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by Qunzeng Liu

ABSTRACT

Process variations have become increasingly important as feature sizes enter the sub-

100nm regime and continue to shrink. Both logic and memory circuits have seen their

performance impacted due to these variations. It is increasingly difficult to ensure that

the circuit manufactured is in accordance with the expectation of designers through sim-

ulation. For logic circuits, general statistical static timing analysis (SSTA) techniques

have emerged to calculate the probability density function (PDF) of the circuit delay.

However, in many situations post-silicon tuning is needed to further improve the yield.

For memory circuits, embedded DRAM (eDRAM) is beginning to replace SRAM as the

on-die cache choice in order to keep the scaling trend. Although techniques exist for

statistical analysis of SRAM, detailed analysis of eDRAM has not been developed prior

to this thesis.

In this thesis, we provide techniques to aid statistical analysis for both logic and

memory circuits. Our contribution in the logic circuits area is to provide robust and

reliable, yet efficient post-silicon statistical delay prediction techniques for estimating

the circuit delay, to replace the traditional critical path replica method that can generate

large errors due to process variations during the manufacturing process. We solve this

problem from both the analysis perspective and the synthesis perspective. For the

analysis problem, we assume that we are given a set of test structures built on chip, and

try to get the delay information of the original circuit through measurement of these test

structures. For the synthesis problem, we automatically build a representative critical

path which maximally correlate with the original circuit delay. Both of these approaches

are derived using variation aware formula and use SSTA as sub-steps. They capture the

delay variation of the original circuit better than the traditional critical path replica

approach and eliminates the need to perform full chip testing for the post-silicon tuning

purpose.
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In response to the growing interest in using eDRAM-based memories as on-die cache,

in the memory analysis area we provide the first statistical analysis approach for the

cell voltage of eDRAM. We not only calculate the main body of the PDF for the cell

voltage, but also specifically look at the tail of this PDF which is more important to

ensure quality design due to the highly repetitive nature of the memory systems.

We demonstrate the accuracy and efficiency of our methods by comparing them with

Monte Carlo simulations.
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Chapter 1

Introduction

Feature sizes in VLSI design have been shrinking for several decades, and are currently

in the tens of nanometers. In this regime, variations in the process and operating

conditions play a critical role in determining circuit performance, and must be taken

into consideration during the design process in order to ensure that a circuit meets its

specifications over its entire lifetime. These variations can arise due to process shifts,

environmental effects, and circuit aging.

Examples of parameters affected by process variations include the gate length, gate

width, oxide thickness, and the dopant concentration. In general, these process varia-

tions can be classified as inter-die variations and intra-die variations. Inter-die variations

are fluctuations in process parameters from chip to chip, while intra-die variations are

the variations among different elements within a single die. Some, but not all, intra-die

variations may show the property of spatial correlation, which implies that the process

parameters associated with transistors or wires that are close to each other are more

likely to vary in a similar way than those of transistors or wires that are far away from

each other.

Environmental variations are caused by effects such as changes in the on-chip tem-

perature and supply voltage variations, while aging variations may be attributed to

effects such as negative bias temperature instability (NBTI), time-dependent dielectric

breakdown (TDDB) in the gate oxide, and hot carrier injection (HCI) in transistors,

and electromigration in wires. Typically, environmental and aging variations are worst-

cased, while process variations are handled statistically. The rationale is that process

1
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variations are baked into a circuit after it is manufactured: if the manufactured part

fails to meet its specifications, it can be discarded: the economic impact can be de-

termined statistically by the manufacturing yield. However, environmental and aging

effects are time-dependent and kick in during the life of the die, and therefore must be

worst-cased.

Figure 1.1 shows the experiment result done by Intel to illustrate the impacts of the

oxide thickness variations on processor performances such as normalized leakage and

normalized power. The experiment use a 10% variation in oxide thickness and 100nm

BPTM technology. It is shown that even at this older technology node, the current

can have a 15× difference. Currently chip designers are using feature sizes as small as

28nm or even 22nm, which makes process variations a more prominent issue and the

correlation between pre-silicon and post-silicon performance evaluations becomes even

weaker.

These variations affect all aspects of VLSI design including logic and memory cir-

cuits. In this thesis, we contribute to the variation aware design tools community by

providing post-silicon statistical delay analysis techniques for logic circuits, as well as

statistical analysis of cell voltage for memory circuits.

Figure 1.1: Impact of process variations, courtesy [1]

1.1 Variations in Logic Circuits

1.1.1 Pre-Silicon Analysis Under Process Variations

The process variations introduced above pose great challenges to analyzing the timing

behavior of a logic circuit because traditional static timing analysis (STA) for one set
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of process parameters is obvious not good enough as the process parameters change

during the fabrication. One way to tackle this is to use corner-based static timing

analysis (STA). However, the number of combinations for different corners for each

parameter grows exponentially with increasing the number of process parameters. To

exhaust every combination is clearly not an option. On the other hand, if we choose to

only focus on the worst corner of each parameter, the arrival time calculation may be

overly pessimistic [2]. Besides, the process variations complicates both the arrival time

and the setup time and hold time constraints.

To overcome this problem, the concept of design for variability [3] was proposed. In

the area of timing, statistical static timing analysis (SSTA) has been proposed as an

alternative timing analysis engine to STA. Instead of trying to obtain different arrival

numbers for different sets of process parameters, as is done in the corner-based SSTA

method, SSTA tries to get a full probability density function (PDF) for the worst case

delay of the arrival time of a combinational block. From the PDF of the worst case arrival

time, designers can set their own cut off threshold according to the yield requirement.

For examples, the 99.9% point of the PDF can be used for timing optimization. The

problems associated with this technique include, but are not limited to, statistical delay

characterizations for each gate and wire, the propagation of statistical delay information

from primary inputs (or launching flip-flops) to primary outputs (or capturing flip-flops,

as well as affected clock distribution network and timing constraints.

Existing SSTA engines generally fall into two categories: path-based [4, 5, 6] and

block-based [7, 8, 9]. Path-based methods have the advantage that they do not need to

perform the max operation until reaching the primary outputs (or the launching flip-

flop). The false path problem can also be taken care of in this method. However, the

number of paths grows exponentially with the circuit size. Block-based methods, on

the other hand, inspired by the critical path method (CPM) widely used in STA [2],

use a PERT-like traversal to propagate the distribution of the arrival times toward the

primary outputs based on the order of a topological sorting, which brings down the time

complexity to be linear with respect to the number of edges in the directional acyclic

graph (DAG) representing the circuit, assuming that calculation of the distribution of

the delay for each gate and wire are constant under appropriate characterizations.

Early work on SSTA using analytical methods and closed forms makes assumptions
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that the process parameters are Gaussian distributed and the delay models are linear

with respect to those parameter variations. More recent work deals with non-Gaussian

parameter variations [10], non-linear delay models [11], and both [12, 13]. Most of the

existing SSTA work deals with the arrival time of a combinational block. In addition,

other research wolves problems such as interconnect modeling [14, 15], clock skew [16],

latch modeling [17], pipelining and timing constraint concerns [18], and PDF evaluation

techniques [19].

With the aid of SSTA tools, designers can optimize the circuit before it is fabricated,

for example using the sizing technique proposed in [20], in the expectation that it will

meet the timing requirements after the fabrication. In other words, SSTA is a presil-

icon analysis technique used to determine the range of performance (delay or power)

variations over a large population of dies. As timing and power are always tradeoffs

for a design, statistical power analysis is equally interesting and work abounds in the

literature [21,22,23,24] . While power issues are not explicitly addressed in this thesis,

the approaches here can also be extended for statistical power measurement.

1.1.2 Post-Silicon Tuning Under Process Variations

Pre-silicon analysis and optimization can greatly improve yield. However, due to fluc-

tuations that may not be taken into full account, the yield may still not be satisfactory

after the circuit is manufactured. A complementary role, at this stage, is played by post-

silicon diagnosis, which is typically directed toward determining the performance of an

individual fabricated chip based on measurements on that specific chip. This procedure

provides particular information that can be used to perform post-silicon optimizations

to make a fabricated part meet its specifications. Because presilicon analysis has to be

generally applicable to the entire population of manufactured chips, the statistical anal-

ysis that it provides shows a relatively large standard deviation for the delay. On the

other hand, post-silicon procedures, which are tailored to individual chips, can be ex-

pected to provide more specific information. Since tester time is generally prohibitively

expensive, it is necessary to derive the maximum possible information about the circuit

delay for each chip manufactured through the fewest post-silicon measurements.

A use case scenario for post-silicon analysis in the realm of post-silicon tuning is

adaptive body bias (ABB) [25, 26, 27]. ABB is a post-silicon method that determines
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the appropriate level of body bias to be applied to a die to influence its performance

characteristics. ABB is typically a coarse-grained optimization, both in terms of the

granularity at which it can be applied (typically on a per-well basis) as well as in terms

of the granularity of the voltage levels that may be applied (typically, the separation

between ABB levels is 50 to 100 mV). Current ABB techniques use a critical path

replica to predict the delay of the fabricated chip, and use this to feed a phase detector

and a counter, whose output is then used to generate the requisite body bias value, as

is shown by Figure 1.2 in [25].

Figure 1.2: Implementation diagram of adaptive body bias (ABB), courtesy [25]

Another post-silicon optimization technique uses adaptive voltage scaling [28, 29].

In [28], a delay synthesizer, composed of three delay elements, is used to synthesize a

critical path as part of a dynamic voltage and frequency management system. However,

the control signals of the synthesizer is chosen arbitrarily and therefore it is not able to

adapt to a changing critical path as a result of process variations. In [29], the authors

compensate this problem using a pre-characterized look up table (LUT) to store logic

speed and interconnect speed inside different process bins. A logic and interconnect

speed monitor is then used as an input to select through the LUT control signals to

program a critical path. The block diagram is drawn in Figure 1.3.

In the previous literature, the interaction between presilicon analysis and post-silicon

measurements has been addressed in several ways. In [30], post-silicon measurements



6

Figure 1.3: Implementation diagram of adaptive voltage scaling (AVS), courtesy [29]

are used to learn a more accurate spatial correlation model to refine the SSTA frame-

work. A path-based methodology is proposed in [31] to correlate post-silicon test data

to presilicon timing analysis. In [32], a statistical gate sizing approach is presented to

optimize the binning yield. The work is extended to simultaneously consider the pres-

ence of post-silicon-tunable clock tree and statistical gate sizing in [33]. Post-silicon

debug methods and their interaction with circuit design are discussed in [34]. A joint

design-time and post-silicon tuning procedure is described in [35]. In [36], a critical path

monitor is built to monitor the critical path of the circuit as well as measuring process

variations. A path selection methodology is proposed in [37] to monitor unexpected

post-silicon systematic timing effects. However, none of these approaches can be used

to provide better post-silicon delay prediction results for ABB or AVS.

1.2 Variations in Memory Circuits

Memory performance is a critical bottleneck in the performance of high-performance

designs, and improvements on this front are typically obtained through further scaling

of the memory cells. Current microprocessors usually employ SRAMs as on-die cache

memory because of their high speed, low power, and logic process compatibility. How-

ever, conventional SRAM arrays consist of six transistors (6T) for each cell, and face

significant read and write stability problems as feature sizes continue to shrink. More-

over, in nanoscale technologies, process variations play a very significant role, and the

mismatches between neighboring devices are inversely proportional to the square root

of the area [38], driving the need for low-area solutions.
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Embedded DRAM (eDRAM) cells present a promising alternative to replace con-

ventional 6T SRAM cells for on-die caches. eDRAMs can use a standard CMOS process

and can be built on the same die as the processor, as against conventional DRAMs. An

eDRAM cell can be implemented with less than three transistors (3T), plus appropriate

low-overhead control circuits in the read path. Apart from reduced area and “keep-

alive” power, eDRAMs provide the advantage of wide read/write margins: a critical

problem in scaled 6T SRAMs has been the fighting between read/write devices and the

cross-coupled latch, but this is entirely avoided by eDRAMs.

Figure 1.4: Comparisons between a 6T SRAM cell and a 3T eDRAM cell.

Figure 1.4 shows a brief comparison of a 3T eDRAM cell with a 6T SRAM cell. The

eDRAM structure we consider is based on a “gain cell” topology that uses standard

CMOS structures, as against alternatives that use trench or MIM capacitor processes.

A number of successful eDRAM test chips have been reported [39, 40, 41]. For exam-

ple, IBM’s powerPC chips will be using eDRAMs consisting of one transistor and one

capacitor for L2 caches [42, 43]. Therefore using eDRAM as on-die cache is not only
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desirable, but also practical.

However, unlike SRAM, eDRAM needs to be refreshed after a certain time due to

the degradation of the cell voltage. Process variations further complicate the issue of

leakage and data retention. Under these variations, the cell voltage of each eDRAM cell

at a given time is not a specific number, but is at a certain value only with a certain

probability. In other words, within an eDRAM array, some cells experience more serious

signal loss than others.

While techniques exist for statistical analysis of SRAMs [44, 45, 46, 47, 48], there

is currently no existing work for eDRAM specific statistical analysis such as the cell

voltage analysis, which is one of the problems we address in this thesis.

1.3 Our Contributions

The critical path replica approach, used by current adaptive body bias techniques,

assumes that one critical path on a chip is an adequate reflection of on-chip variations. In

general, there will be multiple potential critical paths even within a single combinational

block, and there will be a large number of combinational blocks in a within-die region.

Choosing a single critical path as representative of all of these variations is impractical

and inaccurate.

In the adaptive voltage scaling work, the authors use simplified circuitry for the speed

monitor, consisting of only one logic dominated element and one interconnect dominated

element, and assume that the results are generally applicable to all parts of the circuit.

In the presence of significant within-die variations, this assumption becomes invalid.

Moreover, the approach requires substantial memory components even for process bins

of a very coarse resolution, and is not scalable to fine grids.

To address the variations problem in logic circuits, in this thesis, we will provide

smarter methodologies to aid these post-silicon optimization techniques. In order for

proper post-silicon timing optimization to be executed, we have to get an approximate

value, or a small range of the circuit delay after it is fabricated. As we illustrated,

the critical path replica is obviously not a good choice. Therefore we introduce two

novel approaches. In the first approach, we first build a few ring oscillators on chip at

different locations. After the circuit is manufactured, we measure the delays of these
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ring oscillators, and use some statistical calculations to get the delay information of the

original circuit. The result of this approach is a narrow, die-specific conditional PDF of

the circuit delay. In the second approach, we provide methods to build a Representative

Critical Path (RCP) on chip. After the circuit is fabricated, measurements of this RCP

along with a simple calculation would give the delay of the fabricated circuit, despite

the parameter variations having occurred during the manufacturing process.

To address the variations problem in memory circuits, the final part of the thesis is

devoted to statistical analysis for the cell voltage of eDRAM. We first develop analytical

models for all leakage components contributing to the cell voltage degradation, then

we feed these into the APEX PDF evaluation technique [19] to get the PDF of the

distribution up to the 99% point. Because the designers are usually more interested in

the far tails of the distribution for memory systems, we borrow ideas from the extreme

value theory (EVT) [49] to specifically fit the tail of the distribution to an exponential

distribution.

The rest of the thesis is organized as follows: Chapter 2 briefly introduces the

motivation and the development of statistical static timing analysis (SSTA). The SSTA

framework used by this work is highlighted. Chapter 3 presents our proposed scalable

technique of post-silicon delay analysis by making use of a few test structures on chip.

Methods for synthesizing RCP are discussed in Chapter 4. Chapter 6 concludes the

thesis.



Chapter 2

Statistical Static Timing Analysis

In this chapter, we will introduce the motivation and basic theory of statistical static

timing analysis (SSTA). Specifically, we will focus on the parameterized block-based

SSTA framework with Gaussian parameters and a linear delay model. This framework

is used in later chapters, and makes an essential part of the thesis.

2.1 Introduction

For feature sizes in the tens of nanometers, it is widely accepted that design tools must

take into account parameter variations during manufacturing. These considerations are

important during both circuit analysis and optimization, and are essential to ensure

adequate manufacturing yield. As is described in Chapter 1, parameter variations can

be classified into two categories: intra-die variations and inter-die variations. Inter-die

variations correspond to parameter fluctuations from one chip to another, while intra-

die variations are defined as the variations among different locations within a single die.

Intra-die variations of some parameters have been observed to be spatially correlated,

i.e., the parameters of transistors or wires that are placed close to each other on a die

are more likely to vary in a similar way than those of transistors or wires that are far

away from each other. For example, among the process parameters for a transistor, the

variations of channel length L and transistor width W are seen to have such spatial

correlation structure, while parameter variations such as the dopant concentration NA

and the oxide thickness Tox are generally considered not to be spatially correlated.

10
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There are also environmental variations such as temperature and supply voltage.

Process parameter variations have resulted in significant challenges to the con-

ventional corner-based timing analysis paradigm, and statistical static timing analysis

(SSTA) has been proposed as an alternative [4,8,9,10,11,50,51,52,53,54,55,56,57,58].

The idea of SSTA is that instead of computing the delay of the circuit as a specific num-

ber, a probability density function (PDF) of the circuit delay is determined. Designers

may use the full distribution, or the 3σ point of the PDF, to estimate and optimize

timing.

There are various kinds of SSTA techniques in the literature. In this thesis, they

are roughly categorized as follows.

• Path-based SSTA vs. block-based SSTA

Path-based methods [5, 6] try to find the PDF of the circuit delay on a path-by-

path basis, and in the end perform a single “max” operation to find the PDF of

the worst case delay of the circuit. Path-based methods are only applicable to

circuits with a small number of paths. In modern VLSI circuits, the number of

paths is exponential in the number of gates, and under process variations, any

path can be potentially the most critical one after the circuit is manufactured.

Therefore this approach is too time consuming in that case. However, path-based

approaches can provide path specific diagnosis and it also makes considering false

path much easier [4].

Block-based methods [7, 8, 9] perform a PERT-like traversal based on topological

sorting and process each gate only once during the propagation of the delay dis-

tribution. Therefore theoretically these methods are much faster. However, to get

path specific information from block-based SSTA is more complex than for critical

path method (CPM) based STA. Thesse methods also suffer from the limitations

built into topological STA methods.

• SSTA using continuous PDFs vs. using discrete PDFs

Using a continuous PDF sometimes provides the benefit that one can model the

PDF as a closed-form function, and makes computation much easier [53,54,55,56].

However, these techniques usually have to make assumptions about the PDF of

the delay which are not always realistic.
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SSTA techniques that use discrete PDFs [4,57,58] don not have to make assump-

tions about the shape of the delay PDF, thus making them more general. However,

the sum of two delay variables requires calculating the discrete convolution of the

two PDFs, and the number of terms can increase exponentially after repeated

convolution operations. In [7], a piecewise linear model of CDF is used to simplify

the calculation.

• Gaussian vs. non-Gassuan parameter variations and linear vs. non-linear delay

models for SSTA

Early SSTA work [8,54] assumes that the process parameter variations are Gaus-

sian and the delay for each gate can be approximated by a first-order Taylor series

expansion. While these assumptions are reasonable for many situations, they are

known to suffer from two limitations. First, some process parameters are known to

be non-Gaussian: for example, the via resistances exhibit an asymmetric PDF and

the dopant concentration NA is better modeled as a Poisson distribution. Second,

linear delay models are only accurate when the process variations are small. Var-

ious extensions of this model have been proposed to address these cases. Larger

variations call for higher-order approximations of the delay model. Therefore work

has been done to address a linear delay model with non-Gaussian parameter vari-

ations [10], a quadratic delay model with Gaussian parameter variations [11], and

a non-linear delay model with non-Gaussian parameter variations [12, 13]. Most

of these methods require computationally intensive numerical techniques and the

time complexity is not as good as the Gaussian and linear case.

Several representative techniques for SSTA will be introduced in the following sec-

tions.

2.2 SSTA Using Bounding Methods

As is in STA, SSTA views the circuit as a directed acyclic (DAG) timing graph. The

difference is now we are propagating PDFs instead of delay values. The PDFs for series-

connected edges with a single fanin can be processed by a convolution of the PDFs of

the individual edges, and for parallel-connected edges, the CDF of their maximum may
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be computed by taking the product of the CDFs of the incoming edges. However,

reconvergent subgraphs do not belong to either case. The work of [59,60] uses bounding

methods and selective enumeration to solve the problem. An upper bound of the timing

CDF for a reconvergent subgraph is provided by ignoring the structural correlation, and

a lower bound of the CDFs for two dependent arrival times is found by the envelope of

their CDFs using min operator on the original graph. Heuristic methods are developed

to determine whether selective enumeration is needed.

2.3 Parameterized Block-Based SSTA Considering Spatial

Correlations

The bounding methods ignore spatial correlations of the process variations. Spatial

correlation means parameters of devices and wires that are close to each other are more

likely to vary the same way than devices and wires that are far away on the same chip.

