simple illustra-

tive example in Section 2.3. Section 2.4 presents the two important new techniques,

and Section 2.5 analyzes the complexity of the stochastic solver. Some implementa-

tion aspects of the stochastic solver are deferred to Section 3.4 in the next chapter.

2.1 A Brief History

A random walk is also known as a discrete-time discrete-state Markov chain, and

is often viewed as a discrete abstraction of the physical phenomenon of Brownian

motion. It forms one category of the general Monte Carlo methods for numerical

10

computation. In this chapter, random walks are employed to solve systems of

linear equations where the left-hand-side matrix A is an R-matrix. Historically, the

theory was developed on two seemingly independent tracks, related to the analysis

of potential theory [14] [33] [35] [43] [44] [58] and to the solution of systems of linear

equations [22] [33] [78] [82] [87]. However, the two applications are closely related

and research along each of these tracks has resulted in the development of analogous

algorithms, some of which are equivalent. These mathematical works have found

meaningful applications in electrical engineering [5] [7] [49] [69].

Along the first track, the goal has been to solve Laplace’s equation in a closed

region with given boundary values (i.e., under Dirichlet conditions), and it was

proven that the potential value at a location can be estimated by observing a

number of Brownian particles that start from this location and travel until they

hit the boundary, and taking the average of the boundary values at the end points

[14] [35] [44]. An important improvement was proposed in [58], which proved that,

instead of simulating tiny movements of a Brownian particle, the particle can leap

from a location to a random point on a sphere that is centered at this location,

and that shapes other than a sphere can be used, given the corresponding Green

function1. Another important development was [43], which extended the theory

to solving Poisson’s equation under Dirichlet conditions, as well as more general

elliptic differential equations (under certain restrictions).

The second parallel track, which considered the solution of systems of linear

equations, will be discussed in greater detail here, since it is directly related to this

thesis. The first work that proposed a random-walk based linear equation solver

is [22], although it was presented as a solitaire game of drawing balls from urns. It

1Many years later, this evolved to [49], a successful Monte Carlo algorithm in VLSI design

automation.

11

was proven in [22] that, for any matrix A such that ρ (I − A) < 1, where ρ is the

spectral radius2 of a matrix, a game can be constructed and a random variable3 X

can be defined such that E[X] = (A−1)ij, where (A−1)ij is an entry of the inverse

matrix of A. In [22], the variable X is a “payment” when exiting the game. Under

certain settings, the algorithm of [22] is equivalent to the “home” and “award”

concepts in our theory, which is presented in the next section.

Two years later, the work in [87] continued this discussion in the formulation of

random walks, and proposed the use of another random variable4 W to replace X.

A “mass” value was defined for every step in a walk, and W was defined as the total

amount of “mass” carried through a walk. It was proven in [87] that E[W] = E[X],

and it was argued that, in certain special cases, W has a lower variance than X,

and hence is likely to converge faster. Under certain settings, the algorithm of [87]

is equivalent to the “motel” concept in the next section.

Both [22] and [87] have the advantage of being able to compute part of an inverse

matrix without solving the whole system, in other words, localizing computation.

Over the years, various descendant stochastic solvers have been developed [33] [78]

[82], though some of them, e.g., [78] [82], do not have the property of localizing

computation.

From a different perspective, the work in [18] aimed at investigating random

walks by using electrics. It drew a parallel between resistive networks and random

walks, and interpreted the relationship between conductances and probabilities.

With underlying rules similar to [22], [18] proved many insightful conclusions linking

2The spectral radius of a matrix is defined as its maximum absolute eigenvalue. For example,

here ρ (I −A) = maxl |λl (I −A)|, where λl denotes the lth eigenvalue of a matrix.
3The notations are different from the original ones used in [22].
4The notations are different from the original ones used in [87].

12

statistics and electrics, and inspired much of the work in Chapter 4.

Two other important works on this topic, [30] and [55], are deferred to Section

3.1.1, where they are reviewed in a more relevant context.

The basic framework of this chapter, to be presented in the next section, is

mathematically a combination of [22] and [87], and it inherits the property of lo-

calizing computation. Not surprisingly, in potential theory, there is a method that

can be viewed as roughly parallel to our basic framework: the counterpart is [43].

Beyond these legacies, we present two important efficiency-improving techniques

in Section 2.4, which are not seen in previous works, and which not only play a

crucial role in solving engineering problems in Chapters 4, 5 and 6, but also form

the foundation of the hybrid solver in Chapter 3.

2.2 The Generic Algorithm

Figure 2.1: An instance of a random walk “game.”

13

Let us consider a random walk “game” defined on a finite undirected connected

graph representing a street map, for example, Figure 2.1. A walker starts from one

of the nodes, and every day, he/she goes to an adjacent node l with probability pi,l

for l = 1, 2, · · · , degree(i), where i is the current node, degree(i) is the number of

edges connected to node i, and the adjacent nodes are labeled 1, 2, · · · degree(i).

The transition probabilities satisfy the following relationship:

degree(i)∑

l=1

pi,l = 1 (2.1)

The walker pays an amount mi to a motel for lodging everyday, until he/she reaches

one of the homes, which are a subset of the nodes. Note that the motel price mi

is a function of his/her current location, node i. The game ends when the walker

reaches a home node: he/she stays there and gets awarded a certain amount of

money, m0. We now consider the problem of calculating the expected amount of

money that the walker has accumulated at the end of the walk, as a function of the

starting node, assuming he/she starts with nothing.

The gain function for the walk is therefore defined as

f(i) = E[total money earned |walk starts at node i] (2.2)

It is obvious that

f(one of the homes) = m0 (2.3)

For a non-home node i, again assuming that the nodes adjacent to i are labeled 1,

2, · · · degree(i), the f variables satisfy

f(i) =

degree(i)∑

l=1

pi,lf(l)−mi (2.4)

For a random walk game with N non-home nodes, there are N linear equations

similar to the one above, and the solution to this set of equations will give the

exact values of f at all nodes.

14

In the above equations obtained from a random walk game, the set of allowable

left-hand-side matrices is a superset of the set of R-matrices5. In other words, given

a set of linear equations Ax = b, where A is an R-matrix, we can always construct

a random walk game that is mathematically equivalent, i.e., such that the f values

are the desired solution x. To do so, we divide the ith equation by Ai,i to obtain

xi +
∑

j 6=i

Ai,j

Ai,i

xj =
bi

Ai,i

(2.5)

xi =
∑

j 6=i

(
−Ai,j

Ai,i

)
xj +

bi

Ai,i

(2.6)

Equation (2.4) and equation (2.6) have seemingly parallel structures. Let N be the

dimension of matrix A, and let us construct a random walk game with N non-home

nodes, which are labeled 1, 2, · · · , N . Due to the properties of an R-matrix, we have

•
(
−Ai,j

Ai,i

)
is a non-negative value and can be interpreted as the transition prob-

ability of going from node i to node j.

•
(
− bi

Ai,i

)
can be interpreted as the motel price mi at node i.

However, the above mapping is insufficient due to the fact that condition (2.1)

may be broken: the sum of the
(
−Ai,j

Ai,i

)
coefficients is not necessarily one. In fact,

because all rows of matrix A are diagonally dominant, the sum of the
(
−Ai,j

Ai,i

)

coefficients is always less than or equal to one. Condition (2.1) can be satisfied if

we add an extra transition probability of going from node i to a home node, by

rewriting equation (2.6) as the following.

xi =
∑

j 6=i

(
−Ai,j

Ai,i

)
xj +

∑
∀j Ai,j

Ai,i

·m0 +
b′i

Ai,i

where b′i = bi −
∑

∀j
Ai,j ·m0 (2.7)

5It is a superset of R-matrices because a left-hand-side matrix from a random walk game is

not necessarily symmetric.

15

It is easy to verify that
P
∀j Ai,j

Ai,i
is a non-negative value for an R-matrix, and that the

following mapping establishes the equivalence between equation (2.4) and equation

(2.7), while satisfying (2.1) and (2.3).

•
(
−Ai,j

Ai,i

)
is the transition probability of going from node i to node j.

•
P
∀j Ai,j

Ai,i
is the transition probability of going from node i to a home node with

award m0.

•
(
− b′i

Ai,i

)
is the motel price mi at node i.

The choice of m0 is arbitrary because b′i always compensates for the m0 term in

equation (2.7), and in fact m0 can take different values in (2.7) for different rows

i. Therefore the mapping from an equation set to a game is not unique. A simple

scheme can be to let m0 = 0, and then mi = − bi

Ai,i
.

It is worth pointing out that, if the home nodes are removed from Figure 2.1,

the remaining graph is the matrix graph of A, regardless of the choice of award

values. The set of nodes that are adjacent to the home nodes correspond to the

set of rows in A that are strictly diagonally dominant. The fourth property of an

R-matrix from Definition 1 guarantees that each node has at least one path to a

home node. In this thesis, a home node is also referred to as a terminal or an

absorbing node, and these three terms are used interchangeably.

To find xi, the ith entry of solution vector x, a natural way is to simulate a

certain number of random walks from node i and use the average monetary gain

in these walks as the approximated entry value. If this amount is averaged over a

sufficiently large number of walks by playing the “game” a sufficiently large number

of times, then by the Law of Large Numbers [88], an acceptably accurate solution

can be obtained. This is the idea behind the proposed generic algorithm that forms

the most basic implementation.

According to the Central Limit Theorem [88], the estimation error of the above

16

procedure is asymptotically a zero-mean Gaussian variable with variance inversely

proportional to M , where M is the number of walks. Thus there is an accuracy-

runtime tradeoff. In implementation, instead of fixing M , one may employ a stop-

ping criterion driven by a user-specified error margin6 ∆ and confidence level7 α:

P [−∆ < x′i − xi < ∆] > α (2.8)

where x′i is the estimated ith solution entry from M walks. If the standard devia-

tion of the M sample walk-results is σ, the above criterion can be approximately

converted to the following inequality that can be used in practice.

Q

(
∆
√

M

σ

)
<

1− α

2

σ2

M
<

(
∆

Q−1
(

1−α
2

)
)2

(2.9)

where Q is the standard normal complementary cumulative distribution function,

defined as

Q(ξ) =
1√
2π

∫ ∞

ξ

e−
u2

2 du

According to condition (2.9), M is decided dynamically8, and has different values

for different nodes. It is worth noting that for each node, for a fixed confidence

level, M ∝ 1
∆2 .

A desirable feature of the proposed algorithm is that it localizes the computa-

tion, i.e., it can calculate a single entry in vector x without having to solve the

6Here the error margin is defined on absolute error. A similar formulation can be derived for

relative error.
7A typical confidence level can be, for example, α = 99%.
8Because of the fact that the estimation error has a precise Gaussian distribution only when

M goes to infinity, and that σ is an estimate of its actual standard deviation, condition (2.9) is

only an approximation to condition (2.8). To ensure accuracy, it is necessary to impose a lower

bound on M , e.g. 20 walks.

17

entire set of equations; or in general, we only need to compute entries that are of

interest. Such a locality property is meaningful in certain applications, and in fact

Chapters 4, 5 and 6 all take advantage of the localized computation in different

ways.

2.3 A Simple Example

In order to illustrate the procedure of the generic algorithm from the previous

section, let us consider the following equation set, where the left-hand-side matrix

is an R-matrix, and the exact solution is x = [0.6, 0.8, 0.7, 0.9]T.




1.5 0 −1 0

0 2 −1 0

−1 −1 2.25 −0.25

0 0 −0.25 1.25







x1

x2

x3

x4




=




0.2

0.9

−0.05

0.95




Applying the mapping in equation (2.7) to this equation set, an equivalent random

walk game is constructed and shown in Figure 2.2, where numbers inside circles

represent motel prices and home awards, and numbers beside the arrows represent

the transition probabilities from each node to a neighboring node. Note that the

mapping from an equation set to a game is not unique: in this case, the award value

m0 is arbitrarily chosen to be 1; other choices may lead to different game settings.

To find out the first entry x1, the walker starts the game at node 1 with zero

balance. He/she pays the motel price of $0.2, then either goes upwards with prob-

ability 0.33 to the terminal and end this walk, or goes downwards with probability

0.67 to node 3, then pays $0.022, and continues from there. A random walk could

be very short (for example, the walker may directly go up and end up with $0.8),

or very long (it may keep going back and forth between the four nodes, and the

18

Figure 2.2: A random walk game equivalent to the example equation set.

walker could end up with very little money), although the probability of a very long

walk is low. We perform M such walks, take the average of the M results, discard

the dollar unit, and obtain the estimated x1.

Table 2.1: Observed convergence behavior of solving the simple example. ∆ is the

error margin in equation (2.8), x′1 is the estimated value, and M is the actual number

of walks used. Five tests use different seeds for the random number generator.

∆ Test run #1 Test run #2 Test run #3 Test run #4 Test run #5

x′1 M x′1 M x′1 M x′1 M x′1 M

0.05 0.6097 174 0.6067 156 0.5803 184 0.6418 103 0.6241 117

0.02 0.6087 1150 0.6075 946 0.5979 1140 0.5837 1254 0.6084 1232

0.01 0.6034 4562 0.6013 4664 0.6043 4315 0.5982 4441 0.6016 4619

Table 2.1 shows how the estimated voltage converges to the exact value of 0.6.

The five columns in the table represent five different runs of the proposed algorithm,

corresponding to different seeds for the random number generator.

19

2.4 Two Speedup Techniques

The basic framework described in the previous two sections has existed in the

literature for over fifty years, yet stochastic linear equation solvers have largely

failed to make any significant impact on mainstream applications.

In this section, we propose two new techniques that dramatically improve the

performance of the stochastic solver. They have far-reaching significance and play

a crucial role in later chapters.

2.4.1 Creating Homes

As discussed in the previous two sections, a single entry in the solution vector

x can be evaluated by running random walks from its corresponding node in the

game. To find the complete solution x, a straightforward way is to repeat such

procedure for every entry. This, however, is not the most efficient approach, since

much information can be shared between random walks.

We propose a speedup technique by adding the following rule: after the compu-

tation of xi is finished according to criterion (2.9), node i becomes a new home node

in the game with an award amount equal to the estimated value x′i. In other words,

any later random walk that reaches node i terminates, and is rewarded a money

amount equal to the assigned x′i. Without loss of generality, suppose the nodes are

processed in the natural ordering 1, 2, · · · , N , then for walks starting from node k,

the node set {1, 2, · · · , k − 1} are homes where the walks terminate (in addition

to the original homes generated from the strictly-diagonally-dominant rows of A),

while the node set {k, k + 1, · · · , N} are motels where the walks pass by.

One way to interpret this technique is by the following observation about equa-

tion (2.4): there is no distinction between the neighboring nodes that are homes

20

and the neighboring nodes that are motels, and the only reason that a random

walk can terminate at a home node is that its f value is known and is equal to the

award. In fact, any node can be converted to a home node if we know its f value

and assign the award accordingly. Our new rule is simply utilizing the estimated

x′i ≈ xi in such a conversion.

Another way to interpret this technique is by looking at the source of the value

x′i. Each walk that ends at a new home and obtains such an award is equivalent to

an average of multiple walks, each of which continues walking from there according

to the original game settings.

With this new method, as the computation for the complete solution x proceeds,

more and more new home nodes are created in the game. This speeds up the

algorithm dramatically, as walks from later nodes are carried out in a game with a

larger and larger number of homes, and the average number of steps in each walk is

reduced. At the same time, this method helps convergence without increasing M ,

because, as mentioned earlier, each walk becomes the average of multiple walks.

The only cost9 is that the game becomes slightly biased when a new home node is

created, due to the fact that the assigned award value is only an estimate, e.g. x′i 6=
xi; overall, the benefit of this technique dominates its cost.

Due to this speedup technique, the nodes computed early in the algorithm and

those computed late are treated differently. Therefore, the ordering of nodes could

potentially affect the performance. Random ordering is used in our implementation,

because as computation proceeds, the density of home nodes is increased evenly

throughout the game graph, and the performance of the algorithm is stable. Further

discussion on ordering is presented in Section 3.4.4.

9The cost discussed here is in the context of the stochastic solver only. For the hybrid solver

in Chapter 3, this will no longer be an issue.

21

2.4.2 Bookkeeping

For the same left-hand-side matrix A, traditional direct linear equation solvers are

efficient in computing solutions for multiple right-hand-side vectors after initial

matrix factorization, since only a forward/backward substitution step is required

for each additional solve. Analogous to a direct solver, we propose a speedup

mechanism for the stochastic linear equation solver.

The mechanism is a bookkeeping technique based on the following observation.

In the procedure of constructing a random walk game discussed in Section 2.2,

the topology of the game and the transition probabilities are solely determined by

matrix A, and hence do not change when the right-hand-side vector b changes.

Only motel prices and award values in the game are linked to b.

When solving a set of linear equations with matrix A for the first time, we create

a journey record for every node in the game. The following information is listed in

the journey record.

• For any node i, record the number of walks performed from node i.

• For any node i and any motel node10 j, record the number of times that walks

from node i visit node j.

• For any node i and any home node11 j, which can be either an initial home

node in the original game or a new home node created by the technique from

Section 2.4.1, record the number of walks that start from i and end at j.

Then, if the right-hand-side vector b changes while the left-hand-side matrix

A remains the same, we do not need to perform random walks again. Instead, we

10The journey record is stored in a sparse fashion, and a motel j is included only if walks from

node i visit j at least once.
11A home node j is included in the journey record only if at least one walk from node i ends at

home j.

22

simply use the journey record repeatedly and assume that the walker takes the same

routes, gets awards at the same locations, pays for the same motels, and only the

award amounts and motel prices have been modified. Thus, after a journey record

is created, new solutions can be computed by some multiplications and additions

efficiently.

Practically, this bookkeeping technique is only feasible after the speedup tech-

nique from Section 2.4.1 is in use, for otherwise the space complexity can be pro-

hibitive for a large matrix. When both techniques work together, empirically and

for certain accuracy level, the space complexity of bookkeeping is less than the

space complexity of a traditional direct solver, and is approximately linear in the

matrix dimension12.

In the next chapter, this bookkeeping technique serves as an important basis of

the hybrid linear equation solver. There the bookkeeping scheme itself is modified

in such a way that a rigorous proof is presented in Section 3.2.2 showing the fact

that the space complexity of the modified bookkeeping is upper-bounded by the

space complexity of the matrix factorization in a direct solver.

2.5 Runtime Trends

In this section, we argue13 that the average-case or typical runtime of the stochastic

linear equation solver is linear in the dimension of the matrix, given the same

required error margin ∆ and confidence level α, for matrices A of similar structures

and right-hand-side vectors b of similar magnitude. Artificial test cases are used

12Actual memory consumption numbers of using this in power grid simulation are listed in

Chapter 4 to validate this claim.
13This is a qualitative argument, not a rigorous proof, and only applies under the notion of

similar matrix structure.

23

to validate this argument.

First, let us define the notion of “similar structure” for R-matrices: this implies

that the average number of non-zero entries per row is similar, that the average

value of diagonal entries is of similar magnitude, that the percentage of strictly-

diagonally-dominant rows is similar, and that the average value of
Ai,i+

P
j 6=i Ai,j

Ai,i
over

strictly-diagonally-dominant row i’s is similar. As examples of matrices of similar

structures, four artificial matrices are constructed such that they can all be mapped

to a random walk game where the street map is a two-dimensional rectangular grid

as follows: the four grid sizes are 50 × 50, 100 × 100, 500 × 500 and 1000 × 1000

respectively; nodes at the intersections of the (25 + 50k)th horizontal grid lines and

the (25 + 50l)th vertical grid lines are home nodes, where k and l are nonnegative

integers. Note that home nodes do not have corresponding rows or columns in

matrix A. Let all diagonal entries of the four A matrices be 4, and let all non-zero

off-diagonal entries be −1. It can be verified that these four matrices are all R-

matrices, and that the rows that are strictly diagonally dominant correspond to the

immediate neighbors of home nodes, and for such a row i,
Ai,i+

P
j 6=i Ai,j

Ai,i
is always

0.25.

The notion of “similar magnitude” for vectors is straightforward. For example,

four right-hand-side vectors b can be defined for the above four matrices, such that

the length of each vector is equal to the dimension of the corresponding matrix,

and that all entries are the same value 0.0005.

Let us use the above-defined four pairs of left-hand-side matrices A and right-

hand-side vectors b to show numerical results first, and then look at the reason

behind the linear complexity. In all four cases, the value range of the entries in

the exact solution x is roughly the same interval (0, 1). They are all solved by the

stochastic solver using a random ordering of nodes, and with the same error margin

24

∆ = 0.05 and the same confidence level α = 99%; in other words, the accuracy

requirement is P [−0.05 < error < 0.05] > 99%. The metric of complexity is the

total number of steps over all the random walks, where each step corresponds to

one random-number generation, a few logic operations and one addition. Table 2.2

lists the total step numbers of solving the four test cases, and shows a sublinear

complexity for small sizes, and more strictly linear complexity for larger sizes.

Table 2.2: The time complexity of the stochastic solver on artificial test cases.

Test case Dimension Total step number

#1 2.5e3 2.4e7

#2 1.0e4 7.5e7

#3 2.5e5 1.7e9

#4 1.0e6 6.4e9

The roughly linear complexity is due to the fact that the average amount of

computation per node is independent of the graph size. Let us consider two games

with node counts N1 and N2, which are each solved using a random ordering of

nodes. Recall that due to the speedup technique in Section 2.4.1, solved nodes

become home nodes. At the same stage of the computation, for example, when

5%N1 nodes are solved in the first game and 5%N2 nodes are solved in the second

game, because the densities of “homes” are the same (roughly 5%) in both games,

the average lengths of walks are the same in both games. Since the vectors b

are of similar magnitude, and hence motel prices in both games are of similar

magnitude, the typical σ values in equation (2.9) are also similar in both games.

Thus, according to the stopping criterion (2.9), the typical M values are similar in

both games at this stage, i.e., 5% complete. Therefore, the amount of computation

for the (5%N1 + 1)th node in the first game, is close to the amount of computation

25

for the (5%N2 + 1)th node in the second game, in the average case, and this is

true for other percentage values as well. Therefore, the overall average amount of

computation per node, which is equal to the average over all percentages, should

be the same value for both games, and independent of their different graph sizes.

Therefore, for matrices with similar structures, the complexity of the stochastic

solver is linear in the matrix dimension.

26

Chapter 3

Hybrid Linear Equation Solver

The stochastic linear equation solver presented in the previous chapter, with the

two new speedup techniques, is useful in applications that require localized or in-

cremental solution of systems of linear equations, or when a complete solution is

needed with moderate accuracy requirements. Chapters 4, 5 and 6 demonstrate its

efficiency in several applications in VLSI design automation.

For a complete solution under high accuracy requirements, however, the stochas-

tic solver retains an inherited weakness: according to equation (2.9), M ∝ 1
∆2 for

a fixed confidence level. For example, if we halve the error margin ∆, the time

complexity of the stochastic solve increases by a factor of four. Such scaling behav-

ior renders the stochastic solver inefficient when high accuracy is required for the

complete solution vector. Empirically, we have found that 3% relative error needs

to be tolerated in order for the stochastic solver to be faster than a state-of-the-art

direct or iterative solver in an initial complete solve, or to be faster than a direct

solver in a complete re-solve.

In this chapter, this accuracy restriction is eliminated by exploring the full

potential of the two speedup techniques from the previous chapter. We prove that

27

for an R-matrix A, an incomplete LDL factorization can be obtained from random

walks, and used as a preconditioner for an iterative solver, e.g., conjugate gradient.

Since the eventual proposed solver is a stochastically preconditioned iterative solver,

which combines two traditionally separate categories of linear solvers, we call it a

hybrid solver.

This chapter is organized as follows. Section 3.1 presents an initial prototype

hybrid solver. Section 3.2 provides a mathematical proof that an incomplete LDL

factorization of an R-matrix is formed by random walks. Section 3.3 summarizes the

procedure of the final hybrid solver for R-matrices, and argues that its performance

is superior to traditional ICCG. Section 3.4 discusses several implementation as-

pects of the hybrid solver. Section 3.5 extends the theory to more general matrices

beyond R-matrices.

3.1 An Initial Hybrid Solver

This section is a first attempt at combining stochastic and iterative techniques in

a linear equation solver. The presented prototype algorithm is different from the

final hybrid solver, and serves as a stepping-stone: it helps to relate to two existing

works in literature, and helps to explain the final theory from the perspective of a

stochastic solver.

3.1.1 The Sequential Monte Carlo Method

One basis of the proposed prototype algorithm is the sequential Monte Carlo

method, which was initiated in [55] and developed in [30] [32], and is a remedy

that improves the accuracy of a stochastic solver.

Let x′ be an approximate solution to Ax = b found by a stochastic solver, such

28

as the one described in the previous chapter. Define the residual vector:

r = b− Ax′ (3.1)

Define the error vector:

z = x− x′ (3.2)

For the system Ax = b, it is easy to verify the following relation.

