UNIVERSITY OF MINNESOTA

This is to certify that | have examined this copy of a docttnakis by

Rupesh Subhashchandra Shelar

and have found that it is complete and satisfactory in aléets
and that any and all revisions required by final

examining commitee have been made.

Professor Sachin S. Sapatnekar

Name of the Faculty Advisor

Signature of the Faculty Advisor

Date

GRADUATE SCHOOL

SYNTHESIS FOR NANOMETER TECHNOLOGIES

A THESIS
SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL
OF THE UNIVERSITY OF MINNESOTA

BY

RUPESH SUBHASHCHANDRA SHELAR

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY IN ELECTRICAL ENGINEERING

Sachin S. Sapatnekar, Advisor

MAY 2004

© Rupesh Subhashchandra Shelar 2004

ACKNOWLEDGEMENTS

| am beholden to my advisor, Prof. Sachin Sapatnekar, fosunpgort, encouragement,
and advice for this thesis. | owe him, apart from Prof. Madbesai and Prof. H.
Narayanan at Indian Institute of Technology, Mumbai, whotumed my passion for
research, my development into a researcher. He patieripgdheluring initial faltering
steps and pointed out even the most minute mistakes that ma&sg. His insisting
on being meticulous and complete in whatever | do has helpgednd will continue to
help in the future.

| am grateful to Prof. Kiarash Bazargan, Prof. Gerald Sobelnand Prof. Victor
Reiner for serving on my Ph. D. committee. Attending the@isskes was a sheer plea-
sure and having them on the committee a privilege. | ackndgdehe role of funding
agencies for this research: Semiconductor Research GamsdSRC) supported un-
der contracts 99-TJ-692 and 2002-TJ-1092, while Natioc@rige Foundation (NSF)
provided support under contract NSF CCR-0098117.

Part of the work on congestion-aware synthesis presenttusithesis was carried
out at Intel Labs. (CAD Research) during the summers of 20@22003, which pro-
vided me an unique opportunity to view the research and ipdicgbility through an
industrial perspective. Xinning Wang and Prashant Saxehawere my mentors at In-
tel, were supportive during my learning process; if it weoéfor them, the thesis would
have been different. Apart from them, other researcheratat Labs., namely Steve
Burns, Pasquale Cocchini, Darshan Patra, Mike Kishineweahgt Timothy Kam, who
commented on the work or raised appropriate questions)gluarious stages have con-
tributed indirectly. Members of Intel’s physical desigoi®team helped in defining the

design flow for experiments. Contemporary interns at Inedh4., Kavel Buyuksahin,

Pankaj Chauhan, Chirayu Amin, Aseem Agarwaal, and Trevoydvtavitz, made the
labs. a “great place to work” - a reality about which | was gkepvhen representatives
of Intel Human Resources used to mention about it duringhtateon.

| acknowledge valuable discussions with Prabhakar Kudviah®l Berkelaar, and
Prof. Andre Reis, whose suggestions helped me for the wospeaific problems in the
thesis. Numerous discussions with many other researclibosn | met during various
conferences, contributed indirectly towards the develaptof the thesis.

Former and current members of VLSI Electronic Design Auttoma(VEDA) and
Reconfigurable Computing lab, who made my stay pleasant aiadtamed cheerful
surrounding for the work include the following: Anup Suli@anArvind Karandikar,
Bing Lu, Cheng Wan, Cristinel Ababei, Haitian Hu, Haifeng@@iHaihua Su, Hongliang
Chang, Jaskirat Singh, Jiang Hu, Mahesh Ketkar, Tianpeng@héenkat Rajappan, and
Vidyasagar Nookala. | will miss their company in the futubdot of friends supported,
morally or otherwise, at various junctures during the lastrfyears. Although names
of all of them cannot be listed here, their support was irsfale. Some of these include
Arvind, Chirayu, Cristinel, Mahesh, Ramona, Venkat, andydisagar. Thanks are due
to Chimai and Kevin for providing an excellent administvatsupport for the computing
environment in VEDA Labs.

Finally, I acknowledge my mother, brother Tushar, and siSeadhya: although we
were physically thousand miles apart, | felt, we never werey shared my all ups and

downs over phone and email and stood by.

Dedicated to the memories of my father,

efforts of my mother, and love of my siblings

ABSTRACT

The challenges to be faced by Very Large Scale Integrate&(Mtircuits in nanometer
technologies include increasing power dissipation andraoinnect dominance. The
pass transistor logic (PTL) family is an excellent choicelév power designs, but its
use has been limited due to the lack of design automatios.tolthe first part of the
thesis addresses these design automation needs. The gacboftkthe thesis deals with
the aspects of interconnect dominance that manifest tHeessi the form of routing
congestion.

For performance-driven synthesis of PTL circuits, we pg#pa polynomial time
algorithm based on the recursive bipartitioning of binaegidion diagrams (BDD's).
The algorithm can ensure logarithmic depth PTL impleméorat while none of the
previous synthesis heuristics guarantee such a lower bamuttte depth of PTL circuits.
Experimental results on ISCAS’85 benchmarks obtained ey the algorithm show
that PTL can result in a significant improvement, up to 30%r raeaaas well as delay,
over static CMOS forxor-intensive circuits. For layout generation of PTL circyits
we propose a method that translates BDD's into a transiet@i- placement, which
minimizes the area by diffusion-sharing, linear tree ageanent of transistor clusters,
and greedy row assignment of the BDD nodes. Apart from thaityufor pure PTL
implementations, layouts generated by our method can ke asenacro cells in the
context of static CMOS/PTL synthesis, since these layoaisfit into a standard cell
methodology.

The remainder of the thesis considers the problem of rowtimgyestion, which re-

sults in unroutable designs or detours of wires leadingniniy violations. To address
the routing congestion problem at the logic synthesis |ewel propose congestion-
aware technology mapping methods. These methods are goydegredictive proba-

bilistic congestion map, unlike previous approaches #ilgtan indirect metrics such as
wirelength. The matching phase in technology mapping usesetpredictive conges-
tion maps to store congestion-aware choices. It employs&fanction that allows the

selection of congestion-optimal matches in densely caedaggions while permitting

the choice of area- or delay-optimal matches in sparselgested regions. Similar ap-
proaches based on this matching phase have been appliec$eramd delay-oriented
technology mapping. For area-oriented mapping, expetiahe@sults using an indus-
trial circuit and ISCAS’85 benchmark circuits, proprigtalacers and routers, and a
cell library in high-performance microprocessor desig®@mm technology show, on
an average, 37% improvement in routability, measured imseof track overflows, at

the cost of marginal increase in gate area. The results faydagiented mapping show

46% improvement in routability for approximately unchadgkelays.

TABLE OF CONTENTS

1 Introduction 1
1.1 Powerand InterconnectChallenges. 2
1.2 Proposed Solutions: An Overview of the Thesis 5
1.3 Organizationofthe Thesis 7

2 Pass Transistor Logic Synthesis 8
2.1 Introduction 8
2.2 Delay-oriented Synthesis o L. 11

2.2.1 PreviousWork 11
2.2.2 OurContributions 13
2.3 PTL Implementation using Decomposed BDD’s 15
2.3.1 The Relationship between BDD'sand PTL 15
2.3.2 BDD Decomposition for Delay Optimization 16

2.3.3 Trade-offs between the Choice of a One-hot or a Redylilds

tiplexer 20
2.4 The BDD Decomposition Algorithm 22
2.4.1 Recursive Bipartitioning for Performance 22
2.4.2 AreaEstimation 27
2.4.3 Complexityanalysis 28
2.5 Delay Modelingand Analysis 29
2.5.1 Delay Model for BDD-mapped PTL Circuits 30
2.5.2 Delay Analysis for BDD-mapped PTL Circuits 34
2.5.3 Post-synthesisDelayModels 36

Vi

2.5.4 Post-synthesis Delay ModelforPTL 6 3

2.5.5 Post-synthesis Delay Model for Static CMOS 40
2.6 ExperimentalResults, 40
2.6.1 ExperimentalSetup. 40
2.6.2 SynthesisProcedure 41
2.6.3 Analysis of Results on ISCAS’85 Benchmarks 42
2.6.4 Comparison with Previous PTL Approaches 46
26.5 Conclusions. 46
2.7 Power Dissipation Driven Synthesis 48
2.8 PowerModel 49
2.9 DecompositionforLowPower 51
29.1 Example 54
2.9.2 Algorithm 57
2.10 ExperimentalResults oo 0 6
2.11 SUMMATY e e e e e e e 62
Transistor-level Layout Generation for Pass Transistor Logic Circuits 68
3.1 Introduction 68
3.1.1 PreviousWork 68
3.1.2 OurContributions 70
3.2 LayoutModel 71
3.3 Diffusion-sharing in PTL Circuits 72
3.4 Algorithm for Layout Generation 75
3.4.1 Recursive Bipartitioning o Lo 78

Vii

3.4.2 Greedy Heuristic for Row Assignment 18
3.4.3 Formation of Diffusion-sharing Clusters 83
3.4.4 LinearPlacement 85
3.5 ExperimentalResults 87
3.6 Summary e 92
Congestion-aware Technology Mapping 93
4.1 Introduction 94
4.1.1 Motivation 94
4.1.2 Previouswork 95
4.1.3 OurContributions 96
4.2 Preliminaries 98
421 Terminology e 98
4.2.2 Problem Definition L 99
4.3 CongestionFidelity L 010
4.3.1 ExperimentalSetup., 101
4.3.2 ExperimentalResults 102
4.3.3 Justification Based on Experimental Results 107
4.4 Congestion-aware Area-oriented Mapping 108
441 Example 109
4.4.2 Congestion Cost Computation 110
4.4.3 Algorithm for Congestion-aware Area-Oriented Maygpi . . . 113
4.5 Congestion-aware Delay-oriented Mapping 115
4.5.1 Delay Computation ConsideringWires 171

viii

4.5.2 Congestion Cost Penalty Heuristic 118

4.5.3 Algorithm for Congestion-aware Delay-oriented Miagp . . . 120
4.6 Complexity, Limitations, and Extensions to the Alglonits 121
4.7 ExperimentalResultso o 312
4.7.1 Results due to Area-oriented Mapping 124
4.7.2 Results due to Delay-oriented Mapping 125
4.7.3 Wirelength and Detour Distributions 126
474 Conclusions. 132
4.8 SUMMArY e e e e e e e e 133
Conclusions 140
5.1 FutureDirections 142

2.1

2.2
2.3

2.4

2.5

2.6

2.7

3.1

4.1

LIST OF TABLES

One-hot and minimum-bit encoding schemes for the dunamyinal
nodes introduced during decomposition. 18
A comparison of alternative implementationsofc3.. 20
Comparison of SPICE delays with the delays obtained Btatic tim-

ing analysis using NLDM on several combinational benchneinduits. 39
Area/Delay comparisons for static CMOS and PTL impletaigons of
ISCAS’85 benchmarks. L.