Figure 2.1 shows an example die. The process parameters of a and c are more likely to

vary the same way than process parameters of a and d due to spatial correlations.

Figure 2.1: Spatial correlations, courtesy [8]

Experiments show that ignoring spatial correlations would generate large errors for

the final PDF of the circuit delay [8]. In regard to this, efficient statistical timing

analysis tools have been developed. A grid-based spatial correlation model is widely
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used for SSTA techniques considering spatial correlations. As is shown in Figure 2.1,

in this model, perfect correlations are assumed among devices in the same grid, such

as a and b. High correlations are assigned among devices in close grids such as a and

c. For devices in far-away grids such as a and d, very low or zero correlations can

be assigned. It is also assumed that there is no correlation among different kind of

parameter variations. A covariance matrix of size n × n can be generated for each

spatially correlated parameter variation, with n being the number of grids used in the

model. It is also noted that not all parameter variations are correlated.

Such models and appropriate assumptions enable parameterized block-based SSTA

[8,9] is made possible to take into consideration both spatial and structural correlations.

As is proposed in [8], Gaussian-distributed correlated variations can be orthogonalized

using a technique called principal component analysis (PCA), which takes the covariance

matrix of the parameter variations as input, and generates the coefficients for a set of

independent principal components (PCs) for each parameter variation. In other words,

each parameter variation can be represented by a linear combination of the same set of

independent principal components. Under the assumption that all parameter variations

are Gaussian-distributed, and delay models for each circuit element can be approximated

by a first order Taylor serious expansion, a canonical form of the delay variable can be

generated for each gate and wire. This canonical form, as shown in Equation (2.1), for

each delay variable d, includes the nominal value µ, and a set of independent PCs pi

with their corresponding coefficients ai generated by PCA. Uncorrelated variations are

captured by a single independent random variable R [61].

d = µ +
m
∑

i=1

aipi + R = µ + aTp + R. (2.1)

The random variable pi corresponds to the ith principal component, and is normally

distributed, with zero mean and unit variance; principal components pi and pj for i 6= j

are uncorrelated by definition, stemming from the property of PCA. The parameter ai is

the first order coefficient of the delay variable with respect to pi. For simplicity, we refer

to p =
[

p1 p2 · · · pm

]T
∈ Rm as the PC vector and a =

[

a1 a2 · · · am

]T
∈ Rm

as the coefficient vector for the circuit.
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Equation (2.1) is general enough to incorporate both inter-die and intra-die varia-

tions. For a spatially correlated parameter, the inter-die variation can be taken into

account by adding a value σ2
inter, the variance of inter-die parameter variation, to all

entries of the covariance matrix of the intra-die variations of that parameter before per-

forming PCA. The uncorrelated component R accounts for contributions from both the

inter-die and intra-die variations of those independent parameters.

The SSTA technique then propagates this canonical form from the primary inputs

(or outputs of the launching registers) to the primary outputs (or inputs of the capturing

registers) of the circuit using a PERT-like traversal, in the same fashion of traditional

STA. During the propagation, the sum operation is straightforward because the sum

of two Gaussian random variables are still Gaussian. The max operation, on the other

hand, needs some approximations to maintain the canonical form because the maximum

of two Gaussian variables is not strictly Gaussian. Therefore techniques in [62] are

borrowed to solve the problem. In the end, the delay of whole circuit is also of the

canonical form, and its PDF can be easily obtained. The limitation of this approach

is that structural correlations of spatially uncorrelated parameters are not considered.

However, this approach successfully incorporates both inter-die and intra-die variations,

as well as both spatial and structural correlations, which is a big step forward. In the

remaining chapters of this thesis, this parameterized block-based SSTA technique is

heavily used to develop our techniques.

2.4 Other Techniques Related to SSTA

In this section some other techniques of interest related to the SSTA areas are discussed.

They complement with the SSTA technique introduced in Section 2.3 well and completes

the SSTA framework.

2.4.1 Incremental SSTA

Timing analysis usually serves as a step in the inner loop of physical synthesis and

can be called millions of times in response to changes made in the design. To make

this practical, incremental timing analysis algorithms are essential. The work in [9]

uses a similar SSTA framework as in Section 2.3, but provides many interesting points,
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including making the algorithm incremental by taking advantage of both level-limiting

and dominance-limiting properties.

2.4.2 SSTA for latch-based design

Latch-based designs are popular for high performance circuits because of the high per-

formance, low power and area savings of latches [63] as compared to edge-triggered

flip-flops. For latch-based designs, a signal is allowed to have a delay larger than the

clock period without incurring incorrect data propagation due to the time borrowing

(also called cycle stealing) property of latch. Under process variations, the advantage

of latch-based design is even more pronounced [64]. However, this poses challenges for

timing analysis because they can no longer be carried out only on the separated com-

binational blocks due to the fact that the delay in one pipeline stage depends on the

delays in the previous pipeline stage. Most existing SSTA techniques such as the one in

Section 2.3 deals with only the arrival time for combinational blocks. While the exten-

sion to edge-triggered sequential designs are straightforward, for latch-based designs it

is less obvious. In lieu to this, the work in [18] proposes an SSTA technique to evaluate

the probability that a given latch-based pipeline design violates the timing constraints

under process variations. The work in [65] takes a step further by not only considering

data delay variations but also clock skew variations. A new latch model specifically

tailored for SSTA is introduced in [17].

2.4.3 The APEX PDF evaluation technique

APEX [19] is not strictly an SSTA technique. However, it provides a useful tool to

evaluate the delay PDF if the moments the delay random variable are known or can

be easily computed, and proves very useful in our statistical analysis of eDRAM work

presented in Chapter 5. The basic idea of the APEX approach is to approximate the

PDF of a delay random variable by an impulse response of order M .

h(t) =

{

ΣM
i=1rie

qit t ≥ 0

0 t < 0
(2.2)

The residues ri and the poles qi can be determined by matching the time moments

of Equation (2.2) and the moments of delay d. The kth time moment is defined as the
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kth statistical moment multiplied by (−1)k

k! . Assume qi < 0, the kth time moment of

Equation (2.2) can be derived as a closed form of ri, qi.

mt,k =
(−1)k

k!

∫ ∞

−∞
tkh(t)dt = −ΣM

i=1

ri

qk+1
i

. (2.3)

On the other hand, if the delay random variable is of the quadratic form

d = d0 + BT∆Y + ∆YTA∆Y (2.4)

where d0 ∈ R is constant, B ∈ RM contains the first order coefficients and A ∈ RN×N

contains the second order coefficients, then the time moments of the delay variable can

be calculated, using the binomial moment evaluation method in [19], as mi for the ith

time moment. Random variables contained in ∆Y are assumed to be Gaussian and

independent. As is discussed in Section 2.3, correlated Gaussian random variables can

be orthogonalized using PCA.

There are 2M unknowns in Equation (2.2), by matching the first 2M of these two

set of moments, the following system of nonlinear equations are obtained.

−
(

r1

q1
+

r2

q2
+ · · · + rM

qM

)

= m0 = 1 (2.5)

−
(

r1

q2
1

+
r2

q2
2

+ · · · + rM

q2
M

)

= m1

...

−
(

r1

q2M
1

+
r2

q2M
2

+ · · · + rM

q2M
M

)

= m2M−1

These equations can be solved using the method provided in [66]. After we get ri and

qi, we can get the approximate PDF of d, h(t). Proper shifting of the PDF before the

calculation should be taken care of because of limitations of the impulse response form.

The corresponding CDF can be approximated by the step response

s(t) =

{

ΣM
i=1

ri

qi

(

eqit − 1
)

t ≥ 0

0 t < 0
(2.6)

It is noted that the impulse response of Equation (2.2) is only nonzero for t ≥ 0,

and is close to the origin. However, in practice the PDF can be nonzero for t < 0, or

the main body of the PDF can be very far from the origin. In such cases, appropriate
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shifting [19] of the PDF before evaluation is needed. On the other hand, if the best case

instead of the worst case is desired for the PDF, a reverse evaluation scheme should be

applied [19].

We would like to point out that all techniques introduced in this section can be

implemented on top of the parameterized block-based SSTA technique in Section 2.3

to form a more complete SSTA framework. For example, it can be modified to be

incremental, can serve as the arrival time calculation part in a latch-based design, and

in [10], the authors employed the APEX method, used independent component analysis

(ICA) to replace PCA as the pre-processing step because ICA can handle non-Gaussian

random variables, and extended the SSTA technique to take into consideration non-

Gaussian parameter variations.

The SSTA framework in Section 2.3 is extensively used in Chapter 3 and Chapter

4, and the APEX technique is employed in Chapter 5.

2.5 Taking Advantage of Spatial Correlations

Spatial correlations of parameter variations have been considered as a challenge in pre-

silicon techniques such as SSTA until the arrival of parameterized methods. SSTA

methods ignoring spatial correlations usually results in a PDF with smaller variance

than the realistic case, as is shown in [8], because ignoring spatial correlations can re-

sult in unrealistic cancellations among different random variables. However, from the

perspective of post-silicon analysis, which we will discuss in detail in the remainder of

this thesis, the presence of spatial correlations can be exploited to generate delay infor-

mation of a particular chip based on some kind of test structure built on it, whether

it be a set of ring oscillators (RO) discussed in Chapter 3, or a representative critical

path (RCP) discussed in Chapter 4. More specifically, because of spatial correlations,

the parameter variations for the test structure on a chip are correlated with those of

the gates near them. For the specific case where only inter-die variations are seen,

and no intra-die variations exist, or in other words, the parameter variations are fully

correlated spatially, then the parameter variations of a test structure anywhere on a

chip are identical to those of the original circuit to be tested. The presence of intra-die

variations creates some challenges: the parameter variations of the test structure may
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now be correlated with, but not identical to, those in the original circuit. In such a case,

a test structures may not reveal the characteristics of the whole original chip, but it can

reveal some characteristics for the devices nearby. In order to get desired information

of the delay of the original circuit, we either have to use a number of test structures as

in Chapter 3, or we can create a dedicated critical path on our own as in Chapter 4.



Chapter 3

Post-Silicon Statistical Delay

Analysis

While SSTA has an important role to play in the process of circuit analysis and opti-

mization, it is equally important to develop die-specific delay prediction techniques using

post-silicon measurements. In this chapter, we present a novel method for post-silicon

delay analysis. We gather data from a small number of on-chip test structures, and

combine this information with presilicon statistical timing analysis to obtain narrow,

die-specific, timing probability density function (PDF). Experimental results show that

for the benchmark suite being considered, taking all parameter variations into consid-

eration, our approach can obtain a PDF whose standard deviation is 79.0% smaller, on

average, than the statistical timing analysis result. The accuracy of the method defined

by our metric is 99.6% compared to Monte Carlo simulation. The approach is scalable

to smaller test structure overheads and can still produce acceptable results.

3.1 Introduction

As is discussed in Chapter 1, SSTA is a presilicon analysis technique used to deter-

mine the range of performance (delay or power) variations over a large population of

dies. Because it has to be generally applicable to the entire population of manufactured

chips, its result will show a relatively large standard deviation for the delay. On the

other hand, post-silicon diagnosis, directed toward determining the performance of an

20
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individual fabricated chip based on measurements on that chip, can be expected to

provide more specific information. However, full chip testing is not an option to do this

since tester time is generally prohibitively expensive. Efficiency in post-silicon measure-

ment demands the need to get maximum information based on as few measurements as

possible.

In previous literature, the interaction between presilicon analysis and post-silicon

measurements has been addressed in several ways. In [30], post-silicon measurements

are used to learn a more accurate spatial correlation model, which is fed back to the

analysis stage to refine the statistical timing analysis framework. In [31], a path-based

methodology is used for correlating post-silicon test data to presilicon timing analysis.

In [32], a statistical gate sizing approach is studied to optimize the binning yield. Post-

silicon debug methods and their interaction with circuit design are discussed in [34].

The method that we present in this chapter differs from these in terms of its goals.

Our approach forms a framework for post-silicon statistical delay prediction: the role

of this step is seated between presilicon SSTA and post-silicon full chip testing. We

combine the results of presilicon SSTA for the circuit with the result of a small number

of post-silicon measurements on an individual manufactured die to estimate the delay

of that particular die.

Given the original circuit whose delay is to be estimated, the primary idea is to

determine information from specific on-chip test structures to narrow the range of the

performance distribution substantially; for purposes of illustration, we will consider

delay to be the performance metric in this work. In particular, we gather information

from a small set of test structures such as ring oscillators (ROs), distributed over the

area of the chip, to capture the variations of spatially correlated parameters over the

die. The physical sizes of the test structures are small enough that it is safe to assume

that they can be incorporated into the circuit using reserved space that may be left for

buffer insertion, decap insertion, etc. without significantly perturbing the layout. To

illustrate the main idea, we show a die in Figure 3.1, whose area is gridded1 into spatial

correlation regions. Figure 3.1(a) and 3.1(b) show two cases where test structures are

inserted on the die: the two differ only in the number and the locations of these test

1 For simplicity, we will assume in this example that the spatial correlation regions for all parameters
are the same, although the idea is valid, albeit with an uglier picture, if this is not the case.
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structures. Figure 3.2 shows a sample test structure consisting of a 3-stage RO; however,

in practice, the number of stages in this structure may be larger, and these trade-offs

are explored in Section 3.6. The data gathered from the test structures in Figures 3.1(a)

and 3.1(b) are used in this chapter to determine a new PDF for the delay of the original

circuit, conditioned on this data. This has significantly smaller variance than the result

of SSTA, as is illustrated in Figure 3.3; detailed experimental results are available in

Section 3.7.

=RO

(a)

=RO

(b)

Figure 3.1: Two different placements of test structures under the grid spatial correlation
model.

RO

Figure 3.2: An example of a test structure: A three-stage ring oscillator.

The plots in Figure 3.3 may be interpreted as follows. When no test structures are

used and no post-silicon measurements are performed, the PDF of the original circuit

is the same as that computed by SSTA. When 5 ROs are used, a tighter spread is seen

for the PDF, and the mean shifts towards the actual frequency for the die. This spread

becomes tighter still when 10 ROs are used. In other words, as the number of test

structures is increased, more information can be derived about variations on the die,

and its delay PDF can be predicted with greater confidence: the standard deviation

of the PDF from SSTA is always an upper bound on the standard deviation of this

new delay PDF. In other words, by using more or fewer test structures, the approach is
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Figure 3.3: Reduced-variance PDFs, obtained from statistical delay prediction, using
data gathered from the test structures in Figure 3.1.

scalable in terms of statistical confidence.

As is opposed to the critical path replica approach described in 1 which is generally

not applicable when a large amount of intra-die variations are present, our approach

implicitly considers the effects of all paths in a circuit (without enumerating them, of

course), and provides a PDF that concretely takes spatially correlated and uncorrelated

parameters into account to narrow the variance of the sample, and has no preconceived

notions, prior to fabrication, as to which path will be critical. The 3σ or 6σ point of

this PDF may be used to determine the correct body bias value that compensates for

process variations. Temperature variations may be compensated for separately using

temperature sensors, for example, as in [67].

The remainder of this chapter is organized as follows. Section 3.2 abstracts the

physical problem into a mathematical formulation. Next, Sections 3.3 through 3.5

introduce our approach in detail and outline its limitations. Section 3.6 then discusses

the impact of changing the number of stages in the RO test structures on the quality

of the results. Experimental results are shown in Section 3.7, followed by concluding

remarks in Section 3.8.
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3.2 Problem Formulation

We assume that the circuit undergoes SSTA prior to manufacturing, and that the ran-

dom variable that represents the maximum delay of the original circuit is d. Fur-

ther, if the number of test structures placed on the chip is n, we define a delay vector

dt =
[

dt,1 dt,2 · · · dt,n

]T
for the test structures, where dt,i is the random variable

(over all manufactured chips) corresponding to the delay of the ith test structure.

For a particular fabricated die, the delay of the original circuit and the test struc-

tures correspond, respectively, to one sample of the underlying process parameters,

which results in a specific value of d and of dt. After manufacturing, measurements are

performed on the test structures to determine the sample of dt, which we call the result

vector dr =
[

dr,1 dr,2 · · · dr,n

]T
. This corresponds to a small set of measurements

that can be performed rapidly. The objective of our work is to develop techniques that

permit these measurements to be used to predict the corresponding sample of d on

the same die. In other words, we define the problem of post-silicon statistical delay

prediction as finding the conditional PDF given by f(d|dt = dr).

In the ideal case, given enough test structures, we can estimate the delay of the

original circuit with very little variance by measuring these test structures. However,

practical constraints limit the overhead of the added test structures (such as area,

power, and test time) so that the number of these structures cannot be arbitrarily large.

Moreover, as stated in Section 2.5, our method is made possible by spatial correlations of

parameter variations at different locations. However, the variations in some parameters,

such as Tox and NA, are widely believed to show no spatial correlation structure at

all. Test structures are inherently not capable of capturing any such variations in the

original circuit (beyond the overall statistics that are available to the SSTA engine):

these parameters can vary from one device to the next, and thus, variations in the test

circuit are totally independent of any variations in the original circuit, but even under

these limitations, any method that can narrow down the variational range of the original

circuit through a few test measurements is of immense practical use.

We develop a method that robustly accounts for the aforementioned limitations by

providing a conditional PDF of the delay of the original circuit with insufficient number

of test structures and/or purely random variations. In the case when the original circuit
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delay can actually be computed as a fixed value, the conditional PDF is an impulse

function with mean equal to the delay of the original circuit and zero variance. The

variance becomes larger with fewer test structures, and shows a graceful degradation in

this regard. We include all of these in a single generalized framework and automatically

take each case into consideration.

3.3 Statistical Delay Prediction

3.3.1 SSTA Revisited

We use the SSTA technique provided in Section 2.3. The m PCs affect the statistical

distribution of both the original circuit and the test structures on the same chip, and

the canonical form for the delay of the original circuit is rewritten as:

d = µ +
m
∑

i=1

aipi + R = µ + aTp + R, (3.1)

where all notations are the same as defined for Equation (2.1) in Section 2.3. Here we

use them for the original circuit.

In a similar manner, the delay of the ith of the n test structures can also be repre-

sented in the canonical form as:

dt,i = µt,i + aT
t,ip + Rt,i. (3.2)

The meanings of all variables are inherited from Equation (3.1).

We define µt ∈ Rn as the mean vector, Rt ∈ Rn as the independent parameter

vector, and At ∈ Rm×n as the coefficient matrix of the test structures, respectively,

where

µt =
[

µt,1 µt,2 · · · µt,n

]T

Rt =
[

Rt,1 Rt,2 · · · Rt,n

]T

At =
[

at,1 at,2 · · · at,n

]

. (3.3)

We can then stack the delay equations of all of the test structures into a matrix

form.

dt = µt + AT
t p + Rt (3.4)
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where dt is defined in Section 3.2.

To illustrate the procedure more clearly and in an easier way, we will first assume,

in the remainder of this section and in Section 3.4, that the spatially uncorrelated

parameters can be ignored, i.e., R = 0 and Rt = 0. We will relax this assumption later

in Section 3.5, and introduce the extension of the method to include those parameters.

The variance of the Gaussian variable d and the covariance matrix of the multivariate

normal variable dt can be conveniently calculated as:

σ2 = aTa (3.5a)

Σt = AT
t At. (3.5b)

3.3.2 Conditional PDF Evaluation

The objective of our approach is to find the conditional PDF of the delay, d, of the

original circuit, given the vector of delay values, dr. The values of dr are measured

from the test structures after the circuit is manufactured, corresponding to one set of

samples of dt. We first introduce a theorem below; a sketch of the proof of the theorem

can be found in [68].

Theorem 3.3.1 Consider a Gaussian-distributed vector

[

X1

X2

]

with mean µ and a non-

singular covariance matrix Σ. Let us define X1 ∼ N(µ1,Σ11), X2 ∼ N(µ2,Σ22). If µ

and Σ are partitioned as follows,

µ =

[

µ1

µ2

]

and Σ =

[

Σ11 Σ12

Σ21 Σ22

]

, (3.6)

then the distribution of X1 conditional on X2 = x is multivariate normal, and its mean

and covariance matrix are given by

X1|(X2 = x) ∼ N(µ̄, Σ̄) (3.7a)

µ̄ = µ1 + Σ12Σ
−1
22 (x − µ2) (3.7b)

Σ̄ = Σ11 − Σ12Σ
−1
22 Σ21. (3.7c)

It can be shown that our problem can be mapped directly to the theorem. We refer

to X1 the original subspace, and X2 the test subspace. By stacking d and dt together,
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a new vector dall =
[

d dT
t

]T
is formed, with the original subspace containing only one

variable d and the test subspace containing the vector dt. The random vector dall is

multivariate Gaussian-distributed, with its mean and covariance matrix given by:

µall =

[

µ

µt

]

and Σall =

[

σ2 aTAt

AT
t a Σt

]

. (3.8)

We may then apply the result of Theorem 3.3.1 to obtain the conditional PDF of d, given

the delay information from the test structures. We know the conditional distribution of

d is Gaussian, and its mean and variance can be obtained as:

PDF(dcond) = PDF (d|(dt = dr)) ∼ N(µ̄, σ̄2) (3.9a)

µ̄ = µ + aTAtΣ
−1
t (dr − µt) (3.9b)

σ̄2 = σ2 − aTAtΣ
−1
t AT

t a. (3.9c)

3.3.3 Interpretation of the Conditional PDF

In this section, we analyze the information provided by the equations that represent

the conditional PDF. From equations (3.9b) and (3.9c), we conclude that while the

conditional mean of the original circuit is adjusted making use of the result vector dr,

the conditional variance is independent of the measured delay values, dr.