Az = r (3.3)

The idea of the sequential Monte Carlo method is to iteratively solve (3.3)

using the stochastic solver. In each iteration, an approximate error vector z is

computed and then used to correct the current solution x′. Algorithm 1 shows the

pseudocode1, and the process ends when the desired accuracy is achieved.

Algorithm 1 Sequential Monte Carlo algorithm:

Stochastic solve Ax = b, find x0;

For j = 0, 1, 2, · · · , until convergence, do {
rj = b−Axj;

Stochastic solve Az = rj, find zj;

xj+1 = xj + zj;

}

3.1.2 A Prototype Solver

Although the sequential Monte Carlo method has existed for over forty years, it

has not resulted in any powerful solver that can compete with direct and iterative

1In both Algorithm 1 and Algorithm 2, superscripts are used to signify indices of iterations.

29

solvers, due to the fact that random walks are needed in every iteration, resulting

in a relatively high overall time complexity. By integrating the two new speedup

techniques from Section 2.4, we can finally build a stochastic solver with significant

computational efficiency, and it is referred to as a prototype hybrid solver.

The algorithm is based on the observation that, in Algorithm 1, the initial so-

lution to Ax = b and the subsequent solutions to the equations Az = rj deal with

the same left-hand-side matrix A, but with multiple right-hand-side vectors. There-

fore, according to the bookkeeping technique from Section 2.4.2, random walks are

only needed in the initial step of Algorithm 1, with a journey record created at the

same time, and the journey record can be used to perform computation inside the

iterations without running a single extra walk. This results in the solver described

in the pseudocode in Algorithm 2. Note that this is not yet the eventual hybrid

solver that we propose, and is only an initial prototype algorithm.

Algorithm 2 An initial hybrid algorithm:

Solve Ax = b, find x0, create journey record;

For j = 0, 1, 2, · · · , until convergence, do {
rj = b−Axj;

Apply record on Az = rj, find zj;

xj+1 = xj + zj;

}

A precise representation of the journey record is investigated in the next section;

at this time, it suffices to note that the calculations that are used to apply the

journey record are purely linear operations. Therefore, for the approximate solution

of Az = rj, the overall effect of applying the journey record can be written as a

30

matrix-vector multiplication in the form of the following equation.

zj = Trj (3.4)

where T is a square matrix that represents the process of applying the record of

random walks. The matrix T has a special structure to be discussed in the next

section, and the above equation is used here for clarity of presentation. Note that T

is built by an approximate solution of Ax = b, and thus T ≈ A−1. The computation

during one iteration of Algorithm 2 can be represented as follows.

xj+1 = xj + Trj

= xj + T
(
b− Axj

)

= (I − TA)xj + Tb (3.5)

Equation (3.5) is in exactly the same form as a preconditioned Gauss-Jacobi

iterative solver, where the preconditioner is T . Its convergence condition is [70]:

ρ (I − TA) < 1 (3.6)

where ρ is the spectral radius, i.e., the maximum absolute eigenvalue, of a matrix.

Condition (3.6) is satisfied since T ≈ A−1, assuming that the initial stochastic

solution that builds T is accurate enough. It is well known that an iterative process

of the type in (3.5) converges to [70]:

x∞ = (I − (I − TA))−1 Tb

= A−1b (3.7)

which is the exact solution.

By now, we have shown that Algorithm 2 is an iterative solver with a precon-

ditioner built by an stochastic solver. As mentioned earlier, this is only a first cut

31

at the hybrid approach. To refine it, we observe that the iterative mechanism does

not have to be Gauss-Jacobi as in equation (3.5), and potentially can be any iter-

ative solver. Since R-matrices are symmetric and positive definite, a better choice

than Gauss-Jacobi is likely to be the preconditioned conjugate gradient (PCG)

method. However, the PCG method requires its preconditioner to be a symmetric

matrix, which is a condition that may not be met by the matrix T in this prototype

algorithm.

The next section investigates the structure of a journey record, and presents

a mathematical proof that, using only a fraction of the journey record and hence

with lower storage than matrix T , a symmetric incomplete LDL factorization can

be obtained. Our final hybrid solver for R-matrices will use such an incomplete

LDL factorization with PCG.

3.2 Proof of Incomplete Factorization

Referring back to the terminology and notation defined in Chapter 1, and suppose

that the exact LDL factorization of an R-matrix A is A = LDLT, the goal of this

section is, by extracting information from the journey record of random walks, to

construct a lower triangular matrix L′ and a diagonal matrix D′ such that

L′i,i = 1, ∀i
if L′i,j 6= 0 then Li,j 6= 0, ∀i, j
L′ ≈ L

D′ ≈ D (3.8)

The proof is described in two stages: Section 3.2.1 proves that the journey record

contains an approximate L factor, and then Section 3.2.2 proves that its non-zero

32

pattern is a subset of that of the exact L factor. The formula of the diagonal D

factor is derived in Section 3.2.3.

The procedure of finding this factorization is independent of the right-hand-side

vector b. Throughout this section, any appearance of b is symbolic: its entries do

not participate in actual computation, and the involved equations are true for any

possible vector b.

3.2.1 The Approximate Factorization

Suppose the dimension of matrix A is N , and its kth row corresponds to node k

in Figure 2.1, k = 1, 2, · · · , N . Without loss of generality, assume that in the

stochastic solution, the nodes are processed in the natural ordering 1, 2, · · · , N .

According to the speedup technique in Section 2.4.1, for random walks that start

from node k, the nodes in the set {1, 2, · · · , k − 1} are already solved and they

now serve as home nodes where a random walk ends. The awards for reaching

nodes {1, 2, · · · , k − 1} are the estimated values of {x1, x2, · · · , xk−1} respectively.

Suppose that in equation (2.7), we choose m0 = 0, and hence the motel prices are

given by mi = − bi

Ai,i
, for i = k, k + 1, · · · , N . Define the following notations.

• Let Mk be the number of walks carried out from node k.

• Let Hk,i be the number of walks that start from node k and end at node

i ∈ {1, 2, · · · , k − 1}.
• Let Jk,i be the number of times that walks from node k pass the motel at

node i ∈ {k, k + 1, · · · , N}.

Taking the average of the results of the Mk walks from node k, we get the

following equation for the estimated solution entry.

x′k =

∑k−1
i=1 Hk,ix

′
i +

∑N
i=k Jk,i

bi

Ai,i

Mk

(3.9)

33

where x′i is the estimated value of xi for i ∈ {1, 2, · · · , k−1}. Note that the awards

received at the initial home nodes are ignored in the above equation since m0 = 0.

Moving the Hk,i terms to the left side, we obtain

−
k−1∑
i=1

Hk,i

Mk

x′i + x′k =
N∑

i=k

Jk,i

MkAi,i

bi (3.10)

By writing the above equation for k = 1, 2, · · · , N , and assembling the N equations

together into a matrix form, we obtain

Y x′ = Zb (3.11)

where x′ is the approximate solution produced by the stochastic solver; Y and Z

are two square matrices of dimension N such that

Yk,k = 1, ∀k
Yk,i = −Hk,i

Mk

, ∀k > i

Yk,i = 0, ∀k < i

Zk,i =
Jk,i

MkAi,i

, ∀k ≤ i

Zk,i = 0, ∀k > i (3.12)

These two matrices Y and Z are the journey record built by the bookkeeping

technique in Section 2.4.2. Obviously Y is a lower triangular matrix with unit

diagonal entries, Z is an upper triangular matrix, and their entries are independent

of the right-hand-side vector b. Once Y and Z are built from random walks,

given any b, one can apply equation (3.11) and find x′ efficiently by a forward

substitution. The matrix T defined in (3.4) in the previous section is simply Y −1Z.

It is worth pointing out the physical meaning of the entries in matrix Y : the

negative of an entry, (−Yk,i), is asymptotically equal to the probability that a

random walk from node k ends at node i, when Mk goes to infinity. Another

34

property of matrix Y is that the sum of every row is zero, except for the first row

where only the first entry is non-zero.

From equation (3.11), we have

Z−1Y x′ = b (3.13)

Since the vector x′ in the above equation is an approximate solution to the original

set of equations Ax = b, it follows that2

Z−1Y ≈ A (3.14)

Because the inverse of an upper triangular matrix, Z−1, is also upper triangular,

equation (3.14) is in the form of an approximate “UL factorization” of A. The

following definition and lemma present a simple relation between UL factorization

and the more commonly encountered LU factorization.

Definition 2 The operator rev(·) is defined on square matrices: given matrix A of

dimension N , rev(A) is also a square matrix of dimension N , such that

rev(A)i,j = AN+1−i,N+1−j, ∀i, j ∈ {1, 2, · · · , N}

In simple terms, the operator rev(·) merely inverts the row and column ordering

of a matrix. A simple example of applying this operator is as follows:

rev







1 2 3

4 5 6

7 8 9





 =




9 8 7

6 5 4

3 2 1




2For any vector b, we have
(
Z−1Y

)−1
b = x′ ≈ x = A−1b. Therefore, A

(
Z−1Y

)−1
b ≈ b,

and then
(
I −A

(
Z−1Y

)−1
)
b ≈ 0. Since this is true for any vector b, it must be true for

eigenvectors of the matrix
(
I −A

(
Z−1Y

)−1
)
, and it follows that the eigenvalues of the matrix(

I −A
(
Z−1Y

)−1
)

are all close to zero. Thus we claim that Z−1Y ≈ A.

35

Lemma 1 Let A = LU be the LU factorization of a square matrix A, then rev(A) =

rev(L)rev(U) is true and is the UL factorization of rev(A).

Lemma 1 is self-evident, and the proof is omitted. It states that the reverse-

ordering of the LU factors of A are the UL factors of reverse-ordered A.

Applying Lemma 1 on equation (3.14), we obtain

rev(Z−1)rev(Y) ≈ rev(A) (3.15)

Since A is an R-matrix and is symmetric, rev(A) must be also symmetric, and we

can take the transpose of both sides, and have

(rev(Y))T (
rev(Z−1)

)T ≈ rev(A) (3.16)

The above equation has the form of an LU factorization: matrix (rev(Y))T is lower

triangular and has unit diagonal entries; matrix (rev(Z−1))
T

is upper triangular.

Lemma 2 The (Doolittle) LU factorization of a square matrix is unique.

The proof of Lemma 2 is provided in Appendix A.

Let the exact LU factorization of rev(A) be rev(A) = Lrev(A)Urev(A), and its exact

LDL factorization be rev(A) = Lrev(A)Drev(A)

(
Lrev(A)

)T
. Since equation (3.16) is an

approximate LU factorization of rev(A), while the exact LU factorization is unique,

it must be true that:

(rev(Y))T ≈ Lrev(A) (3.17)

(
rev(Z−1)

)T ≈ Urev(A) = Drev(A)

(
Lrev(A)

)T
(3.18)

The above two equations indicate that from the matrix Y built by random walks,

we can obtain an approximation to factor Lrev(A), and that the matrix Z contains

redundant information. Section 3.2.3 shows how to estimate matrix Drev(A) utilizing

36

only the diagonal entries of matrix Z, and hence the rest of Z is not needed at all.

According to equation (3.12), matrix Y is the award register in the journey record

and keeps track of end nodes of random walks, while matrix Z is the motel-expense

register and keeps track of all intermediate nodes of walks. Therefore matrix Z is

the dominant portion of the journey record, and by removing all of its off-diagonal

entries, the modified journey record is significantly smaller than that in the original

bookkeeping technique from Section 2.4.2. In fact, an upper bound on the number

of non-zero entries in matrix Y is proven in the next section.

3.2.2 The Incomplete Non-zero Pattern

The previous section proves that an approximate factorization of an R-matrix A can

be obtained by random walks. However, it does not constitute a proof of incomplete

factorization, because an incomplete factorization implies that the non-zero pattern

of the approximate factor must be a subset of the non-zero pattern of the exact

factor. Such a proof is the task of this section: to prove that an entry of (rev(Y))T

can be possibly non-zero only if the corresponding entry of Lrev(A) is non-zero.

For i 6= j, the (i, j) entry of (rev(Y))T is as follows, after applying Definition 2

and equation (3.12).

(
(rev(Y))T

)
i,j

= YN+1−j,N+1−i = −HN+1−j,N+1−i

MN+1−j

(3.19)

This value is non-zero if and only if j < i and HN+1−j,N+1−i > 0. In other words, at

least one random walk starts from node (N + 1− j) and ends at node (N + 1− i).

To analyze the non-zero pattern of Lrev(A), certain concepts from the literature

of LU factorization are used here, and certain conclusions are cited without proof.

More details can be found in [2] [19] [24] [25] [34]. Figure 3.1 illustrates one step in

37

Figure 3.1: One step in Gaussian elimination.

the exact Gaussian elimination3 of a matrix: removing one node from the matrix

graph, and creating a clique among its neighbors. For example, when node v1 is

removed, a clique is formed for {v2, v3, v4, v5, v6}, where the new edges correspond

to fills added to the remaining matrix. At the same time, five non-zero values are

written into the L matrix, at the five entries that are the intersections4 of node v1’s

corresponding column and the five rows that correspond to nodes {v2, v3, v4, v5, v6}.

Definition 3 Given a graph G = (V,E), a node set S ⊂ V , and nodes v1, v2 ∈ V

such that v1, v2 /∈ S, node v2 is said to be reachable from node v1 through S if there

exists a path between v1 and v2 such that all intermediate nodes, if any, belong to

S.

Definition 4 Given a graph G = (V, E), a node set S ⊂ V , a node v1 ∈ V such

that v1 /∈ S, the reachable set of v1 through S, denoted R (v1, S), is defined as:

R (v1, S) = {v2 /∈ S|v2 is reachable from v1 through S}
3The procedure of LU factorization of a matrix is a sequence of Gaussian elimination steps.

From the perspective of the matrix graph, it is a sequence of graph operations that remove nodes

one by one.
4In this section, rows and columns of a matrix are often identified by their corresponding nodes

in the matrix graph, and matrix entries are often identified as intersections of rows and columns.

The reason is that such references are independent of the matrix ordering, and thereby avoid

confusion due to the two orderings involved in the discussion.

38

Note that if v1 and v2 are adjacent, there is no intermediate node on the path

between them, then Definition 3 is satisfied, and v2 is reachable from v1 through

any node set. Therefore, R (v1, S) always includes the direct neighbors of v1 that

do not belong to S.

Given an R-matrix A, let G be its matrix graph, let L be the complete L factor

in its exact LDL factorization, and let v1 and v2 be two nodes in G. Again, every

node in G has a corresponding row and a corresponding column in A and in L. The

following lemma can be derived from [25] [34].

Lemma 3 The entry in L at the intersection of column v1 and row v2 is non-zero

if and only if:

1. v1 is eliminated prior to v2 during Gaussian elimination

2. v2 ∈ R (v1, {nodes eliminated prior to v1})

Now we apply this lemma on Lrev(A). Because the factorization of rev(A) is

performed in the reverse ordering, i.e., N,N − 1, · · · , 1, the (i, j) entry of Lrev(A) is

the entry at the intersection of the column that corresponds to node (N + 1 − j)

and the row that corresponds to node (N + 1 − i). This entry is non-zero if and

only if both of the following conditions are met.

1. Node (N + 1− j) is eliminated prior to node (N + 1− i)

2. (N + 1− i) ∈ R (N + 1− j, Sj)

where Sj = {nodes eliminated prior to N + 1− j}

Again, because the Gaussian elimination is carried out in the reverse ordering

N, N − 1, · · · , 1, the first condition implies that

N + 1− j > N + 1− i

j < i

39

The node set Sj in the second condition is simply {N + 2− j, N + 3− j, · · · , N}.
Recall that equation (3.19) is non-zero if there is at least one random walk

that starts from node (N + 1 − j) and ends at node (N + 1 − i). Also recall that

according to Section 2.4.1, when random walks are performed from node (N+1−j),

nodes {1, 2, · · · , N − j} are home nodes that walks terminate, while nodes Sj =

{N + 2− j,N + 3− j, · · · , N} are the motel nodes that a walk can pass through.

Therefore, a walk started from node (N +1−j) can possibly end at node (N +1−i),

only if node (N + 1− i) is reachable from (N + 1− j) through the motel node set,

i.e., node set Sj.

By now it is proven that both conditions for
(
Lrev(A)

)
i,j

to be non-zero are

necessary conditions for equation (3.19) to be non-zero. Therefore, the non-zero

pattern of (rev(Y))T is a subset of the non-zero pattern of Lrev(A). Together, this

conclusion and equation (3.17) give rise to the following lemma.

Lemma 4 (rev(Y))T is the L factor of an incomplete LDL factorization of matrix

rev(A).

This lemma indicates that, from random walks, we can obtain an incomplete

LDL factorization of the left-hand-side matrix A in its reversed index ordering. The

remaining approximate diagonal matrix D is derived in the next section.

3.2.3 The Diagonal Component

To evaluate the approximate D matrix, we take the transpose of both sides of

equation (3.18), and obtain

rev(Z−1) ≈ Lrev(A)Drev(A) (3.20)

Lemma 5 For a non-singular square matrix A, rev(A−1) = (rev(A))−1.

40

The proof of this lemma is trivial and is omitted. Applying this lemma on

equation (3.20), we have

(rev(Z))−1 ≈ Lrev(A)Drev(A)

I ≈ rev(Z)Lrev(A)Drev(A) (3.21)

Recall that rev(Z) and Lrev(A) are both lower triangular, that Lrev(A) has unit

diagonal entries, and that Drev(A) is a diagonal matrix. Therefore, the (i, i) diagonal

entry in the above equation is simply

(rev(Z))i,i

(
Lrev(A)

)
i,i

(
Drev(A)

)
i,i

≈ 1

(rev(Z))i,i · 1 ·
(
Drev(A)

)
i,i

≈ 1

(
Drev(A)

)
i,i

≈ 1

(rev(Z))i,i

(3.22)

Applying Definition 2 and equation (3.12), we finally have the equation for com-

puting the approximate D factor, given as follows.

(
Drev(A)

)
i,i

≈ 1

ZN+1−i,N+1−i

=
MN+1−iAN+1−i,N+1−i

JN+1−i,N+1−i

(3.23)

It is worth pointing out the physical meaning of the quantity
JN+1−i,N+1−i

MN+1−i
. It is

the average number of times that a walk from node N +1− i passes node N +1− i

itself; in other words, it is the average number of times that the walker returns to

his/her starting point before the game is over. Equation (3.23) indicates that an

entry in the D factor is equal to the corresponding diagonal entry of the original

matrix A divided by the expected number of returns.

41

3.3 The Hybrid Solver and its Comparison with

ILU

In this section, the proposed hybrid solver for R-matrices is presented in its entirety,

and we argue that it outperforms traditional ICCG methods.

Definition 5 The operator rev(·) is defined on vectors: given vector x of length N ,

rev(x) is also a vector of length N , such that rev(x)i = xN+1−i,∀i ∈ {1, 2, · · · , N}.

It is easy to verify that the set of equations Ax = b is equivalent to

rev(A)rev(x) = rev(b)

By now, we have collected the necessary pieces of the proposed hybrid solver, and

it is summarized in the pseudocode in Algorithm 3.

From the perspective of an iterative solver, the hybrid solver essentially replaces

the preconditioner in existing ICCG methods with the incomplete LDL factorization

produced by random walks. We claim that this new preconditioner has better

quality than the incomplete Cholesky factor B produced by traditional incomplete

factorization approaches. In other words, if matrices Y and B have the same

number of non-zero entries, and given the same target accuracy requirement, we

expect the hybrid solver to converge with fewer iterations than a traditional ICCG

solver preconditioned by
(
BBT

)−1
.

The argument is based on the fact that, in traditional Gaussian-elimination-

based methods, the operations of eliminating different nodes are correlated and the

error introduced at an earlier node gets propagated to a later node, while in random

walks, the operation on a node is totally independent from other nodes. We now

state this in detail and more precisely.

42

Algorithm 3 The final hybrid solver for R-matrices:

Precondition {
Run random walks, build matrix Y and find diagonal

entries of Z using equation (3.12);

Build Lrev(A) using equation (3.17);

Build Drev(A) using equation (3.23);

}
Given b, solve {

Convert Ax = b to rev(A)rev(x) = rev(b);

Apply PCG on rev(A)rev(x) = rev(b) with the

preconditioner
(
Lrev(A)Drev(A)

(
Lrev(A)

)T
)−1

;

Convert rev(x) to x;

}

Let us use the ILUT approach as an example of traditional preconditioning

methods; similar argument can be made for other existing techniques, as long as

they are based on Gaussian elimination. Suppose in Figure 3.1, when eliminating

node v1, the new edge between nodes v2 and v3 corresponds to an entry whose value

falls below a specified threshold, then ILUT drops that entry from the remaining

matrix, and that edge is removed from the remaining matrix graph. Later when the

algorithm reaches the stage of eliminating node v2, because of that missing edge, no

edge is created from v3 to the neighbors of v2, and thus more edges are missing, and

this new set of missing edges then affect later computations accordingly. Therefore,

an early decision of dropping an entry is propagated throughout the ILUT process.

On the one hand, this leads to the sparsity of B, which is desirable; on the other

hand, there is no control over error accumulation, and later columns of B can

43

deviate from the exact Cholesky factor C by an amount that is greater than the

planned threshold of ILUT. Such error accumulation gets exacerbated for larger

and denser matrices.

The hybrid solver does not suffer from this problem. When we run random

walks from node k and collect the Hk,i values to build the kth row of matrix Y

according to equation (3.12), we only know that the nodes {1, 2, · · · , k − 1} are

homes, and this is the only information needed. If, for some reason, the computed

kth row of matrix Y is of lower quality, this error does not affect other rows in

any way; each row is responsible for its own accuracy, according to a criterion to

be discussed in Section 3.4.1. In fact, in a parallel computing environment, the

computation of each row of Y can be assigned to a different processor.

It is worth pointing out that the error accumulation discussed here is differ-

ent from the cost of bias discussed at the end of Section 2.4.1. That bias in the

stochastic solver, in the context of the hybrid solver, maps to the forward/backward

substitution, i.e., the procedure of applying the preconditioner inside PCG. Due to

the fact that forward/backward substitution is a sequential process, such bias or er-

ror propagation is inevitable in all iterative solvers as long as a factorization-based

multiplicative preconditioner is in use. Our claim here is that the hybrid solver is

free of error accumulation in building the preconditioner, and not in applying the

preconditioner5.

In summary, because of the absence of error accumulation in building the pre-

conditioner, we expect the hybrid solver to outperform traditional ICCG methods,

5After a row of matrix Y is calculated, it is possible to add a postprocessing step to drop

insignificant entries. The criterion can be any of the strategies used in traditional incomplete

factorization methods, and, as discussed in Chapter 1, may be based on pattern, threshold, size

limits, or a combination of them. With such postprocessing, the hybrid solver still maintains the

advantage of independence between row calculations. This is not included in our implementation.

44

and we expect that the advantage becomes more prominent for larger and denser

matrices. These claims are validated by numerical tests in Chapter 7: the hybrid

solver is compared against both ICCG with ILU(0) and ICCG with ILUT, where the

comparison metric is the computational complexity, measured by the total number

of double-precision multiplications needed to solve Ax = b to the same accuracy

requirement.

3.4 Implementation Issues

This section looks at several implementation aspects of the hybrid solver, and some

are also applicable to the stochastic solver in Chapter 2. For the hybrid solver, the

goal is twofold:

• To minimize the runtime of building the preconditioner. In other words, the

computation given in the first part of Algorithm 3 should be performed with

the fewest random walks.

• To achieve a better accuracy-size tradeoff. That is either to improve the

accuracy of the preconditioner without increasing the number of non-zero

entries, or to reduce the number of non-zeroes without losing accuracy6.

3.4.1 Stopping Criterion

The topic of this section is the accuracy control of the preconditioner, that is,

how should one choose Mk, the number of walks from node k, to achieve a certain

accuracy level in estimating its corresponding entries in the LDL factorization. In

6The accuracy of a preconditioner matrix T is measured by ρ (I − TA), where ρ is the spectral

radius, i.e., the maximum absolute eigenvalue, of a matrix. It is often difficult to analytically

quantify the spectral radius, and the discussion of accuracy in this section is mostly qualitative.

45

Section 2.2, the stopping criterion in the stochastic solver is chosen to be an error

margin and a confidence level defined on the result of a walk; it is not applicable

to the hybrid solver because here it is necessary for the criterion to be independent

of the right-hand-side vector b. In our implementation, a new stopping criterion is

defined on a value that is a function of only the left-hand-side matrix A, as follows.

Let Ξk = E [length of a walk from node k], and let Ξ′k be the average length of the

Mk walks. The stopping criterion is chosen as

P [−∆ <
Ξ′k − Ξk

Ξk

< ∆] > α (3.24)

where ∆ is a relative error margin, and α is a confidence level, for example α = 99%.