Comparison of the number of transistors resulting framapproach

with previous PTL approaches [BNNSV97,FMM8]. 47

Comparison of regular implementation with our decontmsbased
implementation.
Comparison of our decomposition-based implementatittnthe meth-

ods of Tavarest al.[TB99] and Lindgreret al.[LKTDO1]. 67

Comparison of layout area for ISCAS’85 benchmark ctscui. 91

Congestion comparison for the netlists before and eftémology map-
ping. Max. (Ave.) corresponds to maximum (average), whil@/

corresponds to horizontal (vertical). 135

4.2

4.3

4.4

4.5

Congestion comparison for the netlists before and eftémology map-

ping. Max. (Ave.) corresponds to maximum (average), whil@
corresponds to horizontal (vertical). For netlists of gits from IS-

CAS’85 and MCNC benchmark suite, obtained using differenipss

and mapping options, this table shows congestion corogldtetween
mapped and corresponding premapped netlists. Similatsesa shown

in Table 4.3 for different benchmarks. 361
Congestion comparison for the netlists before and eftémology map-

ping. Max. (Ave.) corresponds to maximum (average), whilé/
corresponds to horizontal (vertical). For netlists of gits from IS-

CAS’85 suite, obtained using different scripts and mapmpgons,

this table shows congestion correlation between mappedcarne-
sponding premapped netlists. L L. 137
Comparison of conventional area-oriented mapping wathgestion-

aware area-oriented mapping. Placement and routing ismpee] us-

ing an in-house force-directed placer and a proprietaryerpuespec-

tively, fora90nmtechnology. 138
Comparison of conventional delay-oriented mapping @mhestion-

aware delay-oriented mapping. Placement and routing i®meed
employing a publicly available placer Capo [CKMO0O] and atesu

[HS02], respectively, for 130nm technology [ptm]. 139

Xi

11

1.2

2.1

2.2

2.3

LIST OF FIGURES

Power density trends for microprocessors from [Bor@8]:Full-chip
power density. (b) Power densities of logicand memory. 2
Interconnect delay trends from International Roadmaémiconduc-

tors, 2001 [ITRO1b]. o 4

Power-delay product (PDP) values for (a) a three-ingDRXgate and

(b) athree-input NAND gate. Both circuits are implementeNMOS-

only PTL and in static CMOS at various technology nodes, dved t
results of SPICE simulations using predictive technologylais [ptm]
areshown. 9
(a) The BDD for Carry function for 3-bit adder. (b) Its mesponding

PTL implementation, using inverters with weak pull-upspwh at the
transistorlevelin(c). 15
(a) The BDD for the carry function for a three-bit addehene the
shaded nodes form the cut that is employed to decompose tbe @D

The upper part of the cut with the dangling edges replacedulnynaly
nodesVy, Vi, andV;. (c) The select function under a one-hot encod-

ing for V1 V5. (d) The select function under minimume-bit encoding

for Vo1 V5. (e) The data function. In all of these pictures, the solid
edges in the BDD denote the 1-cofactéy, the dashed edges denote

the O-cofactorF,,, and the dotted edges denote the complemented 0O-

COfaCtON, Flyr. « o v v o o e 17

Xii

2.4

2.5

2.6

2.7

2.8

2.9

Alternative implementations of ¢3 (a) using a one-hottiplexer and

(b) using aregular multiplexer. oL 91
Transistor-level description of (a) a one-hot 4:1 npldtxer, (b) a regu-

lar 4:1 multiplexer. 21
Creating a flow network: (a) A digraph corresponding tolxDBwith
essential and candidate nodes, and (b) the correspondmgdiovork. 24
(a) A PTL circuit segment with three pass transistoreies. (b) The
equivalent RC model for the PTL segment in (a). (c) The edenta

RC network corresponding to PTL implementation in Figurg(l2).

(d) A set of assigned directions for the resistances. Hey&€R,) cor-
responds to the pass transistor (driver) resistance, WhiendC; rep-

resent the source (as well as drain) capacitance and theanugput
capacitance, respectively. o oo L 13
RC forests for the part of RC network covered by dashedrsgin

Figure 2.7(c) corresponding to the assignments (a) 0000@h) (c)

010, (d) 011, (e) 100, (f) 101, (g) 110, (h) 111 to the tripigt;a;. . . 33

A pictorial illustration of the inverter insertion hestic in [MBISO01]:
inverters are used for the edges that are indicated as beindgJader

such an assumption, at mastassignments must be considered for the

part of the BDD betweeninverters. 34

Xiii

2.10 (@) Timing arcs for delay analysis of PTL circuits shagviwo timing

arcs, gate-to-drain and source-to-drain, for a pass stmsib) If pass

transistor/; in a multiplexerM; is ON, a capacitive load{,.,) seen

by a driver at any source terminal for a multiplexXéy is related ta’

and(, as follows: (.. = C; + C5, assuming zero capacitances at the

sources ofl/; and no shielding effect in pass transistors. 37
2.11 Correspondence between a BDD node and its PTL impletiemt (a)

The BDD for f=ab+c(ab’+a’b). (b) The corresponding PTL Implemen-

tation. 50
2.12 Power estimation in PTL circuits: (a) Switching proitigbestimation.

(b) Capacitance estimation. 51
2.13 Combinational logic with registered inputs and owput 52
2.14 Decomposition model for the implementation of pipetircombina-

tionallogic. L 53
2.15 (a)BDD for carry function for 3-bit adder. (b) Introdng dummy

nodes in the original BDD. (c) BDD's for select logic aftereshot

encodingofdummynodes.. L L Lo 54
2.16 BDD'’s for functions in combinational logic blocks. 55
2.17 Decomposed implementation of the Carry function. 56
2.18 Estimatingthe costofnodes. 58

3.1 Layout of a multiplexer: (a) A BDD node. (b) Its corresgomg layout. 72
3.2 Arow-based layoutschemeforPTL. 37
3.3 Different multiplexers layout schemes: (a) With vaticansistors. (b)

With horizontal as well as vertical transistors. 74

Xiv

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

3.13

3.14

3.15

4.1

An example of input diffusion-sharing: (a) A BDD. (b) tsrrespond-
ing PTL implementation. 75
An example of output diffusion-sharing: (a) A BDD. (g tiorrespond-
ing PTL implementation. 76

A diffusion-sharing scheme for the case when two cofacoe shared:

(a) ABDD. (b) Its corresponding PTL implementation.. 77
An overview of the algorithm. 87
A pictorial view of area minimization strategies for tagout. 79

Recursive bipartitioning: (a) A multilevel BDD networ{b) Its corre-
sponding flow network. L Lo 80
Cluster formation: (a) A group of BDD nodes to be placéa). The
corresponding Eulerian graph. Dotted edges in (b) dendaisiple dif-
fusionbreaks. 84
Diffusion-sharing clusters corresponding to Figud®3 85
Linear placement for laying out the clusters: (a) A ®@usree. (b) A

sub-optimal placement. (c) An optimal placement. 86

Effect of row assignment, clustering, and linear tleegment on rd84.

The figure shows 122 pass transistors and 21 inverters. 88
Intra- and inter-row routing for rows 1 and 2 inrd84 gitc 88
Post-routing layout for rd84 circuit. 89

Horizontal congestion for C432 for (a) the area-oridm@pped netlist
and (b) the premapped netlistcript.ruggeds used for preprocessing

the netlist and Capo [CKMO0O] is employed for placement. 103

XV

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

411

4.12

Bin-wise congestion difference between pre-mappedreapped netlists
corresponding to Figure 4.1(a) and 4.1(b), respectivelyC32.. . . 104
Horizontal congestion for C7552 for (a) the area-oadmhapped netlist

and (b) the premapped netliscript.algebraids used for preprocess-

ing the netlist and Kraftwerk [EJ98] is employed for placee. . . . 105
Vertical congestion for IDC for (a) the mapped netlist &) the premapped
netlist. script.booleans used for preprocessing the netlist and Kraftwerk
[EJ98] is employed for placement. 610
Mapping choices: (a) Sub-optimal area and track reoquérg = 12. (b)
Area-optimal and track requirement = 20. (c) Area-optinral &rack
requirement=15.. L L 108

Computing the congestion cost of a match: (a) An examybgest

graph. (b) One possible match. 110

Context-dependent congestion cost for the wires. 111
Computing the congestion cost of a wire probabilistycas in [LTKS02].112
(a) A load-based delay model for a typical standard seith as an
inverter. (b) A typical load-delay curve stored during nitg. 115
(a) Wire driven by a gate. (b) The correspondittg model. 117
Delay computation for a match: (a) An example subjeaplgr (b) A
match of 3-input NAND. (c) Delay computation. 119

Design flows for (a) conventional and (b) congestioarawmapping. . 123

XVi

4.13 Number of nets vs. detour lengiimg) for the IDC circuit. The place-
ment of conventionally mapped netlist and that of premaggsedell
as mapped netlist, in case of congestion-aware mappingyisrmed
using Kraftwerk. 127
4.14 Scatter plots of net-lengths vs. detour lengtim) for the IDC circuit.
In these plots, ‘X’ and ‘+’ denote a net in conventional andgestion-
aware netlist, respectively. oL 0oL 281
4.15 Scatter plots of net-length vs. detour length for land 00.m) nets in
the IDC circuit. In these plots, ‘X’ and ‘+’ denote a net in entional
and congestion-aware netlist, respectively.. 129
4.16 Number of nets vs. detour lengthng) for C7552: For congestion-
aware mapping, the placement of premapped netlist is davtieusing
Kraftwerk. An in-house library for a 90nm technology is eoy#d
for congestion-aware as well as conventional mapping. Thppad
netlists are placed employing Kraftwerk and routed usirgppetary
FOULEI. o e e e e e e 130
4.17 Number of nets vs. detour lengthng) for C6288: For congestion-
aware mapping, the placement of premapped netlist is peedusing
Kraftwerk. An in-house library for a 90nm technology is eoy®d
for congestion-aware as well as conventional mapping. Thppad
netlists are placed employing Kraftwerk and routed usirgppetary

FOULEI. e e e e e e e e e e e e e e 131

XVii

LIST OF ALGORITHMS

2.4.1 Find a delay-optimal cut that minimizes areapenalty 26
2.5.1 Perform delay analysisonagivenBDD. 64
2.9.1 Find an optimum cut to reduce power dissipation 65
3.4.1 Perform row assignment for nodesinaBDD 82
4.4.1 Select the best match considering the congestion 114
4.5.1 Compute load-delay curve foramatch 121

XViii

Chapter 1

Introduction

The design complexity of VLSI circuits is governed by devésel interconnect archi-
tectures, the availability of device and interconnect veses, and consumer demands
for increased functionality [ITRO1a]. Over the last few ddes, device sizes have been
scaling according to Moore’s lawwhich states that the number of transistors on a chip
will double every twenty four months [Moo65]. The somewhatipdic process scaling
and the consumer demands for new functionalities have lezhteally, to the arrival

of the system-on-chip era, where designers are motivatpddi more functionality on
the chip. In combination with the process scaling, this hasted several new design
challenges, noteworthy among which are those related t@agiag increasing power

density and interconnect dominance.