Examining Equation (3.9c) more closely, we see that for a given circuit, the variance

of its delay before measuring the test structures, σ2, and the coefficient vector a are

fixed and can be obtained from SSTA. The only variable that is affected by the test

mechanism is the coefficient matrix of the test structures, At, which also impacts Σt.

Therefore, the value of the conditional variance can be modified by adjusting the matrix

At. We know that At is the coefficient matrix formed by the sensitivities with respect

to the principal components of the test structures. The size of At is determined by the

number of test structures on the chip, and the entry values of At is related to the type

of the test structures and their locations on the chip. Therefore if we use the same type

of test structures on the circuit, then by varying their number and locations, we can

modify the matrix At, hence adjust the value of the conditional variance. Intuitively, this

implies that the value of the conditional variance depends on how many test structures

we have, and how well the test structures are distributed, in the sense of capturing

spatial correlations between variables.
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In our problem, AT
t ∈ Rn×m, where n is the number of test structures on chip, and

m is the number of principal components. In the grid-based spatial correlation model,

a large circuit usually has many grids, hence many principal components, whereas the

number of test structures we can put on chip is limited by several factors mentioned in

Section 3.2. Therefore n is usually less than m. Theorem 3.3.1 assumes that Σt = AT
t At

is of full rank and has an inverse, which means AT
t must have full row rank. Detailed

discussion about the ranks of AT
t and Σt can be found in Section 3.4. For the present,

we will assume that AT
t is of full row rank.

Based on this assumption, consider the special case when m = n; in other words,

that the number of test structures is identical to the number of PCA components.

Intuitively, this means that we have independent data points that can predict the value

of each of these components. In this case, At is a square matrix with full rank and has

an inverse A−1
t . Substituting Σ−1

t = (AT
t At)

−1 = A−1
t (AT

t )−1 into Equation (3.9b),

µ̄ = µ + aTAtΣ
−1
t (dr − µt)

= µ + aT (AT
t )−1(dr − µt). (3.10)

It is interesting to note that the term (AT
t )−1(dr − µt) is the solution of the linear

equations

dt = µt + AT
t p = dr (3.11)

with p as the set of unknowns. Therefore, Equation (3.10) is equivalent to first solving

p from linear equations (3.11), then substituting its value into Equation (2.1) (with

uncorrelated parameters disregarded for now) to find d. We can see that in this case,

σ̄2 = σ2 − aTAtΣ
−1
t AT

t a

= σ2 − aTAtA
−1
t (AT

t )−1AT
t a

= σ2 − aTa

= 0. (3.12)

Thus the derived PDF is an impulse function with the mean equal to the original circuit

delay and the variance equal to zero, and Equation (3.9) automatically takes the special

case of m = n into consideration.

We end this section by pointing out that an equivalent way of looking at the problem

is to first stack the PC vector p and the delay vector dt together, referring to p as the
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original subspace, and dt as the test subspace. From this, we obtain the conditional

distribution of p, using Theorem 3.3.1, as:

PDF(pcond) = PDF (p|(dt = dr)) ∼ N(µ̄p, Σ̄p) (3.13a)

µ̄p = AtΣ
−1
t (dr − µt) (3.13b)

Σ̄p = I − AtΣ
−1
t AT

t (3.13c)

where I represents the identity matrix, which is the unconditional covariance matrix of

p. The result (3.13) tells us that given the condition dt = dr, the mean and covariance

matrix of pcond are no longer 0 and I. In other words, the entries in pcond can no longer

be perceived as principal components. Due to the linear relationship between pcond and

the process parameter variations, we are in fact gaining information on the parameter

variations inside each grid.

According to Theorem 3.3.1, pcond remains Gaussian distributed. Because dcond has

a linear relationship with pcond, dcond is also Gaussian-distributed. Since a is fixed for

a given circuit, the conditional mean and variance of d can be calculated as:

µ̄ = µ + aTE(pcond) = µ + aTAtΣ
−1
t (dr − µt)

σ̄2 = E(µ + aTpcond − (µ + aT
µ̄p))2

= aTE((pcond − µ̄p)(pcond − µ̄p)T )a

= aT (I − AtΣ
−1
t AT

t )a

= σ2 − aTAtΣ
−1
t AT

t a (3.14)

Not surprisingly, this end result is exactly the same as (3.9). However, dividing the

derivation into two steps, as we have done here, provides additional insight into the

problem.

3.4 Locally Redundant but Globally Insufficient Test Struc-

tures

In practice, correlation matrices tend to be sparse since the spatial density of correlation

goes up to a limited radius. As a consequence, it is found that a number of entries of
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each row of AT
t are zero for typical correlation matrices. For such a scenario, it is

possible that we place too many test structures that collectively capture only a small

portion of PCs, with the coefficients of other PCs being all zeros. In other words, in

some portion of the chip, the number of test structures may exceed the number of PCs

with nonzero coefficients, but overall there are not enough test structures to actually

compute the delay of the original circuit. We refer to this as a locally redundant but

globally insufficient problem.

We show below that in such a scenario Σt would be rank deficient. While this

problem can be overcome by appropriate placement of the test structures, the placement

of these structures is beyond the scope of this chapter: we assume that this has been

done by the designer, and that it is provided as an input to our problem. Instead, we

provide a general solution to take the locally redundant but globally insufficient problem

into consideration during the evaluation of the conditional distribution. Our approach

groups the redundant equations together and use a least-squares approach to capture

the information. With locally redundant but globally insufficient test structures, the

matrix AT
t has the following structure after grouping all the zero coefficients together:

AT
t =

[

B11 0

B21 B22

]

(3.15)

where B11 ∈ Rs×q, with s being the number of test structures that have all-zero coeffi-

cients for the last n − q principal components, and s > q, which means we have locally

redundant test structures for these q principal components. Since we have prohibited

two test structures with the same configurations from being placed in one grid, B11 must

be of full column rank with rank q. Therefore, the maximum rank of AT
t is q + n − s,

less than n, so Σt also has a rank less than n and is singular. In this case, Equation

(3.11) can be divided into two sets of equations:

B11pu = dr,u − µr,u (3.16)

B21pu + B22pv = dr,v − µr,v (3.17)

where pu, pv, dr,u, dr,v, µr,u, µr,v are sub-vectors of the PC vector p, the result vector

dr, and the mean vector µt, correspondingly. Note that B11 is not square, and Equation

(3.16) is an over-determined system. This can be solved in several ways, and we take
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the least-squares solution as its equivalence.

p̄u = (BT
11B11)

−1BT
11 (dr,u − µr,u) (3.18)

Under conditions (3.18) as well as (3.17), the conditional PDF of d can be computed as

follows.

PDF(dcond) = PDF(d|dt = dr)

= PDF(d|pu = p̄u,B21p̄u + B22pv = dr,v − µr,v)

(3.19)

This step is safe because Equation (3.16) does not provide any information for pv.

The statistical properties of pv have not been changed, meaning they can still act

as PCs. Assume au is the sub-vector of a corresponding to pu, and av is the sub-

vector corresponding to pv, then d = µ + aT
u p̄u + aT

v pv. The mean, variance of d

and B21p̄u + B22pv, and their covariance can be easily updated. The same technique

introduced in Section 3.3 can be applied to calculate the final conditional PDF of d.

Special cases include when q = m, in which case we can compute all the PCs and

the delay of the original circuit by applying least-squares approach to the whole system,

and when s = n, in which case we cannot get any information on pv and they will still

be uncorrelated Gaussian with zero mean and unit variance in the end.

3.5 Spatially Uncorrelated Parameters

In Section 3.3, we had developed a theory for determining the conditional distribution

of the delay, d, of the original circuit, under the data vector, dr, provided by the test

structures. This derivation neglected the random variables R and Rt in the canonical

form of Equation (2.1) and (3.4), corresponding to spatially uncorrelated variations.

We now extend this theory to include such effects, which may arise due to parameters

such as Tox and NA that can take on a different and spatially uncorrelated value for

each transistor in the layout. While these parameters can show both inter-die and intra-

die variations, because the inter-die variation of each such parameter can be regarded

as a PC and easily incorporated in the procedure of Section 3.3, we hereby focus on
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the intra-die variations of these parameters, i.e., the purely random part. Thus, R is

the random variable generated by merging the intra-die variations for each gate during

traversal of the whole circuit [61], with mean 0 and variance σ2
R. Considering this effect,

the variance of the original circuit is adjusted to be

σ′2 = aTa + σ2
R. (3.20)

The covariance matrix of the test structures must also be updated as follows:

Σ′
t = AT

t At + diag[σ2
Rt,1

, σ2
Rt,2

, · · · , σ2
Rt,n

]. (3.21)

The same kind of technique from Section 3.3 can still be applied. However, in this

case, due to the diagonal matrix added to Σt, σ̄ is never equal to zero, meaning that

we can never compute the actual delay of the original circuit, which is a fundamental

limitation of any testing-based diagnosis method. Any such strategy is naturally limited

to spatially correlated parameters. The values of uncorrelated parameters in the original

circuit cannot be accurately replicated in the test structures: these values may change

from one device to the next, and therefore, their values in a test structure cannot

perfectly capture their values in the original circuit.

3.6 Changing the Number of Stages in the ROs

In Section 3.5, it is shown that spatially uncorrelated parameter variations impose a

challenge for our method, since it is physically impossible for a test structure to capture

uncorrelated variations. However, it is possible to dilute the effects of uncorrelated

variations, and to overcome this problem, an intuitive idea is to increase the number of

stages of the RO test structures.

The essential idea of increasing the number of stages is that it leaves the spatially

correlated variations unchanged: since each RO is small and lies within a spatial cor-

relation grid, all spatially correlated parameters that affect its delay show identical

variations. However, variations for spatially uncorrelated parameters may be in op-

posite directions and thus increasing the number of stages increases the likelihood of

cancellations, implying that spatially uncorrelated parameters are likely to become rel-

atively less important. In other words, this implies that the delay of each RO as a

variable will be more correlated to the delay of the original circuit.
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On the other hand, while increasing the number of stages of the ROs increases the

correlation coefficient between the delays of the RO and the original circuit, it also makes

the delays of the ROs more correlated with each other. This suggests that the RO test

structures may collectively yield less independent information about the variations.

There is a clear trade-off here, and in this section, we illustrate the above qualitative

argument from a more rigid, mathematical perspective, and present it in a quantitative

way. We will show in Section 3.7 that for our implementation, increasing the number

of stages does indeed yield better estimations of the post-silicon delay.

As stated in Section 3.3, the delay of the original circuit can be written in the

canonical form of Equation (2.1). We rewrite the equation below.

d = µ +

m
∑

i=1

aipi + R = µ + aTp + R. (3.22)

Similarly, the delay of RO i can be written in the form of Equation (3.2), which is

dt,i = µt,i + aT
t,ip + Rt,i. (3.23)

First, if we assume that there is only one RO i on the chip, Equation (3.9c) becomes

σ̄2 = σ2 −
aTat,ia

T
t,ia

σ2
t,i

= σ2
(

1 − ρ2
i

)

. (3.24)

where ρi is the correlation coefficient between the delay of the original circuit and the

delay of RO i. It is obvious that in this case, the result only depends on ρi.

Second, we explain how the number of stages affects the value of ρi, so that we can

observe clearly how the number of stages affects our results. Let us assume that RO i

has k stages, and for purposes of illustration, we will assume that each stage of the RO

is identical, with a canonical delay of the form αi +
∑m

j=1 γijpj + ζi = αi + Γip + ζi.

The half-period of RO i, which is a surrogate for its delay, is therefore given by

dt,i = kαi + kΓip +
√

kζi (3.25)

From Equation (3.21) in Section 3.5, the variance of the delay of RO i can be written

as

σ2
t,i = k2ΓT

i Γi + kζ2
i . (3.26)
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The correlation coefficient between RO i and the original circuit can thus can be calcu-

lated from the relation:

ρ2
i =

k2aTΓiΓ
T
i a

σ2
(

k2ΓT
i Γi + kζ2

i

) =
aTΓiΓ

T
i a

σ2
(

ΓT
i Γi + 1

kσ2
r

) . (3.27)

It is easy to see that as k increases, the correlation coefficient between RO i and

the original circuit increases, implying that the conditional variance of the delay of

the original circuit decreases. Therefore, we have more specific information about the

delay of the original circuit. This is in accordance with the intuition that increasing the

number of stages in the RO helps in reducing the effect of the spatially uncorrelated

parameters.

Third, we illustrate the fact that as the number of stages increases, the ROs can

become more correlated with each other and might not give as much information col-

lectively. To see this, we consider the delays of two ROs dt,1 and dt,2. If we assume that

each has k stages, then

dt,1 = kα1 + kΓT
1 p +

√
kζ1 (3.28)

dt,2 = kα2 + kΓT
2 p +

√
kζ2. (3.29)

The correlation coefficient between the two can be calculated as

ρ1,2 =
k2ΓT

1 Γ2
(

k2ΓT
1 Γ1 + kζ2

1

) (

k2ΓT
2 Γ2 + kζ2

2

)

=
ΓT

1 Γ2
(

ΓT
1 Γ1 + 1

k ζ2
1

) (

ΓT
2 Γ2 + 1

k ζ2
2

) . (3.30)

It is easily observed that as k increases, the correlation coefficient between the delays

of the two ROs increases.

The conditional variance of the delay of the original circuit can be calculated based

on the testing results of the delays of these two ROs, using Equation (3.9c), as

σ̄2 = σ2 − aT
[

at,1 at,2

]

[

σ2
t,1 aT

t,1at,2

aT
t,2at,1 σ2

t,2

]−1 [

aT
t,1

aT
t,2

]

a

= σ2

(

1 − ρ2
1 + ρ2

2 − 2ρ1ρ2ρ1,2

1 − ρ2
1,2

)

(3.31)
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This result confirms our intuition that the conditional variance of the delay of the

original circuit is not only dependent upon the correlation coefficient between the delay

of the original circuit and the delay of each RO (ρ1,ρ2), but also dependent upon the

correlation coefficient between the two ROs (ρ1,2).

To see the effect of k on the conditional variance more clearly, we write the above

equation as

σ̄2 = σ2 − C2
1

(

V2 + 1
k ζ2

2

)

− C2
2

(

V1 + 1
kζ2

1

)

+ 2C1C2Γ
T
1 Γ2

(

V2 + 1
k ζ2

2

) (

V1 + 1
kζ2

1

)

−
(

ΓT
1 Γ2

)2 (3.32)

where Ci = aTΓi and Vi = ΓT
i Γi are not dependent on k. As k increases, both the

numerator and the denominator decrease, the function is not guaranteed to be mono-

tonic with respect to k. Therefore theoretically increasing the number of stages does

not necessarily reduce the conditional variance of the delay of the original circuit we

can get. We demonstrate in Section 3.7 that for the practical test cases that we study,

the results lie within a monotone decreasing region with respect to k.

3.7 Experimental Results

We summarize the proposed post-silicon statistical delay prediction approach as Algo-

rithm 1.

Algorithm 1 Post-silicon statistical delay prediction.

1: Perform SSTA on both the original circuit and the test structures to determine µ,
a, µt, At, and σR, σRt,1, · · · , σRt,n .

2: After fabrication, test the delay of the test structures on-chip to obtain dr.
3: Compute the conditional mean µ̄ and variance σ̄2 for the original circuit using the

expressions in Equation (3.9).

We use the software package MinnSSTA [8] to perform SSTA, and use Monte Carlo

methods to test our approach. The original circuits correspond to the ISCAS89 bench-

mark suite, and each test structure is assumed to be a RO. Specifically, the RO used in

our experiments has three stages for the first set of experiments and five stages there-

after. Section 3.6, combined with simulation later in this section, shows that increasing

the number of stages can compensate for the effects of spatially uncorrelated parameter

variations in practice.
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A grid-based spatial correlation model [6] is used to compute the covariance matrix

for each spatially correlated parameter. Under this model, if the number of grids is G,

and the number of spatially correlated parameters being considered is P , then the total

number of principal components is no more than P · G. The parameters that are con-

sidered as sources of spatially correlated variations include the effective channel length

L, the transistor width W , the interconnect width Wint, the interconnect thickness Tint

and the inter-layer dielectric HILD. The dopant concentration, NA, is regarded as the

source of spatially uncorrelated variations. For interconnects, instead of two metal tiers

used in [69], we use four metal tiers (corresponding to two horizontal and two vertical

layers). Parameters of different metal tiers are assumed to be uncorrelated.

Table 3.1 lists the level of parameter variations assumed in this work. The process

parameters are Gaussian-distributed, and their mean and 3σ values are shown in the

table. For each parameter, half of the variational contribution is assumed to be from

inter-die variations and half from intra-die variations. We assume this variation model

is accurate in our simulation. In practice the model should be tailored according to

manufacturing data.

Table 3.1: Parameters used in the experiments.
L W Wint Tint HILD NA

nmos/pmos
(nm) (nm) (nm) (nm) (nm) (1017cm−3)

µ 60.0 150.0 150.0 500.0 300.0 9.7/10.04

3σ 12.0 22.5 30.0 75.0 45.0 1.45

In the first set of experiments, only one variation is taken into consideration in the

Monte Carlo analysis: in this case, we consider the effective channel length L, which

we observe to be the dominant component of intra-die variations. Under the grid-based

correlation model, there will only be G independent variation sources in this case, and

by providing G test structures, we can use the techniques in Section 3.3 to calculate the

delay of the original circuit.

The result is shown as a scatter plot in Figure 3.4. The method is applied to 1000

chips: we simulate this by performing 1000 Monte Carlo simulations on each benchmark,
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each corresponding to a different set of parameter values. For each of these values, we

compute the deterministic delays of the test structures2 and the original circuit: we use

the former as inputs to our approach, and compare the delay from our statistical delay

prediction method with the latter. The fact that all of the points lie closely around the

y = x line indicates that the circuit delays predicted by our approach matches very well

with the Monte Carlo simulation results.
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Figure 3.4: The scatter plot: real circuit delay vs. predicted circuit delay.

The precise testing error for each benchmark is listed in Table 3.2. If we denote the

delay of the original circuit at a sample point as dorig and the delay of the original circuit,

as predicted by our statistical delay prediction approach, as dpred, the test error for each

simulation is defined as
|dorig−dpred|

dorig
× 100%. The second column of the table shows the

average test error, based on all 1000 sample points, which indicates the overall aggregate

accuracy: this is seen to be well below 1% in almost all cases. The third column shows

the maximum deviation from the mean value of statistical timing over all 1000 sample

points, as a fraction of the mean. The test error at this point is shown in the fourth

column of the table. These two columns indicate that the results are accurate even

when the sampled delay is very different from the mean value.

Note that in theory, according to the discussion in Section 3.3, when one test struc-

ture is placed in each variational grid, the prediction should be perfect. However, some

2 Because of the way in which these values are computed in our experimental setup, variations in
the test structure delays are only caused by random variations. In practice, the measured test structure
delays will consist of deterministic variations, random variations, and measurement noise. It is assumed
here that standard methods can be used to filter out the effects of the first and the third factor.
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Table 3.2: Test errors considering only variations in L.
Benchmark Average Maximum Error at

Error Deviation Maximum
(% of mean) Deviation

s1196 0.18% 24.2% 0.20%

s5378 0.58% 25.7% 0.02%

s9234 0.35% 22.7% 0.50%

s13207 0.09% 25.2% 0.51%

s15850 0.25% 26.1% 0.47%

s35932 1.31% 22.4% 1.01%

s38584 0.10% 27.5% 0.69%

s38417 0.09% 27.4% 0.58%

inaccuracies creep in during SSTA, primarily due to the error in approximating the max

operation in SSTA, during which the the distribution of the maximum of two Gaussians,

which is a non-Gaussian, is approximated as a Gaussian to maintain the invariant. For

circuits like s35932, which show the largest average error among this set, of under 2%,

the canonical form (2.1) is not perfectly accurate in modeling the circuit delay. Note that

our experimental setup is based on simulation, and does not include any measurement

noise.