Practically, this criterion is checked by the following inequality:

∆Ξ′k
√

Mk

σk

> Q−1

(
1− α

2

)
(3.25)

where σk is the standard deviation of the lengths of the Mk walks, and Q is the

standard normal complementary cumulative distribution function. Thus, Mk is

decided on the fly, and random walks are run from node k until condition (3.24) is

satisfied. Similar to the discussion in Section 2.2, it is also necessary to impose a

lower bound on Mk, e.g. 20 walks.

Condition (3.24) can be interpreted as follows: suppose all motel prices are one

dollar per night, then Ξk is the expected cost of a trip, and the stopping criterion

requests an estimation of this value with a certain error tolerance. Note that this

is not the only way to design the stopping criterion: it can also be defined on

quantities other than Ξk, for example the expected number of returns, as long as

this quantity does not depend on b.

46

3.4.2 Exact Computations for One-step Walks

The implementation technique in this section is a special treatment for the random

walks with length 1, which we refer to as one-step walks. Such a walk occurs when

an immediate neighbor of the starting node is a home node, and the first step of the

walks happens to go there. The idea is to place stochastic computations performed

by one-step walks with their deterministic limits.

Without loss of generality, assume that the node ordering in the hybrid solver

is the natural ordering 1, 2, · · · , N . Let us consider the Mk walks from node k,

and suppose at least one of its immediate neighboring nodes is a home node, which

could be either an initial home node if the kth row of matrix A is strictly diagonally

dominant, or a node j such that j < k. Among the Mk walks, let Mk,1 be the

number of one-step walks, and let Hk,i,1 be the number of one-step walks that go

to node i, where node i is an arbitrary node such that i < k. For the case that

node i is not adjacent to node k, Hk,i,1 is simply zero. For the case that node i is

adjacent to node k, note that Hk,i,1 may not be equal to Mk,1, as there can be other

immediate neighbors of k that are home nodes. The Yk,i formula in (3.12) can be

rewritten as

Yk,i = −Hk,i

Mk

= −Hk,i,1

Mk

−
(

Mk −Mk,1

Mk

)
·
(

Hk,i −Hk,i,1

Mk −Mk,1

)
(3.26)

Applying the mapping between transition probabilities and matrix entries in

equation (2.7), the following equations can be derived.

lim
Mk→∞

Hk,i,1

Mk

= P [first step goes to node i]

= −Ak,i

Ak,k

(3.27)

47

lim
Mk→∞

Mk −Mk,1

Mk

= P [first step goes to a non-absorbing node]

=
∑

j>k

P [first step goes to node j]

= −
∑

j>k Ak,j

Ak,k

(3.28)

We modify equation (3.26) by replacing the term
Hk,i,1

Mk
and the term

Mk−Mk,1

Mk

with their limits given by the above two equations, and obtain the following new

formula for evaluating Yk,i.

Yk,i =
Ak,i

Ak,k

+

(∑
j>k Ak,j

Ak,k

)
·
(

Hk,i −Hk,i,1

Mk −Mk,1

)
(3.29)

The remaining stochastic part of this new equation is the term
Hk,i−Hk,i,1

Mk−Mk,1
, which

can be evaluated by considering only random walks whose length is at least two;

in other words, one-step walks are ignored. In implementation, this can be realized

by simulating the first step of walks by randomly picking one of the non-absorbing

neighbors of node k; note that then the number of random walks would automati-

cally be (Mk −Mk,1), and no adjustment is needed.

With a similar derivation, the Zk,k formula7 in (3.12) can be modified to the

following.

Zk,k =
1

Ak,k

+

∑
j>k Ak,j

A2
k,k

−
(∑

j>k Ak,j

A2
k,k

)
·
(

Jk,k − Jk,k,1

Mk −Mk,1

)
(3.30)

where Jk,k,1 is the number of times that one-step walks pass node k. Obviously

Jk,k,1 = Mk,1, and therefore

Zk,k =
1

Ak,k

+

(∑
j>k Ak,j

A2
k,k

)
·
(

1− Jk,k −Mk,1

Mk −Mk,1

)
(3.31)

7Recall that we only need diagonal entries of matrix Z.

48

The remaining stochastic part of this new equation, the term
Jk,k−Mk,1

Mk−Mk,1
, again can

be evaluated by considering only random walks with length being at least two.

Practically, such computation is concurrent with evaluating Yk,i’s based on equation

(3.29).

The benefit of replacing equation (3.12) with equations (3.29) and (3.31) is

twofold:

• Part of the evaluation of Yk,i and Zk,k entries is converted from stochastic

computation to its deterministic limit, and the accuracy is potentially im-

proved. For the case when all neighbors of node k have lower indices, i.e.,

when all neighbors are home nodes, equations (3.29) and (3.31) become exact:

they translate to the exact values of the corresponding entries in the complete

LDL factorization.

• By avoiding simulating one-step walks, the amount of computation in building

the preconditioner is reduced. For the case when all neighbors of node k are

home nodes, the stochastic parts of (3.29) and (3.31) disappear, and hence

no walks are needed.

This technique is also applicable to the stochastic solver in Chapter 2. The only

difference is that, in the stochastic solver case, the one-step walks are singled out in

counting their actual monetary gain, instead of counting their portion in Yk,i and

Zk,k entries.

3.4.3 Reusing Walks

Without loss of generality, assume that the node ordering in the hybrid solver is the

natural ordering 1, 2, · · · , N . A sampled random walk is completely specified by

the node indices along the way, and hence can be viewed as a sequence of integers

{k1, k2, · · · , kΓ}, such that k1 > kΓ and k1 ≤ kl,∀l ∈ {2, · · · , Γ− 1}. If a sequence

49

of integers satisfy the above requirements, it is referred to as a legal sequence, and

can be mapped to an actual random walk.

Due to the fact that a segment of a legal sequence may also be a legal sequence,

it is possible to extract multiple legal sequences from a single simulated random

walk, and use them also as random walks in the evaluation of equation (3.12) or

its placement, (3.29) and (3.31). However, there are rules that one must comply

with when extracting these legal sequences. A fundamental premise of both the

stochastic solver and the hybrid solver is that random samples must be independent

of each other. If two walks share a segment, they become correlated. In the hybrid

solver, if two walks have different starting nodes, they never participate in the same

equation (3.29) or (3.31), and hence are allowed to share segments; if two walks have

the same starting nodes, however, they are prohibited from overlapping. Moreover,

due to the technique in the previous section, any one-step walk should be ignored.

(a) {2, 4, 6, 4, 5, 7, 6, 3, 2, 5, 8, 1}
(b) {4, 6, 4, 5, 7, 6, 3}

{5, 7, 6, 3}
{5, 8, 1}

Figure 3.2: An example of (a) the legal sequence of a simulated random walk and

(b) three extra walks extracted from it.

Figure 3.2 shows an example of extracting multiple legal sequences from a single

simulated random walk. The sequence {2, 5, 8, 1} cannot be used because it has the

same starting node as the entire sequence; the sequence {4, 5, 7, 6, 3} cannot be used

because it has the same starting node as {4, 6, 4, 5, 7, 6, 3} and the two sequences

50

overlap8. On the other hand, {5, 7, 6, 3} and {5, 8, 1} are both extracted because

they do not overlap and hence are two independent random walks.

Considering all of the above requirements, the procedure is shown in Algo-

rithm 4, where the extracted legal sequences are directly accounted for in the M ,

H and J accumulators, which are defined the same as in all equations in this chap-

ter. Note that the simulated random walk is never stored in memory, and the only

extra storage due to this technique is the stacks, which contain a monotonically

increasing sequence of integers at any moment.

This technique reduces the preconditioning runtime by fully utilizing the infor-

mation contained in a single simulated random walk, such that it contributes to

equations (3.29) and (3.31) as multiple random walks. It also guarantees that no

two overlapping walks have the same starting node, and hence does not hurt the

accuracy of the produced preconditioner. The only cost of this technique is that

the node ordering of the hybrid solver must be determined beforehand, and hence

pivoting is not allowed during the incomplete factorization9.

8It is also legitimate to extract {4, 5, 7, 6, 3} instead of {4, 6, 4, 5, 7, 6, 3}. However, the premise

of random sampling must be fulfilled: the decision of whether to start a sequence with k2 = 4

must be made without the knowledge of numbers after k2, and the decision of whether to start

a sequence with k4 = 4 must be made without the knowledge of numbers after k4. The strategy

in Algorithm 4 is to start a sequence as early as possible, and hence produces {4, 6, 4, 5, 7, 6, 3}
instead of {4, 5, 7, 6, 3}.

9For R-matrices, or in general for diagonally dominant matrices, pivoting is not needed. For

more general matrices to be discussed in Section 3.5, however, the usage of this technique may be

limited.

51

Algorithm 4 Extract multiple random walks from a single simulation:

stack1.push(k1);

stack2.push(1);

For l = 2, 3, · · · , until the end of walk, do {
While(kl < stack1.top()){

If(l > stack2.top()+1){
k′ = stack1.top();

Mk′ = Mk′ + 1;

Hk′,kl
= Hk′,kl

+ 1;

Jk′,k′ = Jk′,k′ + 1;

}
stack1.pop();

stack2.pop();

}
If(kl > stack1.top()){

stack1.push(kl);

stack2.push(l);

}
else Jkl,kl

= Jkl,kl
+ 1;

}

3.4.4 Matrix Ordering

In traditional factorization-based preconditioning techniques, matrix ordering can

affect the performance, i.e., the accuracy-size tradeoff, of the preconditioner. The

same statement is true for the hybrid solver. In general, since the hybrid solver

performs an incomplete LDL factorization of the reverse ordering of matrix A, we

52

can apply any existing ordering method on A, reverse the ordering that it produces,

and then use the resulting ordering in the hybrid solver. In this way, any benefit of

that ordering method can be inherited by us. The following are a few examples of

practical ordering schemes for the hybrid solver.

• Approximate minimum degree ordering (AMD) from [2] is one of the state-

of-the-art ordering techniques to reduce the number of non-zero entries in

a complete LU factorization, or LDL factorization for an R-matrix. Since

the complete L factor has a smaller size, it is likely that with the same size,

the incomplete L factor may have better quality. Therefore, using a reversed

AMD ordering in the hybrid solver may improve the accuracy-size tradeoff.

• Reverse Cuthill-McKee ordering (RCM) from [15] is a simple but useful or-

dering technique to reduce the bandwidth of both the original matrix A and

the complete LU factors, and thereby improve cache efficiency. The physical

CPU time of applying the LU factors on a particular right-hand-side vector is

reduced due to less cache misses. For the hybrid solver, this means that, with

the same preconditioner size, the actual CPU time of applying the precon-

ditioner may be reduced. Of course, the ordering to use should be reversed

RCM, which becomes the original Cuthill-McKee ordering.

• Random ordering is used in our implementation in Chapters 4–7. With ran-

dom ordering, home nodes are relatively evenly distributed at all stages of

the game, and for walks from any node, the most viable home nodes are of

similar distances. Empirically, we have observed a stable performance.

53

3.4.5 Random Number Generator

In implementing both the stochastic solver and the hybrid solver, a fundamental

element is a random number generator10, because every step in random walks is

simulated by a random number evenly distributed between 0 and 1. The choice

of random number generator is a tradeoff: one that produces high quality random

numbers is typically computationally expensive, while low quality random numbers

may cause bias in the computation.

In implementations of both the stochastic solver and the hybrid solver through-

out this thesis, the random number generator on page 279 of [60] is used. Empir-

ically, we observe that its quality is sufficient for all the applications investigated

in this thesis. In fact, the hybrid solver has lower quality requirement on random

numbers than the stochastic solver.

Finally, a reference implementation of both the stochastic solver and the hybrid

solver is available to the public [68].

3.5 Extension

So far the discussion on both the stochastic solver and the hybrid solver is limited

to R-matrices. This section presents techniques aimed at extending the theory to

more general matrices, and speculates on potential challenges in future research on

this topic.

10An alternative to a random number generator is using pre-generated quasirandom numbers

[33]. The benefit is removing the computation of generating random numbers, and the cost is

extra storage, a few logic operations, and some CPU time due to cache misses.

54

3.5.1 Asymmetric Matrix

Let us first remove the symmetry requirement on matrix A. Recall that the con-

struction of the random walk game and the derivation of equation (3.15) does not

require A to be symmetric. Therefore, matrices Y and Z can still be obtained

from random walks, and equation (3.15) remains true for an asymmetric matrix A.

Suppose rev(A) = Lrev(A)Drev(A)Urev(A), where Lrev(A) is a lower triangular matrix

with unit diagonal entries, Urev(A) is an upper triangular matrix with unit diagonal

entries, and Drev(A) is a diagonal matrix. This is called the LDU factorization [19],

which is a slight variation of the LU factorization, and is also unique: based on

Lemma 2, the proof is trivial. Substituting the factorization into equation (3.15),

we have

rev(Z−1)rev(Y) ≈ Lrev(A)Drev(A)Urev(A) (3.32)

Based on the uniqueness of LDU factorization, it must be true that

rev(Y) ≈ Urev(A) (3.33)

rev(Z−1) ≈ Lrev(A)Drev(A) (3.34)

By equation (3.33), we can approximate Urev(A) based on Y ; by equation (3.34), and

through the same derivation as in Section 3.2.3, we can approximate Drev(A) based

on the diagonal entries of Z. The remaining question is how to obtain Lrev(A).

Suppose we construct a random walk game based on AT instead of A, and

suppose we obtain matrices YAT and ZAT based on equation (3.12). Then according

to equation (3.33), we have

rev(YAT) ≈ Urev(AT) (3.35)

where Urev(AT) is the U factor in the LDU factorization of rev(AT). It is easy to

55

derive the following

rev(AT) = (rev(A))T =
(
Urev(A)

)T
Drev(A)

(
Lrev(A)

)T
(3.36)

Therefore,

Lrev(AT)Drev(AT)Urev(AT) =
(
Urev(A)

)T
Drev(A)

(
Lrev(A)

)T
(3.37)

Based on the uniqueness of the LDU factorization, it must be true that

(
Lrev(A)

)T
= Urev(AT) (3.38)

By (3.35) and (3.38), we finally have

rev(YAT) ≈ (
Lrev(A)

)T
(3.39)

In other words, we can approximate Lrev(A) based on YAT .

In summary, when matrix A is asymmetric, we need to construct two random

walk games for A and AT, and then based on the two Y matrices and the diagonal

entries of one of the Z matrices11, we can approximate the LDU factorization of

rev(A) based on equations (3.23), (3.33), and (3.39). The proof of non-zero pattern

is similar to Section 3.2.2, and with the same conclusion: the non-zero patterns

of the resulting approximate L and U factors are subsets of those of the exact

factors. Both the time complexity and space complexity of preconditioning become

roughly twice those of the symmetric case: this is the same behavior as a traditional

incomplete LU factorization.

3.5.2 Random Walk Game with Scaling

By now, the symmetry restriction on matrix A has been removed, and the remaining

requirements on A are the following.
11Due to the uniqueness of the LDU factorization, it does not matter the diagonals of which Z

are used.

56

• The diagonal entries must be positive.

• The off-diagonal entries must be negative or zero.

• A must irreducibly diagonally dominant, both row-wise and column-wise.

Figure 3.3: A random walk in the modified game with scaling.

To remove these constraints, a new game is designed by defining a scaling factor

s on each direction of every edge in the original game from Section 2.2. Such a

scaling factor becomes effective when a random walk passes that particular edge in

that particular direction, and remains effective until this random walk ends. Let

us look at the stochastic solver first. A walk is shown in Figure 3.3: it passes a

number of motels, each of which has its price ml, l ∈ {1, 2, · · · , Γ}, and ends at

a home node with certain award value maward. The monetary gain of this walk is

defined as follows.

gain = −m1 − s1m2 − s1s2m3 − · · · −
Γ−1∏

l=1

sl ·mΓ +
Γ∏

l=1

sl ·maward (3.40)

In simple terms, this new game is different from the original game in that each

transaction amount during the walk gets scaled by the product of the currently

active scaling factors. Define the expected gain function f to be the same as in

equation (2.2), and it is easy to derive the replacement of equation (2.4):

f(i) =

degree(i)∑

l=1

pi,lsi,lf(l)−mi (3.41)

where si,l denotes the scaling factor associated with the direction i → l of the edge

between i and l, and the rest of the symbols are the same as defined in (2.4).

57

Due to the degrees of freedom introduced by the scaling factors, the allowable

left-hand-side matrix A is now any matrix with non-zero diagonal entries. In other

words, given any matrix A with non-zero diagonal entries, a random walk game with

scaling can be constructed such that the f values, if they uniquely exist, satisfy a

set of linear equations where the left-hand-side matrix is A.

A corresponding hybrid solver can be derived for this new random walk game,

by redefining the H and J values in equations (3.12), (3.29), and (3.31) to be the

sum of products of scaling factors.

If every scaling factor in the game has an absolute value less or equal to 1,

there is no numerical problem in the above new stochastic and hybrid solvers. This

can be achieved as long as matrix A is diagonally dominant, in which case we can

simply assign scaling factors to be +1 or −1, or, if matrix A is complex-valued,

assign complex-valued scaling factors with unit magnitude. If there exist scaling

factors with absolute values over 1, however, numerical problems may potentially

occur since the product of scaling factors may be unbounded. How to quantify this

effect and to analyze the corresponding convergence rate, is an open question for

future research.

Therefore, the conclusion of this section is as follows.

• If the left-hand-side matrix A is irreducibly diagonally dominant both row-

wise and column-wise, the generalized stochastic solver and the generalized

hybrid solver are guaranteed to work, and according to the argument in Sec-

tion 3.3, the hybrid solver is expected to outperform traditional incomplete

factorization methods.

• If the left-hand-side matrix A is not diagonally dominant, as long as its diago-

nal entries are non-zero, a random walk game exists such that the f values, if

they uniquely exist, satisfy a set of linear equations where the left-hand-side

58

matrix is A. However, no claim is made about the convergence of the resulting

stochastic and hybrid solvers, and this is open for further investigation.

59

Chapter 4

Application in Power Grid

Analysis

This chapter examines the application of the stochastic linear equation solver from

Chapter 2 on power grid analysis of VLSI design. Specifically, we investigate the

mapping between a power grid and a random game, the advantage brought by the

locality property of random walks, and a few variations of the stochastic solver

specially designed for power grid analysis. In terms of the historical development

of the work in this thesis, this was the problem that led us to investigate the

use of random walks for solving systems of linear equations. The successful use of

random walks in this and other applications resulted in the theoretical developments

described in Chapters 2 and 3. Some of the ideas in this chapter are problem-

specific, while others, such as the hierarchy in Section 4.3, may be generalized to

other applications; however the generalization is beyond the scope of this thesis.

Power grid analysis is an indispensable step in high-performance VLSI design.

In successive technology generations, the VDD voltage decreases, resulting in nar-

rower noise margins. Meanwhile, integrated circuits are rapidly growing more and

60

more power-intensive. For example, [80] reports an Itanium processor with a worst-

case power dissipation of 130W, and a power dissipation of 110W for the average

case; [46] reports an Alpha processor with an estimated power consumption of

100W. Such power numbers imply increase in the average current carried by the

power grid, which, in combination with increasing wire resistances due to the re-

duced interconnect wire widths, causes IR drops on power grids to worsen. There-

fore, power grid noise is becoming a larger fraction of VDD in successive technology

generations, and since the delivered VDD values significantly affect circuit perfor-

mance, it is critical to analyze power grids accurately and efficiently to check for

signal integrity.

Figure 4.1: A part of a typical power grid model.

61

4.1 Static and Transient Analysis

A typical power grid may be represented by the model illustrated in Figure 4.1,

consisting of wire resistances, wire inductances, wire capacitances, decoupling ca-

pacitors, VDD or ground pads, and current sources that correspond to the currents

drawn by logic gates or functional blocks. There are two sub-problems to power

grid analysis: DC analysis to find steady-state node voltages, and transient anal-

ysis which is concerned with finding voltage waveforms considering the effects of

capacitors, inductors and time-varying current waveform patterns.

The DC analysis problem is formulated as:

GV = b (4.1)

where G is the conductance matrix for the interconnected resistors, V is the vector

of node voltages, and b is a vector of independent sources. Traditionally, direct

solvers have been used to exploit the sparse and positive definite nature of G to solve

this system of linear equations for V. However, the cost of doing so can become

prohibitive for a modern-day power grid with up to hundreds of millions of nodes,

and this gets worse as the circuit size is ever growing from one technology generation

to the next. The more difficult transient analysis problem involves the solution of an

equation similar to (4.1) at each time point in the analysis. In recent technologies,

inductive effects in the top few metal layers can no longer be ignored, and when

mutual inductances are taken into consideration, the left-hand-side matrix, which

contains the contribution of capacitors and inductors, is significantly denser than

that for DC analysis, making it expensive even at a single time point.

Different circuit models and simulation techniques have been developed for

power grid analysis, to handle large problem size, and to incorporate capacitances

and inductances efficiently [6] [11] [12] [17] [40] [47] [59] [71] [74] [79] [81] [89].

62

Among them, several methods are proposed to achieve a lower time and space com-

putational complexity by sacrificing a certain degree of accuracy. For example, [47]

proposes a grid-reduction scheme to coarsen the circuit recursively, solves a coars-

ened circuit, and then maps back to find the solution to the original circuit. The

approach in [89] utilizes the hierarchical structure of a power grid, divides it into a

global grid and multiple local grids, and solves them separately.

Figure 4.2: A representative node in a power grid.

4.1.1 DC Analysis

Our discussion is focused on the analysis of a VDD grid, pointing out the difference

for a ground grid where applicable. For the DC analysis of a power grid, let us look

at a single node i in the circuit, as illustrated in Figure 4.2. Applying Kirchoff’s

Current Law, Kirchoff’s Voltage Law and the device equations for the conductances,

we can write down the following equation:

degree(i)∑

l=1

gl(Vl − Vi) = Ii (4.2)

where the nodes adjacent to i are labeled 1, 2, · · · , degree(i), Vi is the voltage at

node i, Vl is the voltage at neighbor l, gl is the conductance between node i and

node l, and Ii is the current load connected to node i. Equation (4.2) can be

63

reformulated as follows:

Vi =

degree(i)∑

l=1

gl∑degree(i)
j=1 gj

Vl − Ii∑degree(i)
j=1 gj

(4.3)

This implies that the voltage at any node is a linear function of the voltages at its

neighbors. Another observation is that the sum of the linear coefficients associated

with the Vl’s is 1. For a power grid problem with N non-VDD nodes, we have N

linear equations similar to the one above, one for each node. Solving this set of

equations gives the exact solution vector V.

It is easy to draw a parallel between the random walk game in Section 2.2 and

power grid analysis. Equation (2.4) becomes identical to (4.3), and equation (2.3)

reduces to the condition of perfect VDD nodes if

pi,l =
gl∑degree(i)

j=1 gj

l = 1, 2, · · · , degree(i)

mi =
Ii∑degree(i)

j=1 gj

m0 = VDD f(i) = Vi (4.4)

The formulation for ground net analysis is analogous; the major differences are

that (i) the Ii’s have negative values, (ii) VDD is replaced by zero. As a result, the

walker earns money in each step, but gets no award at home.

Based on equation (4.4), for any power grid problem, we can construct a random

walk problem that is mathematically equivalent, i.e., characterized by the same set

of equations. The equation set has and only has one unique solution, and it is

both the solution to the random walk problem, and the solution to power grid DC

analysis. Therefore, the stochastic solver from Chapter 2, including the speedup

techniques, is applicable on power grid.

It is worth noting that we may not need the complete solution vector and only

need to compute node voltages that are of interest. For example, for checking VDD

drop violations, only node voltages on the bottom metal layer are needed. Another

64

observation is that the stopping criterion (2.8) and (2.9) do not have to be fixed, and

can be adaptive to different node voltages: for a node with high estimated voltage

drop, i.e., a relatively dangerous node in terms of signal integrity, the criterion

can be switched to higher confidence level, lower ∆, or both; for a node with low

estimated voltage drop, i.e., a safe node, the computation can stop after satisfying

a relaxed criterion with lower confidence level or larger ∆. In other words, the

computation for a node voltage may start with a low-accuracy criterion; when this

accuracy level is met, a decision is made based on the estimated voltage drop at this

time: if this value is below a certain threshold, the computation stops, otherwise

the algorithm switches to a higher-accuracy criterion and continues running; when

the new accuracy level is met, another decision is made based on the new estimated

voltage drop, and even higher accuracy can be used if necessary, and so on. Using

this adaptive strategy, more runtime would be spent on potential failure nodes, to

get more accurate voltages for them, while safe nodes only get coarse estimation.

4.1.2 RC Transient Analysis

This and the next sections extend the discussion to transient analysis, where volt-

age waveforms are to be found while considering the effects of capacitances, induc-

tances and time-varying current waveforms. Throughout this chapter, and in the

implementation, the backward Euler approximation with timestep size h is used to

convert differential equations to linear equations. We assume that the timestep size

h is kept constant in a transient analysis.