1The law predicts that the number of transistors on a chipdeillble every year till 1975, while trends
beyond 1975 are not shown in the article [Moo65]. HoweverkBds paper [Bor00], which considers
trends from 1970’s till 2000, shows that the number of trstass are doubling, actually increasing 1.96
times, to be accurate, every two years.

-

2

ey
(-]

§
{
$
3
z
G
§
b
]
3
o

Pentium® proc

Power Density (Watts/cm?)

1970 1980 1980 2000 2010
Year 0250 0.8 0.13p Olp 0070 0.05p

(a) (b)

Figure 1.1: Power density trends for microprocessors fidarQ0]: (a) Full-chip power

density. (b) Power densities of logic and memory.

1.1 Power and Interconnect Challenges

Due to technology scaling, the number of on-chip transsst@we been increasing expo-
nentially, while die-sizes have been growing at much slquase: the number of tran-
sistors double after every 2 years, while die-sizes dowxeyel0 years [Bor00]. The
increasing number of on-chip transistors results in a speading increase in power
dissipation, and since die-sizes are expanding slowly,epalensities have been ris-
ing rapidly. Figure 1.1(a) shows these trends for micropssor designs, while Fig-
ure 1.1(b) shows the comparison of power densities for lagid memory for these
microprocessors. It can be observed that the power denéitidogic are almost one
order higher than those in memory. This is partly becausg smhll part of a memory
block is active at any time, as opposed to a logic block, wihereny components may
be active during every clock cycle. As technology scalingtcwes, leakage power will

constitute a significant portion, up to 45%, of total powessgation [Bor00]. Even in

such a scenario, these trends will continue to hold, asal®wuit techniques to reduce
the leakage power are more amenable to memories than to [Dgerefore, to reduce
the power dissipation in the logic, the use of new circuitifeea must be explored and
design automation support should be provided for the distyles that address power
and performance challenges [ITRO1a]. Traditionally, tdgas been implemented using
static CMOS standard cells that offer good performance hawe good tool and design
methodology support. The pass transistor logic (PTL) fasia promising alternative,
since it employs NMOS transistors that have small capacitawhich may reduce the
power dissipation while offering similar performance aatistCMOS. Few design au-
tomation solutions are available for PTL, and this has teduh its limited usage. To
address design automation needs for PTL, we have proposétesys and layout gen-
eration algorithms in this thesis; we will present an ovenwdf these algorithms in the
following section.

Another daunting issue that designs in sub-100nm techredagll face is that of
interconnect dominance. High-performance designs amhieg wire-limited, i.e., the
area of a design is not only determined by the area of the, teftslso the area required
to route the wires. This, again, is a consequence of theastrg design complex-
ity: the number of wires grows exponentially with the numbéigates, according to
Rent’s rule [CS00]. Although the exponent is small, usubkyween 0.2 and 0.8 for
real circuits, the base, i.e., the number of gates, has Ipeegasing rapidly as the num-
ber of transistors increases. Even though a larger numberetd! layers is available
with the advances in technology, most of the upper metalréagee used for routing
global signals such as clocks, and logic blocks are left witly a marginal increase

in routing resources. This often results in the unavaiiighdf a sufficient number of

100

== Gate Delay
(Fan out 4)

=ill=| ncal
{Scaled)

10 | =dr=Global with Repeaters

== Global wio Repealters

Relative Delay

" 250 180 130 90 65 45 32

Process Technology Node (nm)

Figure 1.2: Interconnect delay trends from Internationah@map for Semiconductors,

2001 [ITRO1b].

tracks to route the wires, a problem known as routing congesfpart from this prob-
lem, another issue is that interconnect delays have algedt@ominating gate delays,
according to the trends from the 2001 International TeatgywRoadmap for Semicon-
ductors [ITRO1b], as shown in Figure 1.2. Together, theskentize timing closure even
more difficult: if the wires are detoured to avoid congestegions, they may violate
the timing constraints. This thesis proposes congesticar& mapping methods that
consider the routing congestion early on in the design m®dbereby facilitating rapid

design closure.

1.2 Proposed Solutions: An Overview of the Thesis

In this thesis, synthesis solutions are provided to thelprob of increasing power dis-
sipation and interconnect dominance. The solutions todiadr involve performance-
driven synthesis algorithm for the low power circuit famlgss transistor logic (PTL).
This family offers an attractive alternative to static CM@& to its potential for imple-
menting circuits with a small number of transistor count &edce, small capacitance
and power dissipation. Our simulations using predictight®logy models [ptm] show
that PTL will result in better implementations as compa@dtatic CMOS in case of
xor-dominated circuits Moreover, the use of PTL in ASIC libraries with feature size
smaller than 130nm has also been on rise because of therparfoe gain that they of-
fer over static CMOS [BHSAO3]. However, very few design amétion tools for logic

synthesis and physical design for PTL are available for ®lewing reasons:

1. Microprocessor designers, who are possibly the largestswof this family, em-

ploy a hand-crafted approach while designing PTL circuits.

2. ASIC designers rely on static CMOS standard cell libsafeg which good tool

support is available.

The unavailability of the design automation tools has itesuin the limited usage of
PTL. Therefore, to fully exploit the potential of PTL, thiovwk has developed synthesis
algorithms targeting performance and power dissipati@0[&, SS01b, SS02a]. These
algorithms use a libraryless approach (using “fluid/liquédis), since library-based

methods result in sub-optimal solutions in case of PTL. @odlate these synthesized

2In such a scenario, PTL/Static CMOS mixed synthesis may ledevapproach and for this problem,
design automation solutions will have to be developed.

circuits into completed designs, layout generation atbors for libraryless PTL cir-
cuits are required. To address this need, we have developadsistor-level placement
algorithm [SS02b] for such circuits to optimize the area.

Logic families such as PTL are, realistically speakingjkely to completely dis-
place static CMOS. As aresult, the bulk of any design willsistof static CMOS gates,
and the synthesis of high-performance circuits must adqrexblems related to this cir-
cuit style. Prominent among these is the push towards utidicaf logical and physical
design. While past research has addressed this probleraliyaan important unsolved

problem relates to handling routing congestion, which degen the following factors:
e the connectivity of the network,
¢ the placement of the cells, and
e the routes taken by the wires.

Although the placement and routing stages offer great fikt@s to alleviate conges-
tion, considering routing congestion only during thesgyasaoften results in design
iterations as some parts of circuits are unroutable, orusec¢éhe routability requires
long detours of wires, leading to timing violations. Theref, it is necessary to consider
the routing congestion during synthesis stage, as it alloase freedom to address the
problem. Technology mapping is a powerful transformatiorthe synthesis domain
that allows absorption of long wires into complex logic gate splitting of complex
gates into smaller gates to lower the congestion. We havel@j@®d a congestion-aware
technology mapper [SSSWO04] that minimizes the area of aiitivehile improving its
routability; the algorithm is further extended for delaynimization in the presence of

routing congestion.

1.3 Organization of the Thesis

The rest of the thesis is organized as follows. Chapters Zatwhl with pass transis-
tor logic, while chapter 4 focuses on congestion-awarereldyy mapping. Chapter
2 presents a max-flow min-cut based exact polynomial time RI@Bomposition al-

gorithms for delay-oriented and power dissipation drivarL Bynthesis. Chapter 3
provides the details of transistor-level placement atbar which produces layouts for
PTL that fit in standard cell library methodology. Chaptethéwss empirical evidence
of congestion correlation and furnishes the particularsoofigestion-aware technology

mapping algorithms. We conclude the thesis in Chapter 5.