For the unoptimized ISCAS89 benchmark suite, one or a small number of critical

paths tend to dominate the circuit, which is unrealistic. However, s35932 is an excep-

tion and thus is used to compare our approach with the critical path replica approach

currently used in ABB. We assume that in the critical path approach the whole criti-

cal path for the nominal design can be perfectly replicated, and compare the delay of

that path and the delay of the whole circuit during the Monte Carlo simulation. It

is observed that the critical path replica can show a maximum error of 15.5%, while

our approach has a maximum error of 6.92%, an improvement of more than 50%. The

average error of critical path replica for this circuit is 1.92%, also significantly larger

than our result of 1.31%.

To show the confidence scalability of our approach, in the second set of experiments,

we consider cases in which the number of test structures is insufficient to completely

predict the delay of the original circuit. In this experiment, different numbers of test
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Table 3.3: Prediction results with insufficient number of test structures (considering L):
case 1 and case 2 are distinguished by the number of ROs available for each circuit.

Benchmark SSTA Results Case 1 Case 2

Name #Cells #Grids µ(ps) σ(ps) #RO
Avg. Avg.

#RO
Avg. Avg.

σ̄(ps) σreduction σ̄(ps) σreduction

s1196 547 16 577.06 35.32 10 6.48 81.64% 5 11.97 66.1%
s5378 2958 16 475.97 29.84 10 5.96 80.02% 5 10.77 63.9%
s9234 5825 16 775.36 51.51 10 9.50 81.55% 5 18.85 63.4%
s13207 8260 256 1399.8 92.81 150 9.63 89.62% 60 18.56 80.0%
s15850 10369 256 1573.7 100.48 150 8.25 91.79% 60 16.88 83.2%
s35932 17793 256 1359.5 82.17 150 11.08 86.52% 60 27.69 66.3%
s38584 20705 256 1994.0 120.83 150 16.54 86.31% 60 29.96 75.2%
s38417 23815 256 1139.8 76.38 150 9.40 87.69% 60 17.87 76.6%

structures are implanted on the die. Specifically, for circuits divided into 16 grids, we

investigate Case 1, when 10 test structures and Case 2, when 5 test structures are

available.

For circuits where the die is divided into 256 grids, Case 1 corresponds to a die

with 150 test structures, and Case 2 to 60 test structures. To show how much more

information than SSTA we get from the test structures, we define σreduction as σ−σ̄
σ ×

100% which is independent of the test results but is dependent on how the available test

structures are placed on the chip. To be as general as possible, we perform 1000 random

selections of the grids to put test structures in. The µ, σ of the original circuit, obtained

from SSTA, and the average σ̄, σreduction of the statistical delay prediction approach for

both cases, over the 1000 selections, are listed in Table 3.3 for each benchmark circuit.

It is observed that there is a trade-off between test structure overhead and σreduction.

Figure 3.5 shows the predicted delay distribution for a typical sample of the circuit

s38417, the largest circuit in the benchmark suite. Each curve in the circuit corresponds

to a different number of test structures, and it is clearly seen that even when the number

of test structures is less than G, a sharp PDF of the original circuit delay can still be

obtained using our method, with a variance much smaller than provided by SSTA.

The trade-off between the number of test structures and the reduction in the standard

deviation can also be observed clearly. For this particular die, while SSTA can only

assert that it can meet a 1400 ps delay requirement, using 150 test structures we can

say with more than 99.7% confidence that the fabricated chip meets a 1040 ps delay
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Figure 3.5: PDF and CDF with insufficient number of test structures for circuit s38417
(considering L).

requirement, and using 60 test structures we can say with such confidence that it can

meet a 1080 ps delay requirement.

In our third set of experiments, we consider the most general case in which all

parameter variations are included. While the first two sets of experiments provided

general insight into our method, this third set shows the result of applying it to real

circuits under the full set of parameter variations listed in Table 3.1. In Case I of this

set of experiments, the number of test structures is equal to the number of grids. The

values of σ̄ and σreduction are fixed in this case. Case II and Case III are set up the same

way as in Case 1 and Case 2, respectively, of the second set of experiments described
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Table 3.4: Prediction results considering all parameter variations: case I, case II and
case III are distinguished by the number of ROs.

Benchmark
SSTA Results Case I Case II Case III
µ σ σ̄

σreduction
Avg. σ̄ σreduction Avg. σ̄ σreduction

(ps) (ps) (ps) (ps) Avg. Min. (ps) Avg. Min.
s1196 577.42 45.61 11.32 75.2% 12.67 72.2% 65.3% 15.20 66.7% 58.4%
s5378 475.65 37.24 6.35 82.9% 7.69 79.4% 71.4% 10.28 72.4% 59.8%
s9234 776.79 62.63 9.17 85.4% 12.20 80.5% 66.7% 17.21 72.5% 56.2%
s13207 1404.25 109.41 20.90 80.9% 22.97 79.0% 74.6% 27.13 75.2% 66.5%
s15850 1579.73 119.45 19.59 83.6% 21.09 82.3% 79.4% 24.69 79.3% 73.7%
s35932 1371.55 98.45 24.75 74.9% 27.11 72.5% 67.7% 30.69 68.8% 63.9%
s38584 2011.62 147.46 39.47 73.2% 43.16 70.7% 64.7% 48.77 66.9% 60.8%
s38417 1146.56 89.84 22.01 75.5% 24.09 73.2% 67.2% 28.17 68.6% 57.3%

earlier. The µ, σ of each benchmark circuit obtained by SSTA, the σ̄, σreduction for

Case I, the average σ̄ and average σreduction for Case II and Case III obtained from the

post-silicon statistical delay prediction are listed in Table 3.4. In order to get an idea

on what the result would be like if a really bad set of grids are selected to put test

structures in, in this table we also show the minimum (Min.) σreduction over the 1000

random selections for each circuit in Case II and Case III. The distribution plot for

this set of experiment is similar to that in Figure 3.5, and the conditional PDFs of one

particular sample of the circuit s1196 for Case II and Case III are shown in Section 3.1

as Figure 3.3, with the SSTA PDF as a comparison. Note that the conditional PDF

obtained by our approach would be even sharper for Case I.

The reduction in the standard deviation is only able to demonstrate that our pre-

dicted delay is within a certain range. To see whether the prediction is reasonable and

accurate, in our third set of experiments, we also perform the following Monte Carlo

simulations. In Case I of this experiment, because in each grid we have one RO, we just

perform one thousand Monte Carlo simulations based on this structure. In Case II and

Case III, however, the number of ROs is smaller than the number of grids. Therefore

we use five randomly selected sets of grids to put ROs in, and for each set of grids, we

perform 1000 Monte Carlo simulations, which means totally we have 5000 Monte Carlo

simulations for each circuit of Case II and Case III. While each Monte Carlo simulation

generates a specific delay number, our prediction result is a conditional distribution of
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the delay. Therefore if the Monte Carlo result falls within ±3σ̄ of the predicted distri-

bution, then we call the result a hit. Otherwise, we call it a miss. The hit rate of our

prediction for a circuit is then defined as the number of hits divided by the total number

of Monte Carlo simulations. We show the hit rates for each circuit in Table 3.5.

Table 3.5: Hit rates considering all parameter variations: case I, case II and case III are
distinguished by different number of ROs available for each circuit.

Benchmark
Hit Rate

Case I Case II Case III

s1196 100.0% 99.9% 99.9%

s5378 99.8% 99.7% 99.9%

s9234 100.0% 99.9% 99.9%

s13207 99.9% 100.0% 100.0%

s15850 99.9% 99.9% 99.9%

s35932 97.2% 97.7% 98.7%

s38584 100.0% 99.9% 99.8%

s38417 99.9% 100.0% 99.9%

It is observed that most hit rates are above 99.9%.

Now we show that for the ISCAS89 benchmark circuits and our experimental setup,

increasing the number of stages can compensate for the effect of spatially uncorrelated

parameter variations and give us more specific information about the circuit delay after

fabrication. We assume that each grid contains an RO, and for each RO, every stage has

the same timing characteristics. Therefore we can use the coefficients and the spatially

uncorrelated variable calculated for a 5-stage RO to derive the corresponding coefficients

and spatially uncorrelated variable for a unit stage of that RO. Based on these timing

characteristics of one unit stage, the timing characteristics of a RO with any number of

stages can be calculated. This procedure is repeated for each of the ROs on chip. For

each circuit we draw a curve, with the y axis being the conditional variance of the delay

of the original circuit we can get from our approach, and the x axis being the number of

unit stages we have for every ring oscillator built on this circuit. This plot shows that

for our set of benchmarks, as the number of stages increases, the conditional variance

we can get becomes progressively smaller. Sample results of the circuits s13207 and

s5378 are shown in Figure 3.6. It is easily observed that the curves are monotonically
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decreasing. The results are similar for all other circuits in the benchmark set.
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Figure 3.6: Conditional variance of the delay of the original circuit with respect to the
number of stages of ROs.

Table 3.6: Runtime results
Circuit s1196 s5378 s9234 s13207 s15850 s35932 s38584 s38417

Runtime (sec) 5.68 × 10−4 5.70 × 10−4 5.96 × 10−4 0.39 0.39 0.35 0.37 0.68

Finally we provide runtime results for our approach. It is easily observed that our

algorithm can be divided into two parts, separated by the physical measurements of

the delays of the ring oscillators. The first part is SSTA, and because the framework

is similar to [8], the readers are referred to that paper for a runtime estimate. The

runtime for the second part, which is conditional PDF evaluation, is listed in Table 3.6.

The experiments are run on a Linux PC with a 2.0GHz CPU and 256MB memory. The

results we show here are for Case I of Table 3.4, where the matrix Σt in Section 3.2 is

the largest of all three cases. It is shown that for all the benchmark circuits, the runtime

is less than one second.

3.8 Conclusion

In this chapter, a general framework for the post-silicon statical delay prediction ap-

proach is proposed, using SSTA and a conditional PDF evaluation method, making use
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of test data from RO test structures. We would like to point out that in cases where the

circuit is dominated by a single critical path (this is not often the case, since most cir-

cuits are timing-optimized, which implies that there are numerous near-critical paths),

it may be beneficial to use a critical path replica instead of our ring oscillator based

scheme. The critical path replica can also be viewed as a type of test structure, which

means that after determining the nominal critical path, we can replicate it, perform

SSTA on this path, and calculate the conditional variance of the original circuit delay,

given that the delay of this path is known. If a circuit is highly dominated by this

path, then the conditional variance would be small. We then can compare the condi-

tional variance calculated in this way with the conditional variance calculated by our

approach.

Depending on which variance is smaller, we can choose the appropriate approach

and start building the circuit embedded with the proper test structure. This choice can

be made entirely through presilicon analysis. The variances of the conditional PDFs for

the two possible test structures (a set of RO measurements, or a critical path replica)

may be computed using Equation (3.9c). Note that (3.9c) provides results that are

independent of measurement data, and hence depending on which structure has the

smaller covariance, we can choose an appropriate test structure.



Chapter 4

Representative Critical Path

Synthesis

Several approaches to post-silicon adaptation require feedback from a replica of the

nominal critical path, whose variations are intended to reflect those of the entire circuit

after manufacturing. For realistic circuits, where the number of critical paths can be

large, the notion of using a single critical path is too simplistic. This chapter overcomes

this problem by introducing the idea of synthesizing a representative critical path (RCP),

which captures these complexities of the variations. We first prove that the requirement

on the RCP is that it should be highly correlated with the circuit delay. Next, we

present two novel algorithms to automatically build the RCP. Our experimental results

demonstrate that over a number of samples of manufactured circuits, the delay of the

RCP captures the worst case delay of the manufactured circuit. The average prediction

error of all circuits is shown to be below 2.8% for both approaches, as compared to

errors of as large as 5.8% over the conventional method that uses a replica of the

nominal critical path. For both our approach and the critical path replica method, it

is essential to guard-band the prediction to ensure pessimism: on average our approach

requires a guard band 31% smaller than for the critical path replica method.

45
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4.1 Introduction

In this chapter, we focus on post-silicon tuning methods that require replicating the

critical path of a circuit. Such techniques include adaptive body bias (ABB) [25,26,27]

or adaptive supply voltage (ASV) [28,29]. The ABB approach that is used in [25,26,27]

employs a replica of the critical path at nominal parameter values (we call this the

nominal critical path), whose delay is rapidly measured and used to determine the op-

timal adaptation of the body bias levels of the transistors in the combinational block.

However, as is stated in Chapter 1, this has obvious problems: first, it is likely that a

large circuit will have more than a single critical path, and second, a nominal critical

path may have different sensitivities to the parameters than other near-critical paths,

and thus may not be representative. We quantitatively illustrate this problem in our

experimental results. The ASV technique in [28, 29], on the other hand, use a speed

monitor consisting of only one logic dominated element and one interconnect dominated

element, and assume that the speed tested for this simplified cicuitry is generally appli-

cable to all parts of the circuit. In the presence of significant within-die variations, this

assumption becomes invalid. Moreover, the approach requires substantial extra memory

even for process bins of a very coarse resolution, and is not scalable to fine grids.

From an analysis perspective, Chapter 3 uses a number of on-chip ring oscillators,

presumably provided by designers, to capture the parameter variations of the original

circuit. However, this approach requires measurements for hundreds of ring oscillators

for a circuit with reasonable size and does not provide an explicit critical path. From

a synthesis perspective, a less costly test structure, preferably a representative critical

path, is desired.

In this chapter, we propose a new way of thinking about the problem. We automat-

ically build an on-chip test structure that captures the effects of parameter variations

on all critical paths, so that a measurement on this test structure provides us a reliable

prediction of the actual delay of the circuit, with minimal error, for all manufactured

die. The key idea is to synthesize a test structure whose delay can reliably predict

the maximum delay of the circuit, under across-die as well as within-die variations. In

doing so, we take advantage of the property of spatial correlation between parameter

variations to build this structure and determine the physical locations of its elements.
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The test structure that we create, which we refer to as the representative critical

path (RCP), is typically different from the critical path at nominal values of the process

parameters. In particular, a measurement on the RCP provides the worst-case delay

of the whole circuit, while the nominal critical path is only valid under no parameter

variations, or very small variations. Since the RCP is an on-chip test structure, it can

easily be used within existing post-silicon tuning schemes, e.g., by replacing the nominal

critical path in the schemes in [25, 26, 27]. While our method accurately captures any

correlated variations, it suffers from one limitation that is common to any on-chip test

structure: it cannot capture the effects of spatially uncorrelated variations, because by

definition, there is no relationship between those parameter variations of a test structure

and those in the rest of the circuit. To the best of our knowledge, this work is the first

effort that synthesizes a critical path in the statistical sense. The physical size of the

RCP is small enough that it is safe to assume that it can be incorporated into the circuit

(using reserved space that may be left for buffer insertion, decap insertion, etc.) without

significantly perturbing the layout.

The remainder of the chapter is organized as follows. Section 4.2 introduces the

background of the problem and formulates the problem mathematically. Next, Sec-

tion 4.3 illustrates the detailed algorithms of our approach. Experimental results are

provided in Section 4.4, and Section 4.5 concludes the chapter.

4.2 Problem Formulation

Similar to Chapter 3, in this chapter we also use the grid-based model discussed in

Section 2.5 of Chapter 2 to model spatially correlated parameter variations. Our overall

approach can be summarized as follows. We have a circuit whose delay can be repre-

sented as a random variable, dc. Using the method presented in this chapter, we build

the RCP whose delay can be represented by another random variable, dp. After the

circuit is manufactured, we measure the delay of the RCP, and find that it equals dpr.

In other words, dpr corresponds to one sample of dp for a particular set of parameter

values. From this measured value of dpr, we will infer the value, dcr, of dc for this

sample, i.e., corresponding to this particular set of parameter values.

To mathematically simplify the situation and explore the relationship between the
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variables dc and dp, we assume that all parameter variations are Gaussian-distributed,

and the delay of both the circuit and the critical path can be approximated by an affine

function of those parameter variations. These functions can be obtained by performing

SSTA using existing techniques [8], and the end results of dc and dp can be represented

by Gaussian-distributed PDFs.

Let dc ∼ N (µc, σc), dp ∼ N (µp, σp), and let the correlation coefficient of dc and dp

be ρ. Then we know that the joint PDF of dc and dp is

f (dc = dcr, dp = dpr) =
1

2πσcσp

√

1 − ρ2
eC1 , (4.1)

where

C1 = − 1
2(1−ρ2)

(

(dcr−µc)
2

σ2
c

+
(dpr−µp)2

σ2
p

− 2ρ(dcr−µc)(dpr−µp)
σcσp

)

.

Using basic statistical theory, the conditional PDF of dc = dcr, given the condition

dp = dpr, can be derived to have the following expression.

f (dc = dcr|dp = dpr) =
f (dcr, dpr)

f (dpr)
=

1

2πσc

√

1 − ρ2
eC2 , (4.2)

where

C2 = − 1
2σ2

c (1−ρ2)

(

dcr −
(

µc + ρσc

σp
(dpr − µp)

))2
.

Therefore the conditional distribution of dcr is a Gaussian with mean µc+
ρσc

σp
(dpr − µp)

and variance σ2
c

(

1 − ρ2
)

.

The result of this conditional distribution can be used in various ways. For example,

we can provide the entire conditional distribution as the output of this procedure, as

in [69]. On the other hand, if the conditional variance can be made sufficiently small,

we can be more specific and directly use the mean of the conditional distribution as the

predicted value of the delay of the circuit, and the variance may be interpreted as the

mean square error of infinite samples.

An alternative view, from a least squares perspective, is that it is desirable to mini-

mize the variance, so that the mean is an estimate of the circuit delay with the smallest

mean square error. For the term representing the variance of the conditional distribu-

tion, σ2
c

(

1 − ρ2
)

, σc is fixed since the original circuit must remain undisturbed, implying

that the variance of the conditional distribution is dependent only on ρ.

In other words, minimizing the variance is therefore equivalent to maximizing ρ.

This formal result is also an intuitive one: the RCP should satisfy the property that
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the correlation of its delay with that of the original circuit is maximized. Hence, our

focus is on developing an efficient algorithm to build such an RCP, with the objective

of maximizing the correlation coefficient.

4.3 Generation of the Critical Path

4.3.1 Background

As mentioned in Section 4.2, it is important to represent the variables dc and dp as

affine functions with respect to the parameter variations. To achieve this, we will employ

previously developed SSTA techniques. As in Chapter 3, we use the parameterized SSTA

procedure introduced in Section 2.3 of Chapter 2 to obtain dc as an affine function in

the canonical form. We will show that this canonical form, in which the variables in

the affine function consist of the m PCs and the independent parameter, makes the

calculation of the correlation coefficient ρ defined in Section 4.2 much easier.

The canonical expression for dc, which is in similar fashion with Equation (2.1), is

shown below for clarity:

dc = µc +

m
∑

i=1

aipi = µc + aTp + Rc, (4.3)

where dc, µc are defined in Section 4.2, and all other notations are defined as in

Equation (2.1) of Chapter 2, for the original circuit.

Performing SSTA on the RCP yields another delay expression in canonical form:

dp = µp +

m
∑

i=1

bipi = µp + bTp + Rp (4.4)

where dp, µp are defined in Section 4.2, and pi, bi,b,p, Rp are all inherited from Equa-

tion (4.3).

4.3.2 Finding the Correlation Coefficient: Computation and Intuition

Since the original circuit and RCP are on the same chip, the values of the principal

components for a given manufactured part are identical for both, and therefore their

delays are correlated. In the manufactured part, any alteration in the PCs affects both
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the original circuit and the RCP, and if the RCP can be constructed to be highly

correlated with the original circuit, the circuit delay can be estimated to a good degree

of accuracy. In the extreme case where the correlation coefficient ρ = 1, the circuit

delay, dc, can be exactly recovered from dp; however, as we will show later, this is not

a realistic expectation.

The correlation coefficient, ρ, can easily be computed as

ρ =
aTb

σcσp
(4.5)

where σc =
√

aTa + σ2
Rc

and σp =
√

bTb + σ2
Rp

. An important point to note is that

ρ depends only on the coefficients of the PCs for both the circuit and the critical path

and their independent terms, and not on their means.

As discussed in Section 4.2, the mean of the conditional distribution f (dc = dcr|dp = dpr),

which can be used as an estimate of the original circuit delay, is:

µ̄ = µc +
ρσc

σp
(dpr − µp) = µc +

aTb

σ2
p

(dpr − µp) . (4.6)

The variance, which is also the mean square error of the circuit delay estimated

using the above expression, for infinite samples, is σ2
c

(

1 − ρ2
)

. Our goal is to build a

critical path with the largest possible ρ.