Let us first incorporate capacitors into the framework. The equations to be

solved for RC transient analysis may be written as follows [36]:

GV(t) + CV′(t) = b(t) (4.5)

65

where G is a conductance matrix, C is the matrix introduced by capacitors, V(t) is

the vector of node voltages, and b(t) is the vector of independent sources. Applying

the backward Euler formula with timestep size h, the equations become
(

G +
C

h

)
V(t) = b(t) +

C

h
V(t− h) (4.6)

This transformation translates the problem to solving a set of linear equations. Let

us consider a single node i, at one time step at time t, and by Kirchoff’s Current

Law:
degree(i)∑

l=1

gl (Vl(t)− Vi(t)) =
Ci

h
(Vi(t)− Vi(t− h)) + Ii(t) (4.7)

where Vi, Vl, Ii and gl are as defined in equation (4.2), and Ci is the capacitance

between node i and ground.

For a RC network with capacitors between two non-ground nodes, those ca-

pacitors can be replaced by resistors and current sources, while a current source

between two nodes can be replaced by two current sources between the two nodes

and ground. Then the following algorithm is applicable. Here we only discuss the

case described by equation (4.7).

Equation (4.7) can be converted to the following form

Vi(t) =

degree(i)∑

l=1

gl∑degree(i)
j=1 gj + Ci

h

Vl(t) +
Ci

h∑degree(i)
j=1 gj + Ci

h

Vi(t− h)

− Ii(t)∑degree(i)
j=1 gj + Ci

h

(4.8)

The rules of the random walk game are changed to accommodate the changes in the

above equation. As shown in Figure 4.3, each node i has an additional connection,

and the walker could end the walk and be awarded the amount Vi(t − h) with

probability
Ci

h∑degree(i)
j=1 gj + Ci

h

66

Figure 4.3: Rules for the transient RC analysis “game.”

Intuitively, this rule is equivalent to replacing each capacitor by a resistor and a

voltage source.

Under this new rule, the random walk game is mathematically equivalent to the

equation set (4.6), and the stochastic solver can perform transient analysis of a RC

network, timestep by timestep. In each timestep, the V (t− h) values are updated

with the node voltage values solved from the previous timestep.

The bookkeeping technique from Section 2.4.2 is a crucial ingredient in transient

power grid analysis. With the timestep size h being constant, the left-hand-side

matrix in equation (4.6) remains the same for all timesteps. Therefore the book-

keeping technique is applicable: random walks are needed only in the first transient

timestep, and in all subsequence timesteps, equation (4.6) is solved by applying the

journey record repeatedly, without any random walk.

67

4.1.3 RKC Transient Analysis

Inductances include self inductances and mutual inductances. Under the backward

Euler approximation, a self inductance becomes a resistor and a current source in

parallel, and can be easily added to the random walk game. Mutual inductances

in RLC circuit formulation, however, are difficult to incorporate into the proposed

framework, because of their induced extra unknown variables: the currents through

the inductors.

Therefore, instead of the partial inductance matrix L, the inverse inductance, or

susceptance, matrix K [16] [39] is used in this chapter to model inductors. The K

matrix is defined as the inverse of the inductance matrix L, and has been shown to

have better locality than L, and hence reduces the problem size of circuit simulation

[16] [39]. The device equations under the backward Euler approximation are

KV(t) =
I(t)− I(t− h)

h
(4.9)

where V(t) is the vector of voltage drops over the inductors, I(t−h) is the vector of

known currents through the inductors from the previous timestep, I(t) is the vector

of unknown currents through the inductors in the present timestep, and h is again

the timestep size. Equation (4.9) can be written as

I(t) = hKV(t) + I(t− h) (4.10)

and the corresponding companion model is illustrated in Figure 4.4, where only a

pair of coupled inductors are shown.

In the transient simulation, a lumped π model is used for each wire segment,

and is composed of a resistor and an inductor in series, and capacitors at two ends.

Figure 4.5(a) shows this model, where capacitors are not drawn. By substituting

the companion model of the inductor, the circuit in Figure 4.5(b) is obtained, where

68

Figure 4.4: Companion model of a pair of inductors, adapted from [39].

the inductor is replaced by a resistor and two current sources in parallel. One of the

two current sources is equal to the current from the last timestep, which is a known

constant; the other source is a voltage-controlled current source which corresponds

to the current induced by other inductors, i.e., a function of VB’s and VC ’s from

a number of other wire segments. The model in (b) can be further converted to

(c) and then to (d), which is a circuit structure that can be directed added to the

random walk game.

One complication caused by mutual inductances is that the current sources in

Figure 4.5(d) is a function of not only VA’s and VB’s, but also VC ’s, while VC ’s

are not among the system variables when we solve the circuit in form (d). In

other words, the voltage-controlled current sources cannot be expressed as a linear

function of node voltages.

To resolve the above problem, we propose an iterative approach to compute

69

Figure 4.5: A wire segment model.

node voltages in each timestep, and in each iteration, the voltage-controlled cur-

rent sources are assumed to have constant values. First, VB’s and VC ’s of all wire

segments from the previous timestep are used as the initial guess to compute the

voltage-controlled portion of current sources in Figure 4.5(b)(c)(d). Next, by as-

suming these current sources to be constant, the stochastic solver solves the circuit

in form (d), and obtain new VA and VB values. Then, we update VC ’s and hence

current sources in (b)(c)(d), and solve the circuit in form (d) again. This process

iterates until voltages converge.

The above iterative approach is guaranteed to converge, and the theoretical

proof is provided in Appendix B. Empirically, it is observed that the iterative pro-

cess converges within three iterations, when the convergence criterion is maximum

voltage difference being less than 10−5V. The results are reported in Section 4.4.

Again, the bookkeeping technique from Section 2.4.2 is used here: random walks

are needed only in the first iteration of the first transient timestep, and in all

subsequent iterations of all timesteps, the journey record is used instead to solve

the circuit in form (d).

70

4.2 Locality

A desirable feature of the stochastic solver is that it localizes the computation, and

for power grid analysis, this translates to calculating a single node voltage without

having to solve the entire circuit. Such a property is especially meaningful when

the designer knows which part of the power grid is problematic, or in the scenario

of incremental design when the designer makes a minor change in the design and

wishes to see the impact. Compared to a conventional approach that must solve the

full set of matrix equations to find the voltage at any one node, the computational

advantage of this method could be tremendous.

Figure 4.6: Estimated voltages at a single node for various values of M .

Figure 4.6 shows the results of computing the DC solution for only one node

in an industrial power grid model, using the stochastic solver. The markers are

estimated voltage values for different M ’s, where M is the number of walks used,

and the dashed line is the true voltage. The ultra-accurate right-most point, for

which M = 4000, takes only 0.42 second runtime, and thus shows the efficiency of

using the stochastic solver to solve individual nodes.

71

The above locality in DC analysis is still valid in RC transient analysis: the

stochastic solver can compute a single node voltage at a single time point, without

solving any other nodes or any other timesteps. If we want to compute the voltage

at node i at time t, the walks start at node i in the random walk game for time t;

some walks may reach V (t − h) terminals, and then they continue in the random

walk game for time (t− h); some of these may reach V (t− 2h) terminals, and then

they continue in the random walk game for time (t − 2h), and so on. The real

terminals where random walks end are those from physical voltage sources, which

are present at all times. The farthest a random walk can go in time is the time

point zero, which is a DC analysis game. In short, “travelling back time” makes

such complete locality feasible in both space domain and time domain, and this is

inspired by [5].

4.3 Hierarchies

In this section, the power grid analyzer from Section 4.1 is combined with a divide-

and-conquer strategy to form hierarchical variations, which are faster and more

robust on certain types of power grid. To distinguish between them, the method

from Section 4.1, which is a direct application of the stochastic solver from Chap-

ter 2, is referred to as the generic algorithm, and the new methods in this section

are referred to as the hierarchical algorithms. The part of building hierarchy can

also be a stand-alone network reduction algorithm, and is used in Chapter 6.

Section 4.3.1 and Section 4.3.2 present the hierarchical algorithms for DC anal-

ysis and transient analysis respectively. Section 4.3.3 discusses the advantages of

these methods for power grid analysis, and Section 4.3.4 shows a few variations of

hierarchy that are useful in practice.

72

Figure 4.7: Hierarchical strategy in [89].

4.3.1 Principles

The hierarchical strategy in [89] is illustrated in Figure 4.7. The power grid is

divided into a global grid and multiple local grids, and interfacing nodes are defined

as ports. From the global perspective, the behavior of a local grid is completely

described by the following equation.

Iports = AVports + S (4.11)

where Iports is the vector of currents flowing from the global grid into this local

grid, Vports is the vector of port voltages, A is a square matrix, and S is a constant

vector. In DC analysis, matrix A represents the effective conductances between the

ports, and vector S represents current sources inside the local grid.

The algorithmic flow of [89] is shown in Figure 4.8. First, macromodels, i.e.,

the A matrices and S vectors, are extracted from local grids. Next, the set of linear

equations for the global grid is solved and port voltages obtained. Finally, local

grids are solved individually.

An exact method for calculating A and S is provided in [89], and 0-1 integer

linear programming (ILP) is used to make A sparse, at the expense of a bounded

loss in accuracy. We now demonstrate a stochastic alternative to build A and S,

and to achieve sparsity naturally as a part of this procedure.

73

Figure 4.8: Algorithm flow in [89].

Figure 4.9: The original resistive network with external connections replaced by

current sources.

Macromodeling is essentially a network reduction procedure applied on a lo-

cal grid. Figure 4.9 illustrates a representation of the resistive network to be

reduced. This network is composed of resistors, and only the ports have exter-

nal connections, with port voltages Vports = [V1, V2, · · · , Vk]
T and port currents

Iports = [I1, I2, · · · , Ik]
T . In Figure 4.9, the external connections are replaced by

symbolic current sources. This is justified by the fact that Vports and Iports are

treated as algebraic symbols throughout the derivation of A and S, and the equa-

tions apply to all possible values of Vports and Iports. In fact, the goal of network

reduction is to find a square matrix A and a constant vector S such that equation

74

(4.11) holds for all possible Vports and Iports.

A random walk game is set up as follows:

• A set of M walks are run from a port i, i ∈ {1, 2, · · · , k}, inside the network

shown in Figure 4.9.

• The motel price at port i is −IiPdegree(i)
l=1 gl

, where Ii is the port current, degree(i)

is the number of resistors connected to port i inside the network, and gl’s

are the conductances of these resistors. Note that Ii is symbolic, and any

computation regarding this motel price is carried out symbolically.

• All of the ports are home nodes where random walks end, except for port i

itself. In other words, these ports as absorbing nodes, while port i and non-

port nodes are non-absorbing nodes. Therefore, a random walk cannot end at

port i, and has to reach a port other than i to stop. The award for reaching

a port is its port voltage. This value is unknown, and computation is carried

out symbolically.

• The port currents other than Ii are at absorbing nodes, and therefore do

not have corresponding motels. For constant current sources inside the net-

work, each of them becomes a motel with the price IsourceP
g

, where Isource is the

value of the current source flowing from a node to ground,
∑

g is the sum of

conductances connected to that node.

For each individual walk in the above game, the money earned at the end of the

walk is composed of an award, which is a port voltage, minus a sequence of motel

expenses. The result of the qth walk from node i (which has a current source of Ii)

is therefore in the following form.

χq = Vend q + Ji,i,q
Ii∑degree(i)

l=1 gl

− ξq (4.12)

where q ∈ {1, 2, · · · ,M} is the index of the walk, Vend q is the voltage at the port

where the random walk ends, Ji,i,q is the number of times that the walk passes

75

port i, and ξq is the sum of all expenses paid at motels corresponding to internal

(non-port) constant current sources. Note that ξq is a constant number, i.e., it is

independent of Iport and Vport.

Taking the average of the results from the M random walks, an estimate of Vi

is obtained in the following form:

Vi =

∑M
q=1 χq

M
=

∑

j∈{1,··· ,k},j 6=i

Hi,j

M
Vj +

Ji,i

M
· Ii∑degree(i)

l=1 gl

− ξ (4.13)

where Ji,i =
M∑

q=1

Ji,i,q ξ =

∑M
q=1 ξq

M

Hi,j is the number of walks that end at port j. Ji,i is the total number of times

that random walks pass port i. Note that ξ is also a constant number independent

of Iport and Vport, and because every random walk stops at a port that is not port

i, Hi,j’s must satisfy the following condition.

∑

j∈{1,··· ,k},j 6=i

Hi,j = M (4.14)

After obtaining the coefficients of equation (4.13) from the random walks, it can

be converted into the following format by simple algebraic transformations.

Ii =
M

Ji,i

degree(i)∑

l=1

glVi −
∑

j∈{1,··· ,k},j 6=i

Hi,j

Ji,i

degree(i)∑

l=1

glVj +
Mξ

Ji,i

degree(i)∑

l=1

gl (4.15)

Comparing equation (4.15) and equation (4.11), it can be seen that (4.15) esti-

mates the ith row in matrix A and the ith entry in vector S as:

Ai,i =
M

Ji,i

degree(i)∑

l=1

gl (4.16)

Ai,j = −Hi,j

Ji,i

degree(i)∑

l=1

gl (4.17)

Si =
Mξ

Ji,i

degree(i)∑

l=1

gl (4.18)

76

The above equations estimate the entries in A and S that correspond to a

specific port i. For each port node of the network, such procedure is repeated and

the matrix A is constructed row by row, and the vector S entry by entry. By

equations (4.16) and (4.17), the diagonal entries of the estimated matrix A are

positive, while off-diagonal entries are negative or zero, and using equation (4.14),

the following equation can be easily proven.

k∑
j=1

Ai,j = 0 (4.19)

The sparsity-accuracy tradeoff of the reduced network is controlled by M , the

number of random walks used. In equations (4.16) and (4.17), Ai,i can be viewed

as the total conductance from port i to other ports, and this amount is distributed

among (−Ai,j)’s such that each of them gets a fraction
Hi,j

M
, proportional to Hi,j,

the number of walks from i to j. Hence, M can be considered as the resolution of

the estimation. When M increases, the matrix A becomes denser and closer to the

exact matrix, and is more expensive to compute.

Now we move on to step 2 in Figure 4.8, solving the global grid based on the

extracted macromodels. The reduced resistive network has an equivalent form that

is easier to visualize, by rewriting equation (4.15) in the following form:

Ii = Si +
∑

j∈{1,··· ,k},j 6=i

(−Ai,j)(Vi − Vj) (4.20)

Equation (4.20) can be viewed as a circuit, in which (−Ai,j) conductance con-

nects port i to port j, and an independent current source Si flows out of port i. This

is an imaginary circuit, because each resistor only exists for one direction (corre-

sponding to the asymmetry of the computed A matrix), i.e., the conductance from

port i to port j could be different from the conductance from j to i. Figure 4.10

illustrates this imaginary circuit composed of directed resistors.

77

Figure 4.10: The imaginary circuit interpretation of a macromodel in DC analysis.

Based on this imaginary circuit interpretation, the global grid can be solved by

running random walks from each port node, and the port voltages can be obtained.

Next, we move on to step 3 in Figure 4.8, solving the bottom-metal-layer nodes

in each local grid based on the port voltages computed in step 2. The ports corre-

spond to “homes” in this random walk game, and each walk from the bottom layer

typically ends within a relatively small number of steps.

4.3.2 Transient Hierarchy

In transient analysis, due to the additional V (t − h) terminals, the hierarchical

algorithm from the previous section is changed in various ways. Since some random

walks may stop at V (t − h) terminals, equation (4.14) is no longer true, and is

replaced by the following inequality.

∑

j∈{1,··· ,k},j 6=i

Hi,j ≤ M (4.21)

Consequently, equation (4.19) is also replaced by an inequality:

k∑
j=1

Ai,j ≥ 0 (4.22)

Equations (4.15), (4.16), (4.17), and (4.18) remain true, except that the constant

ξ accounts for not only motel expenses corresponding to internal current sources,

but also awards received when walks stop at V (t− h) terminals.

78

Due to the new inequality (4.22), equation (4.15) can no longer be converted to

(4.20), and equation (4.20) is replaced by the following.

Ii = S ′i +
∑

j∈{1,··· ,k},j 6=i

(−Ai,j) (Vi − Vj) +

(
k∑

j=1

Ai,j

)(
Vi − S ′i − Si∑k

j=1 Ai,j

)
(4.23)

The splitting of Si into S ′i and (Si − S ′i) is arbitrary. In our implementation, S ′i

is chosen to be the portion from motel expenses at internal current sources, and

(Si − S ′i) is chosen to be the contributions from V (t−h) terminals. Equation (4.23)

maps to an imaginary circuit that is slightly different from Figure 4.10: conductance
∑k

j=1 Ai,j connects port i to a voltage source with voltage value
S′i−SiPk
j=1 Ai,j

; indepen-

dent current source S ′i flows out of port i. Figure 4.11 illustrates this imaginary

circuit for transient analysis.

Figure 4.11: The imaginary circuit interpretation of a macromodel in transient

analysis.

When applying the bookkeeping technique from Section 2.4.2, the hierarchical

algorithm demands some extra storage: the journey record keeps information not

only for solving the global grid and the local grids, but also for building vector S,

because S needs to be updated in every timestep, whenever the current sources or

V (t− h) sources in the local grid change. In RKC transient analysis, S may need

to be updated in every iteration of every timestep, depending on how detailed the

inductance model is.

79

4.3.3 Benefits of Hierarchy

The approach in [89] requires small-cut partitioning of the power grid, since this

leads to small port matrices. In our hierarchical approach, such partitioning is not

necessary, and the algorithm only needs to distinguish local nodes, global nodes, and

ports. Consequently, multiple local grids are not needed, and only the boundary

between the global grid and the local grid needs to be defined. This can be done

in various ways, and we recommend the following natural approach: given a power

grid, a layer of vias is chosen as the border between the global grid and the local

grid, the upper ends of these vias being ports.

Choosing such a layer of vias is a new degree of tradeoff: if a lower layer is chosen,

the global grid size is larger, the number of ports is larger, and consequently solving

the global grid takes more runtime; on the other hand, the local grid is smaller,

there are more terminals, i.e., solved ports, and therefore solving the local grid

takes less time. Empirically, a relatively good tradeoff point is choosing a layer of

vias such that the global grid is roughly 10% of the entire circuit size.

Compared to the generic random-walk algorithm, the hierarchical algorithm has

two major advantages:

• The hierarchical method is faster. The reason is illustrated in Figure 4.12.

When solving the global grid, each random walk starts from a port and ends

at a perfect voltage source; when solving the local grid, each random walk

starts from a bottom layer node and ends at a port. In either case, a walk

has fewer steps than a walk in the generic method that starts from a bottom

layer node and has to reach a perfect voltage source at the top metal layer.

Also, when random walks are shorter, the variance of the results of walks

tends to be lower, and consequently, a higher accuracy can be achieved with

the same number of walks, or fewer walks are needed to achieve the same

80

Figure 4.12: Random walks in the hierarchical algorithm are shorter than those in

the generic algorithm.

accuracy level. Although the overhead of building macromodels is paid, the

overall savings typically dominate this cost.

• The hierarchical method is more robust. In certain power grids, a highly

resistive metal layer forms a barrier that makes it difficult for the walker to

go up to the top layer, and the runtime of generic method can be long. The

hierarchical method solves such circuits simply by defining ports right on this

barrier. In other words, instead of relying on the random walker to pass this

barrier, a walk is cut into two segments, and the barrier nature is preserved in

the macromodel. This can also be viewed as an extreme case of the speedup

shown in Figure 4.12.

Finally, we want to point out a drawback of hierarchy. In the hierarchical

algorithm, it is no longer possible to solve a single bottom-metal-layer node only:

the overhead of building and solving the hierarchy has to be paid first. In other

words, the algorithm does not have the complete locality anymore. One way to

81

maintain a partial locality is to use multiple local grids: when a change is made in

the design, only the macromodel of the local grid containing the change needs to

be rebuilt and re-solved.

4.3.4 Variations of Hierarchy

A natural extension of the hierarchical algorithm is to use multi-level hierarchy.

Making use of all available vias, we can build macromodel on top of macromodel.

After this bottom-up traversal, the circuit is reduced to a global grid, then port

voltages are solved in a top-down order, and the bottom layer voltages are obtained

in the end. Compared with the single-level method, the extra cost of the multi-level

method is building multiple macromodels, while the benefit is shorter walks in each

level. Hence there is a tradeoff in choosing the number of levels. Since the single-

level hierarchical method is better than generic method, the multi-level method is

expected to be even faster and more robust. Test results in Section 4.4 show that

the multi-level method has a similar accuracy-runtime tradeoff as the single-level

method.

Another extension of the hierarchical method leads to the concept of a “virtual-

layer,” when ports are chosen such that the global grid physically does not exist.

In other words, there are no direct connections between these ports in the original

circuit. This can be considered to be similar in flavor to grid coarsening in [47].

When all connections of these ports are abstracted into a macromodel, this macro-

model provides imaginary connections between ports, and the global grid is totally

composed of such virtual connections, as illustrated in Figure 4.13.

For example, in a large power grid where the number of voltage sources is

very limited and they are located at periphery, a random walk from a center node

typically needs a very large number of steps. We may traverse the graph (for

82

Figure 4.13: The original graph with ports marked, and the extracted virtual layer.

example, a breadth-first search in the implementation), and mark one port in every

l nodes. For example, if l = 10, the sampling rate is 1/10. Special arrangements

must be made such that each home is surrounded by ports, because edges leading

to a home should not be abstracted into the macromodel. Then all connections of

these ports are abstracted into a macromodel, except for those leading to a home.

Thus the virtual layer is constructed and the size is roughly 10% of the original

graph. After solving it, we go back to the local grid, i.e., the original graph, and

because there are solved ports all over the graph, it can be solved efficiently.

This virtual-layer method will be shown useful when solving a wire-bond power

grid in the next section, and for ESD simulation in Chapter 6.

4.4 Simulation Results

In this section, three industrial benchmarks are used to evaluate the proposed al-

gorithms for DC analysis. Then, artificial RC and RKC circuits generated based

on real-life structures are used to test the performance of transient analysis. Com-

putations are carried out on a Linux workstation with 2.8GHz CPU frequency.

The three industrial power grids are:

• Industry1 is a 70,729-node circuit, and we solve for the 15,876 bottom-metal-

layer VDD nodes and 15,625 bottom-metal-layer ground nodes. The voltage

83

range of VDD bottom layer is 1.1324–1.1917V.

• Industry2 has 218,947 nodes, in which 25,137 bottom-metal-layer VDD nodes

and 18,803 bottom-metal-layer ground nodes are to be solved. The voltage

range of VDD bottom layer is 1.61248–1.79822V, that of ground bottom layer

being 0.000334–0.066505V.

• Industry3 is a wire-bond ground net with 347,566 nodes, and the bottom layer

has a voltage range of 0.024347–0.110860.

One implementation issue is that, in order to avoid any possible deadlock, a

limit is put on the number of steps in a walk. Any walk that fails to end within this

limit is forced to end, and be awarded VDD if inside the VDD net, be awarded 0 if

inside the ground net. This operation is optimistic and will results in a bias in the

estimated voltage; however, if the limit is chosen appropriately, the error will be

very small as the probability of an overlength walk is minute. Thus a new degree

of accuracy-runtime tradeoff is introduced, and this limit is empirically chosen to

be 10,000 steps for power grid analysis as a good tradeoff point. For hierarchical

methods, there are typically no or only a few violations of the step limit.

The above tradeoff only affects runtime indirectly, while the error margin ∆

in Equation (2.8) decides M , which is directly proportional to runtime and needs

careful investigation. Figure 4.14 plots the relation between ∆ and runtime for

solving the complete Industry1, i.e., finding all bottom-metal-layer voltages, using

the generic random-walk method. The runtime is always larger than 8 seconds

because the minimum value of M is set to be 40. The lower part of this curve

shows the quadratic relation between M and ∆: M ∝ 1
∆2 . For example, the

runtime is around 15 seconds when ∆ is 4mV, and roughly 60 seconds when ∆ is

2mV.

Figure 4.15 plots the tradeoff between average error and runtime in solving

84

Figure 4.14: Runtime-∆ tradeoff for the computation of all bottom-metal-layer

nodes in Industry1.

Figure 4.15: Accuracy-runtime tradeoff curves for solving Industry1 using the

generic random-walk method, the single-level hierarchical method, and a two-level

hierarchical method.

Industry1, where the three curves are for the generic random-walk method, the

85

single-level hierarchical method, and a two-level hierarchical method, respectively.

All hierarchies are divided at vias. All three methods use pre-determined and fixed

M in each run, and points on the curves correspond to different M values. Both

hierarchical methods achieve roughly 3–4 times speedup over the generic method,

with the same average error.

In practice, the user decides the tradeoff point by choosing M values according

to the needs of the analysis. Here for runtime comparison purpose, we choose a

reasonable tradeoff point on each of the three curves, and list them in Table 4.1.