Chapter 2

Pass Transistor Logic Synthesis

2.1 Introduction

Static CMOS has been a favorite logic style of VLSI desighershe last two decades
due to its advantageous noise immunity properties and geddrmance. However, due
to technology scaling and the increasing number of tramsisin chip, the performance
of static CMOS circuits has been achieved at the expenselsftantial area/power
dissipation costs that may not be desirable, especiallpdorable appliances. There-
fore, new logic families that address the power and perfageachallenges must be
explored [ITRO1a], and in this context, the logic stylestsas domino and pass transis-
tor logic (PTL) are attractive alternatives to static CM®®wever, with the increasing
on-chip power densities becoming a concern, the use of dohagic circuits, known
for good performance but high power dissipation, is limitedy to critical parts of the
design. PTL, on the other hand, has a potential for low poweigmod performance, but

its potential remains unexplored due to lack of PTL-oridnBAD tools and method-

PTL/CMOS PDP Comparison for 3 i/p Ex-OR PTL/CMOS PDP Comparison for 3 ilp NAND
1000

10000 T T T T T
PTL —— CMOS ——
cMos 2 PTL —x

1000 |- 100 |

PDP (ps*watt*10e4)
PDP (ps*watt*10e4)

100 | 10

10 I I I I I I I I I 1 I I I I I I I I I
60 80 100 120 140 160 180 200 220 240 260 60 80 100 120 140 160 180 200 220 240 260

Technology Node (nm) Technology Node (nm)

(a) (b)
Figure 2.1: Power-delay product (PDP) values for (a) a timpat XOR gate and (b)

a three-input NAND gate. Both circuits are implemented in @%tonly PTL and in
static CMOS at various technology nodes, and the result$6€5 simulations using

predictive technology models [ptm] are shown.

ologies. The primary benefits of PTL include the potentialddower transistor count,
lower capacitance, smaller delays and reduced power cgrtgum

PTL (or its variants) are known for better implementatiosscampared to static
CMOS in case of arithmetic circuits, such as adders and phelts that are
xor-dominated [YYN 90, WE94, YSR96, Rab00]. This trend is likely to continuermove
several technology generations beyond 100nm as shown urd=Ry1(a). The figure
shows power-delay product trends, obtained by perfornmiegsimulations using pre-
dictive technology models [ptm], for 3-input XOR gate implented in NMOS only
PTL and static CMOS. It shows that the power-delay productNMOS-only PTL

will be, consistently and significantly, better than theresponding product for the

static CMOS implementation over several technology nodg®isd 100nm. Most of
thesexor-dominated arithmetic circuits are designed manually ighfspeed micro-
processor designs. For ASIC designs, however, when thesdtsiare synthesized
along with random logic using standard cell libraries, ttrectural properties of the
network that are suitable for PTL may remain unexploiteduténg in possibly sub-
optimal solutions. PTL elements are used for these desikgrsteday: ASIC libraries
typically contain PTL-like one-hot multiplexers and passsistor gates because of the
area/power/performance gains that they offer over stati©S circuits, even though
the latter have higher noise immunities [BHSAOQ3]. In preetimost of these cells are
used in an ad-hoc manner after verifying that the nets dyiAmL cells are appropri-
ately buffered. Thus, although the use of PTL is desiraltlegmains underutilized,
and more so because of the lack of good performance-drivethesis algorithms and
methodologies exploiting the properties of PTL circuits.

It is well known that PTL is not universally better than CMQ# &ll types of logic
structures: fomandintensive circuits, for example, static CMOS can resulbétter
implementations than PTL. This is demonstrated in Figutéa® by our simulations for
a three-input NAND gate in both logic styles at various textbgy nodes. Therefore,
mixed static CMOS/PTL synthesis is likely to be an attraetternative in the future.
Even for such an approach, synthesis solutions targetirfgrpgance that exploit the
properties of PTL circuits must be developed, and the wogk@nmted in this thesis may
be considered as a step in that direction. To address thesleesis needs for PTL,
this chapter presents delay-oriented and power dissipdtiven synthesis algorithms.

These algorithms are not tied to any particular PTL libtasjnce we have observed that

Lideally, the library should contain all possible functipmsth different drive strengths, for a given
number of inputs. For a large library size, characterizasiod maintenance becomes difficult. Limiting

10

conventional technology mapping based on 2-input NAND dguasition followed by
covering using cells in a library results in sub-optimal Afiplementations, as PTL is
suitable forxor-based (or Shannon co-factor based) circuits.

The rest of the chapter is organized as follows. Sections 2.8 deal with delay
optimization in PTL circuits employing BDD decompositiomhile sections 2.7 - 2.10
focus on a similar framework to reduce power dissipatiornctiSe 2.2 reviews previ-
ous work in delay-oriented PTL synthesis and outlines owmtrdautions. Section 2.3
explains PTL implementation using BDD decomposition, fdrieh a recursive bipar-
titioning approach is proposed in Section 2.4. Section 2&cdbes delay modeling
and analysis for PTL circuits, while Section 2.6 presenfzeexental results. Section
2.7 introduces power dissipation driven synthesis probkemd Section 2.8 describes a
power model for PTL. A decomposition model for low power implentation is pro-
posed in Section 2.9 followed by experimental results amttlesions in Section 2.10.

Section 2.11 summarizes the chapter.

2.2 Delay-oriented Synthesis

2.2.1 Previous Work

Synthesis techniques for PTL circuits have been closegtadlto the binary decision
diagram (BDD) representation of logic functions, for seve@easons: firstly, BDD-
based PTL circuits are guaranteed not to have any sneak Y896, BNNSV97],

and secondly, the use of BDD-based methods can benefit frempléithora of efficient

the library size, however, affects the quality of desigm #iris has been observed for standard cell designs
by numerous researchers, for instance [BF98, JSB98, CR@0dvercome the limitation of the libraries,
libraryless or “liquid cell” [CK0O] synthesis flows are proged, for instance, in [RRAR97,JSB98].

11

algorithms available for the construction of BDD’s. The BDEpresentation of a logic
function affects the PTL implementation, and BDD decompasimethods must be
adapted to optimize cost functions that represent their iRfdlementations.

The idea of decomposing logic functions, in general, and BIgbomposition, in
particular, for optimizing specific objectives is not neWthaugh there is little work on
considering PTL-based cost functions during BDD decontjmosi We review some of
the representative work in the area of Boolean decompasatiol BDD decomposition.
In the area of decomposition of switching functions, Ashashperformed pioneering
work with a theorem relating column multiplicities in a pgadn matrix, corresponding
to a partition of variables intbound setindfree sebf variables, with the simple disjunc-
tive decomposability of a switching function, and also madvelevant theorems on non-
simple decompositions of the switching function [Ash57 éxcellent review on the
development of theory of decomposition of switching fuans in 1960’s and 1970’s is
presented in [DDT78]. Recently, Pedratral. have proposed an ordered BDD (OBDD)
based function decomposition method that involves fornairgutset in the BDD, and
then encoding the nodes in the cutset to yield disjunctiveanr-disjunctive decompo-
sitions [LPP96]. This OBDD-based decomposition has begtiebto the synthesis
of field programmable gate arrays targeting area, measarems of the number of
configurable logic blocks, with no depth constraints. In PAJ; a BDD-based logic
synthesis system is developed in which transformations ascAND/OR decomposi-
tion based on 0/1 dominators, and XOR and functional MUXebladecompositions are
proposed; synthesis for performance-driven PTL is notifipally targeted.

Several techniques for PTL synthesis have been suggedtesiiacent past. A loose

upper bound of theoretical utility on the number of multiges required to implement

12

a given logic function is developed in [Sas00]. Busthal. propose a greedy heuristic
in [BNNSV97] to decompose larger BDD's into smaller BDD’s ode sizes are kept
under a specified threshold. For area-driven PTL synth€sigudhryet al. [CLAB98]
present a method similar to traditional multilevel logidiogzations, first invoking the
iterative application of logic transformations, and thespmping the BDD representation
on to a PTL cell library. A similar philosophy has been usedderformance-driven
synthesis in [LAB99]. Both [BNNSV97] and [LAB99] imply thanultilevel BDD’s
are to be employed, but the limitation of these approachésaisthey are unable to
predict the performance gain beforehand; such a predidigary helpful in directing
the decomposition. Ferrandt al. propose the use of PTL cell generation and subse-
guent binate covering of the nodes in the Boolean netwoliziaiy a set of heuristically
generated BDD’s to minimize the cost [FMM8]. Beckeret al. [SBOO] report the
application of multiplexer circuits for area and delay ap#iations of PTL circuits. Un-
like [BNNSV97], they allow the threshold size of the decorepd BDD's to be varied,

and their cost function allows area and depth to be traded off

2.2.2 Our Contributions

In this chapter, we present a novel approach to performitayemiented PTL synthesis
through the decomposition of a monolithic BDD representingjrcuit. Our contribu-

tions can be summarized as follows:

e We explicitly incorporate delay and area considerationsuianeously into a

global technique for finding the decomposition.

e Our bipartitioning scheme applies the max-flow min-cut teghe to roughly

13

halve the delay of a PTL implementation of a BDD with the |lesrsta overhead.
The delay in a PTL circuit is well known to be linear in the nuenbf input vari-

ables after buffer insertion, and our recursive bipantitigp approach can result
in logarithmic depth reductions over the PTL implementatid the monolithic

BDD. Although logarithmic depth reductions, in terms ofrsétors, may not
translate to logarithmic delay reductions, the resultietag reductions are still
substantial. The area penalty is minimal, up to the accuraegtimation, as the

algorithm explicitly attempts to minimize this overheadfimding an optimal cut.

Experimental results, obtained using the above technjgurea set of ISCAS’85
benchmarks containingor-dominated arithmetic circuits, such as multiplier and
the circuits for error correcting codes, show that PTL otftpens static CMOS
implementations with 31% improvement in delay and 30% improent in area,
on an average, for a 0.1 technology. We found that in case of arithmetic logic
unit (ALU) and control circuits, the improvements over std&8EMOS are small
and inconsistent, although PTL (or its variant CPL) is kndawield cost effective
implementations of adders, which are important componafid.U and control
circuits. This anomaly may be attributed to the scripts & [@en92] that are used
for preprocessing and also to the structure of control logiach is usuallynand
intensive, in these circuits. Employing our PTL synthe&i®dathm in case of the
designs that are inherently well suited for PTL, one may ioljgarformance that
is close to custom designs while the use of static CMOS stdraddl libraries to

obtain the same performance may come at a very high arear/gose

14

2.3 PTL Implementation using Decomposed BDD'’s

2.3.1 The Relationship between BDD’s and PTL

c3

(@) (b) (©)

Figure 2.2: (a) The BDD for Carry function for 3-bit adder) (ts corresponding PTL

implementation, using inverters with weak pull-ups, sh@awthe transistor level in (c).

A BDD can be mapped on to a PTL implementation as follows. Hamte of the
BDD implements a Shannon expansion about the varialassociated with the node,
and can be expressed &s= = - F, + ' - F,,, whereF, and F,, are, respectively,
the Shannon cofactors of the functiéh This may be translated to a multiplexer that
passed’, whenu is high, andF,, whenz is low; the procedure can then be applied

recursively to the functiong, and F,.. Therefore, for any logic function, the BDD

15

representation can be used to directly arrive at its PTL é@mgntation, as shown in
Figure 2.2. Moreover, mapping from a BDD on to a PTL circuiseres a sneak-path-
free implementation: this follows from the property of BRixhat for any assignment
of inputs, only one path from the root node to a terminal nsdeetive. For the purposes
of this chapter, all BDD’s are reduced ordered BDD’s (ROBBDwhich implies that
the order of variables on any path from an output node to arledé is identical. We
also restrict ourselves to NMOS-only PTL, although the athms proposed in this
thesis are applicable to other variants of PTL, such as rmesson gate PTL, albeit
with different area/delay trade-offs. For the NMOS-onlyLRIesigns considered here,
buffers with weak pull-ups are inserted after evériransistors in series to avoid long

chains of pass transistors, and also to recover the voltiags @cross pass transistors.