Our theory assumes that the effects of systematic variations can be ignored, and we

will show, at the end of Section 4.4, that this is a reasonable assumption. However, it

is also possible to extend the theory to handle systematic variations in parameters that

can be controlled through design: for a fully characterized type of systematic variation,

we can compensate for it by choosing a shifted nominal value for the parameter.

It is also useful to provide an intuitive understanding of the ideas above. If we were

to achieve our goal of setting ρ = 1, this would imply that

ρ =
aTb

σcσp
= 1

This means that
m
∑

i=1

āib̄i = 1

where āi = ai/σc, and b̄i = bi/σp. Note that āi and b̄i correspond to the entries of the

normalized a and b vectors, respectively.



51

This may be achieved if āi = αb̄i, i.e., bi = ai/α ∀ 1 ≤ i ≤ m, where α = σp/σc.

In other words, all of the PCA parameters for the original circuit and the RCP are

identical, within a scaling factor of α. This could be achieved if the sensitivities of

the delays of dc and dp to all process parameter variations are identical, within a fixed

scaling factor.

The key issue here is that it is not essential for the delays dc and dp to be identical.

In fact, the circuit delay and the RCP delay may have very different nominal values,

since the nominal delays, µc or µp, never enter into Equation (4.5). All that matters is

that the variations in the RCP should closely track those of the original circuit. This

observation provides us with a significant amount of flexibility with respect to the critical

path replica method, which attempts to exactly mimic all properties of the maximum

delay of the original circuit, including the nominal delay.

4.3.3 Generating the Representative Critical Path

Next, we propose three methods for generating the RCP. The first is based on sizing gates

on an arbitrarily chosen nominal critical path, while the second synthesizes the RCP

from scratch using cells from the standard cell library, while the third is a combination

of the two methods.

Method I: Critical Path Generation Based on Nominal Critical Path Sizing

As described in Section 4.1, the nominal critical path is usually not a good candidate

to capture the worst case delay of the circuit over all reasonable parameter variations.

However, there is intuitive appeal to the argument that variations along the nominal

critical path have some relationship to the variations in the circuit. Based on this idea,

our first approach begins with setting the RCP to a replica of the nominal critical path,

and then modifies transistor sizes on this path so that the sized replica reflects, as far

as possible, the variation of the delay of the manufactured circuit. The objective of this

modification is to meet the criteria described in Section 4.2, in order to ensure that the

RCP closely tracks the delay of the critical path in the manufactured circuit.

For an optimized circuit, it is very likely that there are multiple nominal critical

(or near-critical) paths with similar worst-case delays at nominal parameter values. To

make our approach as general as possible, we pick the one nominal critical path that has
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the maximum worst-case delay at nominal process parameter values, even if its delay is

only larger than a few other paths by a small margin. If there are multiple such paths,

we arbitrarily pick one of them. We show in Section 4.4 that even with this relaxed

initial choice, after the optimizations presented in this section, our method can produce

very good results.

The problem can be formulated as a nonlinear programming problem as listed below:

maximize ρ = aT b(w)
q

aT a+σ2
Rc

q

b(w)T b(w)+σ2
Rp

(w)
(4.7)

s.t. w ∈ Zn

wmin ≤ w ≤ wmax (4.8)

The objective function above is the correlation coefficient, ρ, between dp and dc, as

defined by Equation (4.5), which depends on a, b, and σ2
Rp

. The values of the latter

two quantities are both influenced by the transistor widths, which are allowed to take

on any values between some user-specified minimum and maximum values.

Algorithm 2 illustrates our procedure for building the RCP under this approach.

We begin with the nominal critical path of the circuit, chosen as described above, and

replicate it to achieve an initial version of the RCP. Note that this is similar to the

critical path replica method described in [25], and guarantees our method is at least

as good as that approach. This critical path is then refined by iteratively sizing the

gates on the path, using a greedy algorithm, in such a way that its correlation with the

original circuit delay is maximized.

The first step of this approach involves performing conventional STA on the circuit to

identify a nominal critical path, which is picked as the initial version of the RCP. Next,

we perform SSTA on the circuit to obtain the PDF of the circuit delay variable, dc, in the

canonical form. This analysis provides us with the coefficients of the PCs in the circuit

delay expression, namely, the vector a of Equation (4.3), as well as the independent

term. We repeat this procedure for the initial RCP, to obtain the coefficients of the PCs

in the expression for the delay, dp, of the RCP. Based on these two canonical forms, we

can compute the correlation coefficient, ρ0, between the two delay expressions.

The iterative procedure updates the sizes of gates on the current RCP, using a

TILOS-like criterion [70], with one modification: while TILOS will only upsize the gates,

we also allow for the gates to be downsized. The rationale is that TILOS, for transistor
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Algorithm 2 Variation-aware critical path generation based on sizing.

1: Perform deterministic STA on the original circuit and find the maximum delay path
as the initial RCP. If there is more than one such path, arbitrarily pick any one.

2: Perform SSTA on the original circuit to find the PC coefficients corresponding to
the vector a and the variance of the independent term.

3: Perform SSTA on the initial RCP to find its PC coefficients and the variance of
its independent term. Calculate the correlation coefficient ρ0 between the delay
variables of the original circuit and the initial RCP.

4: k = 1
5: while (1) do

6: for each gate i on the critical path do

7: If not violating the maximum size constraint, bump up the size by multiplying
it by a factor F > 1, keeping all other gate sizes unchanged from iteration k−1

8: Compute ρk
u,i, the correlation coefficient for this modified RCP with the original

circuit. Change the size of the gate back to its size in iteration k − 1.
9: If not violating the minimum size constraint, size down the gate by multiplying

the size by the factor 1/F , keeping all other gate sizes unchanged from iteration
k − 1

10: Compute ρk
d,i as the correlation coefficient for the modified RCP by sizing gate

i down. Change the size of the gate back to its size in iteration k − 1.
11: end for

12: Choose j such that ρk
u,j or ρk

d,j is the largest among all correlation coefficients,

and set ρk to be this correlation coefficient.
13: if ρk > ρ(k−1) then

14: Set the RCP to be the RCP from iteration k − 1, except that the size of gate
j is sized up or down by the factor F .

15: else

16: break
17: end if

18: end while
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sizing, begins with the minimum-sized circuit; in contrast, our approach begins with the

sized nominal critical path, with the intention that since this configuration lies within

the solution space for the RCP, the final RCP is guaranteed to be no worse than the

nominal critical path.

In the kth iteration, we process each gate on the RCP one by one. As an example,

for the gate i, we examine the case of multiplying its current size by a constant factor,

F or 1/F , to, respectively, up-size or down-size the gate, while leaving all other gate

sizes identical to iteration k − 1. We perform SSTA on this modified RCP to obtain

the new coefficients for the PCs corresponding to this change, and calculate the new

correlation coefficient, ρk
u,i and ρk

d,i. We apply this procedure to all gates on the RCP

during each iteration, and over all of these possibilities, we greedily choose to up-size

or down-size the gate j whose size update provides the maximum improvement in the

correlation coefficient. We then update the RCP by perturbing the size of the gate j,

and set the value of ρk to the improved correlation coefficient. We repeat this procedure

until no improvement in the correlation coefficient is possible, or until the sizes of gates

in the RCP become too large.

We can save on the computation time by exploiting the fact that the RCP is a

single path, and that SSTA on this path only involves sum operations and no max

operations. When the size of a gate is changed, the delays of most gates on the critical

path are left unchanged. Therefore, it is sufficient to only perform SSTA on the few

gates and wires that are directly affected by the perturbation, instead of the entire path.

However, we still must walk through the whole path to find the gate with the maximum

improvement. If the number of gates of a nominal critical path is bounded by s, and

the sizing procedure takes K iterations, then the run time of Algorithm 2 is O (Ks).

The final RCP is built on-chip, and after manufacturing, its delay is measured. Using

Equation (4.6) in Section 4.3.1, we may then predict the delay of the original circuit.

As mentioned at the beginning of this section, a significant advantage of this ap-

proach is that by choosing the nominal critical path as the starting point for the RCP,

and refining the RCP iteratively to improve its correlation with the circuit delay, this

approach is guaranteed to do no worse than one that uses the unmodified nominal crit-

ical path, e.g., in [25, 26, 27]. For a circuit that is dominated by a single critical path,

this method is guaranteed to find that dominating path, e.g., the optimal solution.
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The primary drawback of this method is also related to the fact that the starting

point for the RCP is the nominal critical path. This fixes the structure of the path and

the types of gates that are located on it, and this limits the flexibility of the solution.

Our current solution inherits its transformations in each iteration from the TILOS

algorithm, and changes the sizes of gates in the circuit. However, in principle, the idea

could also be used to consider changes, in each iteration, not only to the sizes but also

to the functionality of the gates on the RCP by choosing elements from a standard cell

library, so that the delay of the modified RCP (with appropriately excited side-inputs)

shows improved correlations with the circuit delay. Another possible enhancement could

be to select the nominal critical path with the highest initial correlation coefficient with

the circuit delay, instead of choosing this path arbitrarily. These extensions may be

considered in future work, but Section 4.4 shows that even without them, our approach

still produces good results.

Method II: Critical Path Generation Using Standard Cells

The second approach that we explore in this work builds the RCP from scratch, using

cells from the standard cell library that is used to build the circuit. In principle, the

problem of forming a path that optimally connects these cells together to ensure high

correlation with dc can be formulated as an integer nonlinear programming problem,

where the number of variables corresponds to the number of library cells, and the

objective function is the correlation between the statistical delay distribution, dp, of an

RCP with n stages of logic composed of these cells, where a stage is defined as a gate

together with the interconnect that it drives, and dc.

The integer nonlinear programming formulation is listed below:

maximize ρ = aT b(Ns)
q

aT a+σ2
Rc

q

b(Ns)T b(Ns)+σ2
Rp

(Ns)
(4.9)

s.t. Ns ∈ Zn

eTNs ≤ s

b = Σn
i=1Nsibi

σ2
Rp

= Σn
i=1Nsiσ

2
Rpi

The objective function above is the correlation coefficient, ρ, between dp and dc, as
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defined by Equation (4.5). The variable n represents the number of possibilities for

each stage of the RCP, and the vector Ns = [Ns1,Ns2, · · · ,Nsn]T , where Nsi is the

number of occurrences of i in the RCP.

The first constraint states the obvious fact that each element of Ns must be one

of the allowable possibilities. In the second constraint, e = [1, 1, · · · , 1]T , so that the

constraint performs the function of placing an upper bound on the total number of

stages in the RCP. For the purposes of this computation, a and σ2
Rc

come from the

canonical form of the circuit delay, dc, and are constant. The values of b and σ2
Rp

are

functions of Ns, where the mapping corresponds to performing SSTA on the RCP to

find the vector of PC coefficients b and the variance of the independent term Rp in the

canonical form. The terms bi, 1 ≤ i ≤ n, are the PC coefficients corresponding to each

stage of the RCP, and the Rpis correspond to the independent terms, so that b and σ2
Rp

are related to Ns through the last two constraints.

Since Equation (4.9) does not map on to any tractable problem that we are aware of,

we propose an incremental greedy algorithm, described in Algorithm 3, which is simpler

and more intuitive than any exact solution of the integer nonlinear program. While

this algorithm is not provably optimal, it is practical in terms of its computational cost.

We recall that the goal of our problem is to make the correlation coefficient between dc

and dp as large as possible. The algorithm begins by performing SSTA on the original

circuit to determine dc.

Algorithm 3 Critical path generation using standard cells.

1: Initialize the RCP P to be the initial load INV .
2: Perform SSTA on the original circuit to find dc in canonical form, and also compute

the canonical form for the delay of each of the p × q choices for the current stage.
3: Calculate the load Lk−1 presented by the (k − 1)-stage RCP computed so far.
4: With Lk−1 as the load, perform SSTA on the p × q choices for stage k.
5: Statistically add the canonical expressions for the delays of each of the p× q choices

with the canonical form for the delay of the partial RCP computed so far, P . Cal-
culate the correlation coefficient between the summed delays and the delay of the
original circuit for each case.

6: Select the choice that produces the largest correlation coefficient as stage k in path
P .

7: Go to Step 3.
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During each iteration, the RCP is constructed stage by stage. If we have p types of

standard gates, and q types of metal wires, then in each iteration we have p× q choices

for the stage to be added. For an RCP with m stages, to find the optimal solution

corresponds to a search space of (p × q)m. Instead, our method greedily chooses one

of the p × q choices at each stage that maximizes the correlation of the partial RCP

constructed so far with dc, thereby substantially reducing the computation involved. In

practice, we control the complexity even further by using the minimum driving strength

gate of each functionality in the library, rather than considering all driving strengths

for all gates.

The approach begins at the end of the critical path. We assume that the path drives

a measurement device such as a flip-flop, and the part of the device that acts as a load

for the critical path is an inverter INV . Therefore, for the first iteration, this inverter

is taken as the load, and it corresponds to a known load for the previous stage, which

will be added in the next iteration.

In iteration k, we consider appending each of the p × q choices to the partial RCP

from iteration k−1, and perform SSTA for all of these choices to obtain the coefficients

for the PCs, and the correlation with dc, using Equation (4.5). The choice that produces

the largest correlation coefficient is chosen to be added to the critical path. The load

presented by this choice is then calculated for the next selection procedure, and the

process is repeated. During the process of building the RCP, there may be cases where

a wire on the RCP crosses the boundary between two correlation grids: if so, the current

gate and the one it drives belong to two different grids, and the wire connecting them

must be split into two parts to perform the SSTA. The maximum number of stages used

in the RCP is a user-specified parameter. During our iterations, we keep a record of

the correlation coefficient after adding each stage. Once all stages up to the maximum

number are added, we find the maximum correlation coefficient saved and eliminate

stages added beyond that point.

A complementary issue for this algorithm is related to determining the physical

layout of each stage. To simplify the search space, we assume that the RCP moves

monotonically: for example, the signal direction on all horizontal wires between stages

must be the same, and the same is true of signal directions on all vertical wires. Because

of symmetry of the spatial correlation profile and hence the PCA results, we only choose
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the starting points to be from the bottom grids of the die. For a given starting point,

the path would move towards the right and upper directions of the circuit.

It should be noted that systematic variations would affect the sensitivities of the

parameter values, causing PC coefficients of identical cells at symmetric locations to

become different. However, because systematic variations can be precharacterized before

statistical analysis by a change of nominal values at different locations, we show in

Section 4.4 that a reasonable disturbance of the nominal values would not significantly

affect the final results. The procedure continues until the number of stages in the RCP

reaches a prespecified maximum, or when the monotonic path reaches the end of the

layout.

If the number of stages of the RCP is bounded by s and the number of starting

points that we try for the RCP is ω, the runtime of Method II is O(ωpqs), because at

each of the s stages, we have p × q choices. In comparison to Method I, if the bound

of maximum number of stages for each method is comparable, then the comparison

between K and ω×p× q determines which method has the longer asymptotic run time.

This approach has the advantage of not being tied to a specific critical path, and is

likely to be particularly useful when the number of critical paths is large. However, for

a circuit with one dominant critical path, this method may not be as successful as the

first method, since it is not guided by that path in the first place.

Method III: Combination of the Two Methods

As stated above, each of the above two methods has its strengths and weaknesses. If the

circuit is likely to be dominated by the nominal critical path, it is likely that Method I

will outperform Method II; moreover, by construction, one can guarantee that Method

I will do no worse than the critical path replica method. However, the structure of the

RCP from Method I is also closely tied to that of the nominal critical path, limiting its

ability to search the design space, and Method II provides improved flexibility in this

respect, although it loses the guarantee of doing no worse than the critical path replica

method.

We can combine the two methods discussed above in different ways to obtain poten-

tially better results than either individual method. Many combinations are possible. For

example, we could first build the RCP by sizing the nominal critical path using Method
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I, and then add additional stages from the standard cell library to it using Method II.

However, the number of stages may become too large in this case. The approach used in

this paper combines the methods by first building the RCP from scratch using Method

II, setting the size of each gate to be at its minimal value. Next, we update the sizes of

the gates on this RCP using Method I to further improve the result. The procedure is

listed as Algorithm 4 below for completeness.

Algorithm 4 Critical path generation using the combined method.

1: Build the initial RCP, P , using Method II. All gates are at their minimal size.
2: Perform the TILOS-like sizing of Method I on P

4.4 Experimental Results

We demonstrate the effectiveness of the approaches presented in this paper, and compare

it with the critical path replica (CPR) approach, which represents the conventional

approach to solving the problem. As in Chapter 3, our experiments are shown on

the ISCAS89 benchmark suite and we use 90nm technology and the related constants

are extracted from PTM model. The netlists are first sized using our implementation

of TILOS: this ensures that the circuits are realistic and have a reasonable number

of critical paths. The circuits are placed using Capo [71], and global routing is then

performed to route all of the nets in the circuits. The cell library contains the following

functionalities: NOT, 2-input NAND, 3-input NAND, 4-input NAND, 2-input NOR,

3-input NOR, and 4-input NOR.

Similar to Chapter 3, the variational model uses the hierarchical grid model in [6] to

compute the covariance matrix for each spatially correlated parameter. The parameters

that are considered as sources of variations include the effective channel length L, the

transistor width W , the interconnect width Wint, the interconnect thickness Tint and the

inter-layer dielectric HILD. The width W is the minimum width of every gate before the

TILOS sizing. We use two layers of metal, and take the parameters for different layers of

metal to be independent. The parameters are Gaussian-distributed, and their mean and

3σ values are shown in Table 4.1. As in many previous works on variational analysis,

we assume that for each parameter, half of the variational contribution is assumed to
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be from die-to-die (D2D) variations and half from within-die (WID) variations. We use

MinnSSTA [8] to perform SSTA, in order to obtain the PCA coefficients for dc. All

programs are run on a Linux PC with a 2.0GHz CPU and 256MB memory.

Table 4.1: Parameters used in the experiments.
L W Wint Tint HILD

(nm) (nm) (nm) (nm) (nm)

µ 60.0 150.0 150.0 500.0 300.0

3σ 12.0 22.5 30.0 75.0 45.0

We first show the results of the algorithm that corresponds to Method I, described in

Section 4.3.3, synthesizing the RCP by modifying a nominal critical path of the original

circuit. The initial sizes of the gates are their sizes after timing optimization. We only

show the results of the larger circuits, since these are more realistic, less likely to be

dominated by a small number of critical paths, and are large enough to allow significant

within-die (WID) variations. Of these, circuit s9234 is smaller than the others, and is

divided into 16 spatial correlation grids, while all other circuits are divided into 256

grids.

In our implementation of Method I, we do not consider congestion issues. We assume

both the CPR method and Method I replicate the nominal critical path, including

the interconnects, to provide a fair comparison. In practice, Method I can route the

replicated nominal critical path in the same way as any of the prior CPR methods

reported in the prior literature.

We use a set of Monte Carlo simulations to evaluate the RCP. For each circuit being

considered, we perform 10,000 Monte Carlo simulations, where each sample corresponds

to a manufactured die. For each Monte Carlo sample, we compute the delay of the RCP,

the delay of the original circuit, and the delay of the nominal critical path that may be

used in a CPR method, as in [25,26,27]. The delay of the RCP is then used to compute

the circuit delay using Equation (4.6) in Section 4.3.1, which corresponds to the mean

of the conditional distribution in Equation (4.2).

Figure 4.1 illustrates the idea of the conditional PDF, described in Section 4.2, based

on a sample of the Monte Carlo simulations for circuit s9234. The lower curve shown
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with a solid line is the result of SSTA, and the circled points represent the conditional

PDF obtained using Equation (4.2). The mean of this conditional distribution is indi-

cated using a dashed line, and this is used as the estimate of the true circuit delay. The

figure uses a solid vertical line to display the true circuit delay, and it can be seen that

the two lines are very close (note that the plot does not start at the origin, and distance

between these two lines is exaggerated in the figure).
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Figure 4.1: Conditional PDF of s9234.

Since the probability of the true circuit delay being beyond the 3σ value of the

conditional PDF is very low, the smaller the conditional variance, the smaller the errors.

It is worth recalling that the conditional variance is given by σ2
c (1 − ρ2), each term of

which is a constant for a specific RCP. Therefore, this variance is exactly the same for

each die (corresponding to each sample of the Monte Carlo simulation), and if the RCP

heuristic maximizes ρ as intended, we minimize this variance.

In our experiments, we compare the computed circuit delay, called the predicted

delay, dpredic, with the true circuit delay of the circuit, referred to as the true delay,

dtrue. We define the prediction error as

|dtrue − dpredic|
dtrue

× 100%. (4.10)

In order to maximize yield, we must add a guard band for the predicted delay values

to ensure that the predictions are pessimistic. Therefore in this set results we also

compare the guard band needed to make 99% of the delay predictions pessimistic for

both Method I and the CPR method, respectively.
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The results of the comparisons are presented in Table 4.2, where the rows are listed

in increasing order of the size of the benchmark circuit. For Method I as well as the

CPR Method, we show the average error and maximum error over all samples of the

Monte Carlo simulation. All of the average errors of our approach are below 3% and

both the average errors and maximum errors are significant improvements compared to

the CPR method. The guard bands required by the two methods are listed in the last

two columns. The guard band for Method I for each circuit is observed to be much

smaller than the CPR method, and the advantage of Method I becomes particularly

noticeable for the larger circuits.