Figure 4.16: Accuracy-runtime tradeoff curves for solving Industry2, using the

single-level hierarchical method and a three-level hierarchical method.

Figure 4.16 plots the tradeoff between average error and runtime in solving

Industry2, using the single-level hierarchical method and a three-level hierarchical

method. All hierarchies are divided at vias. Both methods use pre-determined and

fixed M in each run, and points on the curves correspond to different M values.

The curve for the generic random-walk method is omitted because its runtime is

unacceptably high for this circuit. The reason is that a highly resistive metal

86

layer on top of low-resistance vias forms a barrier structure. This circuit shows an

example of the robustness introduced by hierarchical methods. Again, the tradeoff

point should be decided by the designer. Here we choose a reasonable tradeoff point

on each of the curves, and list them in Table 4.1. One tradeoff point of the generic

method is also listed.

Table 4.1: DC analysis comparison. N is the circuit size, E1 is the average error,

E2 is the max error, T is the runtime, NT is the normalized runtime, defined as

the runtime per thousand nodes, P is the peak memory, and NP is the normalized

peak memory, defined as the peak memory per thousand nodes. G denotes the

generic random-walk method, S denotes the single-level hierarchical method, and

M denotes the multi-level hierarchical method.

Benchmark N E1(mV) E2(mV) T NT(sec) P(MB) NP(MB)

G 1.1 9.8 17.40 sec 0.245 10.7 0.15

Industry1 S 71K 1.1 6.6 4.34 sec 0.061 11.4 0.16

M 1.1 9.4 4.16 sec 0.059 16.8 0.24

G 10.9 142.2 329.57 sec 1.50 27.3 0.12

Industry2 S 219K 1.4 30.7 20.82 sec 0.095 37.0 0.17

M 1.4 35.3 30.12 sec 0.138 41.4 0.19

G 4.3 7.6 71 min 12.2 57.7 0.17

Industry3 S 348K 4.4 18.8 498.02 sec 1.43 72.4 0.21

M 3.6 17.0 93.64 sec 0.27 84.6 0.24

Chip2 by the 2.7M N/A N/A 25 min 0.56 300 0.11

method of [89]

The runtime comparison is shown in Table 4.1. The three rows Industry2-G,

Industry3-G and Industry3-S, are results with robustness problems, while the bold-

face rows are results without the problems, or with them overcome. The numbers

87

for chip2 in [89] are listed as a baseline. In viewing the numbers, it is important

to note that our computer is approximately 3 times faster than those used by [89],

according to SPEC benchmarks [77]. Runtimes reported by [89] show superlinear

time complexity; chip2 is their smallest circuit, and therefore has the smallest nor-

malized runtime. Since the time complexity of random-walk algorithms is linear in

circuit size (for circuits with similar structure, according to Section 2.5), as power

grid size increases, they will outperform [89] more. Note that due to factors such

as benchmark structure, coding, compiling, and platform difference, this is only an

approximate comparison, even after considering the speed factor of 3.

For Industry1, both hierarchical methods show a 4 times speedup over the

generic method. For Industry2, the speedup is dramatic, and shows the robust-

ness introduced by hierarchical methods.

The multi-level hierarchical method does not show a runtime advantage over the

single-level method for Industry2. The reason is that, the benefit of the multi-level

hierarchy, which is easier access to home nodes, is not worth the cost of building

multiple macromodels, for the Industry2 case with C4 packaging. However, it is

worthwhile for Industry3, a similar-sized circuit with wire-bond packaging.

Industry3 is a wire-bond power grid, a difficult circuit type to solve. Even after

it is reduced to its top metal layer only, there are still 80K nodes, yet there are only

20 perfect voltage sources distributed on four sides of the top metal layer. Thus it

requires high runtimes if using the generic method or the single-level method, as

listed in Table 4.1. We employ a two-level hierarchical method, the top level being

a virtual layer, as discussed in Section 4.3.4. This scheme solves this benchmark

in a reasonable amount of time, with acceptable error. The results are listed in

Table 4.1, and the normalized runtime is seen to be higher than solving other

circuit types.

88

In order to evaluate the transient analysis, since we were unable to obtain real-

life RC/RLC power grid circuits, we generated four circuits with realistic parame-

ters. RC1 and RC2 listed in Table 4.2 are RC networks based on the structure of

Industry1. RKC1 and RKC2 listed in Table 4.3 are RKC networks based on the

structure of Industry2. Inductances are assumed to be only in the top two metal

layers, and are estimated using formulas provided by [27]. Then K matrices are

constructed by the method proposed by [16], using 7-by-7 and 7-by-5 window sizes

for the two metal layers. Current-load waveforms are designed such that inductive

effect is visible: simulation using a direct solver shows that if inductors in circuit

RKC1 are ignored, the induced error is up to 21mV.

Table 4.2: RC transient analysis results. N is the circuit size, TS is the number of

timesteps, T is CPU time per timestep for subsequent timesteps, E1 is the average

error, E2 is the max error, and P is the peak memory. G denotes the generic

random-walk method, and S denotes the single-level hierarchical method.

Ckt N TS T(sec) E1(mV) E2(mV) P(MB)

RC1 G 3.7K 500 0.0026 1.6 11.9 –

S 0.0014 2.0 13.7 –

RC2 G 2.3M 1000 0.65 N/A N/A 680

S 0.64 N/A N/A 854

The results of RC analysis using both the generic method and the hierarchical

method are shown in Table 4.2. CPU times are measured for the timesteps that

follow the initial DC analysis and the first transient step. The solution for circuit

RC1 is compared with HSPICE, while circuit RC2 is too large to be simulated in

HSPICE. Note that E1 is the average over all nodes at all timesteps, and E2 is the

maximum over all nodes at all timesteps. The peak memory numbers are small for

89

RC1, and are omitted. The runtimes are several times faster than traditional direct

solver runtimes reported in [89], even after normalization by the speed factor of 3.

The space complexity is higher for the hierarchical method, because bookkeeping is

needed not only for the bottom-metal-layer nodes, but also for building and solving

the global grid. However, the peak memory of the hierarchical method is still lower

than that of traditional methods reported in [89], in terms of memory consumption

per million nodes.

Table 4.3: RKC transient analysis results. N is the circuit size, TS is the number of

timesteps, T is CPU time per timestep for subsequent timesteps, E1 is the average

error, E2 is the max error, and P is the peak memory.

Ckt N TS T(sec) E1(mV) E2(mV) P(MB)

RKC1 6.4K 1000 0.0165 0.8 13.9 –

RKC2 642K 1000 2.1 N/A N/A 837

The results of RKC analysis are shown in Table 4.3. The single-layer hierarchical

method is used, and the algorithm discussed in Section 4.1.3 is used when solving

the global grid with inductors. Note that inductances are assumed to be only in the

top two metal layers, and hence only in the global grid. CPU times are measured

for the timesteps that follow the initial DC analysis and the first transient step.

The solution for circuit RKC1 is compared with a direct solver, while circuit RKC2

is too large to be simulated by a direct solver. Note that E1 is the average over

all nodes at all timesteps, and E2 is the maximum over all nodes at all timesteps.

The peak memory is small for RKC1, and is omitted. Comparing with Table 4.2,

it is apparent that RKC analysis has higher time and space complexity than RC

analysis. This is due to the extra storage for mutual inductances, and the extra

iterations of computation.

90

When viewing Tables 4.2 and 4.3, one common concern is error accumulation:

although the error of one timestep is low, it could add up to large error over many

timesteps. This concern drives us to measure E1 and E2. Note that E1 is the

average over all timesteps, and E2 is the maximum over all timesteps. They suggest

that the errors are acceptable after 500/1000 timesteps. Practically, this implies

that errors tend to cancel each other, and that the error accumulation has a very

slow rate.

91

Chapter 5

Application in Early-stage Power

Grid Analysis

This chapter investigates the application of the stochastic linear equation solver

from Chapter 2 on early-stage power grid analysis. This is a different problem from

Chapter 4 in that the current loads, i.e., the right-hand-side vector, are unknown.

In fact, the goal of such early-stage analysis is to identify the worst possible current

load pattern in terms of VDD loss.

5.1 Problem Statement

As discussed at the beginning of Chapter 4, as integrated circuits growing more

and more power-intensive, power grid analysis is needed at all stages of the design

cycle. Most of the existing works on this subject, [12] [47] [71] [81] [89], including

the methods from Chapter 4, deal with the deterministic analysis of a power grid

for a complete design. In other words, they assume that the current loads at

bottom-layer nodes are given, and power grid analysis is performed subsequent to

92

this. On the other hand, [45] proposes to perform analysis without deterministic

current loads, and instead, uses current constraints to limit possible working modes,

formulating a linear programming problem to find the worst voltage drops.

This chapter is motivated by two issues that have not been adequately addressed

by prior works:

• To efficiently model uncertain working modes. Modern designs operate under

a number of power modes, in each of which a different set of blocks may be

on. This uncertainty can exert a large influence on power grid performance.

The current loads in our work are modeled not as constants, but as functions

of the working mode of the circuit, and we look at power grid analysis for

these uncertain loads, to find the worst-case scenario associated with the

largest voltage drop. To do so, we utilize information that was not used in

deterministic analysis. For example, power budget is an increasingly useful

piece of information that can be used during analysis when circuits operate

under multiple power modes.

• To perform early-stage analysis. The most effective fixes to the power grid

must be made early in the design cycle, when much of the details of the

design are unknown. If one waits until later in the design flow, the number

of available degrees of freedom for optimization reduces dramatically. This

implies that it is important to analyze the grid early in the design process;

however, the side-effect of this is that such analyses must operate under some

uncertainty.

The information that is available at an early stage, e.g. after floorplanning,

is that the circuit is composed of a number of functional blocks whose positions

are known. For example, an SRAM block on the circuit can be modeled by one

current source distributed over hundreds of power grids nodes. One may determine

93

a reasonable estimate for current consumed by each block, and based on the position

of a block, its proximity to VDD/GND pads is known. In different working modes,

some of the blocks are active and consuming current, while others are standing

by. The number of working modes for the circuit may be very large (potentially

exponential in the number of blocks), and it is often not possible to enumerate all

such modes.

Figure 5.1: A small example: (a) the floorplan with five blocks, (b) the working

mode that causes the largest single-node voltage drop, with the location of the

largest voltage drop marked with a black dot, and (c) the working mode that

causes the largest average voltage drop.

One way to deal with this uncertainty is to perform a worst-case analysis assum-

ing that every block is on. This is too pessimistic and produces false alarms, since

such a working mode may never occur. Figure 5.1 shows a small illustrative exam-

ple to show the necessity of analyzing realistic working modes instead of making

this pessimistic assumption. It is an artificial regular-structured power grid with

5884 nodes, four metal layers, and four VDD pads at the top metal layer. Each of

the 2601 bottom-metal-layer nodes has a 2mA current load. The current loads are

drawn by five functional blocks, as shown in Figure 5.1(a), and each current load is

on when the corresponding block is active. If we assume all five blocks are on, the

total power is 6.2W (the nominal VDD being 1.2V), the largest single-node voltage

94

drop is 135mV, and the average voltage drop over all bottom-metal-layer nodes is

114mV. However, if we have the knowledge that the maximum power of the circuit

is 4W, then not all working modes can occur. By enumerating all possible working

modes that obey the 4W constraint, Figure 5.1(b) is found to be the working mode

that causes the largest single-node voltage drop, 99mV at the location indicated by

the black dot, and Figure 5.1(c) is found to be the working mode that causes the

largest average voltage drop, 73mV. Hence, for this small example, the pessimistic

analysis overestimates the voltage drop by 36mV, and could produce false alarms.

Constraints are used to limit the analysis to working modes that are more likely

to occur, and to find the worst among them. Examples of these constraints are:

• A power-limit constraint indicates that a design cannot consume more than

a certain amount of power Pmax. This number can be provided by the power

budget that is set as a constraint early in the design process.

• A synchronization constraint demands that two blocks always work together.

• An exclusivity constraint provides that only one of two RAM blocks may be

accessed at a time, or that only one of three ALUs is active at a time, etc.

Under such constraints, the worst case working mode needs to be found, in

terms of either the largest single-node voltage drop, or in terms of the largest

average voltage drop. If the specified voltage drop design goal is violated, this

must be fixed by assigning more routing resources to the power grid and/or moving

certain blocks apart from each other. This type of early-stage optimization can

substantially reduce the risk of later optimizations that may require expensive rip-

up-and-reroutes.

Another example where the analysis of a power grid under uncertainty is also

meaningful is the case when there is a critical noise-sensitive block in the design.

For example, a phase-locked loop is sensitive to VDD noise, i.e., sensitive to the

95

working mode of circuit units around it, and requires careful analysis [20]. In this

case, the scenario that causes the largest voltage drop at these specific nodes must

be found to guarantee correct analysis of the unit.

The discussion is based on DC analysis, as little is known about circuit waveform

details at the early stage, and it is impractical to perform transient analysis. The

DC analysis of a GND net is formulated as [36]:

GV = I (5.1)

where G is the conductance matrix for the interconnected resistors, V is the vector

of node voltages, and I is the vector of current loads. For a VDD net, the right-hand-

side vector also contains perfect VDD sources, but if we look at the voltage drops,

i.e., if we subtract every entry in V by VDD and reverse its sign, the formulation

becomes the same as equation (5.1).

To investigate variations in load vector I, we must account for the origin of

current loads. In reality, vector I is composed of contributions from functional

blocks, and can be formulated as:

I = F · diag(w) · Ib (5.2)

where Ib is a vector of block currents with length K, I is the vector of current loads

with length N , F is an N -by-K matrix, w is a vector with length K and entries

being 0 or 1, and diag(w) is a K-by-K diagonal matrix with diagonal entries equal

to the entries in w.

At an early stage of the design, only block-level estimates of the currents are

available. Since these blocks are large and may cover many nodes of the power

grid, typically K ¿ N . The matrix F is an incidence matrix that describes the

distribution of block currents, with each column corresponding to a block, such

that the sum of all entries in a column is one. Figure 5.2 shows a small illustrative

96

2
66666666666666666666666666666666664

I1

I2

I3

I4

I5

I6

I7

I8

I9

3
77777777777777777777777777777777775

=

2
66666666666666666666666666666666664

0.3

0.3

0.2

0.5

0.4

0.8

0.5

0.3

0.7

3
77777777777777777777777777777777775

2
6666666666664

1

1

0

1

3
7777777777775

2
6666666666664

Ib1

Ib2

Ib3

Ib4

3
7777777777775

Figure 5.2: A small example of equation (5.2).

example with the number of blocks being K = 4 and the number of power grid

nodes being N = 9. The first column of F indicates that, the current drawn by

block b1 is distributed among node 4 and node 7 in the power grid, each with 50%

and 50% of the total block current Ib1 respectively; the second column indicates that

block b2 is supplied by nodes 1, 2 and 5 by 30%, 30% and 40% respectively, etc. In

reality, the block size is much larger: for instance, an SRAM would be distributed

over hundreds of sink nodes for the power grid. In the early design stage, matrix

F can be constructed by assuming uniform distribution of block currents among

nodes of each block, or, if we have more specific knowledge of the structure of a

97

block, certain patterns can be assumed in the corresponding column of matrix F .

Each entry in I could consist of contributions from more than one block, be-

cause each bottom-layer node in the power grid typically provides power for multiple

logic gates that could belong to different functional modules. Therefore, different

columns of matrix F can overlap with each other. Also, leakage current contribu-

tions can be considered as a block that is always on and contributes to every entry

in I.

If all blocks were always on, then all entries in w are 1. However, such mode

is typically not feasible, as dictated by the power-limit constraint and exclusivity

constraints. In a more realistic case, w is a switch vector with an entry being

1 if the corresponding block is on and 0 otherwise. Different w vectors represent

different working modes of the circuit, and hence model the source of uncertainty. In

Figure 5.2, w = [1, 1, 0, 1]T, describing a working mode that blocks b1, b2 and b4 are

active, while block b3 is off. For Figure 5.1(b), w = [0, 1, 0, 1, 1]T; for Figure 5.1(c),

w = [1, 0, 0, 1, 1]T.

The above model is similar to [45] in terms of using upper bounds to constrain

the maximum current drawn, but differs in the following: [45] uses a matrix to

model current constraints provided by the designer, and formulates a continuous

linear programming problem, where the variables are N normalized node voltages;

our model accounts for the origin of uncertainty and use the K variables in w as

the 0-1 integer variables to be optimized.

The solution to the system of equations (5.1) is therefore:

V = G−1 · F · diag(w) · Ib (5.3)

The objective is to find the vector w that causes the largest value in solution vector

V, in terms of either its maximum entry or the average of its entries, under certain

98

constraints. The ith entry in equation (5.3) can be written as

Vi =
K∑

j=1

cjwjIbj
(5.4)

where K is the number of blocks; wj is the jth entry of vector w, with value 1 when

the jth block is on, 0 when it is off; Ibj
is the jth entry of vector Ib, i.e., the total

current of the jth block; cj’s are constant coefficients from equation (5.3).

The power-limit constraint becomes:

wT · Ib ≤ Pmax

VDD

(5.5)

A synchronization constraint of multiple blocks being on and off together can be

incorporated by considering these blocks as one single block, although they might

be physically apart from each other. An exclusivity constraint that specifies that

at most l′ out of l blocks is active can be written under this notation as

wj1 + wj2 + · · ·+ wjl
≤ l′ (5.6)

where j1, j2, · · · , jl are indices of those blocks.

The early-stage analysis can now be set up as an integer linear programming

(ILP) problem as follows:

maximize Vi =
K∑

j=1

cjwjIbj
(5.7)

subject to wT · Ib ≤ Pmax

VDD

wj1 + wj2 + · · ·+ wjl
≤ l′

Note that synchronization constraints are already implicitly included in assigning

the blocks.

So far we have been dealing with the situation where each block has only two

modes: it is either off or consuming a current amount given by the corresponding

99

entry in Ib. If we consider the case where each block has multiple working modes,

when some blocks are consuming maximum currents, others may be also on, but

in a low-consumption working mode. This can be modeled by multiple Ib vectors

that represent possible patterns. By constructing and solving an ILP problem (5.7)

for each Ib vector, we have a set of worst case Vi values, and the largest one among

them is the real worst case for this node.

Conceptually, the worst case working mode of the entire circuit can be deter-

mined as follows. After constructing and solving the ILP formulation for every

entry in vector V, a worst-case w vector can be found for every node in the circuit,

as well as its worst-case voltage drop. Then, if we pick the largest among these

voltage-drop values, the corresponding w vector is the worst-case working mode

for the whole circuit, in terms of the largest single-node voltage drop. If we are

interested in the average voltage drop, we can use the sum of equation (5.4) from

all nodes as the object function, and solve the resulting ILP problem for the worst

case w vector.

The large size of G is one reason that affects the evaluation of equation (5.4),

since the coefficients cj require a knowledge of G−1 and are expensive to compute.

Secondly, when the number of blocks is large, the dimension of w is correspondingly

large, and the number of integer variables may be prohibitive for an ILP solver. For

these reasons, it is impractical to construct equation (5.4) for every node and use

an ILP solver to find the exact solution. In the next section, we propose a heuristic

method to find a near-worst w vector.

100

5.2 Proposed Solution

As mentioned earlier, there are two issues that need to be resolved in order to find

a fast solution:

• The cost function, equation (5.4), needs to be constructed without the knowl-

edge of G−1. In other words, we need to find Vi, the voltage drop at node i, as

a linear function of block currents, without inverting matrix G. The generic

power grid analyzer from Chapter 4 is capable of such computation, and is

the basis of the proposed algorithm.

• The worst-case w vector needs to be found without using an ILP solver. A

greedy heuristic is used in the proposed algorithm for this purpose.

Apply the mapping in Section 4.1.1 on equation (5.1), the award for reaching

home is zero, and the estimated f(i) is essentially the average motel expenses in

one walk from node i. Thus, the estimated voltage Vi can be written as

Vestimate =

∑
motel k Ji,kmk

M
(5.8)

where M is the number of random walks, mk is the price of motel k, and Ji,k is the

number of times that walks pass node k. Applying equation (4.4), we can rewrite

equation (5.8) as a linear function of current loads:

Vestimate =

∑
node k ξkIk

M
(5.9)

where ξk =
Ji,k∑degree(k)

l=1 gl

Then we substitute equation (5.2) into equation (5.9), and equation (5.9) becomes

a linear combination of block currents:

Vestimate =

∑K
j=1 βjwjIbj

M
(5.10)

where βj =
∑

node k

ξkFk,j

101

Here, wj and Ibj
are as defined in equation (5.4), Fk,j is the (k, j) entry of matrix

F . Equation (5.10) is an approximation to (5.4), the cost function of the ILP

formulation.

Intuitively, the above computation enumerates current paths and compute the

influence of the blocks on the voltage drop at node i. Not all current paths are

considered, and those with larger influence on the voltage drop are more likely to

be chosen. The resulting equation (5.10) essentially describes the importance of

each block.

Now the goal of the ILP problem is to find the w vector that maximizes equation

(5.10) under the constraints (5.5) and (5.6). Since the coefficients {β1, β2, · · · , βK}
are weights in equation (5.10), activating blocks with large β’s is likely to cause

large voltage drop at node i. However, the “likely” may not be true when competing

blocks are involved in an exclusivity constraint (5.6): for example, if only one of

the two blocks b1 and b2 can be on at a time, and if β1 > β2, but β1Ib1 < β2Ib2 ,

then the choice is complicated.

The flow of proposed heuristic algorithm is as follows:

1. Run a certain number of, e.g. 10, random walks from node i. Instead of

calculating the walk results, we keep track of the power grid nodes visited.

2. By the procedure from equation (5.8) to (5.9) (5.10), obtain coefficients

{β1, β2, · · · , βK}.
3. Sort {β1, β2, · · · , βK}. Repeat the above process until this sorted sequence

does not change any more, according to a stopping criterion described at the

end of this section.

4. Greedily activate blocks one by one. Each time, activate the block with the

largest β coefficient, which does not violate constraint (5.5) or (5.6), and

which falls into one of the following three categories:

102

• The block has no exclusivity constraint.

• The block has exclusivity constraint(s), but activating it does not close

any constraint, i.e., the constraint(s) allows at least one more later block.

• The block has exclusivity constraint(s), and it has the largest βIb product

among all inactive blocks that are involved in the constraint(s).

The greedy heuristic stops when no more blocks can be added to the active

block list.

For the example in Figure 5.1, if the node marked with the black dot is chosen

to be node i, and the above algorithm is performed, the final β ordering from step

3 is {β2, β5, β4, β1, β3}. Because there is no exclusivity constraint (5.6) in this case,

step 4 activates block b2, then block b5, then block b4, and stops because no more

block can be added without violating (5.5). Thus, the pattern in Figure 5.1(b)

is found. (Because the black-dot location is not known beforehand, the algorithm

has to be performed for every node in order to find the largest single-node voltage

drop.)

Note that the first three steps of the algorithm are independent of the actual

current loads of the blocks. In the case where multiple Ib vectors are considered, the

algorithm only needs to go through the first three steps once, and simply repeats

step 4 for each Ib vector. Thus the extra computational cost is low.

The generated w vector is a near-worst-case w vector, in terms of the voltage

drop at node i. When entries in vector Ib have different values, this problem is

similar in flavor to the NP-hard bin-packing problem [13], in the sense of finding

a number of blocks with various current consumptions to fit into a fixed power

budget, although there is a different optimization goal that is to maximize another

linear function (5.10) of the chosen block currents. The proposed heuristic does not

guarantee optimality. However, since at the floorplanning stage, entries in vector

103

Ib, i.e., block currents, have similar order of magnitude, it is likely that the degree

of suboptimality is minor.

The above process provides a heuristic that aims to find the worst-case w vector

for a specific node in the power grid. This procedure can be adapted for several

global objectives:

• If the objective is to find the worst-case w vector that causes the largest

maximum voltage drop in the whole circuit over all working modes, we can

apply the heuristic to every node, and then, among the w vectors and voltage-

drop values obtained, we pick the largest voltage-drop and its associated w

vector.

• If the objective is to find the worst-case w vector that causes the largest

average voltage drop in the circuit, we can modify step 1 of the heuristic to

run a random walk from every node in the circuit, and the outcome would be

the near-worst-case w vector for average voltage drop.

In any case, a stopping criterion is required for step 3 of the proposed heuristic.

The implementation checks convergence after every 10 random walks, and look at

a portion of the sorted β sequence, starting from the largest β’s, such that the sum

of the corresponding block currents is equal or less than 2Pmax

VDD
. If this portion of the

sorted sequence does not change after 10 walks, the algorithm claims convergence.

When the number of blocks is large, it takes a long time to converge when there

is no change in the sorted sequence. However, our primary interest is which blocks

are active, and not the precise significance ranking of each block. Therefore, we

loosen the stopping criterion to save unnecessary runtime, by defining a tolerance

as dK
20
e. If the position change of every block after 10 walks is less than dK

20
e, the

algorithm claims convergence.