2.3.2 BDD Decomposition for Delay Optimization

Mapping a BDD directly to PTL can resultin delays that aredinin the number of input
variables, and BDD decomposition can be used to reduce thedags. We outline a
general BDD decomposition technique with the help of thifeing example. Consider
a carry function for a three-bit adder whose optimized BDBHewn in Figure 2.3(a).
This BDD is built on six variables, a0, b0, al, bl, a2 and b#, ame output, c3. We
choose a cutset across the BDD that is indicated by the shremtks in Figure 2.3(a).
When this cut is used to separate the upper and lower partedDD, dangling
edges are created in the upper part, for instance, edgesiodes labeled al to nodes
labeled a2. We introduce dummy nodegs V;, andV; that replace these shaded nodes,
as shown in Figure 2.3(b). These dummy nodes can be assigitpeticodes employing

one-hot or minimum-bit encoding, as shown in Table 1. Thetipes of encoding lead

16

Figure 2.3: (a) The BDD for the carry function for a three-duiider, where the shaded
nodes form the cut that is employed to decompose the BDD. l{p)upper part of the
cut with the dangling edges replaced by dummy nadgs/;, andV;. (c) The select
function under a one-hot encoding fggl; V5. (d) The select function under minimum-
bit encoding forl;V; V5. (e) The data function. In all of these pictures, the solige=d
in the BDD denote the 1-cofactak;,, the dashed edges denote the 0-cofadipr,and

the dotted edges denote the complemented 0-cofadctor,

17

to two alternative PTL implementations with different dokday trade-offs.

Once an encoding has been chosen, the original function eaedlized using a
decomposition based on this cut. The encoding bits (lg); O, or SyS;) can be em-
ployed asselectinputs to a multiplexer whoséata lines correspond to the evaluated
values of the BDD'’s rooted at the three shaded nodes as showigure 2.3(e), de-
pending on the value of the encoding. Therefore, each salgttinput corresponds
to a BDD representation that sets the leaf nodes accorditigetohosen encoding. As
an example, the select lit; for the one-hot encoding corresponds to the combination
Vo =0,V =1,V5, =0, and is used to select the BDD rooted at the shaded node bl. By
substituting these values into the dummy terminals in FedlB(b), we can obtain the
BDD for theselectinput Oy. The BDD'’s for otherselectinputs such a¢); andO, can

be obtained similarly. The multioutput BDD far,O,0; is illustrated in Figure 2.3(c).

One-hot Encoding Minimum-bit Encoding

Terminal Node| O,0,0, | Terminal Node| S;,S;

Vi 100 v 00
Vi 010 Vi 01
Vs 001 Vs 11

Table 2.1: One-hot and minimum-bit encoding schemes fodtimemy terminal nodes

introduced during decomposition.

If, instead, a minimum bit encoding is employed, a similavqgadure may be used
to derive the BDD for theselectinputs.S, and.S;; the corresponding multioutput BDD
is depicted in Figure 2.3(d). We observe that depth of the BD&r the selectinputs

is the same for one-hot encoding and for minimum-bit enapdidote that in case of

18

c3

S Tobr
azo—| Foa2 02—|
2’ 2’

(@)

Figure 2.4: Alternative implementations of ¢3 (a) using &-twt multiplexer and (b)

using a regular multiplexer.

selectfunctions obtained by one-hot encoding, for any assignroéab, b0, and al,
only one of theselectfunctions is true, and we can utilize a one-hot multiplexearuit
to implement c3. On the other hargglectfunctions that correspond to minimume-bit
encoding are implemented using regular multiplexers. Therraative implementations
of ¢3 using a one-hot multiplexer and a regular multiplexershown in Figure 2.4(a)
and in Figure 2.4(b), respectively. Thelecinputs are simply the PTL implementations
of the BDD’s shown in Figures 2.3(c) and 2.3(d).

Table 2.2 shows the active area and delay, obtained by tsaitnulations under an
excitation with a 50p5stransition time, for alternative implementations obtairgy (1)
directly mapping the BDD, and using decomposition base®porie-hot multiplexers

and (3) regular multiplexers in 0.13m technology [ptm]. All of the pass transistors

2The transition time of 50ps is chosen, as it corresponds ypiaal microprocessor clock period of
500ps corresponding to a 2GHz frequency.

19

Implementation | Active Areaum?) | Delay(ps)

Monolithic BDD 2.974 201
One-hot Multiplexer 3.532 103
Regular Multiplexer 3.768 174

Table 2.2: A comparison of alternative implementations3f ¢

have widths of 14\ and the inverters are sized as follows: all PMOS transidtae
widths of 32\, all NMOS transistors have widths of 16and all weak pull-ups have
widths of 4\, as shown in Figure 2.2, whevpeis the minimum feature size. Clearly,
the one-hot multiplexer based implementation has the tbzlay, albeit with a slightly
larger area than that obtained by directly mapping the BDB.algo observe that in
the decomposed implementation using one-hot multiplexieesdepth of the circuit is
halved as compared to the implementation obtained by atdimaepping of the BDD.
Moreover, this procedure can be applied recursively, hglthe depth every time to

result in a logarithmic depth PTL implementation.

2.3.3 Trade-offs between the Choice of a One-hot or a Reguldful-

tiplexer

Figures 2.5(a) and 2.5(b) show transistor-level implergonis for 4:1 one-hot and
regular multiplexers, respectively. In case of a one-hdtipiaxer, fourselectinputs are

required, of which only one can be high at a time. In contridus,regular multiplexer
has twoselectinputs, which are used to select among fdata inputs. We observe

that the depth of a one-hot multiplexer circuit, as meastethe maximum number

20

TO

S0 o 51
S50 =00 o5
§4_”j$ 2 52 2
Iy I I (b) I3 Iy

Figure 2.5: Transistor-level description of (a) a one-hdt dhultiplexer, (b) a regular

sheheh
! a

I
I (I3

o
)

4:1 multiplexer.

of series transistors, is always one, irrespective of thalbar ofdatainputs. On the
other hand, the depth of a regular multiplexer increasearitignically with the number
of datainputs. Apart from the delay advantage that can be obtaireed this reduced
depth, a one-hot multiplexer with data inputs also employs fewer transistors than a
regular multiplexer. Specifically, the number of transist@quired to implement a one-
hot multiplexer isz, while the corresponding number for a regular multipleserni— 2.
The complete picture, however, is more complex. The numbselectinputs re-
quired for a one-hot multiplexer is the same as the numbeéatinputs, and therefore,
such a multiplexer requires the generation of meeectfunctions than a regular multi-
plexer. Moreover, although the number of levels for a onenindtiplexer is always one,
its delay is not constant but increases with the numbdatdinputs. This arises because
an increase in the number of transistors connected to tipeibigsults in an increase in
the load driven by the one-hot multiplexer, since additiarain capacitances, which
contribute to the total output capacitance, are broughyiedch data input. This is one
of the reasons why the logarithmic depth reductions praliole our approach, which

uses one-hot multiplexers, do not translate into logaiithaelay reductions. However,

21

this is not a significant limitation since the obtained deleguctions, as shown in Ta-

ble 2.2, are nevertheless substantial for real circuit gtam

2.4 The BDD Decomposition Algorithm

The decomposition technique presented in the previousosetan be thought of as a
bipartitioning that halves the circuit depth and therefafgortens the critical path and
its delay. If we take a single cut across the BDD that halvesctitical path, then we
find that the delay in the PTL implementation using a one-hgitiplexer, which adds
one extra series transistor, is approximately halved. Weagply this bipartitioning
procedure recursively, such that on each application gbtbeedure, the critical path is
roughly halved. The price being paid for this delay reduci®in terms of area, since
the number of transistors required for implementation nmeydase as we recursively
bipartition the BDD. BDD decomposition for delay reductidoes not always result in
an area penalty, since one-hot encoding of the select urectinay result in simpler
Boolean functions and hence, smaller BDD’s. In such a cagaytitioning should
be performed so that it approximately halves the delay asd adsults in area-wise
good implementation. In our algorithm, we perform this bigi@ning to aim for the

minimum area penalty.

2.4.1 Recursive Bipartitioning for Performance

A key step during bipartitioning is that of identifying caddte nodes for the cut that will
succeed in halving the circuit delay. Our delay estimatortiie PTL implementation

of a given BDD assumes the insertion of a buffer after at nustet pass transistors in

22

series. Based on this assumption, each node in the BDD gnaskiwo delays:

Delay from Bottom (Dy.10m): This is the delay of the PTL network rooted at a given

BDD node.

Delay from Top (D,,.,): This is the maximum delay from a given BDD node to any of

the outputs.

These delays can be evaluated employing the delay analygisgure outlined in Sec-
tion 2.5, which can be used to identify the critical path tighb the PTL network.

We define three types of nodes for delay-balanced bipartitgp

Essential Nodes,for which Dy, lies within a small rangeH¢) of half of the critical
path delay D..i:ica1)- 1N Other words, essential nodes lie in the middle of aitic

path, with small tolerancé.

Non-candidate Nodes,which comprise all of the remaining nodes. These nodes are

not considered for inclusion in the cut.