Table 4.2: A comparison between Method I and the CPR Method.
Circuit Average error Maximum error Guard band (ps)

Method I CPR Method I CPR Method I CPR

s9234 1.58% 2.84% 10.50% 14.93% 28.5 43.7

s13207 0.52% 1.07% 5.67% 6.61% 18.3 26.9

s15850 1.00% 2.15% 7.70% 10.88% 36.6 57.6

s35932 2.35% 5.77% 12.53% 21.46% 33.2 58.9

s38584 1.79% 3.23% 11.44% 17.89% 43.8 72.3

s38417 2.77% 5.24% 13.87% 21.22% 53.5 84.1

Table 4.3: Conditional standard deviation, number of stages for RCP, and CPU time
of Method I.

Circuit Avg σcond

µcond
Max σcond

µcond

Number CPU
of stages time

s9234 1.40% 1.84% 67 1.46m

s13207 1.06% 1.41% 71 10.98m

s15850 1.30% 1.74% 96 20.92m

s35932 2.51% 3.18% 36 8.23m

s38584 2.11% 2.68% 66 13.95m

s38417 3.12% 3.95% 41 3.88m

The conditional variance derived in Section 4.2 defines the confidence of our estimate.

Therefore we show the conditional standard deviation σcond as a percentage of the
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conditional mean µcond in Table 4.3. Because µcond is different for each sample, we list

the average and maximum σcond

µcond
over all samples for each circuit. In order to provide

more information about the RCP that we generate, we also show the number of stages

for each RCP in the table. In this case, the number of stages for each RCP is the same as

the nominal critical path for that circuit. The last column of the table shows the CPU

time required by Method I for these benchmarks. The run time of Method I ranges from

around one to twenty minutes. The conditional standard deviation is typically below

3% of the conditional mean on average.

For a visual interpretation of the performance of Method I, we draw scatter plots

of the results for circuit s35932 in Figure 4.2(a) for Method I, and in Figure 4.2(b) for

the CPR. The horizontal axis of both figures is the delay of the original circuit for a

sample of the Monte Carlo simulation. The vertical axis of Figure 4.2(a) is the delay

predicted by our method, while the vertical axis of Figure 4.2(b) is the delay of the

nominal critical path, used by the CPR method. The ideal result is represented by

the (x = y) axis, shown using a solid line. It is easily seen that for the CPR method,

the delay of the CPR is either equal to the true delay (when it is indeed the critical

path of the Monte Carlo sample) or smaller (when another path becomes more critical,

under manufacturing variations). On the other hand, for Method I, all points cluster

closer to the (x = y) line, an indicator that the method produces accurate results. The

delay predicted by our approach can be larger or smaller than the circuit delay, but

the errors are small. Note that neither Method I nor the CPR Method is guaranteed

to be pessimistic, but such a consideration can be enforced by the addition of a guard

band that corresponds to the largest error. Clearly, Method I can be seen to have the

advantage of the smaller guard band in these experiments.

Our second set of experiments implements the algorithm corresponding to Method

II, presented in Section 4.3.3. The maximum number of stages that we allow for the

RCP for each circuit is 50, comparable to most nominal critical paths for the circuits in

our benchmark suite. We use 7 standard cells at each stage, and 2 metal layers; therefore

we have 14 choices for each stage. As in Method I, we do not consider congestion issues

here and assume that the CPR method can perfectly replicate the nominal critical

path. In practice, congestion considerations can be incorporated issues by assigning a

penalty to congested areas when selecting wire directions. The setup of the Monte Carlo
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Figure 4.2: The scatter plot: (a) true circuit delay vs. predicted circuit delay by Method
I and (b) true circuit delay vs. predicted circuit delay using the CPR method.

simulations is similar to the first set of experiments, and the corresponding errors and

guard bands are shown in Table 4.4. Since this Monte Carlo simulation is conducted

separately from that in Table 4.2, there are minor differences in the CPR error in these

two tables, even though both tables use the same CPR as a basis for comparison. The

average and maximum σcond

µcond
, the number of stages for each RCP, as well as the run

times are shown in Table 4.5. The advantage of Method II, again, increases with the

size of the circuit.

Table 4.4: A comparison between Method II and the CPR Method.
Circuit Average error Maximum error Guard band (ps)

Method II CPR Method II CPR Method II CPR

s9234 1.98% 2.84% 10.57% 15.15% 31.4 44.0

s13207 1.51% 1.06% 8.51% 7.22% 35.3 26.5

s15850 1.73% 2.14% 9.22% 10.97% 45.4 56.9

s35932 2.27% 5.80% 13.91% 21.34% 32.3 59.9

s38584 2.11% 3.29% 10.89% 17.12% 43.0 72.1

s38417 2.28% 5.27% 12.01% 22.88% 42.4 84.2

It is observed that for almost all cases, the average and maximum errors for Method



65

Table 4.5: Conditional standard deviation, number of stages for RCP, and CPU time
of Method II.

Circuit Avg σcond

µcond
Max σcond

µcond

Number CPU
of stages time

s9234 2.18% 2.79% 49 0.1s

s13207 1.75% 2.31% 30 15.7s

s15850 1.88% 2.45% 50 15.1s

s35932 2.19% 2.81% 50 16.7s

s38584 2.14% 2.73% 50 18.6s

s38417 2.13% 2.77% 50 15.5s

II are better than those for the CPR method. An exception to this is circuit s13207,

which is dominated by a small number of critical paths, even after sizing using TILOS.

We illustrate this using the path delay histogram in Figure 4.3(a), which aggregates the

delays of paths in the sized circuit into bins, and shows the number of paths that fall

into each bin. In this case, it is easily seen that the number of near-critical paths is

small. In contrast, Figure 4.3(b) shows the same kind of histogram for circuit s9234,

which is a more typical representative among the remaining benchmarks: in this case it

is seen that a much larger number of paths is near-critical, and likely to become critical

in the manufactured circuit, due to the presence of variations.

Under the scenario where the number of near-critical paths is small, it is not sur-

prising that Method II does not perform as well as a CPR. First, as pointed out in

Section 4.3.3, Method II does not take advantage of any information about the struc-

ture of the original circuit, and is handicapped in such a case. Moreover, the unsized

circuit s13207 was strongly dominated by a single critical path before TILOS sizing;

after sizing, the optimized near-critical paths are relatively insensitive to parameter

variations, meaning even if one of these becomes more critical than the nominal critical

path on a manufactured die, it is likely to have more or less the same delay.

We also show scatter plots for both Method II and CPR in this case, in Figure 4.4(a)

and Figure 4.4(b), respectively. The figures are very similar in nature to those for

Method I, and similar conclusions can be drawn. In comparing Methods I and II by

examining the numbers in Tables 4.2 and 4.4, it appears that there is no clear winner,
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Figure 4.3: Histograms of path delays of (a) s13207 and (b) s9234 after TILOS opti-
mization.
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Figure 4.4: The scatter plot: (a) true circuit delay vs. predicted delay by Method II
and (b) true circuit delay vs. predicted delay using the CPR method.
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though Method II seems to show an advantage for the largest circuits, s35932 and

s38417. With our limited number of choices for each stage of the RCP, referring to

discussions about run time in Section 4.3.3, it is not surprising that Method II is faster

in terms of CPU time, as shown in Table 4.5. The algorithm finishes within a few

seconds for all of the benchmark circuits.
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Figure 4.5: The RCP created by Method II for circuit s38417.

Next we show the location of the RCP built for circuit s38417 using Method II on

the chip in Figure 4.5. The figure shows the die for the circuit. The size of the die is

determined by our placement and routing procedure, and the dashed lines indicate the

spatial correlation grids. The solid bold lines are the wires of the critical path. The

figure shows that the critical path grows in a monotonic direction and it starts from

one of the grids at the bottom of the chip, both due to the layout heuristics discussed

in Section 4.3.3.

In order to gain more insight into the trend of improvement of the correlation coeffi-

cients, Figure 4.6 shows the correlation coefficient of Method II after each stage is added

for one starting point: beyond a certain number of iterations, the marginal improvement

flattens out. A similar trend is seen for Method I.

Our third set of experiments show the results of Method III, which is a combination of

Method I and Method II. We first build an RCP from scratch using Method II, and then

refine this RCP by the iterative sizing technique employed by Method I. Considering

that Method II uses minimum-sized standard cells to restrict its search space, in the

combined method, we allow the cells to be sized up. In Table 4.6, we compare the
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Figure 4.6: Trend of correlation coefficient after each iteration.

correlation coefficients of the delay of the built RCP using Method II and using Method

III. The correlation coefficients are calculated using Equation (4.5) and indicate of how

closely the RCP can track the original circuit delay. The average and maximum errors,

the guard band needed to ensure 99% of the predictions pessimistic, as well as the run

time of the combined method are also listed in the table. It is observed that the sizing

does indeed improve the results of Method II.

Table 4.6: Results of the Method III and its comparison with Method II.
Circuit ρ Method III

Method II Method III Avg. Max. Guard CPU
error error band time

s9234 0.9732 0.9821 1.68% 7.64% 28.9ps 2.44s

s13207 0.9719 0.9750 1.38% 5.55% 31.2ps 16.97s

s15850 0.9613 0.9737 1.46% 7.2% 39.5ps 22.52s

s35932 0.9464 0.9492 2.26% 11.98% 34.1ps 20.38s

s38584 0.9493 0.9609 1.89% 9.13% 43.0ps 28.84s

s38417 0.9505 0.9526 2.17% 9.12% 37.4ps 15.06s

Finally, we experimentally demonstrate that our assumption of neglecting systematic

variations is reasonable. We demonstrate this on Method II, and show that a reasonable

change in the nominal parameter values of the RCP cells due to systematic variations

would not affect the final results by much. This justifies our heuristic to only choose
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Figure 4.7: Scatter plots of s38417 with and without nominal value disturbance for the
RCP, to model systematic variations.

the starting point of the RCP at the bottom of the die.

The experiment proceeds as follows: after the RCP is built, we disturb the nominal

values of all parameters associated with the RCP by 20%, while leaving those of the

original circuit unperturbed. This models the effect of systematic variations, where the

RCP parameters differ from those of the original circuit. We show the final results of

the scatter plots for circuit s38417, with and without disturbance, in Figures 4.7(a) and

4.7(b), respectively. It is shown that the plots are almost identical, and the average

error is 2.26% with disturbance as compared to 2.28% for the normal case.

The intuition for this can be understood as follows. The correlation between the

original circuit and the RCP depends on the coefficients of the PCs in the canonical

expression. The coefficients depend on the sensitivities of the delay to variations, and

not on their nominal values. Although the delay is perturbed by 20%, the corresponding

change in the delay sensitivity is much lower, and this leads to the small change in the

accuracy of the results.
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4.5 Conclusion

In this chapter, we have presented two novel techniques to automatically generate a

critical path for the circuit to capture all of the parameter variations. A third approach is

a simple hybrid of the two approaches that provides noticeable improvements over either

individual approach. The key idea used in this paper is to take advantage of spatial

correlations to build a test structure, the RCP, that captures variations in multiple

critical paths in the circuit, exploiting the spatial correlation structure. Experimental

results have shown that our methods produce good results.

Our current framework only handles process variations; environmental variations

are addressed by adding adequate delay margins, since these are often worst-cased in

practice. Addressing these through prediction remains an open area for future work. A

straightforward extension of our method for very large circuits is to build not one, but

a small number, of RCPs, one for each region of the circuit. The fundamental approach

for building each path would be identical to the method proposed here.



Chapter 5

Statistical Analysis of Memory

Systems

SRAM arrays occupy a substantial portion of the chip area in modern microproces-

sors, and face a number of read and write stability challenges as feature sizes shrink.

Embedded DRAMs (eDRAMs) present a promising and compact memory alternative

to SRAMs. However, their performance is susceptible to process variations, and ac-

curate statistical analysis of the eDRAM cell voltage is critical to ensure correct per-

formance. This work first develops analytical models for all leakage components that

impact eDRAM performance. Next, these models are fed into two-step statistical anal-

ysis procedure. In the first step, a fast evaluation technique computes the PDF of the

distribution up to the beginning of the tail, evaluated at the 99% point. Since memory

designers are usually more interested in the far tails of the distribution, in the second

step, extreme value theory is employed to find the distribution deeper into the tail. This

method is demonstrated to predict the 99.995% distribution point with average error of

2.67% and more than 180× speedup compared to state-of-the-art methods.

5.1 Introduction

Though embedded DRAMs present a promising alternative to replace conventional six-

transistor (6T) SRAM cells for on-die caches, the presilicon analysis of these cells is a

critical problem, since the cell voltage must be refreshed after a certain time to avoid read

71
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errors. The analysis problem is compounded under process variations, due to which the

cell voltage for each eDRAM cell at a particular time is a random variable, instead of a

specific number, across the memory system. Therefore, accurate and efficient statistical

analysis of the cell voltage is very essential to ensure proper operation of an eDRAM.

In this chapter, we develop a new framework for the statistical analysis of 3T eDRAM

cells, which is applicable to a wider range of DRAM designs, such as 2T eDRAM

[41] and 1T1C traditional DRAM [72] cells. Our contribution is in formulating the

problem and developing appropriate modeling approaches. We analyze the effects of

process variations in eDRAMs and address the problem of statistical memory analysis by

applying algorithmic techniques from the field of statistical static timing analysis of logic

circuits as well as theory of extreme statistics. We focus our attention on the analysis of

a single eDRAM cell: while this cell is relatively small, due to the high repetitive nature

of memory systems, designers are extremely interested in the tail of the distribution

of the statistics for its performance. Obtaining this tail involves a substantially large

number of Monte Carlo simulations, which can be computationally intensive. This

chapter tackles the problems by employing analytical models to significantly reduce the

run time, while maintaining the quality of the result.

The rest of the chapter is organized as follows. Section 5.2 outlines the basics of

gain cell eDRAM operation, followed by a problem formulation in Section 5.3. Next,

Section 5.4 describes our models for the leakage currents and the cell voltage at a given

time, as functions of the process parameters. Our first approach, using a moment-

matching-based method to evaluate the PDF/CDF of the cell voltage with our model,

is then illustrated in Section 5.5, Section 5.6 illustrates how we specifically evaluate

the tail of the PDF/CDF. The experimental results are presented in Section 5.7, and

Section 5.8 concludes this chapter.

5.2 3T Embedded DRAM Operation

Figure 5.1 illustrates an implementation of an eDRAM gain cell using three PMOS1

transistors. In the gain cell, PS is the cell storage transistor, PR is the read access

1 Currently, PMOS devices are chosen over NMOS because they have significantly smaller gate leakage
current. This preference may not hold in the future, as high-k dielectric gates become more prevalent, but the
fundamental techniques in this work are applicable even to cells with NMOS devices.
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transistor and PW is the write access transistor. Except for the selected cell to be

written, all write word lines (WWLs) are normally biased with negative VGS to prevent

large subthreshold currents from flowing from the write bit line (WBL) to the storage

node, corrupting the stored data.

The read and write operations proceed as follows.

• During read mode, the read bit line (RBL) is predischarged to logic-0 and the read

word line (RWL) is activated by setting it to logic-0. A data-0 at the storage node

would charge RBL, while data-1 would leave the RBL voltage unchanged.

• During write mode, WWL is set to a small negative voltage2 to activate PW.

This negative voltage is required to write data-0 through PW to the cell storage

node, to ensure that the node is fully discharged (a zero voltage would result in a

Vth drop across the transistor)

• Similarly, when the line WWL is set high, its voltage level is set to VDD + Vbst,

which ensures that if WBL is high due to a write to a different cell on the same

WBL, the subthreshold leakage for the unselected cell remains negligible.

RBLWBL

PR

PS

PW

node
Storage

RWL

WWL

DDV

Figure 5.1: A 3T PMOS eDRAM gain cell.

In this work, we are interested in studying the data hold mode of the eDRAM

operation to ensure that the data stored is not corrupted. During this mode, the storage

node is left floating: due to this, the cell is susceptible to leakage currents that degrade

2 This is analogous to the idea of applying a small boost over VDD to the access transistor in a conventional
1T1C DRAM, where the boost is required to ensure that data-1 is correctly written.
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the cell voltage over time. Therefore, the eDRAM requires periodic refreshing to ensure

correct operation. Furthermore, on-die cache memory is accessed more frequently than

off-die main memory, which places the constraint that the refresh time must be shorter.

Given this context, the concept of signal retention time is a critical issue in eDRAM

design.

For the implementation of Figure 5.1, we consider two cases: when the data stored in

the cell is a logic 0 or a logic 1. When a data-0 is being held, the worst case corresponds

to the scenario when cell storage nodes are surrounded by high voltage nodes, i.e.,

WWL, WBL, RWL, and RBL are all at logic-1. This creates leakage paths from the

storage node to all of these nodes.

For the data-1 case , the worst case setting, with all of these lines at logic-0, is not

realizable: the WWL signal must be at logic-1 for the retention case (else the cell is

being written into), and the RWL and RBL lines are set to zero only while reading the

cell, and every read is followed by a writeback step. In addition, if WBL is at logic

0, then the gate voltage VG is significantly greater than the source voltage VS for the

PW transistor, and this limits the subthreshold voltage. Moreover, when the cell is in

hold mode with data-1, the subthreshold leakage current flows from the storage node to

WBL, but there is also incoming current from the WWL line and the VDD line on the

storage transistor. In equilibrium, these junction band-to-band leakage and gate overlap

leakage components are equal to the negative-biased subthreshold leakage after some

signal loss: this value is typically sufficiently close to the logic-1 level. When the cell

stores data-0 in hold mode, the leakage sources include subthreshold voltage, junction,

gate, and gate overlap leakages, all of which contribute to degrading the cell signal. The

net result is that data-1 retention is generally not an issue in these cells, and the data

retention time of data-0 much shorter than that of data-1.

The definition of the retention time, tRET , is illustrated in Figure 5.2. To operate

correctly, the eDRAM must satisfy two conditions:

1. The voltage difference between the data-1 cell voltage, VD1, and the data-0 cell

voltage, VD0, must be greater than a specification, ∆, i.e.,

VD1 − VD0 > ∆ (5.1)

This ensures that the difference between the voltage levels is large enough so that
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Figure 5.2: Retention Time for a 3T eDRAM.

the sense amplifier can reliably distinguish between the 1 and 0 data.

2. Voltage VD0 should be low enough to turn on the storage transistor PS and meet

the read speed target, i.e.,

VD0 < VDD − |Vth| − VOV , (5.2)

where VOV is a safety margin and Vth is the threshold voltage.

The retention time is defined as the time for which these conditions are certain to hold.

In the example shown in Figure 5.2, where VD1 = VDD = 0.9V , Vth = VOV = 0.3V , the

second constraint kicks in before the first, and the retention time is found to be 135µs.

These two requirements could be applied to various types of eDRAM cells when

determining their retention time. The voltage margins for VD1−VD0 and VD0 mentioned

above are specific to the eDRAM circuit, as the memory size, sense amplifier type, and

read reference schemes play a significant role in overall chip performance.

As supported by silicon measurements in [73], for the 3T PMOS eDRAM cell to work

reliably at VDD = 0.9V, the corresponding requirements are ∆ = 0.2V and VOV = 0.3V.

In general, a CAD tool can reasonably expect to obtain constraints such as these from

a designer. For the specific 3T PMOS cell used in this work, as observed earlier, VD1

is close to VDD and is relatively constant over time, while VD0 experiences significant

change. As a result, for this design, the two conditions discussed above become VD0 <

VD1−0.2V and VD0 < VDD −|Vth|−0.3V. We see that in this case the second condition

implies the first. Therefore the cell voltage level of VD0 is important.
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5.3 Problem Formulation

Process variations further complicate the issue of leakage and data retention. Under

these variations, the cell voltage of each eDRAM cell at a given time is not a specific

number, but is at a certain value only with a certain probability. In other words, the

cells within an eDRAM array experience different levels of variations, and consequently,

some experience more serious signal loss than others.

Figure 5.3: Variation of cell voltage for a 3T eDRAM.