104

5.3 Simulation Results

We use an industrial power grid, GSRC floorplans [28], and MCNC floorplans [57]

to evaluate the proposed heuristic. The results are compared against exact solutions

produced by an ILP solver, and results from a pessimistic analysis. Computations

are carried out on a Linux workstation with 2.8GHz CPU frequency.

The power grid benchmark is the top three layers of an industrial VDD net. It

has 43,473 nodes, among which 19,395 third-layer nodes are to be analyzed. The

total power is 26W if all circuit components are switching and consume maximum

current, which includes 8W of leakage power that is assumed to be always on. The

actual power limit is assumed to be 16W; since this includes 8W of leakage power,

this implies that the active blocks cannot consume more than 8W switching current.

The nominal VDD is 1.2V. Six GSRC floorplans [28] and five MCNC floorplans [57]

are mapped onto this power grid, and third-layer current loads are grouped into

blocks accordingly in each floorplan. Block boundaries are adjusted such that there

are no white space with uncovered current loads. After we obtain one Ib vector for

each floorplan, by multiplying random numbers between 0.5 and 1.5 to the entries

of Ib, we generate four extra Ib patterns for each of the six cases. Because we are

unable to obtain functional description of floorplan blocks, we arbitrarily assign

exclusivity constraints. The number of constraints for each floorplan is up to 21.

The comparison of largest single-point voltage-drop analysis using different

strategies is shown in Table 5.1, where the first six benchmarks are GSRC floor-

plans, and the rest are MCNC floorplans. In order to study the performance of the

proposed heuristic method in finding w vector without interference of error from

any other estimation step, we substitute the produced w into equation (5.3), use a

direct linear solver to solve (5.3), and list the maximum entry of the solution vector

in the fourth column of Table 5.1. For this circuit size, it is already impractical to

105

Table 5.1: Comparison of analysis methods for the largest single-point voltage-drop.

Floorplan Number Heuristic Heuristic ILP exact Pessimistic

of blocks runtime(s) result(mV) result(mV) result(mV)

n10a 10 48.14 234.4 234.4 250.8

n30a 30 48.79 274.2 274.3 304.3

n50a 50 49.44 190.8 191.0 247.4

n100a 100 51.05 223.4 223.5 236.7

n200a 200 55.87 238.2 240.4 266.0

n300 300 63.38 282.3 283.4 303.4

apte 9 48.18 193.2 193.3 214.5

xerox 10 48.13 225.1 225.1 243.1

hp 11 48.44 225.7 226.0 278.3

ami33 33 48.70 245.6 245.6 279.1

ami49 49 49.19 239.9 240.0 269.3

construct and evaluate the ILP equation (5.4) for every node. The ILP results listed

in the fifth column are the exact answers by ILP analysis for the 50 highest-drop

nodes found by the proposed heuristic. The last column is the result by solving

equation (5.3) with diag(w) being an identity matrix, i.e., assuming that all blocks

are active. All three methodologies consider the five Ib patterns for each floorplan,

and report the worst among the five results.

In Table 5.1, there are noticeable differences between constrained analysis and

pessimistic analysis. This difference depends on the details of the most power-

intensive region of the circuit. For floorplan n50a, the largest voltage-drop node

happens to be close to a corner of its block, and these two neighboring blocks

have an exclusivity constraint. Consequently, we see a 56mV overestimate by the

pessimistic analysis. Although there may not be an exclusivity constraint in the

106

power-intensive region of every circuit design, the possibility of existence of such

constraints makes the proposed heuristic superior to pessimistic analysis. Figure 5.3

shows the near-worst-case working mode found for floorplan n30a.

Figure 5.3: Near-worst-case working mode of GSRC floorplan n30a found by the

proposed heuristic. The black dot marks location of the largest voltage drop.

Table 5.2: Numbers of node voltage violations reported by the proposed heuristic

and the pessimistic analysis.

Floorplan n10a n30a n50a n100a n200a n300

Heuristic 113 122 44 71 102 91

Pessimistic 181 163 72 95 124 137

Floorplan apte xerox hp ami33 ami49

Heuristic 91 120 109 130 91

Pessimistic 112 133 150 184 106

Table 5.2 shows the comparison of number of node voltage violations reported

by different strategies, when the voltage-drop threshold is 80mV. In most cases,

about one third of the violating nodes reported by pessimistic analysis are found

107

legal by the proposed heuristic.

Table 5.3: Comparison of analysis methods for the largest average voltage-drop.

Floorplan Number Heuristic Heuristic ILP exact Pessimistic

of blocks runtime(s) result(mV) result(mV) result(mV)

n10a 10 36.17 6.81 7.57 14.49

n30a 30 46.47 7.72 7.73 13.59

n50a 50 51.66 7.24 7.66 12.76

n100a 100 56.69 6.99 7.80 12.86

n200a 200 66.99 7.55 7.85 12.88

n300 300 67.03 7.47 7.86 12.96

apte 9 30.87 7.33 7.58 13.80

xerox 10 31.09 7.51 7.55 13.66

hp 11 36.12 7.43 7.60 14.73

ami33 33 36.21 7.34 7.69 13.71

ami49 49 46.41 7.43 7.68 12.99

Table 5.3 shows the comparison of average voltage-drop analysis using different

strategies. All results are for the average of 19,395 third-layer nodes. In this case,

because only one ILP is required to be formulated and solved for each floorplan

with each Ib vector, the fifth column is the exact solution.

In both Table 5.1 and Table 5.3, results from the proposed heuristic correlate

well with those from the ILP solver. The difference between the two solutions is

due to the fact that the proposed heuristic finds only a near-worst case, and does

make mistakes on certain not-very-significant blocks. Consequently, the results are

always slightly optimistic. One remedy is to use the power budget Pmax(1 + δ)

instead of Pmax, where δ is a small positive value, but this is not included in the

implementation.

108

Chapter 6

Application in Chip-level

Electrostatic Discharge Simulation

This chapter applies the stochastic linear equation solver from Chapter 2 and the

network reduction algorithm from Section 4.3.1 on the problem of Electrostatic

Discharge (ESD) simulation.

ESD is an important issue in VLSI manufacturing, and unless adequate ESD

protection is built into a chip, mechanisms such as contact between the chip with

an assembly-line probe, or with a human body, could cause a surge of discharge

current that damages the chip permanently. The average product losses due to

ESD were reported to be 16-22% in electronic component manufacturing as early

as 1990 [23]. In recent years, as feature sizes reduce, thinner gate oxides come into

use, and design complexity grows, circuits are becoming increasingly vulnerable to

ESD damage. To protect against these problems, a modern design usually employs

a full-chip ESD protection strategy. Before a design is sent for manufacturing,

simulations are needed to make sure that the design can sustain a certain amount

of ESD stress, specified by industrial standards.

109

6.1 ESD Modeling

Figure 6.1 illustrate the schematic of a typical chip that contains the circuitry that

implements its functionality (the blocks labeled “internal circuit”) and the following

ESD protection mechanisms [41] [56] [72]:

• I/O protection circuitry is introduced for each signal I/O pad. As can be seen

in Figure 6.1, this circuitry has the capability to divert the discharge current

into the VDD net and/or the ground net.

• ESD voltage clamps are placed between the VDD net and the ground net, and

are distributed among the internal devices on the chip, as shown in Figure 6.1.

Each such clamp is effectively a very large transistor that is turned off during

normal operation. In the presence of an ESD event, however, this transistor

turns on, creating a path for the charge to be drained into the ground network,

thus allowing the safe discharge of the ESD event and avoiding damage to

the on-chip circuitry.

• Diode strings are placed between the different power nets in chips that have

multiple power domains. These strings provide discharge paths to protect

interface circuits between the power domains. These are not explicitly shown

in Figure 6.1, which illustrates a single VDD domain.

The ESD discharge path in a chip may go through either the primary chip power

supply net, or the secondary supplies that are used for the I/O circuitry. We

generically refer to each of these two as the VDD net, even though they typically

operate at different voltages and have vastly different sizes.

An important verification task that must be carried out before a design is sent

for manufacturing is to determine, through design-rule checks and simulations,

whether these protective devices are adequate to ensure that the chip can with-

stand a specified level of ESD stress. The purpose of the design-rule checks is to

110

Figure 6.1: ESD simulations for: (a) an HBM event (b) a CDM event. The dotted

lines represent a desirable set of discharge paths.

ensure functionality and to avoid unexpected parasitic discharge paths [51], while

the simulations are intended to imitate physical tests specified by industrial stan-

dards, e.g. [38]. These physical tests describe different discharge scenarios, and

are designed based on three primary models: the human body model (HBM), the

charged device model (CDM), and the machine model (MM). The first two models

usually cover most extreme scenarios and are the most widely used:

• An HBM event is simulated for pairs of pads: one of these is the source of the

event, simulated by discharging an external capacitor at that pad through a

resistor, while the other is grounded. As a result, a surge of current flows

through a resistor into one pad, and out through the grounded pad, as shown

in Figure 6.1(a).

111

• In a CDM event, the chip itself accumulates charge as it passes through the

manufacturing process. As shown in Figure 6.1(b), this is simulated for each

pad separately, where a charge is switched into the chip through the pad

when it is touched by a grounded conductor. In practice, it is seen that CDM

accounts for a majority of ESD damage during chip manufacturing [50].

SPICE-like models have been developed for the protective devices under ESD

stress, and several techniques have been proposed for circuit-level simulation of

ESD circuitry [4] [53] [54]. These works perform detailed transient simulation for

one I/O at a time, with certain assumptions about the boundary conditions of

the VDD/ground nets. As the design complexity grows, especially for chips with

multiple power domains, unexpected discharge paths often cause failures that are

not visible in circuit-level simulations, and consequently methodologies have been

proposed to address chip-level ESD simulation [50] [51] [75]. A common hurdle faced

by all of these approaches is the large size of the simulation problem, which prohibits

a full SPICE-like simulation, and therefore, these efforts all apply techniques to

reduce the amount of computation. For example, the work in [50], which is targeted

at CDM simulation, builds a macromodel for each power domain, where the charge

source in each macromodel is represented by a pair of lumped capacitors. A detailed

transient analysis is then performed for the reduced full-chip model with SPICE-like

device models.

This section presents a different model for simulating ESD events due to CDM.

The circuit-level simulation and the chip-level simulation are separated, and the

chip-level simulation is formulated as a DC analysis problem of finding the voltage

at a stressed I/O node. This voltage is used as an indicator of potential ESD failure.

The purpose of a chip-level CDM simulation is to compute the voltage drop,

caused by resistances in the power distribution network(s), along the discharge

112

paths for ESD. As pointed out in [8] [75], a strong correlation has been observed

between hardware ESD failures and the wire resistance of the discharge paths, and

may be explained as follows. Although ESD voltage clamps are utilized to ensure

that the voltage level is constrained to be no more than a specified value Vclamp,

these devices are only fully effective at the points where they are connected. During

an ESD event, discharge current flows through the resistance of the VDD grid, and

a voltage drop is induced along its path: the higher the wire resistance of the

discharge path, the higher this voltage drop is. Hence for I/O pads that are placed

far away from the ESD clamps, a high resistance in the power grid may result in

a high voltage on the VDD net, and possibly an ESD failure if this exceeds certain

threshold.

Figure 6.2: A DC model for chip-level CDM simulation of the circuit shown in

Figure 6.1(b).

A DC formulation that captures the required chip-level CDM simulation, to

verify whether a chip is immune to ESD failures, is illustrated in Figure 6.2 and

Figure 6.3. The circuit is modeled as follows:

• The VDD net is extracted from the layout and modeled as a resistive network.

The resistance of ground net is ignored in this model. The reason is that the

VDD net corresponds to the secondary power net for I/O or the power net of a

113

Figure 6.3: A full view of the DC model for chip-level CDM simulation. Each

current source represents an I/O, and only one of these is on during each simulation.

single power domain, and this typically has higher resistance than the global

ground net which serves all power domains and is the lowest impedance net

on chip. However, if the ground net has a significant resistance, then it can

be extracted and modeled as a resistive network in a similar manner within

the framework.

• An ESD event at an I/O pad is modeled as a current source placed at the

location of that I/O. The value of this current source is assigned to be the

peak CDM surge current specified in the JEDEC standard [38].

• An ESD voltage clamp is modeled as a voltage source in series with a resistor,

placed at the physical location of the ESD clamp. The values of the voltage

source and the resistor are obtained from simulated I-V curves of clamps

under a stressed situation.

The linear network model thus extracted is excited by the current and voltage

sources as defined above. The I/O pads are simulated one at a time for a CDM

114

simulation. An implicit assumption, which is commonly made in ESD analysis,

is that the discharge is a single event, i.e., it occurs at only one I/O pad at a

time. Therefore, the number of simulations to be carried out equals the number

of pads. In Figure 6.3, for the jth simulation, a current value is assigned for the

current source modeling the jth I/O pad, zero current is assigned for all the other

current sources, and the simulation is carried out. The computed voltage at the

jth I/O is checked against the allowable threshold Vlimit to determine whether the

ESD specification is met or not. The simulation is repeated for all other I/O pads.

Note that for every simulation, there are many voltage source-resistor elements

representing the multiple ESD clamps, since all of these clamps help in providing

a path to the ground network during an ESD event.

When viewing Figure 6.3, it is important to note that the density of sources in

reality is much lower than what is shown in the schematic. The VDD net can have

up to millions of nodes, and the number of I/O pads may be up to a few thousands.

There are usually tens of ESD clamps on the chip: this number is typically between

30 and 40, and varies depending on the physical and electrical constraints of the

chip.

During the simulation, if the threshold Vlimit is exceeded at an I/O, then this

I/O is considered a potential ESD failure, and one of the following methods may

be used by the designer to fix this ESD violation:

• Reduce the effective resistance of the discharge paths by using wider wires to

connect this I/O to power grid, or move the I/O circuitry closer to a power

bus.

• Add an ESD clamp at a nearby location.

Such design changes require incremental resimulations, and it is important for the

analysis to be able to do so rapidly.

115

Admittedly, a DC model is used here to capture an ESD event that is funda-

mentally a transient phenomenon. Such a formulation is justified as conservative by

using the peak of the CDM current waveform as the input excitation, while brings

the benefit of a much faster simulation than a complete transient analysis. The

computed voltage at the VDD node of the stressed I/O represents the worst-case

voltage drop along the discharge paths, and has been shown to be a good indicator

of potential ESD failure: in a 90nm ASIC, I/O failures start to occur when the path

voltage drop exceeds 13V [8]. Different I/O pads may be checked against different

thresholds depending on their designs.

6.2 Proposed Solution

In the previous section, the chip-level CDM simulation is reduced to a DC analysis

problem, where voltage sources represent ESD clamps, and current sources repre-

sent I/O protective circuits, one current source being on during each simulation.

Such a DC analysis must be performed for every I/O. Considering that the size of

the VDD net can be up to several millions of nodes, and that the number of I/O pads

can be up to a few thousands, the total computational complexity of performing

such a simulation is still very high.

To further reduce computation, we observe that in the DC analysis, the number

of sources is limited: the number of current sources is no more than a few thousands,

and the number of voltage sources is typically 30 to 40. Therefore, it is desirable

to perform a network reduction and build an equivalent circuit that only contains

the nodes with a current source or voltage source. Then DC analysis can be carried

out for this reduced circuit only, with one current source being on during each

simulation.

116

However, even this may not be adequate. For a circuit that can be represented

by a connected graph, the exact reduced circuit is typically a clique on the set of

these nodes, and such a reduction does not result in any runtime advantage. In

practice, many of these edges have a very low conductance. Therefore, a practi-

cal algorithm should exploit this property in performing the network reduction to

produce a reasonably sparse reduced circuit, by dropping insignificant connections,

without excessive loss of accuracy.

There are a number of options to perform sparse network reduction, namely

[47] [89] and our method in Section 4.3.1. The method in [89] performs well on

partitionable circuits, but for ESD simulation where the active nodes are distributed

all over the circuit, the procedure entails building the exact clique first and then

performing sparsification, and the space complexity can be high; it is not trivially

possible to force the procedure in [47] to reduce the network to only the set of

nodes wanted, because of any horizontal or vertical wire that passes an active node

is maintained, implying that the coarsened circuit can have a worst-case node count

of K2, where K is the number of active nodes.

Therefore, we choose the method in Section 4.3.1 to perform the network re-

duction. Each of the external connections in Figure 4.9, in the context of the ESD

problem, corresponds to an I/O protective device or ESD voltage clamp model.

Since in the ESD formulation there are no current sources inside the resistive net-

work, ξq in equation (4.12) and ξ in (4.13) are both zero, and consequently the

vector S in a macromodel is always zero.

We now look at an extreme case in which the reduced network could lose con-

nectivity. This happens when a small group of ports are very well connected to each

other, but are poorly connected to the rest of the ports, such that any random walk

initiated in this small group would end in this group. Then the reduced network is

117

not a connected graph, and if this small group does not contain any ESD clamps,

the circuit is not solvable. However, the ESD clamps and I/O pads are likely to be

evenly distributed all over the chip, and the above extreme case would not happen.

If it does happen, this small group of I/O’s would be ESD failures and need to be

reported and fixed anyway.

With the reduced network, the I/O and clamp models can now be connected to

it, and DC analysis can be performed with one current source being on at a time.

Any linear solver can fulfill this task. Iterative solvers would be inefficient for this

problem because the circuit is solved repeatedly with different excitations; direct

solvers and stochastic solvers are better choices, because after the first DC analysis,

followup runs can be carried out efficiently. We choose the stochastic solver from

Chapter 2, because it can estimate one single node voltage without solving the

whole circuit.

To further reduce runtime, we note that in the ESD simulation, only nodes with

high voltages are of interest. Hence adaptive error margin ∆ is used in the stochas-

tic solver. In the implementation, we use three error margins, ∆1 < ∆2 < ∆3,

and define two thresholds VT1 < VT2. When estimating an I/O node voltage, the

computation starts with ∆3. After this accuracy level is achieved, if the estimated

voltage is below VT1, the computation stops; otherwise, the error margin is changed

to ∆2, and the computation continues. After the new accuracy level is achieved,

if the estimated voltage is below VT2, the computation stops; otherwise, the error

margin is changed to ∆1, and the computation continues. Using this adaptive strat-

egy, more runtime is spent on high-voltage nodes, and get more accurate voltages

for them, while safe I/O nodes only get coarse estimation.

As discussed in the previous section, if the threshold Vlimit is exceeded at an

I/O, this I/O is considered a potential ESD failure, and this ESD violation is fixed

118

by either reducing the resistance in discharge paths or adding an ESD clamp at a

nearby location. After the design is modified, a resimulation is needed to ensure

that the I/O node voltage is reduced to a satisfactory level. This can be performed

by rerunning the entire process of network reduction and voltage computation, but

the runtime would be high. Instead, we propose to locally update the reduced

circuit:

• If wider wires are used to connect the target I/O to power grid, or if it is moved

closer to a power bus, we run M walks from this target I/O, as discussed

Section 4.3.1, and update its connections in the reduced circuit. Then the

ports adjacent to this I/O are updated as well, each with M additional walks.

• If an ESD clamp is added at a location nearby the target I/O, this clamp

becomes a new port in the original network, and a new node in the reduced

circuit. We first run M walks from the node where the new ESD clamp is

located to find its entries in A and S, and thereby find its connections in the

reduced circuit. Next, the ports that are found to be adjacent to this new

port are updated as well.

In the above local updates, we save computation by ignoring possible effect on

ports that are not connected to the improved I/O node or to the new ESD clamp.

In other words, if random walks from port i never visit port j, we assume that

walks from port j also never visit port i. Because of the fact that the connections

between two nodes in the reduced circuit are most likely mutual and with similar

conductances, the error induced by the local updating is minimal. We validate this

claim by results in the next section.

Finally, the proposed procedure is not limited to CDM ESD simulation, and

is also applicable to HBM ESD simulation by replacing every involved resistive

network by a circuit with only the nodes that tie to ESD protective devices.

119

6.3 Simulation Results

In this section, we use three benchmarks, described in Table 6.1, to evaluate the

proposed algorithms for chip-level ESD simulation. The first two benchmarks are

created by randomly assigning I/O pads and ESD voltage clamps on two industrial

power grid models, with nominal VDD values 1.2V and 1.8V respectively. The

third and largest benchmark is artificially generated based on the structure of the

first benchmark, and with randomly assigned I/O’s and clamps. Computations are

carried out on a Linux workstation with 2.8GHz CPU frequency.

The results reported in Table 6.1 and Table 6.2 are from simulations using the

following parameters: M = 1000, ∆1 = 0.1V, ∆2 = 0.5V, ∆3 = 1V, Vlimit = 13V,

VT1 = 12V, VT2 = 12.5V. The runtimes and accuracy for the first two benchmarks

are compared against the SPARSE linear solver [48], which is a direct solver, while

the third benchmark is too large to be handled by SPARSE.

Table 6.1: Benchmarks and runtimes. N1 is the number of nodes, N2 is the number

of I/O pads, N3 is the number of ESD clamps, T1 is the runtime of an initial

complete simulation, and T2 is the runtime of 10 resimulations after an initial

simulation. RW denotes the proposed algorithm, SPARSE denotes the SPARSE

linear solver.

Ckt N1 N2 N3 T1 T2

RW SPARSE RW SPARSE

#1 36K 500 20 23.28sec 459.15sec 49.69sec 61min

#2 101K 700 40 89.30sec 55min 61.65sec 8.5hour

#3 2.3M 1000 40 783.17sec – 537.18sec –

In interpreting the errors in Table 6.2, note that due to the adaptive error

120

Table 6.2: Accuracy of the initial complete ESD simulation.

Ckt #1 #2

Voltage range(V) 10.35–14.40 5.61–45.13

Average error(V) 0.19 0.29

Max error(V) 0.80 1.38

Fraction of failures covered 9/9 2/2

Number of false alarms 5 0

margins employed, most of the high errors occur at the low-voltage safe nodes,

and high-voltage nodes are estimated with higher accuracy. Therefore, the errors

at the critical nodes are typically smaller. With the ESD threshold Vlimit = 13V,

and being conservative, the algorithm reports a possible ESD failure whenever an

estimated I/O voltage exceeds 12.9V. As shown in the last two rows of Table 6.2,

all real ESD failures reported by SPARSE are covered by the proposed algorithm.

However, as a cost of being conservative, five false alarms are given for the first

benchmark, at nodes with voltages below but very close to Vlimit.

When desired, the proposed algorithm can achieve higher accuracy by increasing

M , the number of walks used in network reduction. Table 6.3 shows the accuracy-

runtime tradeoff when M is increased to 3000 and 10000. The error margins are

also shrunk accordingly in generating the results.

When incremental changes are made to the network to fix ESD failures, the local

update technique shows large advantages in resimulation, with accuracy assessment

shown in Table 6.4. The voltages before and after the design change at the target

I/O node are listed in each row, using both the SPARSE solver and the proposed

algorithm, at a high-accuracy setting with M = 10000. 10 nodes with high voltages

are chosen as target nodes arbitrarily in each circuit, and are not limited to those

121

Table 6.3: Runtime-accuracy tradeoff. E1 is average error, E2 is max error, T1 is

the runtime of an initial complete simulation, T2 is the runtime of 10 resimulations

after an initial simulation, M is number of walks used for each port in network

reduction.

M 1000 3000 10000

E1(V) 0.19 0.10 0.05

Ckt #1 E2(V) 0.80 0.38 0.24

T1(sec) 23.28 69.37 231.82

T2(sec) 49.69 194.34 842.72

E1(V) 0.29 0.14 0.08

Ckt #2 E2(V) 1.38 0.57 0.47

T1(sec) 89.30 328.69 1606.09

T2(sec) 61.65 227.12 1318.00

violating the 13V threshold. The most dramatic change is the first node in Table 6.4,

where the before-fix voltage is over 45V. This is due to an I/O being assigned at a

node with poor connection to major power bus, which emulates the scenario of a

poorly designed I/O protection. It is fixed by adding a large via at that location,

and the proposed local update method captures the corresponding voltage change.

122

Table 6.4: Accuracy of resimulations for the first two circuits: voltage changes at

I/O pads that are improved.

Ckt #1 Ckt #2

Initial(V) Final(V) Initial(V) Final(V)

Exact Est. Exact Est. Exact Est. Exact Est.