The optimum cut will halve the critical path, ensuring thatather path in the decom-
posed implementation has a delay of more than half the akipiath delay. Therefore,
all essential nodes must be in the cut, while we have the dreed choose among the
candidate nodes. We assign an area cost, explained in theutesection, to the candi-
date nodes and then use the max-flow min-cut technique [CL&®Y&d an optimum
cut that halves the circuit delay with the smallest area.cost

Figure 2.6 shows an example of how the flow network is creafthd.procedure be-

gins with a digraph corresponding to the given BDD, illustthin Figure 2.6(a). In this

23

Figure 2.6: Creating a flow network: (a) A digraph correspngdo a BDD with essen-

tial and candidate nodes, and (b) the corresponding flowar&tw

24

example, let us assume that there are three nfidé¢s, andf; corresponding to the three
primary outputs, three candidate nodgésc2, andc3, and two essential node$ and
e2. The dashed edges in Figure 2.6(a) (for instance, an edgefirto ¢1) indicate that
there are directed paths between the corresponding nadethenodes on these paths
are not shown since none of them are essential nodes or eaadiddes. Figure 2.6(b)
shows the corresponding flow network with one source naaled one destination node
t. Each essential node in the digraph is split into two nodesirfstance, nodel is
represented by two nodes andel’ with an edge fronz1 to e1’ that is assigned a small
capacity, . Similarly, candidate nodes are also split into two nodesirfstance, node
c1 in the digraph is represented by two nodésandc1’, respectively. However, the
edge capacity for these nodes is nobut is set to the area cost of the candidate nodes
in the BDD. In this example, the edge framto ¢1’ has an edge capacity af.;. The
remaining edges in the flow network are assigned a capacity,adnd therefore will
not appear in the cut. Thus, in this example two cuts are ples€Cut A and Cut B, cor-
responding to cutsets$.,;..; = {el, €2, 3} and Bt = {€1, €2, c1, 2} in the digraph
corresponding to the given BDD. The application of the Feutkerson technique to
find the minimum cut will result in one of these, depending atues ofA,;, A.,, and
A.3. The pseudocode for the procedure is shown in Algorithml2.@nce the cut has
been determined, the vertices in the cut are replaced by guierminal nodes, which
can be assigned unique codes and implemented as PTL ciasiitiistrated in Section

2.3.

3The small capacity to the edges between split essential nodes ensures thaseitital nodes are in
the cut. A capacity of 0 cannot be associated with these dufepzrise of the conventions in the max-flow
min-cut algorithm; a capacity of 0 means that edge does rist ex

25

Algorithm 2.4.1 Find a delay-optimal cut that minimizes area penalty

Input: G(V, E') = Graph underlying a given BDD

Output: S,.,; = An optimal cut

1:

2:

DelayAnalysis(y)

Deriticar < MaX{0.Dpotrom Vv € V}

Vigssentiat <= {v:v € V- and D risicar/2 — 6 < Dyottom < Depiticar/2 + 6}
Veandidate < {viv € V-andD,,y,, Dyortom < Deriticar/2 — 0 }
AreaCostEstimat®(-.naidate)

GFlow < Create FlOWN etworKG)VEssentml uVC(mdidate)

Ford-Fulkersong riow. G, Seut)

This bipartitioning procedure can be applied recursivéiyo further delay reduc-

tion can be achieved. If we define the depth of the implememtats the maximum total

number of series transistors (discounting buffers) fromiaput to any output, then the

resulting implementation has a depth that is logarithmimumber of inputs. In contrast,

the original undecomposed BDD yields an implementationsehaepth is linear in the

number of variables. This is stated in the following thearem

Theorem 2.4.1 The recursive application of the method shown in Algorithth22to

any BDD with the use of one-hot multiplexers results in anlémgntation that has a

depth, in terms of the number of series transistors) @bg(Depthy,)), whereDepth

is the depth of the PTL implementation obtained by directipping the BDD.

Proof Since the PTL implementation obtained by directly mapphegBDD has depth

Depth,,, theselectanddatafunctions obtained by the first level of bipartitioning each

has a depth of at mo$Depth,, /2]. The use of the one-hot multiplexer adds a constant

depth of one transistor to this. The bipartitioning proaedcan be applied further to

26

these decomposesklectand data functions, a process that can continue recursively.
There can be at mostog(Depth,,)] such recursions, and after each recursion only a
constant depth is added due to the one-hot multiplexer. eftwa, at the end of the
recursion, the resulting implementation has the depth(@dg(Depthyy)).

Unlike the regular multiplexer-based implementation fariLRcircuits in [SBOO]
that obtains a logarithmic depth for onkor functions (for which the cutset size is
always two), our use of one-hot multiplexers and recursiparitioning results in a
logarithmic depth implementation for any circuit, irrespee of the cutset size. A
logarithmic depth PTL implementation for any BDD is neittedaimed nor proved
in [SB0O0] whose approach relies on the use of regular mektgais. It is clear that if, in-
stead of one-hot multiplexers, regular multiplexers argelegred during decomposition,
the reduction in depth is somewhat lower: regular multipteased implementation
has depth with a lower bourd(log(Depthy) log(Mincyusi.)) and an upper bound
O(log(Depthys) log(Mazxcuisize)), WhereMincysi.e aNdM ax oy, denotes the min-

imum and the maximum of cardinalities of cuts at any biparting stage, respectively.

2.4.2 Area Estimation

The flow network described above requires an estimate ofréee @st for each can-
didate node in the BDD. To generate this estimate, we assuB@Camapped PTL
implementation with pass transistors and buffers afteryevéransistors. The contribu-

tion of a node to the area cost is estimated as the sum of
e the area of the PTL implementation of the BDD rooted at a givatte, and

e the area of the PTL network that terminates on the given node.

27

This area cost is computed in linear time by a postorder tsav®f the network. At
multi-fanout BDD nodes, the area cost is divided by the nunalbéanout edges. This
heuristic is similar to that used in technology mappers fandard cell libraries such

as [CP92,Sen92].

2.4.3 Complexity analysis

The computation time required to find essential and canelidatles is linear in the size
of the BDD network, as it involves a traversal, similar to thigical path method [SK92],
of the the BDD. The time required for area cost estimatiorige anear in the size of
the network. The only computationally expensive procedsitiie max-flow min-cut
algorithm, which is employed to find an optimum cut with minim area penalty. The
time complexity of the Edmonds-Karp implementation of tleed=Fulkerson algorithm
for finding the max-flow and min-cut © (||V'|||| E||*), whereV (E) is the set of nodes
(edges) in the flow network [CLR98]. While this seems expaxsn practice the time
complexity of this algorithm is hardly reflected in the CPbhéis for the following rea-

sons:

1. Inour case, the size of flow network is very small as conpuaiith the size of the
BDD to be bipartitioned, since only a small fraction of aktBDD nodes qualify

as either essential or candidate nodes.

2. Since the capacity assignment to the nodes is such thatitedsnodes are as-
signed very small capacity and are always in an optimum cotarity of flow
augmentations are associated only with the part of the nktikiat involves paths

with candidate nodes. In other words, the flow network effett contains only

28

the candidate nodes and related edges.

Since bipatrtitioning is applied recursively, the followinecurrence equation describes

the time complexity of the entire algorithm for a BDD coniaignn nodes.
T(n) =2T(n/a) + f(n) (2.1)

In the above equation, < 2 to account for the possible increase in number of BDD
nodes for theselectfunctions, f(n) = Q(n) due to linear time complexity of delay
analysis andf(n) = O(n*) assuming the size of flow network to be same as that of
the size of the BDD. Note that assumption that the size of tive fietwork isO(n?) is
highly pessimistic for the two reasons mentioned beforejsuseful enough to derive
an loose upper bound on the time complexity. Employing thsterdheorem [CLR98],

the above equation yields
T(n) = Q(n'?),T(n) = O(n®) (2.2)

In practice, the algorithm requires CPU times that vary leetwsuper-linear to quadratic
in number of BDD nodes, and in absolute terms, the run-timethe ISCAS’85 bench-

marks are of the order of seconds.

2.5 Delay Modeling and Analysis

To identify essential and candidate nodes, it is import@apetrform delay analysis using
a delay model that has good fidelity. The EImore delay modehfiB] satisfies such a
requirement while being computationally inexpensive aasl éven been applied in the
past for timing verification of complex microprocessor chjplDH98]. We adapt this

model for computing delays in PTL networks that are mappeecdy from BDD's. It

29

is important to note that the ElImore delay model is utilizedydor identifying essen-
tial and candidate nodes during the synthesis stage, winilthé post-synthesis delay
analysis of netlists for the PTL and static CMOS circuits, emeploy the widely used
non-linear delay model (NLDM) [WE94, CW97] that involveshet factors, such as
consideration of the slope of the input signal transitiod krad. In the following sub-
sections, we describe the adaptation of EImore delay modeTt circuits, the corre-

sponding delay analysis procedure and the post-synthelsig chodel.

2.5.1 Delay Model for BDD-mapped PTL Circuits

The insertion of buffers that break up long transistor chaan result in short pass
transistor segments such as that shown in Figure 2.7(ah [&ass transistor in such a
segment can be modeled using an R@odel, where R denotes the resistance of the
transistor and C denotes the drain/source capacitance tRasistors offer different
resistance for rising and falling transitions: typicaftyy NMOS pass transistors, falling
transitions are faster than the rising transitions. To antéor this, two different values
of resistance, one for the rising and one for the falling $réon, are associated with
each pass transistor. The value of the resistance is olltayjneharacterization of a pass
transistor employing circuit simulator such as SPICE.

Figure 2.7(b) shows the corresponding RC network for the passistor segment
in Figure 2.7(a). This is a special case where the pass stansegment maps to an
RC line. For more complex BDD’s, it is likely that the passngastor segment may
be more complex, as illustrated in Figure 2.7(c). From tiasupe, it can be seen that
BDD-mapped PTL networks, when modeled using an R@odel, look like an RC
mesh rather than an RC line. In such a mesh, directions casdignad to the resistive

edges since transistors act as unidirectional switcheb; siethods have long been used

30

G3H
G2

Gl

Figure 2.7: (a) A PTL circuit segment with three pass transssin series. (b) The
equivalent RC model for the PTL segment in (a). (c) The edentaRC network cor-
responding to PTL implementation in Figure 2.2(b). (d) A skassigned directions
for the resistances. Her&, (R,) corresponds to the pass transistor (driver) resistance,
while C'; andC; represent the source (as well as drain) capacitance anavirgéar input

capacitance, respectively.

in delay analysis tools and have even been employed in veryiraing verifiers such
as Crystal [Ous85]. Therefore, we can model a BDD-mapped i€kwork, using RC
7 models, as a set of RC directed acyclic graphs (DAG’s) betvbedfers, as shown in
Figure 2.7(d).