Figure 5.3 shows an example of cell voltage variations, obtained by Monte Carlo

simulations using SPICE. It is observed that the cell voltage at tRET = 100µs can range

from around 0.19V to 0.41V , which is a large range. It also illustrates that the data-0

hold mode is much more serious than the data-1 hold mode. Since a designer must

ensure, to a very high likelihood, that all cells are working correctly, it is essential to

accurately estimate the cell voltage in the worst case. As an aid, it is useful to provide

the full probability density function (PDF) or cumulative density function (CDF) of the

worst-case cell voltage across all cells of the memory array at any given time. However,

because this process is intended as an inner loop for the design procedure, Monte Carlo

simulation is usually too slow, and it is important to build efficient analysis techniques.

The goal of this work is to develop statistical analysis techniques to solve this prob-

lem. Statistical techniques have been widely employed to analyze timing and power of
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logic circuits in recent years [8, 11, 21]. However, these methods cannot be directly ex-

tended to memories, since the metrics for memories are entirely different from those for

logic circuits. For memory systems, with the above motivation, it is useful to perform

an analysis at the level of a single cell, to capture the statistical variations of its param-

eters. Since these cells are relatively small (3T in this case), it is possible to develop

accurate SPICE-based models to facilitate accurate analysis. Then we can apply the

result to a large memory array with repeated cells.

In spite of its importance, the general area of statistical analysis of memory cells has

not attracted commensurate research effort. Work in this area is largely restricted to a

few papers that study SRAMs. In [44], the failure probabilities of read and write opera-

tions are analyzed. Voltage scaling characteristics of different near-threshold SRAM cells

are simulated in [45], based on yield estimation using importance sampling. In [46], the

authors use fast conditional importance sampling to select repair elements at beginning-

of-life (BOL) to improve the end-of-life (EOL) functionality of SRAM under negative

bias temperature instability (NBTI) effects. A lower-bound for variability-related yield

in SRAM is developed in [47] using the concept of maxima in extreme value theory,

as discussed in Section 5.6. In [48], a modified Monte Carlo based approach called

statistical blockade was proposed to analyze the statistical behavior of SRAM. To the

best of our knowledge, techniques introduced in this chapter is the first work to develop

such a statistical analysis tool for eDRAMs, where the metrics and cell voltage degra-

dation mechanisms are very different from SRAMs. Our approach is also the first one

to use analytical methods to evaluate the extreme tail of a distribution and significantly

reduces runtime as compared to Monte Carlo based approaches.

Our work begins by examining the root causes of cell voltage degradation, and

develop accurate models for all leakage components. From this analysis, we develop a

closed-form formula for the cell voltage, at any given time point, as a function of the

process parameters. Next, we employ a moment-based PDF/CDF evaluation technique

based on APEX [19] to obtain the final PDF/CDF. We demonstrate that the accuracy

of our method is comparable to Monte Carlo simulations using SPICE yet we save a

substantial amount of run time. We consider this to be a preprocessing step.

For a large memory system, the tail of the distribution is of particular importance for

designers to ensure acceptable yield. To achieve better accuracy, we borrow ideas from



78

the extreme value theory (EVT) to specifically deal with the tail of the distribution in

order to obtain both accurate and efficient predictions in this portion of the distribution.

The tail of a distribution obtained by a moment-based method such as APEX is known

to have limited accuracy; however, we find that it is a reasonable starting point for

identifying the beginning of the tail, which is then handled using extreme value theory.

5.4 Modeling eDRAM Behavior

5.4.1 Accurate Leakage Modeling

As stated in Section 5.2, for the eDRAM cell of Figure 5.1, the worst case scenario

corresponds to a data-0 held at the storage node, surrounded by all other nodes at

logic-1. The sources of leakage in this mode include the gate leakage Igate of the storage

transistor PS, the junction band-to-band leakage Ijunc from the body of the write access

transistor PW to the storage node, and the gate overlap leakage Igov of PW. All of these

leakage sources are functions of process parameters. For example, it is well known that

the gate leakage and the gate overlap leakage each has a strong exponential dependency

on oxide thickness, Tox; junction band-to-band leakage is related to the transistor doping

concentration NA; and subthreshold leakage is a function of the threshold voltage Vth.

RWL(VDD)

gateI

RBL

(GND)PS PR

VDD

PW govI

subI

juncI

(VDD)

(VDD+0.4V)

WBL

WWL

Figure 5.4: Leakage components for an eDRAM cell.

These leakage currents collectively determine the cell voltage, Vcell, but on the other

hand, there is a cyclic dependency as Vcell also determines the amount of leakage due

to each of these sources. Therefore, we can write an implicit equation for Vcell, based
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on models for each of these leakage components, expressed as functions of process pa-

rameters.

The subthreshold leakage current Isub of a transistor under weak inversion can be

written as [74,75]:

Isub = K1V
2
t

W

L
e

(|VGS |−Vth)

ηVt

(

1 − e
−

|VDS |

Vt

)

, (5.3)

where Vt is the thermal voltage The value of K1 can be viewed as a constant for a given

technology.

In general, the gate leakage Igate is a complex nonlinear function of the process

parameters and voltages. We use a simplified equation from [76] to approximate Igate

as a function of W , Tox and VGS :

Igate = K2W

(

VGS

Tox

)2

e
− αTox

|VGS | (5.4)

where K2 and α are experimentally fitted constants based on SPICE simulations. We

can further simplify this equation into a quadratic function of Vcell. Using a Taylor

series expansion, we obtain:

Igate ≈ K2We−βTox

(

V 2
GS

T 2
ox

− α

Tox
|VGS | +

α2

2
+ m0

)

(5.5)

where β is independent of VGS, and m0 is a constant correction term.

We use a similar process to approximate the gate overlap leakage of the write access

transistor PW.

The junction leakage can be approximated by the equation below:

Ijunc = W |y2 − y1|
AEVapp

Σ
1/2
g

exp

(

−BΣ
3/2
g

E

)

C (5.6)

where C = (1 − δgVG) (1 − λ (Vapp)) is a correction term, and λ(Vapp) is a fitting func-

tion. The value of W |y2 − y1| is the effective area of the junction, and A, B, δ are all

experimentally derived constants. A detailed explanation and the meanings of the other

terms are provided in [77].
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5.4.2 A New Model for Vcell

The voltages included in the equations in Section 5.4.1 are all related to the cell voltage,

Vcell. Computing Vcell based on the above approaches is unnecessary when we address

the problem of modeling variations about a nominal design point. Using a first order

Taylor expansion, they can be simplified into

Isub = a1Vcell + a2

Igate = b1V
2
cell + b2Vcell + b3

Igov = c1V
2
cell + c2Vcell + c3

Ijunc = d1V
2
cell + d2Vcell + d3. (5.7)

The total leakage current is equal to the sum of Isub, Igate, Igov and Ijunc. We denote

the storage node capacitance by CS, which consists mainly of the gate capacitance of

the storage transistor. By adding the three leakage components together, we obtain:

Isub + Igate + Igov + Ijunc = −CS
dVcell

dt
. (5.8)

If we define:

P1 = b1 + c1 + d1 (5.9)

P2 = a1 + b2 + c2 + d2

P3 = a2 + b3 + c3 + d3,

then we have

P1V
2
cell + P2Vcell + P3 = −CS

dVcell

dt
(5.10)

where P1, P2 and P3 are all functions of the process parameters, which are random

variables. To find the value of Vcell at a given time t0, we have:

−
∫ Vcell

0

CS

P1V
2
cell + P2Vcell + P3

dVcell =

∫ t0

0
dt. (5.11)

Solving this for Vcell, we obtain:

Vcell =
2P3 tan

(

t0
2CS

√

4P1P3 − P 2
2

)

√

4P1P3 − P 2
2 − P2 tan

(

t0
2CS

√

4P1P3 − P 2
2

) . (5.12)
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Equation (5.12) can be easily modified to be in the style of

2 arctan

(

Vcell

√

4P1P3 − P 2
2

2P3 + P2Vcell

)

CS =
√

4P1P3 − P 2
2 t0 (5.13)

from which we can fit CS using a small set of Monte Carlo simulations. Under process

variations, the value of Vcell calculated by Equation (5.12) is a function of the underlying

process parameters, which are random variables with certain distributions. The PDF

of Vcell cannot be easily computed in closed-form using this equation. Therefore, we

derive the second order Taylor expansion of Equation (5.12) with respect to the process

variations at their nominal values.

5.5 Statistical Analysis of Vcell using Moment-Based Meth-

ods

We assume that all process parameters are uncorrelated Gaussian-distributed variables.

Correlated Gaussian variables, on the other hand, can also be expressed in terms of un-

correlated variables by a linear transformation step called principal component analysis

(PCA), as is shown in [8]. In such a case, it is trivial to show [19] that the linearly

transformed variables can be substituted in the quadratic leakage power expressions to

obtain another quadratic in the independent variables. Therefore, this assumption is

general enough to take into account all Gaussian-distributed parameter variations.

All of the variables representing process parameters are placed in a vector Y =

[Y1, Y2, · · · , YN ]T , and the vector containing their corresponding nominal values is µ =

[µ1, µ2, · · · , µN ]T . Defining ∆Yi = (Yi − µi) /σi, where σi is the standard deviation

of the ith parameter, and ∆Y = [∆Y1,∆Y2, · · · ,∆YN ]T , it is easily seen that ∆Y ∼
N(0, I). Using a Taylor expansion, we obtain:

Vcell = Vcell,0 + UT∆Y + ∆YTV∆Y (5.14)

where Vcell,0 is the value of Vcell calculated at nominal parameter values, U is a vector

containing the first-order Taylor series coefficients, scaled by their standard deviations,

and V is a matrix containing the scaled second-order Taylor series coefficients.

The PDF of Equation (5.14) can be approximated using the moment-matching

method, APEX, as [19] introduced in Section 2.4.3. As is discussed in Chapter 2,
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the APEX technique approximates the PDF of Equation (5.14) by an impulse response

of order M :

h(t) =

{

ΣM
i=1rie

pit t ≥ 0

0 t < 0
(5.15)

The unknowns in Equation (5.15), called residues ri and poles pi, can then be com-

puted by matching the time moments of Equation (5.15) and the time moments of

Equation (5.14). Then the approximate PDF of Vcell, written as h(t), as well as the

corresponding CDF s(t), can be easily obtained.

The overall statistical analysis procedure for finding the body of the distribution of

the cell voltage of eDRAM cells at a given time, t0, can be summarized in Algorithm 5

below. Typically, we would apply this algorithm using t0 = tRET , the target retention

time of the cell.

Algorithm 5 Statistical cell voltage analysis for eDRAM.

1: Characterize constants that are specific to the provided technology and that are
independent of the process parameters considered as variation sources, such as K2,
α, β for the gate leakage, and K1 for the subthreshold leakage.

2: Characterize the capacitance CS using a small number of Monte Carlo simulations.
Substitute the nominal values of process parameters, and calculate all Taylor coef-
ficients required for Equation (5.14).

3: Use APEX to evaluate the PDF/CDF of Vcell.
4: If the design is changed, go to Step 2. Otherwise Stop.

5.6 Statistical Analysis of Vcell using Extreme Value The-

ory

For large memory systems, to ensure acceptable yield, designers are more concerned

with extreme cases. Therefore, an accurate estimation of the tail of the distribution

for the cell voltage is important. Besides, it is known that AWE-based methods do not

perform well for the far tail of the distribution. An area in the statistics domain called

extreme value theory (EVT) [78] suggests that the tail of any kind of distribution will

converge to a certain kind of distribution beyond a large enough threshold. In the VLSI
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design context, these approaches have been used for maximum power estimation in [49]

and for SRAM analysis in [47]. However, most of these approaches are either Monte

Carlo-based or numerically-based and require long times to simulate for points in the

tail of the distribution.

5.6.1 The Basics of EVT

Extreme value theory is based on order statistics. Consider a random variable X with

cumulative distribution function (CDF) F (x). If we draw n samples from its population,

namely, X = [X1, · · · ,Xn], and rearrange them in nondecreasing order as X1,n ≤ X2,n ≤
· · · ≤ Xn,n, where {X1,n, · · · ,Xn,n} is a permutation of {X1, · · · ,Xn}, then the kth term

Xk,n of this ordered sequence is called the kth order statistic.

We now introduce two concepts corresponding to different extreme behaviors, the

maxima and the exceedance. If we obtain p sets of n samples, X1, · · · ,Xp, and pick the

maximum unit in each sample (i.e., the nth order statistic in each of the p samples), we

obtain a new sample set

Xm = {Xi
n,n, 1 ≤ i ≤ p} (5.16)

This sample of the p maxima is one example of an extreme order distribution.

A second and separate notion is that of the exceedance. Given a sample of size n,

X = [X1, · · · ,Xn], this corresponds to the r largest elements of the sample, i.e.,

Xe = {Xn−r+1,n, · · · ,Xn,n} (5.17)

The concept of exceedance provides a natural mechanism to model the tail of a

distribution. The CDF of the exceedance Ft(x) is a conditional distribution because we

are considering the distribution only over a predetermined threshold t. This conditional

CDF can be written as

Fcondi(x) = P (X ≤ x|X > t) =
P (X ≤ x,X > t)

P (X > t)

=
F (x) − F (t)

1 − F (t)
(5.18)

where F (x) is the parent CDF of the random variable X. Subtracting the threshold t

from X, we obtain

Ft(z) = P (X − t ≤ z|X > t) =
F (z + t) − F (t)

1 − F (t)
. (5.19)
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From this equation it is easy to derive that

F (z + t) = (1 − F (t)) Ft(z) + F (t) (5.20)

If we can obtain the conditional tail distribution Ft(z) accurately, we can calculate

the CDF values of the tail portion of the original distribution by Equation (5.19). It

is known that for most distributions, the CDF of the exceedance would converge to a

generalized Pareto distribution (GPD), as specified below.

Gξ,β(z) =







1 −
(

1 − ξ z
β

)1/ξ
, ξ 6= 0; z ∈ (ξ, β)

1 − e−z/β, ξ = 0; z ≤ 0
(5.21)

where

D (ξ, β) =

{

[0,∞) ξ ≤ 0

[0, β/ξ] ξ > 0.
(5.22)

It is noted that when ξ = 0, the CDF of the exceedance is the exponential distribu-

tion.

Ft(z) = 1 − e−z/β (5.23)

The case of ξ > 0 corresponds to PDFs with bounded tails. When ξ is significantly

larger than zero, the corresponding PDFs it represent can have abrupt truncations. On

the other hand, the case of ξ < 0 corresponds to PDFs with unbounded tails, and can

have distributions with very large tails at their extreme values. In most practical cases,

however, the distribution is smooth, and the tail portion is small, and therefore we use

the case ξ = 0 to model the tail of the cell voltage for eDRAM. Our results in Section

5.7 demonstrate the this approach works well.

The exponential distribution has the useful property of being memoryless. If we

replace F (x) with the exponential distribution function in Equation (5.19), we obtain

Ft(z) =
F (z + t) − F (t)

1 − F (t)
=

e−t/β − e−(z+t)/β

e−t/β

= 1 − e−z/β (5.24)

It is observed that the final result is independent of t. This tells us that if we are given

an exponential distribution, then no matter what threshold we select, it will generate

the same conditional distribution. Therefore beyond a certain point if the tail of the
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distribution can be approximated by the exponential distribution, the threshold chosen

has no effect over the final conditional distribution result. Mathematically speaking, if

we have two thresholds t1, t2, t1 < t2, then if Ft1(z) = 1 − e−z/β, we have

Ft2(z) =
F (z + t2) − F (t2)

1 − F (t2)
(5.25)

From Equation (5.20)We also know that

F (t2) = F (t2 − t1 + t1)

= (1 − F (t1)) Ft1(t2 − t1) + F (t1)

F (z + t2) = F (z + t2 − t1 + t1)

= (1 − F (t1)) Ft1(z + t2 − t1) + F (t1)

Putting these results into Equation (5.25),we obtain

Ft2(z) =
(1 − F (t1)) (Ft1(z + t2 − t1) − Ft1(t2 − t1))

(1 − F (t1)) (1 − Ft1(t2 − t1))

=
Ft1(z + t2 − t1) − Ft1(t2 − t1)

1 − Ft1(t2 − t1)

=
e−(t2−t1)/β − e−(z+t2−t1)/β

e−(t2−t1)/β

= 1 − e−z/β (5.26)

which proves that the threshold we choose has no effect over the final conditional distri-

bution result as long as the approximation using exponential distribution holds at these

threshold points. This allows flexibility in choosing the threshold during implementa-

tion.

Because of the memoryless property of the exponential distribution, under the lim-

itations of the approximation in Equation (5.23), we have the flexibility to choose any

threshold that is large enough. Therefore we can characterize the parameters in Ytail

as either their 99% points or 99.9% points. After we obtain the final exponential distri-

bution for Vcell,tail, we can use it to determine the probability at the point of interest.

5.6.2 Finding the Tail of the Distribution

Due to the fact that we are now specifically looking at the tail of the distribution, the

previous Taylor series expansion about the mean in Equation (5.14) is inaccurate in this
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faraway region. To construct a new model, we use the first order Taylor series expansion

around the tail instead.

Vcell,tail = Vcell,tail0 + UT
tail0∆Ytail0 (5.27)

where ∆Ytail0, i = Yi − Yi,tail, where Yi,tail is an appropriate threshold, tTaylor, from

which the tail can be computed. In our experiments, we set this to be the 99% point of

the underlying process parameter distribution.

Physically, the idea of performing Taylor series expansions maps well to the design

of memory cells. If we look at, for example, the effect of Tox on the retention time, it

is typically the low-Tox samples that correspond to high leakage, and therefore, higher

Vcell at the prescribed retention time. Therefore, we perform a Taylor series expansion

about the tail at the left (lower end) of the distribution, which translates to the tail at

the right (upper end) of the Vcell distribution.

Since analytical models at the tail portion are difficult to derive, we can use a small

number of simulations to fit the coefficients of the Taylor series around the tail of the

distribution. The number of simulations required is linear in the number of random

variables considered, which is minimal due to the small number of transistors for an

eDRAM cell.

As seen from Equation (5.27), the computation of the distribution of Vcell,tail requires

the calculation of the distribution of a weighted sum of random variables, ∆Ytail0. If

each of these is a Gaussian, their weighted sum is also a Gaussian, and our goal is to

find the tail of this sum.

We approximate the tail of the weighted sum of these distributions by the weighted

sum of the tails. For this approximation, we only use the tail points for Y when

calculating ∆Ytail0. Therefore, ∆Ytail0 can be viewed as exponentially distributed

with the appropriate sign changes (e.g., corresponding to considering the left tail of Tox

to compute the right tail of Vcell). To aid in this computation, we use the following

result:

Observation [79]: The sum of k independent exponentially distributed random variables

with different means follows a hypoexponential [79] distribution. If the k random vari-

ables are X1,X2, · · · ,Xk with rate λi for Xi, then the CDF of X = Σk
i=1Xi can be



87

written as

H(x) = 1 − αexΘ1, (5.28)

and the PDF is

h(x) = −αexΘΘ1, (5.29)

where Θ is a matrix constructed by the rates of the exponentially distributed random

variables, namely

Θ =










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
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−λ1 λ1 0 · · · 0 0

0 −λ2 λ2
. . . 0 0

...
. . .

. . .
. . .

. . .
...

0 0
. . . −λk−2 λk−2 0
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

, (5.30)

and α =
[

1 0 · · · 0
]

. The vector 1 contains all ones. The factor exΘ is the matrix

exponential [80] of xΘ.
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Figure 5.5: A comparison between the sum of tails and the tail of the sum: (a) Monte
Carlo points showing the tail of a single Gaussian PDF, (b) the sum of two such tails,
shown by the dotted line, and the tail of the sum of two distributions, shown by the
solid line.



88

Therefore, the sum of tails is a hypoexponential distribution described by Equa-

tion (5.29). Figure 5.5(a) shows a set of Monte Carlo samples that represent the tail of

a single Gaussian random variable, truncated at the 99 percentile threshold texp
3 and

the sum of the truncation points gives us the threshold tsum: it is visually shown that

the PDF for each single random variable can be approximated by an exponential distri-

bution. The sum of two of these exponentials results in a hypoexponential, illustrated

by the dotted line in Figure 5.5(b). Note that near the threshold, this differs from the

tail of the sum, which is an exponential. This is not surprising: if the variables are

independent, then

f(x1 + x2 = tsum + c) =

∫ ∞

−∞
fx1(x1 = t)fx2(x2 = texp + c − t)dt (5.31)

where f(.) is a PDF. When we work with the sum of the tails, the values of fxi
differ from

the original values since the PDF is zero at all values prior to the tail threshold, texp; if we

work with the tail of the sum, these values are nonzero. The effect is diluted as c moves

further away from the threshold tsum as what we consider is the conditional distribution

of the final tail. Ideally, what we want is that the conditional distribution of the sum of

tails beyond a threshold larger than tsum, equals to the conditional distribution of the

tail of sum beyond that threshold. As we move away from tsum, the contribution from

parameter values less than texp becomes increasingly smaller toward the final conditional

distribution. It is therefore reasonable to assume that the distribution is more accurate

as we move away from the threshold, tsum. Using this idea, we can truncate (and

renormalize) the hypoexponential distribution at some point thyp, as shown by a dashed

line in Figure 5.5(b). Due to the memoryless property of the exponential distribution,

the same distribution may be extrapolated back to tsum, as also shown in a dashed line

in Figure 5.5(b) and eventually back to the tail threshold we want.