1 13.76 13.60 10.31 10.23 1 45.13 45.30 8.46 8.23

2 14.40 14.46 10.95 10.88 2 13.27 13.23 11.04 10.88

3 12.73 12.84 9.28 9.26 3 12.60 12.50 11.69 11.54

4 13.25 13.27 9.80 9.79 4 12.56 12.47 11.54 11.61

5 13.16 13.26 11.96 12.24 5 11.49 11.48 10.48 10.40

6 13.37 13.18 9.91 9.85 6 11.11 11.16 10.78 10.66

7 12.99 13.11 9.61 9.51 7 11.21 11.10 10.43 10.47

8 12.93 13.05 9.50 9.46 8 11.35 11.20 10.63 10.63

9 13.42 13.56 9.99 10.01 9 11.13 11.10 10.77 10.70

10 12.99 13.00 9.60 9.62 10 11.11 11.01 10.45 10.34

123

Chapter 7

Application in Quadratic

Placement

The previous three chapters have primarily applied variations of the stochastic

solver from Chapter 2 on various problems in VLSI design automation. This chapter

evaluates the performance of the hybrid linear equation solver from Chapter 3 on

quadratic placement benchmarks. This is an application associated with relatively

dense matrices, and fits in the shaded region in Figure 1.1.

7.1 Quadratic Placement

Placement is a critical and computationally intensive step during the VLSI design

cycle that must handle instances of large size. The most widely used approaches fall

into the following paradigms: quadratic placement [21] [37] [84] [85] [86], simulated

annealing [73], and partitioning-based placement [9]. Of these, quadratic placement,

also referred to as analytical or force-directed placement, has emerged as a very

popular method, and is the topic of this section. The essential idea is to define a

124

set of attractive and repulsive (or spreading) forces between the modules, and to

iteratively find an equilibrium point that corresponds to the optimal placement.

Each iterative step involves the minimization of a cost function, whose components

typically include an indirect measure of wire length, plus factors such as congestion,

overlap, or timing, and requires the solution of a large set of linear equations to

compute new locations for modules/cells. The set of linear equations can be written

as Ax = b, where A is a square matrix that is typically symmetric and positive

definite, b is a given vector based on the cost function, and x is the vector of new

coordinates of modules/cells to be computed.

For quadratic placement, the left-hand-side matrix A is relatively dense, and

several hundred re-solves are often needed to converge to a final placement. There-

fore, according to the discussion in Chapter 1, a preconditioned iterative solver

such as ICCG is the logical choice: examples of state-of-the-art quadratic placers

that use ICCG or its variants include [84] and [85]. The usage of an alternative

preconditioned iterative solver based on algebraic multigrid (AMG) in placement

was investigated in [10].

Recall that our hybrid solver is especially suitable for applications with large

dense left-hand-side matrices and requiring many re-solves, and hence quadratic

placement is a good match. This sections discusses the formulation of placement

linear equations, and the next section compares the hybrid solver against two dif-

ferent versions of ICCG.

In quadratic placement, the cost of a two-pin net that connects module i and

module j is typically defined as

netcost = w
(
(xi − xj)

2 + (yi − yj)
2
)

where w is the weight of the net, (xi, yi) and (xj, yj) are the coordinates of the two

modules i and j [21] [37] [84] [85]. The net weight w depends on the optimization

125

goal, for example, it can be a function of timing criticality [37]. The overall cost

function of the placement is the sum of the net costs, and is typically in the following

form.

cost =
∑

netcost =
1

2
xTAx +

1

2
yTAy + dx

Tx + dy
Ty (7.1)

where x and y are the vectors of unknown x-coordinates and y-coordinates of the

modules, A is a square matrix, and dx and dy are two given vectors. The cost

function is minimized by solving the following two sets of linear equations.

Ax + dx = 0 (7.2)

Ay + dy = 0 (7.3)

The x-component of the cost of a net is

netcostx = w(xi − xj)
2 = wxi

2 + wxj
2 − 2wxixj (7.4)

Its contribution to equation (7.1) can be viewed as adding 2w to the (i, i) entry

and (j, j) entry of matrix A, and adding (−2w) to the (i, j) entry and (j, i) entry

of A. If one end of a net is a fixed pin, its cost is

netcostx = w(xi − xpin)
2 = wxi

2 − 2wxpinxi + wxpin
2 (7.5)

Then the contribution to equation (7.1) is adding 2w to the (i, i) entry of A, and

adding (−2wxpin) to the ith entry of dx, while the last constant term is ignored.

Because matrix A is composed of contributions of the above two types, A automat-

ically satisfy the first three conditions of an R-matrix. If a module is not connected

to a fixed pin, the sum of its corresponding row in matrix A is 0, otherwise the sum

of the row is positive and hence the row is strictly diagonally dominant. In every

connected component of a circuit design, at least one module must be connected

to an I/O pin, and thus at least one row must be strictly diagonally dominant.

126

This satisfies the fourth condition of an R-matrix. Thus, matrix A is always an

R-matrix, and the hybrid solver can be applied on (7.2) and (7.3).

While mapping the equations to a random walk game as in Figure 2.1, one can

certainly choose m0 = 0 as in Chapter 3, but there is an alternative way. That is,

every fixed pin can be interpreted as a home node, and the award for reaching it

is equal to its coordinate xpin or ypin. Then, instead of having a universal m0, the

pre-existing homes can have different award values.

A typical placement flow involves solving (7.2) and (7.3) repeatedly, each iter-

ation with different dx and dy vectors, which contain not only contributions from

net costs, but also the cost of overlapping modules, congestion or timing critical-

ity, depending on the placement algorithm. Matrix A may also change during the

placement, for example, due to adding friction [85], in which case the precondi-

tioning part of the hybrid solver needs to run again to update the incomplete LDL

factorization.

7.2 Numerical Results

In this section, we use realistic placement matrices to evaluate the proposed hybrid

solver. Table 7.1 and Table 7.2 compare the computational complexity of the hybrid

solver with that of ICCG; Table 7.4 shows the performance of embedding the hybrid

solver into the Waterloo placement tool [85]. Computations are carried out on a

Linux workstation with 2.8GHz CPU frequency.

The first set of benchmarks are matrices generated by an industrial placement

tool for 10 circuits: m1-m10 in Table 7.1. One actual right-hand-side vector instance

is also available for each of them. The second set of benchmarks, shown in Table

7.2, are the ISPD02 circuits [1], and their matrices are generated by the Waterloo

127

placement tool before the initial placement, and hence contain only the connectivity

component from the original netlists. A right-hand-side vector with all entries being

1 is used with each of them.

In Table 7.1 and Table 7.2, we compare the hybrid solver against ICCG with

ILU(0) and ICCG with ILUT. The complexity metric is the number of double-

precision multiplications needed at the iterative solving stage for the equation set

Ax = b, in order to converge with an error tolerance of 10−6. This error tolerance

is defined as:

‖ b− Ax ‖2 < 10−6· ‖ b ‖2 (7.6)

LASPack [76] is used for ICCG with ILU(0). MATLAB is used for ICCG with

ILUT. There are three node ordering algorithms available in MATLAB: minimum

degree ordering (MMD) [24], approximate minimum degree ordering (AMD) [2],

and reverse Cuthill-McKee ordering (RCM) [15]. AMD results in the best perfor-

mance on the benchmarks and is used for all tests. The dropping threshold of ILUT

in MATLAB is tuned, and the setting of the hybrid solver is adjusted, such that

the sizes of the Cholesky factors produced by both methods are similar, i.e., the

C values in the tables are close. For LASPack and MATLAB, the M1 values are

computed using the following equation.

M1 = C · 2 + E + N · 4 (7.7)

According to the PCG pseudo codes in [3] and [70], the above equation is the

best possible implementation. The M1 values of the hybrid solver is obtained by

a detailed count embedded in its implementation, and in fact equation (7.7) is

roughly true for the hybrid solver as well.

In Table 7.1, the hybrid solver shows up to 8.4 times speedup over ICCG with

ILU(0), and up to 7.1 times speedup over ICCG with ILUT. In Table 7.2, although

128

the speedup ratios are less than the first set of benchmarks, the hybrid solver is

at least 2 times faster than ICCG for any matrix with over 105 dimension. It is

worth noting that the first set of benchmarks are larger and denser than the ISPD02

matrices, and there is an obvious trend that the larger and denser a matrix is, the

more the hybrid solver outperforms ICCG. This is consistent with our argument in

Section 3.3: when the matrix is larger and denser, the effect of error accumulation

in traditional methods becomes stronger.

Physical runtimes T1 and T2 are shown in Table 7.3. Admittedly, the precon-

ditioning runtime T1 of the hybrid solver is more than the typical runtime of a

traditional incomplete factorization; however, it is not a large overhead, gets easily

amortized over multiple re-solves, and is worthwhile given the speedup achieved in

the solving stage.

In Table 7.4, the hybrid solver is embedded into the Waterloo placement tool

[85] [86], and the new runtimes on the ISPD02 benchmarks are compared with

the original runtimes. The replaced original solver is BICGSTAB preconditioned

by ILU(0) with RCM ordering. This comparison is not completely fair because a

slight difference in an early placement could lead to very different final placement,

and the computation process can be different too. Therefore the two runtimes

may not be measured on the same computational tasks. Despite such uncertainty,

the results suggest 5%-10% runtime reduction. The speedup is not as dramatic as

in Table 7.1 and Table 7.2, because solving linear equations is not the dominant

portion of the runtime for this particular placer. Circuit ibm18 is not included due

to stability issues in the placement algorithm.

129

Table 7.1: Computational complexity comparison of the hybrid solver, ICCG with

ILU(0) (LASPACK), and ICCG with ILUT (MATLAB), for the first set of matrices,

with 1e-6 error tolerance. N is the dimension of a matrix; E is the number of non-

zero entries of a matrix; C is the size of the Cholesky factor; M1 is the number of

multiplications per iteration; I is the number of iterations; M2 is the total number

of multiplications; R1 is the speedup ratio of the hybrid solver over ICCG with

ILU(0); R2 is the speedup ratio of the hybrid solver over ICCG with ILUT.

Ckt N E ICCG with ILU(0) ICCG with ILUT Hybrid R1 R2

C M1 I M2 C M1 I M2 C M1 I M2

m1 7.1e4 9.5e5 5.1e5 2.3e6 82 1.9e8 1.2e6 3.6e6 41 1.5e8 1.2e6 3.6e6 13 4.7e7 4.0 3.2

m2 7.3e4 1.1e6 5.9e5 2.6e6 126 3.2e8 1.2e6 3.7e6 62 2.3e8 1.3e6 3.9e6 13 5.0e7 6.4 4.6

m3 1.2e5 1.5e6 8.0e5 3.6e6 63 2.3e8 1.8e6 5.6e6 34 1.9e8 1.8e6 5.5e6 10 5.5e7 4.1 3.5

m4 2.1e5 2.1e6 1.2e6 5.3e6 136 7.2e8 3.0e6 9.0e6 64 5.7e8 2.9e6 8.5e6 12 1.0e8 7.1 5.6

m5 2.8e5 3.2e6 1.7e6 7.7e6 76 5.9e8 4.1e6 1.2e7 37 4.6e8 4.1e6 1.2e7 12 1.5e8 4.0 3.1

m6 2.7e5 3.2e6 1.7e6 7.8e6 150 1.2e9 3.9e6 1.2e7 77 9.3e8 3.9e6 1.2e7 12 1.4e8 8.3 6.7

m7 4.3e5 5.2e6 2.8e6 1.3e7 122 1.5e9 6.5e6 2.0e7 62 1.2e9 6.5e6 2.0e7 12 2.3e8 6.6 5.3

m8 3.5e5 5.5e6 2.9e6 1.3e7 82 1.0e9 5.1e6 1.7e7 27 4.6e8 5.0e6 1.6e7 12 2.0e8 5.3 2.4

m9 4.6e5 8.2e6 4.3e6 1.9e7 110 2.1e9 7.5e6 2.5e7 55 1.4e9 8.0e6 2.5e7 13 3.3e8 6.3 4.2

m10 8.8e5 9.4e6 5.2e6 2.3e7 159 3.7e9 1.3e7 3.9e7 82 3.2e9 1.2e7 3.7e7 12 4.4e8 8.4 7.1

130

Table 7.2: Computational complexity comparison of the hybrid solver, ICCG with

ILU(0) (LASPACK), and ICCG with ILUT (MATLAB), for the ISPD02 bench-

marks, with 1e-6 error tolerance. N , E, C, M1, I, M2, R1 and R2 are as defined

in Table 7.1.

Ckt N E ICCG with ILU(0) ICCG with ILUT Hybrid R1 R2

C M1 I M2 C M1 I M2 C M1 I M2

ibm01 1.6e4 9.8e4 5.7e4 2.8e5 84 2.3e7 1.5e5 4.6e5 19 8.7e6 1.6e5 4.4e5 18 7.8e6 3.0 1.1

ibm02 2.6e4 1.7e5 9.6e4 4.6e5 68 3.1e7 2.5e5 7.8e5 25 1.9e7 3.1e5 8.3e5 20 1.7e7 1.9 1.2

ibm03 3.0e4 1.8e5 1.0e5 5.0e5 67 3.4e7 2.6e5 8.2e5 18 1.5e7 3.1e5 8.2e5 18 1.5e7 2.3 1.0

ibm04 3.5e4 2.0e5 1.2e5 5.8e5 72 4.2e7 3.0e5 9.4e5 24 2.3e7 3.4e5 9.1e5 20 1.8e7 2.3 1.2

ibm05 3.7e4 2.5e5 1.4e5 6.9e5 44 3.0e7 3.9e5 1.2e6 16 1.9e7 4.5e5 1.2e6 16 1.9e7 1.6 1.0

ibm06 4.2e4 2.6e5 1.5e5 7.2e5 68 4.9e7 4.2e5 1.3e6 22 2.8e7 4.9e5 1.3e6 19 2.5e7 2.0 1.1

ibm07 5.9e4 3.5e5 2.1e5 1.0e6 103 1.0e8 5.5e5 1.7e6 31 5.2e7 6.0e5 1.6e6 20 3.3e7 3.2 1.6

ibm08 6.6e4 4.1e5 2.4e5 1.2e6 77 8.9e7 5.9e5 1.9e6 30 5.6e7 7.4e5 2.0e6 24 4.9e7 1.8 1.1

ibm09 6.9e4 4.4e5 2.5e5 1.2e6 114 1.4e8 6.6e5 2.0e6 35 7.1e7 7.5e5 2.1e6 22 4.5e7 3.1 1.6

ibm10 9.3e4 5.9e5 3.4e5 1.7e6 130 2.1e8 9.4e5 2.9e6 42 1.2e8 1.0e6 2.9e6 19 5.4e7 4.0 2.2

ibm11 9.2e4 5.5e5 3.2e5 1.6e6 120 1.9e8 8.5e5 2.6e6 36 9.4e7 9.6e5 2.6e6 20 5.2e7 3.6 1.8

ibm12 9.5e4 6.4e5 3.7e5 1.7e6 110 1.9e8 1.0e6 3.1e6 47 1.4e8 1.1e6 3.0e6 20 6.0e7 3.2 2.4

ibm13 1.1e5 7.0e5 4.0e5 2.0e6 130 2.5e8 1.1e6 3.3e6 45 1.5e8 1.2e6 3.4e6 20 6.8e7 3.7 2.2

ibm14 1.9e5 1.1e6 6.5e5 3.2e6 145 4.6e8 1.7e6 5.3e6 53 2.8e8 2.0e6 5.3e6 26 1.4e8 3.3 2.0

ibm15 2.2e5 1.4e6 8.2e5 3.9e6 153 6.0e8 2.2e6 6.7e6 50 3.4e8 2.6e6 7.2e6 23 1.6e8 3.7 2.0

ibm16 2.5e5 1.6e6 9.1e5 4.4e6 170 7.5e8 2.5e6 7.6e6 62 4.7e8 2.9e6 7.9e6 21 1.7e8 4.5 2.9

ibm17 2.5e5 1.8e6 1.0e6 4.8e6 137 6.6e8 2.9e6 8.5e6 47 4.0e8 3.1e6 8.6e6 20 1.7e8 3.8 2.3

ibm18 2.7e5 1.7e6 9.8e5 4.8e6 191 9.1e8 2.6e6 8.0e6 65 5.2e8 3.1e6 8.5e6 23 2.0e8 4.7 2.7

131

Table 7.3: Physical runtimes of the hybrid solver, with 1e-6 error tolerance. T1 is

preconditioning CPU time. T2 is solving CPU time. Unit is second.

Ckt m1 m2 m3 m4 m5 m6 m7 m8 m9 m10

T1 6.03 6.88 6.51 13.07 17.82 20.77 33.00 21.67 46.91 68.90

T2 1.16 1.28 1.95 4.26 6.82 6.22 11.90 9.73 17.07 26.09

Ckt ibm01 ibm02 ibm03 ibm04 ibm05 ibm06 ibm07 ibm08 ibm09

T1 0.66 1.54 1.49 1.89 1.96 2.70 3.83 5.03 5.20

T2 0.14 0.29 0.28 0.34 0.37 0.43 0.74 1.16 1.05

Ckt ibm10 ibm11 ibm12 ibm13 ibm14 ibm15 ibm16 ibm17 ibm18

T1 7.00 6.64 7.50 8.81 15.93 23.34 24.09 25.25 30.67

T2 1.42 1.25 1.54 1.99 4.88 6.88 6.50 6.94 8.10

Table 7.4: Runtime comparison inside the Waterloo Placer. T3 is the placer runtime

with its original solver. T4 is the placer runtime with the hybrid solver. Unit is

minute.

Ckt ibm01 ibm02 ibm03 ibm04 ibm05 ibm06 ibm07 ibm08 ibm09

T3 12.6 18.7 17.6 16.4 57.0 23.1 27.6 34.1 34.4

T4 10.5 16.1 16.1 14.7 54.4 19.9 26.0 33.3 31.5

Ckt ibm10 ibm11 ibm12 ibm13 ibm14 ibm15 ibm16 ibm17

T3 53.4 42.1 57.1 54.1 106.7 117.0 123.9 181.4

T4 48.7 39.0 51.0 51.8 101.4 110.1 117.0 170.6

132

Chapter 8

Conclusion

The mathematical aspects of this thesis consist of two new ways of solving linear

equations:

• Our stochastic linear equation solver performs computation by establishing

the equivalence between linear equations and random walks, and has the

desirable feature that it can evaluate a single entry in the solution vector

without solving the entire system.

• Our hybrid linear equation solver is a random-walk preconditioned iterative

solver, and is intended to compete with state-of-the-art direct or iterative

solvers for applications that fall into the shaded region in Figure 1.1: the

challenging problems where the large-scale left-hand-side matrix is relatively

dense and multiple re-solves are needed. Its advantage over existing precondi-

tioned iterative solvers is that each row of the preconditioner is independently

calculated, and thereby avoids the error accumulation in traditional incom-

plete factorization. Consequently, a better accuracy can be achieved with the

same preconditioner size, and less iterations are needed to solve Ax = b with

the same error tolerance. The speedups are expected to be more prominent

133

for larger and denser matrices.

The engineering aspects of this thesis cover four problems in VLSI design au-

tomation:

• Power grid analysis. The locality property of the stochastic solver enables

calculating a single node voltage in DC analysis, and a single node voltage at

a single time point in transient analysis. Special variations of the stochastic

solver are derived to improve simulation efficiency.

• Early-stage power grid analysis. A heuristic solution is proposed to find the

worst VDD loss scenario, utilizing the localized computation of random walks

to relate a single node voltage to the working modes of circuit blocks.

• Chip-level ESD simulation. A flexible network reduction algorithm based on

random walks is applied to mitigate the high computational complexity, and

to enable incremental simulation.

• Quadratic placement. The hybrid linear equation solver is tested on industrial

quadratic placement benchmarks, and is integrated into an actual placement

tool. Significant speedup over traditional ICCG is observed, and supports the

earlier theoretical argument.

Further investigations may be conducted in the following directions:

• Applications of the hybrid solver need to be identified. Any problem that

requires the solution of a set linear equations with a large dimension is a

potential application, especially those that fit within the shaded region in

Figure 1.1.

• Applications of the stochastic solver need to be identified. Suitable problems

are those that require incremental or localized analysis. For example, [52] is

a recent followup to our work, and uses random walks to find sensitivities of

the VDD drop at a critical node with respect to process variations.

134

• As discussed in Section 3.5, there are still unanswered questions in apply-

ing the hybrid solver on general matrices. Looking further, generalizing the

methodology of the stochastic and hybrid solvers to nonlinear equations may

lead to exciting opportunities.

In conclusion, this thesis represents a renewed look at stochastic techniques for

the solution of linear equations, which, prior to this work, were consigned to the dust

heap as theoretically interesting but impractical methods. A major contribution of

this thesis is in developing these approaches to the point where they are credible

competitors to, and often superior to, existing direct and iterative solvers.

It is hoped that this work will motivate new research thrusts in this domain,

which may well result in techniques that surpass the solvers in this thesis.

135

Appendix A

Proof of Lemma 2

Suppose square matrix A has two (Doolittle) LU factorizations: A = L1U1 = L2U2.

Then it must be true that L2
−1L1 = U2U1

−1. Because L2
−1 and L1 are both lower

triangular matrices, their product must be lower triangular; because U2 and U1
−1

are both upper triangular, their product must be upper triangular. Therefore, the

only possibility is that both L2
−1L1 and U2U1

−1 are diagonal matrices. Since L1

and L2 both have unit diagonal values, and it is easy to verify that L2
−1 also has

unit diagonal values, it must be true that L2
−1L1 = I. Therefore L1 = L2, and it

follows that U1 = U2, and that the LU factorization is unique.

136

Appendix B

Proof of Convergence for

Section 4.1.3

The modified nodal equation set for the circuit in the form of Figure 4.5(b) can be

written as

(F1 + F2 + F3)V = b (B.1)

where matrix F1 is the component that contains the contributions of resistors and

the companion models of capacitors, matrix F2 contains the contributions of the

companion models of self-inductances, matrix F3 contains the contributions of the

companion models (voltage-controlled current sources) of mutual inductances, V

is the vector of node voltages, and b is the vector of independent sources, which

include original current/voltage sources, the voltage sources from the companion

models of capacitors, and the current sources from the companion models of self-

inductances [36]. Because the modified nodal equations are constructed for the

circuit form of Figure 4.5(b), V includes both the end nodes of wire segments

(nodes A’s and B’s in Figure 4.5), and the middle nodes (C’s in Figure 4.5) that

do not exist physically.

137

The iterative scheme described in Section 4.1.3 can be written as,

(F1 + F2)V
k+1 = −F3V

k + b

Vk+1 = − (F1 + F2)
−1 F3V

k + (F1 + F2)
−1 b (B.2)

where Vk is the solution vector from the previous iteration, and Vk+1 is the up-

dated solution vector. Note that the proposed algorithm does not perform the

matrix computation of (B.2), and instead, it converts the circuit to the form of

Figure 4.5(d), and uses random walks to carry out the computation. Nevertheless,

the underlying iteration is equation (B.2).

Therefore, the necessary and sufficient condition for the iterative algorithm to

converge is

max
l

∣∣λl

(
(F1 + F2)

−1 F3

)∣∣ < 1 (B.3)

where λl denotes the lth eigenvalue of a matrix [83]. In order to prove condition

(B.3), the following lemma is needed.

Lemma 6 Matrices (F1 + F2), (F1 + F2 + F3) and (F1 + F2 − F3) are positive

definite.

Matrix (F1 + F2) is an irreducibly diagonally dominant matrix with positive

diagonal entries, for any connected power grid, and therefore is positive definite [83].

Let y be any real-valued nonzero vector, and we have

yT (F1 + F2 + F3)y = yTF1y + yTF2y + yTF3y (B.4)

Because F1 is a diagonally dominant matrix with positive diagonal entries, (maybe

reducible, i.e., representing an unconnected resistor network), and hence must be

nonnegative definite, we have

yTF1y ≥ 0 (B.5)

138

Let Γ be the number of inductors, and they are labeled 1, 2, · · · , Γ. Let ζi,1 and

ζi,2 be the node indices at the two ends of inductor i, in other words, they are the

nodes B and C in Figure 4.5; let them be defined with consistent direction, in other

words, for parallel wire segments, ζi,1’s always point to the same direction. In the K

matrix, Ki,i represents the self-inductance of inductor i, and Ki,j, i 6= j, represents

the mutual inductance between inductor i and inductor j. From [16] [39], we know

that Ki,j = Kj,i, and that

Ki,i >
∑

j∈{1,··· ,Γ},j 6=i

|Ki,j| (B.6)

The contribution of inductor i to matrix F2 is shown below, with the row and

column indices marked outside the matrix [36].

ζi,1 ζi,2

ζi,1

ζi,2




hKi,i −hKi,i

−hKi,i hKi,i




Hence, the contribution of inductor i to yTF2y is

hKi,iy
2
ζi,1
− hKi,iyζi,1

yζi,2
− hKi,iyζi,1

yζi,2
+ hKi,iy

2
ζi,2

= hKi,i(yζi,1
− yζi,2

)2

Therefore

yTF2y =
Γ∑

i=1

hKi,i(yζi,1
− yζi,2

)2 (B.7)

The contribution of the mutual inductances between inductor i and inductor j

to matrix F3 is shown below, with the row and column indices marked outside the

matrix, and these entries correspond to the voltage-controlled current sources in

139

Figure 4.4 and Figure 4.5(b) [36].