Delay analysis for an RC tree can be performed using treersalin linear time in
the size of atree [SK92], while delay analysis for RC meslsasytree/link partitioning
requiresO (nm?) time, wheren is the number of edges in a tree amng the number of

links, which when removed from an RC mesh results in an RC [(E&90]. In our

31

case, however, the resulting RC structure is neither a me@ mesh, but an RC DAG
— a more complex structure than trees and perhaps, simplemtieshes, from a graph
theoretic perspective. The delay for an RC DAG can be defisgdeamaximum of the
delay along any path and the ElImore delay along any path isatk§imilar to RC trees,
as in [SK92]
Diimore = > Ri- Clovnsiream (2.3)
i€path

This model of the network as an RC DAG does not take into adctienlogical
dependencies between signals. If we consider these, weeeathat depending on the
input assignments, some of the resistances can be treadpemsircuits, when the cor-
responding gate signals to the transistors are not high ayderemoved from the RC
network. The RC DAG's that model BDD-mapped PTL networksehayeculiar prop-
erty that arises from a well known property of BDD’s, naméhgat for any assignment
of inputs, only one path from a terminal node to a given nodeive. The implication
of this for RC DAG's is stated by the following observation.
Observation For any assignment of inputs, a given RC DAG must reduce to@n R
forest.
Proof The proof proceeds by contradiction. Assume that for sorsgasent of in-
puts, a given RC DAG does not reduce to an RC forest. It imptiasthere is a cycle,
which in turn implies that there exists a node which is drilegriwo different signals —
a contradiction, since only one path to any node in a BDD is@ct

For the part of the RC DAG covered by the dashed square in &@u7i(c), a num-
ber of different RC forests corresponding to all possibfautrassignments is shown in

Figure 2.8. The EImore delay can be computed for each of ges tr

32

(9) (h)
Figure 2.8: RC forests for the part of RC network covered bshdd square in Fig-

ure 2.7(c) corresponding to the assignments (a) 000, (b)@pD10, (d) 011, (e) 100,
() 101, (g) 110, (h) 111 to the triplet b a;.
33

2.5.2 Delay Analysis for BDD-mapped PTL Circuits

To analyze RC DAG’s, we may have to consider all possible tigssignments; this
number of such assignments is exponential in the numbermpoitsn assuming that the
primary inputs are independent of each other. Fortunatedycan assume a reasonable
PTL implementation from a given BDD that will allow us to pemnn delay analysis in

linear timé.

T---Cut after 3¢ level

Figure 2.9: A pictorial illustration of the inverter insem heuristic in [MBISO1]: in-
verters are used for the edges that are indicated as beingrdér such an assumption,

at most2* assignments must be considered for the part of the BDD betineerters.

One such implementatiéns shown in Figure 2.9. This assumes that each BDD

4performing the delay analysis in linear time is critical tsek the time complexity of our bipartition-
ing algorithm reasonable, since the delay analysis praeddinvoked during each bipartitioning call of
our algorithm.

SAlthough our delay analysis procedure is targeted for thigigular implementation, it can be ex-
tended to consider other PTL implementations that may U&ereint heuristics for inverter insertion.

34

node is mapped on to a PTL multiplexer and the edges that ex@sg multiple of the
k' level (edges crossing the cuts in the figure, whiere 3) have inverters/buffers on
them [MBIS01]. This buffer insertion heuristic ensurestitigere is an inverter after at
mostk transistors in series. In case of such a BDD-mapped PTL mktivat has buffers
or inverters after at mogttransistors in series, whekds bounded by a small constant,
it is adequate to consider ority different assignments for parts of the RC DAG that lies
between successive buffer levels to find the maximum delaghEdge will have to be
traversed no more thatf ! times, as stated by the following observation.
Observation For a PTL network that has at mdstransistors in series between buffers,
the total number of edges in all of the forests correspontdivgrious input assignments

is bounded by* ! . |E

, Where|| E'|| is the number of edges in the RC DAG.
Proof Each edge in the BDD is associated with the true or complesmgform of a
variable in the BDD. Since inverters are inserted in such ytat at most: variables
lie between two successive inverter insertion levels, aflglifferent assignments must
be considered for a given part of the DAG. For exactly halfledsie assignments, a
variable associated with the edge is true, and therefoyegdape can appear only in half
of the forests. Since there df€’|| edges in the DAG corresponding to a BDD, the total
number of edges in all the trees is bounded lig” '|| £||).
Remark In the Figure 2.8 = 3 and||E|| = 10. It can be verified from the Figure 2.8
that the total number of edges, summed up over all of the R& tig2* ! - || E|| = 40.
Different portions of the RC DAG can be successively congideo yield a linear
time delay analysis procedure. We exploit this idea in thiaydanalysis algorithm.
Algorithm 2.5.1 shows the pseudocode for the latter. Theimas downstream capac-

itance for a given node is computed by calli@gtDownStreamCapacitance()

35

procedure for all possible—bit Boolean assignments. This procedure traverses all the
fanout edges that satisfy a specificbit Boolean assignment till the buffers are reached,
adds the capacitances at the visited nodes, and stores ximaunadownstream capaci-
tance. Once the maximum downstream capacitance is complatkelays at each node
can be computed by sorting the nodes in topological ordecamgputing the maximum
arrival time at each node. The following theorem statesithe tomplexity of the delay

analysis algorithm.

Theorem 2.5.1 The delay analysis using the Algorithm 2.5.1 takes no mawed || £|)

time, whereF is the set of edges in the BDD.

Proof Using the arguments from the previous observation, it castdted that the com-
putation of downstream capacitance requires each edgevisitexl at mosg*~! times.
The topological sort of the nodes requires linear time indize of graph [CLR98].

Therefore, time required by delay analysis routin®{§ £

), sincek is a constant.

2.5.3 Post-synthesis Delay Models

2.5.4 Post-synthesis Delay Model for PTL

Figure 2.10 (a) shows timing arcs in PTL circuits, which espond to two possible
paths going through each transistor. Nonlinear delay nsoddLDM’s) are a popular
way of representing the delays on the arcs of a timing grapk.Widely used nonlinear

Synopsys delay model for timing analysis involves the felfgy equation [CW97]:

T=a-C+08-1.4+4~v-C-1. 46 (2.4)

36

gate-to-drain_ -

=

s >
source-to-drain—«=——=>"___ | ‘
7 /
S/ oA

Figure 2.10: (a) Timing arcs for delay analysis of PTL citsushowing two timing
arcs, gate-to-drain and source-to-drain, for a pass stoms(b) If pass transistar, in a
multiplexer M, is ON, a capacitive load{,,.,;) seen by a driver at any source terminal
for a multiplexer)M, is related ta”; andC, as follows:C},,qs = C; + C5, assuming zero

capacitances at the sources\éf and no shielding effect in pass transistors.

In the above equationd, stands for the load capacitanegthe transition slope of input
signal,r the delay from input pin to output, while, 3, v, and¢ are the parameters ob-
tained by characterization employing a circuit simulatatsas SPICE. Each timing arc
in the timing graph has four NLDM parameters associated ithihich are, typically,
stored in lookup tables. The sizes of these lookup tables bfpwhen different supply
voltages and temperatures are considered. To overcomkntitestion, scalable poly-
nomial delay models (SPDM) [spd] are used currently in comsiaktools. However,
NLDM is still accurate with a single supply voltage and a gitemperature. There-
fore, for comparison purposes at the logic synthesis laviegre only a single supply
voltage and a single temperature is considered, non-lielay model of the form of

Equation 2.4 is still valid and we use the same delay modedtiaic CMOS and PTL

37

synthesis results.

Adapting NLDM to timing analysis for PTL circuits requirelet computation of
downstream capacitance that may be beyond the given PTLlphexkr, as shown in
Figure 2.10 (b). We employ a DAG traversal similar that isiknto that of the proce-
dure shown in Algorithm 2.5.1 to compute the downstream citgrace by traversing the
downstream DAG. Unfortunately, the resulting pass traosisetwork does not possess
a structure that will allow the incorporation of logical dgplencies between signals dur-
ing computation of downstream capacitance. This is becdugseonsideration of these
logical dependencies is at least as difficult as the NP-dgurmic path sensitization
problem, as pointed out in [DY96]. This differs from the plein of delay analysis used
during recursive bipartitioning, where the gates of allred tnultiplexers are controlled
by primary inputs, which, however, is not true in case of thegtransistor network
obtained after recursive bipartitioning. For this reagbis analysis ignores logical de-
pendencies and computes the downstream capacitance bly siayersing the DAG
until the buffers are reached. This may result in an overege of the downstream
capacitance and hence, an overestimate of the delay. Apartlbgical dependencies,
another source of pessimism in the capacitance estimabe ishielding effect due to
the (nonlinear) resistance of the pass transistors thare

Once the downstream capacitance for all multiplexers isueded, the precharacter-
ized NLDM parameters are used to compute the delays in ared®liL circuit. After
precharacterization, it was verified that the delay esthdity the model was indeed
an overestimate, as compared to SPICE, as illustrated @maddenchmark circuits in
Table 2.3. All of these circuits were mapped directly on tora Retwork with inverters

with weak pull-ups inserted after every three series-cotatketransistors. Because of

38

Example| #. Transistorg SPICE delay (ps) Timing Analysis Delay (ps
9sym 102 462.40 618.50
parity 100 999.90 1172.64
rd84 194 501.50 628.34
rd73 144 401.40 473.65
rds53 72 196.10 205.54

Table 2.3: Comparison of SPICE delays with the delays obthinom static timing

analysis using NLDM on several combinational benchmarudis.

the direct mapping, the critical paths in these circuitslang and contain at least as
many number of transistors as there are primary inputsqbsshe inverters with weak
pull-ups). Technology parameters forl3um technology [ptm] are used for SPICE
simulations and all of the transistors have a length.®8,m, while the widths of the
transistors are as follows. The widths of NMOS pass tramsete0.91,m, the widths
for transistors in inverters with weak pull-ups arg = 1.04ym, w, = 2.08m, and
Wpuii—up = 0.26pm, wherew,, w,, andw,,;_,, are widths of PMOS, NMOS, and
weak pull-up, respectively. The critical paths are deteediusing static timing analy-
sis (STA) and simulated by applying appropriate stimuluse fransition time for rising
as well as falling transition of input signal is 50ps. We camify from the table that
the delays estimated by static timing analysis are alwagsastimates. For long critical

paths, overestimates tend to be high because of the cuneddtect.

39

2.5.5 Post-synthesis Delay Model for Static CMOS

We use the same Equation 2.4 for the static timing analystatit CMOS standard cell
circuits. For each cell, all input-to-output timing arce grecharacterized for NLDM
parameters employing SPICE. We note that in case of stati©&SMircuits, there is
no pessimism in capacitive load estimation, unlike PTLuwis; since all the inputs are

always connected to the gates of the transistors.