To convert the hypoexponential distribution to an exponential, based on its values

beyond a threshold, thyp, shown as the dashed line in Figure 5.5(b), we match this

conditional distribution at some point teval > thyp, shown as the dot-dash line in Figure

3 Realistically, the location of this threshold may be different for various elements to be summed.
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5.5(b), with the exponential form of Equation (5.23). Mathematically:

H(teval) − H(thyp)

1 − H(thyp)
= 1 − e−(teval−thyp)/β (5.32)

i.e., β = − teval − thyp

log
(

1 − H(teval)−H(thyp)
1−H(thyp)

) (5.33)

From this equation, β can be easily computed, and we have the tail distribution in the

exponential form. It can be seen that β is related to both the mean and the variance of

the hypoexponential distribution, and the relationship is implied during the calculation

of H(teval) and H(thyp).

There are four specific parameters that we must select:

• texp corresponds to the point in the parameter space beyond which the tail of

a function is modeled as a truncated exponential. The value of texp could be

different for various process parameters.

• tTaylor is the point in the parameter space about which the Taylor series expansion

in (5.27) is performed in the parameter space. This value could be different for

various process parameters.

• tsum is a point in the performance space at which the parameters are equal to

their respective texp points.

• teval is a point in the performance space at which the hypoexponential approxi-

mation of the performance function (in our case, Vcell at tRET ), based on the sum

of the tails, is matched to an exponential distribution.

• thyp is the point in the performance space beyond which the sum of the tails

provides a reasonable approximation to the tail of the sums, according to the

argument made above.

The above parameters must be chosen carefully. As stated earlier, further into the tail,

the approximation using the sum of tails for the tail of the sum would be more accurate,

because points smaller than texp contribute very little to the integral. However, because

the first order Taylor serious expansion is performed around tTaylor, in order to maintain
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the accuracy of this expansion, the points thyp, tTaylor, and teval should not be too far

away.

In our framework, we choose their relative positions as a preprocessing step by

examining the curve of Vcell,tail0 with respect to ∆Ytail0 and choose tTaylor such that

the linear relationship holds for all elements in ∆Ytail0, while making tTaylor as large as

possible. The parameter thyp must be smaller than teval to make Equation (5.32) valid,

but it should be close enough to thyp and tTaylor for the first-order Taylor expansion to

be accurate in this region. These relative positions are tuned once and can be used for

other experimental setups.

5.7 Experimental Results

In this work, for the eDRAM gain cell in Figure 5.1, the sizes of each transistor and

the layout are shown in Table 5.1. Unless otherwise stated, the activating voltage for

WWL is set to be VDD + 0.4V , and VDD is 0.9V.

Table 5.1: Size of each transistor and the layout of the 3T eDRAM gain cell (0.9V,
65nm LP PMOS).

PR PS PW

W (nm) 150 225 150

L (nm) 60 90 90

The parameter variations considered in our experiments include the threshold volt-

age, Vth, and the oxide thickness, Tox, which are assumed to be Gaussian-distributed

and uncorrelated. However, as mentioned in Section 5.4, our analysis technique can

incorporate all Gaussian parameter variations, including correlated variations.
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5.7.1 Leakage characterization

To evaluate the body of the distribution using techniques described in Section 5.4, a

characterization process must be performed only once for a given process, to determine

the equations that characterize leakage, as described in Section 5.4.1. These equations

must accurately fit the behavior of Vcell over the expected range of parameter variations.

In order to verify that our model accurately captures all leakage components for

nominal process parameter values, we plot each leakage component respectively as a

function of the cell voltage in Figure 5.6. The circled points are values generated by

SPICE, and the solid lines are approximations using our model. It is observed that the

two overlap almost exactly, and our model tracks the leakage components very well with

changing Vcell.

Taking all leakage components into consideration, we can evaluate how well Equa-

tion (5.12) tracks the transient simulation results of Vcell using SPICE. The result is

shown in Figure 5.7(a) and the match is observed to be excellent. The circled points

are the SPICE results, while the solid line corresponds to Equation (5.14).

To illustrate that our model captures the parameter variations well, we show as an

example the plot of the gate leakage for transistor PS when Vcell is zero with varying

Tox, in Figure 5.7(b).

5.7.2 Vcell Distributions Using Moment Matching

We assume that Vth and Tox are Gaussian-distributed, centered at their nominal values,

and with 3σ values being 21% and 5% of their mean, respectively. Although our model

is generally applicable to a large number of process parameter variations, for simplicity

of implementation, we first examine the impact of Vth variations and Tox variations on

Vcell, respectively.

The following analysis demonstrates that most of the variations of Vcell are due

to the Tox variations because of the negative VGS biasing for the write transistor PW

introduced in Section 5.2, which means using VDD + 0.4V instead of VDD for the gate

voltage of PW. Figure 5.8 shows the results of SPICE Monte Carlo simulations over the

range of Vth and Tox. The solid line incorporates variations in Vth, while the dotted line

ignores them: it is clearly seen that the PDF of Vcell in either plot is almost the same.
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Figure 5.6: Leakage models for (a) subthreshold leakage of transistor PW, (b) gate
overlap leakage of transistor PW, (c) junction leakage of transistor PW and (d) gate
leakage of transistor PS.
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Figure 5.7: (a) Transient simulation of Vcell. (b) Gate leakage with zero cell voltage and
varying Tox for transistor PS.

Therefore in our implementation of the tail distribution, we only consider Tox to be the

source of variations.
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Figure 5.8: PDF of the Vcell distribution with and without Vth variations

Algorithm 5 is then applied with an impulse function of order 4 to approximate

the PDF of Vcell up to the 99% point for an eDRAM at t0 = 50µs. Because of the

nature of moment-matching-based methods, the PDF provided by APEX may have

small oscillations for the smallest values of Vcell and may go below zero. This issue,

however, is not relevant because in almost all cases we are interested in the PDF at
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its other end, as the CDF goes towards 1. However, we include a simple heuristic that

keeps the PDF consistently nonnegative, without impacting accuracy:

PDF (t) =

{

ωh(t) h(t) ≥ 0

0 h(t) < 0
(5.34)

where ω is a constant such that PDF (t) integrates to 1. The cumulative distribution

function, CDF (t), can be obtained analogously by scaling s(t) of Equation (2.6) of

Chapter 2.

The results of the CDF are shown in Figure 5.9(a). This CDF can be regarded

as an estimate of the cell voltage distribution across all cells of a large eDRAM array.

For comparison, we also plot the CDF across all cells of a 10kb eDRAM array, using

the circled points, obtained by Monte Carlo simulation using SPICE. The solid line

indicates the function CDF (t) obtained from our analysis, and this is seen to be very

close to the Monte Carlo results. There are two kinds of error metric. One is yield

prediction error, and the other is point prediction error. We take the value of Vcell at

the 99% point of the distribution obtained using the model, and determine the yield for

the Monte Carlo simulation results at this point, Y . The yield prediction error at the

99% point is defined to be |Y −99%|
99% . This error is found to be 0.3% for the eDRAM cell

with sizes defined by Table 5.1. If we take the 99% point of the distribution obtained

using our model and using Monte Carlo simulations respectively, and then calculate the

error between the two, then we obtain the point prediction error. Due to the condition

of the CDF function at the tail, the point prediction error is usually much larger than

the yield prediction error. We observe that the point prediction error at the 99% point

is 2.18% for the eDRAM cell defined in Table 5.1. Excluding the characterization step

which is carried out only once for a process, the run time of our method is 0.94 seconds,

compared to 6.3 minutes cost by Monte Carlo simulation using SPICE. The speedup is

expected to increase with the size of the memory array.

The run time savings is largely attributable to the fact that a low order of the APEX

algorithm is sufficiently accurate. In Figure 5.9(b), we show the CDF results using orders

1, 2, 3 and 4, respectively. It is observed that order 1 and order 2 approximations are

less accurate, while the CDF of order 3 and order 4 almost overlap entirely with each

other. Further increasing the approximation order would not help with the accuracy and

it is known that APEX has stability issues for high order of approximations. Therefore
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Figure 5.9: (a) CDF of Vcell. (b) CDF with changing orders of approximation.

for our problem, we conclude that a reduced order model of order 3 or 4 is sufficient.

We observe that in general, the APEX method used to evaluate the PDF/CDF scales

well with increasing number of parameters [19], so that a larger number of parameters

can easily be handled.

A common procedure for design improvement is to change the sizes of transistors

in the eDRAM cell and the WWL voltage. These design parameters are inputs to

our algorithm and our approach can robustly produce accurate results with changing

inputs. We show the 99% point prediction errors for a list of different size configurations

of transistors PW and PS in Table 5.2, because it is the metric that generates larger

errors.

To illustrate the impact on the CDF result by changing sizes of transistors, we show

in Figure 5.10 the comparison between the CDF results of original sizes listed in Table

5.1, and with transistor width of the storage transistor PS sized up to be 255nm. The

CDF is observed to be shifted toward left and our model captures the shift accurately.

As an example to show that our analysis method is robust to different WWL voltages,

we tested the result for the original size configuration using a WWL voltage of VDD +

0.2V : for this scenario, the prediction error for the 99% point is 8.27%.
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Table 5.2: Yield prediction errors at the 99% point for different size configurations.
size configuration prediction error

PW PS at 99% point
W (nm) L (nm) W (nm) L (nm)

150 90 225 90 2.18%

150 90 240 90 6.88%

150 90 255 90 7.77%

180 90 225 90 0.29%

150 120 150 120 2.38%
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Figure 5.10: The CDF distribution for various transistor sizes.

5.7.3 Vcell Distributions Using Extreme Value Theory

Next, we compare our model of the tail distribution with Monte Carlo simulations. As

is illustrated in Section 5.6, if the tail follows an exponential distribution, because of

the memoryless property of the exponential distribution, ideally the distribution is the

same no matter what tail threshold we choose as long as the threshold is large enough

so that the points beyond that can be characterized as the tail. In our experiments, we

choose the 99% CDF point to be tail threshold. The value of this threshold can either

be obtained by a reasonable number of Monte Carlo simulations or by the analytical

method introduced in Section 5.4. To accurately capture the error generated by the tail

distribution evaluation technique illustrated in Section 5.6, in this work we use Monte
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Carlo simulations to determine this threshold value. However, it is obvious that the two

analytical methods can be combined to form a fast simulation framework.

By sweeping the parameters in the region of interest, it is easily seen that Vcell

decreases as the Tox of either the read transistor or the storage transistor increases:

this is shown in Figure 5.7.3. These figures also show that the assumption of a linear

relationship between Vcell and Tox in the region of interest is a good approximation.

Therefore when characterizing the Tox distribution, we use the 1% points for the Tox

distribution, for both the storage and the write transistors, as the threshold of their

left tails. We perform the Taylor expansion around the threshold points of the Tox

values, and model the symmetric portion of these two tail distributions as exponential

distributions. Then, as illustrated in Section 5.6, we use a hypoexponential distribution

to model the conditional distribution of Vcell and then convert it back to an exponential

distribution.

The results of applying this approach are shown in Figure 5.12. The circled points

are the Monte Carlo results of the tail, and the solid curve is the exponential distribution

fit for the conditional distribution, we see that the two results mostly coincide with each

other. The hypoexponential distribution is also shown as an intermediate step, using

the dashed line. Vtail in the figure is the tail threshold, corresponding to texp in our

earlier notation.
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Figure 5.11: The Vcell vs. Tox for (a) the storage transistor and (b) the write transistor
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Once we compute this conditional distribution, it is easy to covert it back to the tail

of the original distribution using Equation (5.20). The resulting CDF, and a comparison

of Monte Carlo results, are shown in Figure 5.13.

The runtime of the tail distribution evaluation technique is the sum of three com-

ponents:

• the time required to compute the threshold value, texp = Vtail,

• the simulations required to fit the coefficients with respect to the random variables,

which are observed to take 1.1 seconds, and

• the time required to calculate the exponential distribution using the sum of the

tails, which is around 1.2 seconds.

For the first component, if we use 104 Monte Carlo simulations to calculate the tail

threshold, this involves a runtime of 378 seconds, and the total runtime of our tail

evaluation technique is 6.3 minutes. In contrast, a set of 106 Monte Carlo simulations

for the 99.995% point takes 10.5 hours. If we use the analytical method in Section 5.4,

to calculate the tail threshold, the run time savings would be even more significant. All

runtimes are reported on a Linux PC with 3.2GHz frequency and 2GB memory.

We also compare our method with the statistical blockade approach in [48]. This

approach uses a number of Monte Carlo simulations to get the threshold of the 99%

point, and borrows ideas from the data mining community and uses a support vector

machine (SVM) as a classifier to identify simulation points that are more likely to

generate tail points. In order not to be conservative in predicting tail points, a smaller

threshold (97% point as in [48]) is used in the SVM. Only these points, identified by

the SVM, are simulated using SPICE to generate the tail distribution.

The classifier is first trained using 1000 points, and appropriate scaling of the SVM

is considered as the number of tail points is significantly smaller than the number of

non-tail points. Applying this approach to the eDRAM problem, we get runtime savings

as compared to 106 Monte Carlo simulations due to the filtering of the SVM classifier.

The number of Monte Carlo points filtered using the SVM, the number of real tail

points that have Vcell values actually larger than the 99% threshold among the filtered

points, and the number of real tail points in the 106 original Monte Carlo simulations
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are listed in Table 5.3 in the last three columns, respectively. It is noted that apart

from the simulations to find the threshold, and the simulations for the training points,

the statistical approach generally can obtain 10× runtime savings with a small sacrifice

in the accuracy. Even so, approximately 105 Monte Carlo points must be simulated in

order to obtain most of the tail points in the original 106 Monte Carlo simulations. Our

approach, on the other hand, only requires as few as two Monte Carlo simulations to get

the first order Taylor series expansion around the tail threshold, hence greatly reduces

the runtime compared to the statistical blockade approach.

A comparison of the two approaches are listed in Table 5.4. In this table, we compare

the 99.995% point for each distribution under different transistor sizes using our method

and the statistical blockade (Statblock) method, respectively. To find this point, we set

Ft(z) = 99.5%, and F (t) = 99%, and from Equation (5.20),

Ft(z + t) = (1 − 99%) × 99.5% + 99% = 99.995% (5.35)

Therefore the 99.5% point of the tail corresponds to the 99.995% point of the original

distribution. It is noted that we can always choose a high threshold for the tail, and

the extreme value theory suggest that the high the threshold is, the more likely that

the distribution would converge to the generalized Pareto distribution, of which the

exponential distribution is a special case. Therefore our method will have even more

accurate results. Moreover, inspecting further into the tail for the purely Monte Carlo

methods would require more experiments, thus making the run time savings of our

method more attractive. For this work, we believe that the 99.995% point is sufficient

to illustrate the idea. The runtime listed does not include the runtime to calculate

the tail threshold for either case. It is noted that if we use Monte Carlo methods to

obtain this threshold, the runtime of this part will be the same. If we use the analytical

method in Section 5.4 to calculate the threshold, the runtime will be further reduced

from Monte Carlo methods.

From Table 5.4, it is noted that our method provides predictions with error less

than 3% for most cases, and runs much faster than the statistical blockade approach.

The statistical blockade approach can be made faster by either increasing the threshold

for the SVM, or reducing the number of the original Monte Carlo points generated to

feed into the SVM. Increasing the threshold significantly quickly renders the method
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Table 5.3: Monte Carlo simulation savings for the statistical blockade approach

Size configuration MC points True tail points True tail points
PW PS filtered among the among the 106

W (nm) L (nm) W (nm) L (nm) filtered points MC points

150 90 225 90 112562 9538 10513

150 90 240 90 108561 9338 10385

150 90 255 90 108561 8847 9920

180 90 225 90 112524 9708 10505

150 120 150 120 113028 9821 10571

Table 5.4: Error and runtime comparison of our method and statistical blockade

Size configuration Prediction error
Runtime

PW PS at 99.995% point

W (nm) L (nm) W (nm) L (nm) Our method Statblock Our method Statblock

150 90 225 90 2.05% 0.45% 2.3sec 1.2hr

150 90 240 90 1.28% 0.32% 2.3sec 1.1hr

150 90 255 90 2.98% 1.46% 2.3sec 1.1hr

180 90 225 90 1.13% 0.59% 2.3sec 1.2hr

150 120 150 120 5.30% 0.48% 2.2sec 1.2hr

inaccurate because most points filtered out are larger than the new threshold, thus

skewing the statistics. Therefore, for fair comparison, we reduce the number of Monte

Carlo points to be 500000 as input to the SVM. The results are shown in Table 5.5, and

it is noted that the accuracy is slightly worse than our approach for most cases, while

the runtime is still larger. It is noted that the statistical blockade approach cannot be

made as efficient as our method because less than 10 Monte Carlo simulations would

not produce any meaningful distribution.

Finally we test our method using APEX to get the tail threshold and our tail analysis

technique to get further into the tail. The result is a much faster framework with run

time totalling 3.2 seconds, as compared to statistical blockade method with 50000 initial

MC points totalling 9.8 minutes. A comprehensive comparison of accuracy and run time
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Table 5.5: Statistical blockade results with 500000 Monte Carlo points

Size configuration Prediction MC True
RuntimePW PS error at points tail

W (nm) L (nm) W (nm) L (nm) 99.995% point simulated points

150 90 225 90 3.59% 5666 455 3.6min

150 90 240 90 5.02% 5387 458 3.4min

150 90 255 90 4.24% 5387 435 3.4min

180 90 225 90 4.36% 5575 472 3.5min

150 120 150 120 3.25% 5606 487 3.5min

is shown in Table 5.6. The runtimes shown are based on the average runtime on all five

sizes, as the runtime for each size is practically very similar.

Table 5.6: Error comparison of our method and statistical blockade
Size configuration Prediction error

PW (nm) PS (nm) at 99.995% point

W L W L MC Statblock MC+EVT APEX+EVT

150 90 225 90 - 3.59% 2.05% 1.56%

150 90 240 90 - 5.02% 1.28% 1.33%

150 90 255 90 - 4.24% 2.98% 3.76%

150 120 150 120 - 5.30% 3.25% 5.30%

180 90 225 90 - 4.36% 1.13% 1.40%

Runtime 10.5 hrs 9.8 min 6.3 min 3.2 sec

5.8 Conclusion

In this work, we have developed a novel statistical cell voltage analysis tool to aid in

the design of embedded DRAMs. Experimental results show that our approach is both

accurate and efficient.



Chapter 6

Conclusion

As feature sizes continue to shrink and these variations affect both logic and memory

circuits, it is widely acknowledged that process parameter variations cannot be neglected

in modern VLSI designs. For logic circuits, while presilicon analysis and optimization

have been researched for several years, post-silicon tuning is still an emerging area

with challenging issues to address. Accurate post-silicon delay prediction is essential

to facilitate post-silicon tuning in order to reliably improve yields. This thesis has

aided these tuning techniques by providing more robust and reliable post-silicon delay

prediction approaches than critical path replica while still maintaining the efficiency

of testing time. For memory circuits, eDRAMs are becoming increasingly popular as

candidates for the on-die cache and variation-aware analysis tools play vital roles to

ensure that these designs meet specifications. This thesis has provided an accurate and

efficient analysis technique for the cell voltage of eDRAM, including tail analysis.

For the post-silicon statistical delay analysis work, the work in this thesis has as-

sumed that the parameter variations are Gaussian-distributed and that first-order ap-

proximations for the delay models are adequate. For non-Gaussian parameter variations

and nonlinear delay model approximations, the SSTA procedure used here can be re-

placed by existing non-Gaussian, nonlinear SSTA techniques, and the notion of the

conditional PDF proposed here still holds. However, if the delay of the original circuit

and the delays of the test structures are no longer Gaussian-distributed, the conditional

distribution may not strictly follow a closed form. Approximation and numerical tech-

niques will have to be explored to solve the problem, as is done in most non-Gaussian,
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nonlinear SSTA techniques. Furthermore, the spatial correlation model used in this

work is based on academic models and in practice, this model should be characterized

accurately using real silicon data because it directly impacts the accuracy of the delay

prediction.

Our work on statisical memory analysis of the eDRAM work can be extended to

statistically analyze the data retention time as well as the read speed. The tail analysis

technique is also potentially applicable to any large-scale circuit with highly repeated

cells. To use the statistical analysis result to perform memory optimization is also an

interesting topic that needs further exploration.
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