ζi,1 ζi,2 ζj,1 ζj,2

ζi,1

ζi,2

ζj,1

ζj,2




hKi,j −hKi,j

−hKi,j hKi,j

hKj,i −hKj,i

−hKj,i hKj,i




Hence, the contribution of mutual inductances Ki,j and Kj,i to yTF3y is

hKi,j(yζi,1
yζj,1

− yζi,1
yζj,2

− yζi,2
yζj,1

+ yζi,2
yζj,2

)

+hKj,i(yζi,1
yζj,1

− yζi,1
yζj,2

− yζi,2
yζj,1

+ yζi,2
yζj,2

)

= hKi,j(yζi,1
− yζi,2

)(yζj,1
− yζj,2

) + hKj,i(yζi,1
− yζi,2

)(yζj,1
− yζj,2

)

= 2hKi,j(yζi,1
− yζi,2

)(yζj,1
− yζj,2

) (since Ki,j = Kj,i)

Therefore

yTF3y =
∑

i,j∈{1,··· ,Γ},i 6=j

2hKi,j(yζi,1
− yζi,2

)(yζj,1
− yζj,2

) (B.8)

140

Therefore

∣∣yTF3y
∣∣ =

∣∣∣∣∣∣
∑

i,j∈{1,··· ,Γ},i6=j

2hKi,j(yζi,1
− yζi,2

)(yζj,1
− yζj,2

)

∣∣∣∣∣∣

≤
∣∣∣∣∣∣

∑

i,j∈{1,··· ,Γ},i6=j

hKi,j((yζi,1
− yζi,2

)2 + (yζj,1
− yζj,2

)2)

∣∣∣∣∣∣

≤
∣∣∣∣∣∣

∑

i,j∈{1,··· ,Γ},i6=j

hKi,j(yζi,1
− yζi,2

)2

∣∣∣∣∣∣

+

∣∣∣∣∣∣
∑

i,j∈{1,··· ,Γ},i6=j

hKi,j(yζj,1
− yζj,2

)2

∣∣∣∣∣∣

=

∣∣∣∣∣∣
1

2

Γ∑
i=1

∑

j∈{1,··· ,Γ},j 6=i

hKi,j(yζi,1
− yζi,2

)2

∣∣∣∣∣∣

+

∣∣∣∣∣∣
1

2

Γ∑
j=1

∑

i∈{1,··· ,Γ},i6=j

hKi,j(yζj,1
− yζj,2

)2

∣∣∣∣∣∣

=
1

2

Γ∑
i=1

(yζi,1
− yζi,2

)2

∣∣∣∣∣∣
∑

j∈{1,··· ,Γ},j 6=i

hKi,j

∣∣∣∣∣∣

+
1

2

Γ∑
j=1

(yζj,1
− yζj,2

)2

∣∣∣∣∣∣
∑

i∈{1,··· ,Γ},i6=j

hKi,j

∣∣∣∣∣∣

≤ 1

2

Γ∑
i=1

(yζi,1
− yζi,2

)2
∑

j∈{1,··· ,Γ},j 6=i

|hKi,j|

+
1

2

Γ∑
j=1

(yζj,1
− yζj,2

)2
∑

i∈{1,··· ,Γ},i 6=j

|hKi,j| (B.9)

141

Then applying equation (B.6), we have

∣∣yTF3y
∣∣ ≤ 1

2

Γ∑
i=1

(yζi,1
− yζi,2

)2hKi,i +
1

2

Γ∑
j=1

(yζj,1
− yζj,2

)2hKj,j

=
1

2

Γ∑
i=1

(yζi,1
− yζi,2

)2hKi,i +
1

2

Γ∑
i=1

(yζi,1
− yζi,2

)2hKi,i

=
Γ∑

i=1

(yζi,1
− yζi,2

)2hKi,i

= yTF2y (applying equation (B.7)) (B.10)

Therefore

yTF2y ± yTF3y ≥ 0 (B.11)

Substituting (B.5) and (B.11) into equation (B.4), we get

yT(F1 + F2 + F3)y ≥ 0 (B.12)

Now we need to show that (B.5) and (B.11) cannot both be equalities. Note

that, in order for (B.10) to be an equality after applying inequality (B.6), vector y

must satisfy the condition

yζi,1
= yζi,2

for i ∈ {1, · · · , Γ}

For such a vector y, we can merge ζi,1 and ζi,2 into one node, and obtain a shortened

vector y′. In other words, nodes B and C in Figure 4.5 are merged into one node.

Correspondingly, the rows for ζi,1 and ζi,2 in matrix F1 are merged into one row

by adding entries, and columns for ζi,1 and ζi,2 in matrix F1 are merged into one

column by adding entries. Thus we obtain a new matrix F1
′, which is the same as

the modified nodal left-hand-side matrix if all inductors are ignored. Because F1
′

is an irreducibly diagonally dominant matrix with positive diagonal entries, for any

connected power grid, we have

yTF1y = y′TF1
′y′ > 0,

142

It follows that (B.5) and (B.11) cannot both be equalities.

Therefore, (B.12) can never be equality, and can be replaced by

yT(F1 + F2 + F3)y > 0 (B.13)

This is true for any real-valued nonzero vector y. Therefore, matrix (F1 + F2 + F3)

is positive definite.

Similarly, by equations (B.5) and (B.11), and the fact that they cannot both be

equalities,

yT(F1 + F2 − F3)y = yTF1y + yTF2y − yTF3y > 0 (B.14)

This is true for any real-valued nonzero vector y. Therefore, matrix (F1 + F2−F3)

is positive definite.

By now we have proven Lemma 6, it can be used to prove condition (B.3), which

is replicated as follows.

Lemma 7 maxl

∣∣λl

(
(F1 + F2)

−1 F3

)∣∣ < 1

Let λ be any eigenvalue of matrix (F1 + F2)
−1 F3, and let y be the corresponding

eigenvector. By Lemma 6, (F1 + F2 + F3) is positive definite, and we have

yT(F1 + F2 + F3)y > 0

yT(F1 + F2) ·
(
I + (F1 + F2)

−1 F3

)
y > 0

yT(F1 + F2)(y + λy) > 0

yT(F1 + F2)(1 + λ)y > 0 (B.15)

Since (1 + λ) is a scalar, and can be taken out, we get

(1 + λ)(yT(F1 + F2)y) > 0 (B.16)

143

By Lemma 6, yT(F1 + F2)y must be a positive scalar, and therefore,

1 + λ > 0

λ > −1 (B.17)

Similarly, because (F1 + F2 − F3) is positive definite, we have

yT(F1 + F2 − F3)y > 0

yT(F1 + F2) ·
(
I − (F1 + F2)

−1 F3

)
y > 0

yT(F1 + F2)(1− λ)y > 0

(1− λ)(yT(F1 + F2)y) > 0

1− λ > 0

λ < 1 (B.18)

Therefore

|λ| < 1 (B.19)

This is true for any eigenvalue of matrix (F1 + F2)
−1 F3. Therefore Lemma 7 is

true, and our iterative algorithm in Section 4.1.3 is guaranteed to converge.

144

Bibliography

[1] S. Adya, I. Markov, ISPD02 Benchmarks. Available at

http://vlsicad.eecs.umich.edu/BK/ISPD02bench

[2] P. R. Amestoy, T. A. Davis and I. S. Duff, “An approximate minimum de-

gree ordering algorithm,” SIAM Journal on Matrix Analysis and Applications,

vol. 17, no. 4, pp. 886-905, 1996.

[3] R. Barrett, M. Berry, T. F. Chan, J. W. Demmel, J. Donato, J. Dongarra,

V. Eijkhout, R. Pozo, C. Romine and H. A. van der Vorst, Templates for

the Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM,

Philadelphia, PA, 1994.

[4] S. G. Beebe, “Simulation of complete CMOS I/O circuit response to CDM

stress,” Proceedings of Electrical Overstress/Electrostatic Discharge Sympo-

sium, pp. 259-270, 1998.

[5] R. M. Bevensee, “Probabilistic potential theory applied to electrical engineer-

ing problems,” Proceedings of the IEEE, vol. 61, no. 4, pp. 423-437, 1973.

[6] S. Bodapati and F. N. Najm, “High-level current macro-model for power

grid analysis,” Proceedings of the ACM/IEEE Design Automation Conference,

pp. 385-390, 2002.

145

[7] A. Brambilla and P. Maffezzoni, “Statistical method for the analysis of inter-

connects delay in submicron layouts,” IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 20, no. 8, pp. 957-966, 2001.

[8] C. Brennan, J. Kozhaya, R. Proctor, J. Sloan, S. Chang, J. Sundquist and

T. Lowe, “ESD design automation for a 90nm ASIC design system,” Proceed-

ings of Electrical Overstress/Electrostatic Discharge Symposium, 2004.

[9] A. E. Caldwell, A. B. Kahng and I. L. Markov, “Can recursive bisection alone

produce routable placements?,” Proceedings of the ACM/IEEE Design Au-

tomation Conference, pp. 477-482, 2000.

[10] H. Chen, C. Cheng, N. Chou, A. B. Kahng, J. F. MacDonald, P. Suaris,

B. Yao and Z. Zhu, “An algebraic multigrid solver for analytical placement with

layout based clustering,” Proceedings of the ACM/IEEE Design Automation

Conference, pp. 794-799, 2003.

[11] H. H. Chen and D. D. Ling, “Power supply noise analysis methodology for

deep-submicron VLSI chip design,” Proceedings of the ACM/IEEE Design Au-

tomation Conference, pp. 638-643, 1997.

[12] T. Chen and C. C. Chen, “Efficient large-scale power grid analysis based

on preconditioned Krylov-subspace iterative methods,” Proceedings of the

ACM/IEEE Design Automation Conference, pp. 559-562, 2001.

[13] E. G. Jr. Coffman, M. R. Garey and D. S. Johnson, “Approximation algorithms

for bin packing: a survey,” Approximation Algorithms for NP-Hard Problems,

pp. 46-93, PWS Publishing, Boston, MA, 1997.

146

[14] J. H. Curtiss, “Sampling methods applied to differential and difference equa-

tions,” Proceedings of IBM Seminar on Scientific Computation, pp. 87-109,

1949.

[15] E. Cuthill and J. McKee, “Reducing the bandwidth of sparse symmetric ma-

trices,” Proceedings of the ACM National Conference, pp. 157-172, 1969.

[16] A. Devgan, H. Ji and W. Dai, “How to efficiently capture on-chip inductance

effects: Introducing a new circuit element K,” ACM/IEEE International Con-

ference on Computer-Aided Design Digest of Technical Papers, pp. 150-155,

2000.

[17] A. Dharchoudhury, R. Panda, D. Blaauw, R. Vaidyanathan, B. Tutuianu and

D. Bearden, “Design and analysis of power distribution networks in PowerPCTM

microprocessors,” Proceedings of the ACM/IEEE Design Automation Confer-

ence, pp. 738-743, 1998.

[18] P. G. Doyle and J. L. Snell, Random Walks and Electric Networks, Mathemat-

ical Association of America, Washington, DC, 1984.

[19] I. S. Duff, A. M. Erisman and J. K. Reid, Direct Methods for Sparse Matrices,

Oxford University Press, New York, NY, 1986.

[20] J. P. Eckhardt and K. A. Jenkins, “PLL phase error and power supply noise,”

IEEE 7th Topical Meeting on Electrical Performance of Electronic Packaging,

pp. 73-76, 1998.

[21] H. Eisenmann and F. M. Johnannes, “Generic global placement and floorplan-

ning,” Proceedings of the ACM/IEEE Design Automation Conference, pp. 269-

274, 1998.

147

[22] G. E. Forsythe and R. A. Leibler, “Matrix inversion by a Monte Carlo method,”

Mathematical Tables and Other Aids to Computation, vol. 4, no. 31, pp. 127-

129, 1950.

[23] Fundamentals of ESD, ESD Association, Rome, NY, 2001.

[24] A. George and J. W. H. Liu, “The evolution of the minimum degree ordering

algorithm,” SIAM Review, vol. 31, no. 1, pp. 1-19, 1989.

[25] A. George and J. W. H. Liu, Computer Solution of Large Sparse Positive

Definite Systems, Prentice-Hall, Englewood Cliffs, NJ, 1981.

[26] B. Goplen and S. S. Sapatnekar, “Efficient thermal placement of standard

cells in 3D ICs using a force directed approach,” ACM/IEEE International

Conference on Computer-Aided Design Digest of Technical Papers, pp. 86-89,

2003.

[27] F. W. Grover, Inductance Calculations, Dover Publications, New York, NY,

1954.

[28] GSRC Floorplan Benchmarks. Available at

http://www.cse.ucsc.edu/research/surf/GSRC/progress.html

[29] W. Hackbusch, Multi-Grid Methods and Applications, Springer Verlag, New

York, NY, 1985.

[30] J. H. Halton, “Sequential Monte Carlo,” Proceedings of the Cambridge Philo-

sophical Society, vol. 58, pp. 57-78, 1962.

[31] J. H. Halton, “A retrospective and prospective survey of the Monte Carlo

method,” SIAM Review, vol. 12, no. 1, pp. 1-63, 1970.

148

[32] J. H. Halton, “Sequential Monte Carlo techniques for the solution of linear

systems,” Journal of Scientific Computing, vol. 9, pp. 213-257, 1994.

[33] J. M. Hammersley and D. C. Handscomb, Monte Carlo Methods, Methuen &

Co. Ltd., London, UK, 1964.

[34] P. Heggernes, S. C. Eisenstat, G. Kumfert and A. Pothen, “The computational

complexity of the Minimum Degree algorithm,” Proceedings of 14th Norwegian

Computer Science Conference, pp. 98-109, 2001.

[35] R. Hersh and R. J. Griego, “Brownian motion and potential theory,” Scientific

American, vol. 220, pp. 67-74, 1969.

[36] C. Ho, A. E. Ruehli and P. Brennan, “The modified nodal approach to network

analysis,” IEEE Transactions on Circuits and Systems, vol. 22, no. 6, pp. 504-

509, 1975.

[37] A. P. Hurst, P. Chong and A. Kuehlmann, “Physical placement driven by se-

quential timing analysis,” ACM/IEEE International Conference on Computer-

Aided Design Digest of Technical Papers, pp. 379-386, 2004.

[38] JEDEC Standard No. 22-C101-A: Field-Induced Charged-Device Model Test

Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic

Components, JEDEC Solid State Technology Association, Arlington, VA, 2000.

[39] H. Ji, A. Devgan and W. Dai, “KSim: a stable and efficient RKC simulator

for capturing on-chip inductance effect,” Proceedings of the Asia and South

Pacific Design Automation Conference, pp. 379-384, 2001.

149

[40] R. Jiang, T. Chen and C. C. Chen, “PODEA: power delivery efficient analysis

with realizable model reduction,” Proceedings of the International Symposium

on Circuits and Systems, vol. 4, pp. 608-611, 2003.

[41] M. D. Ker and H. Chang, “Whole-chip ESD protection strategy for CMOS

IC’s with multiple mixed-voltage power pins,” Proceedings of International

Symposium on VLSI Technology, Systems and Applications, pp. 298-301, 1999.

[42] D. S. Kershaw, “The incomplete cholesky-conjugate gradient method for the

iterative solution of systems of linear equations,” Journal of Computational

Physics, vol. 26, pp. 43-65, 1978.

[43] C. N. Klahr, “A Monte Carlo method for the solution of elliptic partial differ-

ential equations,” in Mathematical Methods for Digital Computers, chap. 14,

John Wiley and Sons, New York, NY, 1962.

[44] A. W. Knapp, “Connection between Brownian motion and potential theory,”

Journal of Mathematical Analysis and Application, vol. 12, pp. 328-349, 1965.

[45] D. Kouroussis and F. N. Najm, “A static pattern-independent technique for

power grid voltage integrity verification,” Proceedings of the ACM/IEEE De-

sign Automation Conference, pp. 99-104, 2003.

[46] J. A. Jr. Kowaleski, T. Truex, D. Dever, D. Ament, W. Anderson, L. Bair,

S. Bakke, D. Bertucci, R. Castelino, D. Clay, J. Clouser, A. DiPace, V. Ger-

mini, R. Hokinson, C. Houghton, H. Kolk, B. Miller, G. Moyer, R. O. Mueller,

N. O’Neill, D. A. Ramey, Y. Seok, J. Sun, G. Zelic and V. Zlatkovic, “Imple-

mentation of an Alpha microprocessor in SOI,” IEEE International Solid-State

Circuits Conference Digest of Technical Papers, pp. 248-249, 2003.

150

[47] J. Kozhaya, S. R. Nassif and F. N. Najm, “A multigrid-like technique for power

grid analysis,” IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 21, no. 10, pp. 1148-1160, 2002.

[48] K. S. Kundert and A. Sangiovanni-Vincentelli, SPARSE 1.3: A Sparse Linear

Equation Solver. Available at

http://www.netlib.org/sparse

[49] Y. L. Le Coz and R. B. Iverson, “A stochastic algorithm for high speed capac-

itance extraction in integrated circuits,” Solid-State Electronics, vol. 35, no. 7,

pp. 1005-1012, 1992.

[50] J. Lee, K. Kim, Y. Huh, P. Bendix and S. Kang, “Chip-level charged-device

modeling and simulation in CMOS integrated circuits,” IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, vol. 22, no. 1,

pp. 67-81, 2003.

[51] Q. Li, Y. Huh, J. Chen, P. Bendix and S. Kang, “Full chip ESD design rule

checking,” Proceedings of the IEEE International Symposium on Circuits and

Systems, pp. 503-506, 2001.

[52] P. Li, “Variational analysis of large power grids by exploring statistical sam-

pling sharing and spatial locality,” ACM/IEEE International Conference on

Computer-Aided Design Digest of Technical Papers, pp. 645-651, 2005.

[53] T. Li, S. Ramaswamy, E. Rosenbaum and S. Kang, “Circuit-level simulation

and layout optimization for deep submicron EOS/ESD output protection de-

vice,” Proceedings of the IEEE Custom Integrated Circuits Conference, pp. 159-

162, 1997.

151

[54] T. Li, C. Tsai, E. Rosenbaum and S. Kang, “Modeling, extraction and simula-

tion of CMOS I/O circuits under ESD stress,” Proceedings of the 1998 IEEE

International Symposium on Circuits and Systems, vol. 6, pp. 389-392, 1998.

[55] A. W. Marshall, “The use of multi-stage sampling schemes in Monte Carlo,”

Symposium of Monte Carlo Methods, pp. 123-140, John Wiley & Sons, New

York, NY, 1956.

[56] O. J. McAteer, Electrostatic Discharge Control, McGraw-Hill, New York, NY,

1990.

[57] MCNC Floorplan Benchmark Suite. Available at

http://www.cse.ucsc.edu/research/surf/GSRC/MCNC

[58] M. E. Muller, “Some continuous Monte Carlo methods for the Dirichlet prob-

lem,” Annals of Mathematical Statistics, vol. 27, pp. 569-589, 1956.

[59] R. Panda, D. Blaauw, R. Chaudhury, V. Zolotov, B. Young and R. Ramaraju,

“Model and analysis for combined package and on-chip power grid simulation,”

Proceedings of the International Symposium on Low Power Electronics and

Design, pp. 179-184, 2000.

[60] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, Numeri-

cal Recipes in C: the Art of Scientific Computing, second edition, Cambridge

University Press, New York, NY, 1994.

[61] H. Qian, J. N. Kozhaya, S. R. Nassif and S. S. Sapatnekar, “A chip-level elec-

trostatic discharge simulation strategy,” ACM/IEEE International Conference

on Computer-Aided Design Digest of Technical Papers, pp. 315-318, 2004.

152

[62] H. Qian, S. R. Nassif and S. S. Sapatnekar, “Random walks in a supply net-

work,” Proceedings of the ACM/IEEE Design Automation Conference, pp. 93-

98, 2003.

[63] H. Qian, S. R. Nassif and S. S. Sapatnekar, “Power grid analysis using random

walks,” IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, vol. 24, no. 8, pp. 1204-1224, 2005.

[64] H. Qian, S. R. Nassif and S. S. Sapatnekar, “Early-stage power grid analy-

sis for uncertain working modes,” Proceedings of International Symposium on

Physical Design, pp. 132-137, 2004.

[65] H. Qian, S. R. Nassif and S. S. Sapatnekar, “Early-stage power grid analysis

for uncertain working modes,” IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, vol. 24, no. 5, pp. 676-682, 2005.

[66] H. Qian and S. S. Sapatnekar, “Hierarchical random-walk algorithms for power

grid analysis,” Proceedings of the Asia and South Pacific Design Automation

Conference, pp. 499-504, 2004.

[67] H. Qian and S. S. Sapatnekar, “A hybrid linear equation solver and its ap-

plication in quadratic placement,” ACM/IEEE International Conference on

Computer-Aided Design Digest of Technical Papers, pp. 905-909, 2005.

[68] H. Qian and S. S. Sapatnekar, The Hybrid Linear Equation Solver Binary

Release. Available at

http://mountains.ece.umn.edu/~sachin/hybridsolver

[69] G. M. Royer, “A Monte Carlo procedure for potential theory problems,” IEEE

Transactions on Microwave Theory and Techniques, vol. 19, no. 10, pp. 813-

818, 1971.

153

[70] Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM, Philadelphia,

PA, 2003.

[71] S. S. Sapatnekar and H. Su, “Analysis and optimization of power grids,” IEEE

Design and Test of Computers, vol. 20, pp. 7-15, 2003.

[72] N. Sclater, Electrostatic Discharge Protection for Electronics, TAB Books, Blue

Ridge Summit, PA, 1990.

[73] C. Sechen and A. Sangiovanni-Vincentelli, “The TimberWolf placement and

routing package,” IEEE Journal of Solid-State Circuits, vol. 20, no. 2, pp. 510-

522, 1985.

[74] J. C. Shah, A. A. Younis, S. S. Sapatnekar and M. M. Hassoun, “An algo-

rithm for simulating power/ground networks using Padé approximations and

its symbolic implementation,” IEEE Transaction on Circuits and Systems II:

Analog and Digital Signal Processing, vol. 45, pp. 1372-1382, 1998.

[75] S. Sinha, H. Swaminathan, G. Kadamati and C. Duvvury, “An auto-

mated tool for detecting ESD design errors,” Proceedings of Electrical Over-

stress/Electrostatic Discharge Symposium, pp. 208-217, 1998.

[76] T. Skalicky, LASPack. Available at

http://www.mgnet.org/mgnet/Codes/laspack

[77] SPEC CPU2000 Results. Available at

http://www.specbench.org/cpu2000/results/cpu2000.html

[78] A. Srinivasan and V. Aggarwal, “Stochastic linear solvers,” Proceedings of the

SIAM Conference on Applied Linear Algebra, 2003.

154

[79] G. Steele, D. Overhauser, S. Rochel and S. Z. Hussain, “Full-chip verification

methods for DSM power distribution systems,” Proceedings of the ACM/IEEE

Design Automation Conference, pp. 744-749, 1998.

[80] J. Stinson and S. Rusu, “A 1.5 GHz third generation Itanium processor,”

IEEE International Solid-State Circuits Conference Digest of Technical Papers,

pp. 252-253, 2003.

[81] H. Su, K. H. Gala and S. S. Sapatnekar, “Fast analysis and optimization of

power/ground networks,” ACM/IEEE International Conference on Computer-

Aided Design Digest of Technical Papers, pp. 477-480, 2000.

[82] C. J. K. Tan and M. F. Dixon, “Antithetic Monte Carlo linear solver,” Pro-

ceedings of International Conference on Computational Science, pp. 383-392,

2002.

[83] R. S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, NJ,

1962.

[84] N. Viswanathan and C. C. Chu, “FastPlace: efficient analytical placement us-

ing cell shifting, iterative local refinement and a hybrid net model,” Proceedings

of International Symposium on Physical Design, pp. 26-33, 2004.

[85] K. P. Vorwerk, A. Kennings and A. Vannelli, “Engineering details of a sta-

ble force-directed placer,” ACM/IEEE International Conference on Computer-

Aided Design Digest of Technical Papers, pp. 573-580, 2004.

[86] K. P. Vorwerk and A. Kennings, “An improved multi-level framework for force-

directed placement,” Proceedings of ACM/IEEE Design Automation and Test

in Europe, pp. 902-907, 2005.

155

[87] W. Wasow, “A note on the inversion of matrices by random walks,” Mathe-

matical Tables and Other Aids to Computation, vol. 6, no. 38, pp. 78-81, 1952.

[88] R. D. Yates and D. J. Goodman, Probability and Stochastic Processes: A

Friendly Introduction for Electrical and Computer Engineers, John Wiley and

Sons, New York, NY, 1999.

[89] M. Zhao, R. V. Panda, S. S. Sapatnekar and D. Blaauw, “Hierarchical anal-

ysis of power distribution networks,” IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 21, no. 2, pp. 159-168, 2002.

156