2.6 Experimental Results

2.6.1 Experimental Setup

The algorithms described in the sections 2.4 and 2.5 aresimgahted in a C++ program
called PTLS (Pass Transistor Logic Synthesizer). For atiwfexperiments, the BDD
package CUDD [Som] is employed for generating BDD'’s, alonthsifting [Rud93]
for variable ordering. We use NMOS transistors as passistans and employ invert-
ers with weak pull-ups after every three pass transistoseiies. Inverters with weak
pull-ups are also inserted to drive the gates of transigtoose-hot multiplexer for the
implementations obtained by our recursive bipartitiorteghnique. We synthesize both
the PTL and static CMOS circuits (which are used to compard L circuits against)
in a0.13um technology [ptm]. All transistor lengths are settd3.:m, and the follow-

ing two sets of transistor sizes are employed for the PTL @mgntations:

e Set I AllNMOS pass transistors have, = 1.82m, and inverters have sizes
=4.16pum andw, = 2.08um, while the weak pull-up transistor in each inverters

are sized to a width af.52um.

40

e Set 2 AlINMOS pass transistors have, = 0.91m, and inverters have sizes
=2.08um andw, = 1.04um, while the weak pull-ups in the inverters are sized to
a width of0.26,:m. In other words, all the transistors$8®t 2have half the widths

of the corresponding transistors$et 1

For static CMOS circuits, we choose the lib2.genlib librarySen92] and add at least
the library. Simpler gates such as inverters, NAND’s (updorfinputs), and NOR’s
(up to four inputs), have up to four strengths. {seciive = 0.78m, 1.56:m, 2.34:m,
3.12um). All of these gates and pass transistors are charaaeozdalling and rising
input transitions, with the input signal transition timesying from 50ps to 130ps in
steps of 5ps, while the characterized loads vary from 1fFOf& tn steps of 1fF. The
supply voltage and temperature used are 1.3V ali@25

Under this sizing scheme, we see that PTL circuits have tmigzes for pass tran-
sistors and inverters, while the static CMOS implementetigse better sizing, with each
gate having several choices for the transistor sizes. be gpithis, we show that PTL
results in implementations that have the same (or bettéay des that of static CMOS
implementation with a significant area average in case tragtic, error correcting,
and some control circuits in ISCAS’85 benchmark suite. Ifallew a larger variety of
transistor sizes for PTL circuits, it is likely that thessuls may improve even further

in favor of PTL.

2.6.2 Synthesis Procedure

Static CMOS circuits are preprocessed by runrsadpt.ruggedn SIS [Sen92] before

performing technology mapping for optimizing delays. FaiL”synthesis, we use the

41

same Boolean network obtained frauript.rugged and create a multilevel BDD rep-
resentation. Our recursive bipartitioning procedure enthpplied level-by-level on this
multilevel BDD representation.

While creating this multilevel BDD representation, it isportant to control the
number of BDD nodes, since the number of transistors in tkaltiag implementa-
tion depends on this number. It has been shown in [YC99] thause of traditional
multilevel boolean network optimization, followed by thenstruction of BDD's for
nodes in the network, results in reasonable BDD sizes. Téieges are comparable to
those obtained by applying area-oriented pass transiar $ynthesis techniques such
as [CLAB98]. We employ these multilevel BDD representasiamhich have reasonable
sizes, for delay-oriented decomposition. Further impnogets may be possible if the
multilevel BDD'’s are preprocessed using algorithms sudtliasnate as in [CLAB98],

and by applying better variable ordering heuristic suchyasnsetric sifting.

2.6.3 Analysis of Results on ISCAS’85 Benchmarks

Table 2.4 shows the area/delay comparison between PTLitsiemd their correspond-
ing static CMOS implementations for all of the ISCAS’85 blemarks. In this compar-
ison, the PTL circuits in Table 2.4 have transistor sizemfBet 1andSet 2described

in Section 5.1. For the same table, Column 1 shows the nanteedfénchmark and
its functionality, while columns 2 and 3 show the area andyelespectively, for the
static CMOS implementation. Columns 4 and 5 show the arealalay, respectively,
for the PTL implementation with the transistor sizes fr8et 1, while Column 6 shows
the CPU time required for our PTL synthesis algorithm on a¥iBz Sun Ultra-Sparc
60 machine. Columns 7 and 8 show the area and delay, resggctor the PTL imple-

mentation with the transistor sizes frddet 2

42

Example (Functionality) | Static CMOS PTL Set 1 PTL Set 2

Area| Delay Area Delay |CPU Area Delay

pm? ps pm? ps s um? ps

C1355 (Error correcting code4B86) 962 | 3521(38%)| 599(60%)|00.1 1760 (177%)1009 (-4%

C1908 (Error correcting codeS)57] 1205 | 3726(38%)| 980(20%)|00.2 1863 (176%J1432 (-15%

C2670 (ALU and Control) 12307 1208 | 8781(40%)|1660(-27%]|02.714390 (180%[R132 (-43%

C3540 (ALU and Control) [3428) 1796 (15409 (122%1850 (-2%)22.47704 (344%[R454 (-26%

C432 (Priority Decoder) |3370| 1334 | 3981(-15%) 1278(4%)|00.2 1990 (69%)|1758 (-24%

C499 (Error correcting codes)784f 938 | 3259(46%)| 630(48%)(00.11692 (182%) 929 (1%)

C5315 (ALU and Selector)24042 1355 | 24612 (-2%)2233 (-39%{)17.4 12306 (95%668 (-49%

C6288 (16-bit Multiplier) {29592 4799 | 25771(14%)4152(15%)17.7112885 (129%§563 (-13%

C7552 (ALU and Control) 32051 1323 | 16649(92%)2112(-37%]|10.78324 (285%[R528 (-47%

C880 (ALU and Control) [5579 1080 | 4748 (17%)| 952 (13%)[01.12374 (134%J1430 (-24%

Avg. Improvement 39% 5% 177% -24%

Table 2.4: Area/Delay comparisons for static CMOS and PThlémentations of I1S-

CAS’85 benchmarks.

For the comparison between static CMOS implementationsPardimplementa-
tions with transistor sizes frorBet 1, the following observations can be made from

Table 2.4.

e For circuits that implement error correcting codes, namély355, C1908, and
C499, for the multiplier circuit, C6288, and for the arithicdogic unit (ALU)
and control circuit, C880, PTL implementations are supdariderms of area as
well as delay. On average, the area advantage is 30% whildethg advantage

is 31%.

e For ALU and Control circuits such as C2670, C7552, and C384® PTL im-

43

plementations are superior in terms of area but could notmiae static CMOS
delay. On average, the area advantage is 84%, while the dedagivantage is
22%. With the area numbers strongly favoring PTL, it is likgdat static CMOS
delays may be matched with sizing for PTL circuits, perhajgsavhile retaining

some area advantage.

e For the priority decoder circuit, C432, PTL has a margindégadvantage of 4%

at the cost of a 15% area increase.

e For the ALU and selector circuit, C5315, PTL produces imferesults both in
terms of area as well as delay. The area disadvantage is,mir@%o, while the

delay disadvantage is 39%.

Note that the observations are made with a pessimistic dalagel for PTL, as de-
scribed in Section 4.3. From the above observations, thewwlg conclusions can be

arrived at:

e For the ALU and control circuit, C5315, static CMOS resuttsai superior im-
plementation. In case of other ALU and control circuits sashC2670, C3540,
and C7552, static CMOS yields a superior delay, but with aiBg@nt area cost.
For the ALU and control circuit, C880, using even naive siator sizing PTL re-
sults in a superior implementation as compared to static SM&ll these circuits
contain arithmetic components such as adders apart frotmotdagic. Since
these circuits containandintensive control logic, scripts in SIS [Sen92], which
are skewed towards control logic synthesis, perhaps detstecstructure of arith-
metic components in these circuits and PTL implementatigntd our PTL syn-

thesis algorithm with naive transistor sizing is not aldertatch (or outperform)

44

the static CMOS delay consistently. PTL implementatioiiklisive a good area
advantage that can be utilized by a sizer to match delays asétic CMOS

implementations.

e The PTL implementation provides large area savings anddugar delays in
case of the purely arithmetic and error correcting circ(@$355, C1908, C499,
C6288) as compared to the static CMOS implementations. dsetltases, SIS
[Sen92], perhaps, is not able to destroy the structure af ysutce most of these

circuits are heavilykor-dominated circuits.

A comparison between PTL implementations with smallerdistor sizes and static
CMOS implementations is also shown in Columns 7 and 8 in Table For these
columns, the PTL circuit implementations employ transisiaes that are chosen ac-
cording toSet 2in Section 2.6.1. With the smaller transistor sizes, thayein PTL
circuits are degraded, as expected. Although the tramsigtes are halved, the delay
in static CMOS is still matched in case of C499, and is with@9@for the circuits
C1355, C1908, C6288, but with a large average area advaofdi6%. Given such
an area margin, it is likely that an intelligent sizer may Ibéeao match the delays in
static CMOS circuits, while maintaining an area that is léss that of the PTL circuits
shown in Column 4 of Table 2.4, which use double the transs#es of this case. For
the set of circuits that includes ALU and control circuitelsas C2670, C7552, C432,
C880, C3540, and C5315, the average area advantage is 184 delays degrade
by 35%, on an average. It is likely that improved transistping in these cases may
improve the results in favor of PTL, since as shown in Table @mplistically doubling
the sizes of all transistors results in a large improvemermelay, while maintaining

significant area savings in most cases.

45

2.6.4 Comparison with Previous PTL Approaches

We now present a comparison of the number of transistorsriP®lu implementations
with the previous PTL synthesis approaches such as [BNNSW@K *98]. The delay
comparison could not be performed because of the unavéyadi parameters for the
delay models. Moreover, these approaches do not spegifmatimize for delay, and
primarily target the area of the PTL implementation.

Table 2.5 shows the number of transistors required for the iRiplementation of
the ISCAS’85 circuits as a result of applying the algorithirdfBNNSV97] in Column
2, the algorithm of [FMM 98] in Column 3, and our approach in Column 4. For most of
the benchmarks, the number of transistors due to our methomhparable with that of
the other two approaches, with an average increase of 12Ba@gpect to [FMM 98]

and an average reduction of 41% with respect to [BNNSV97].

2.6.5 Conclusions

Based on the experimental results, we can conclude theniolp

1. Using the delay-driven synthesis algorithm, naive amif transistor sizing for
PTL circuits and a pessimistic delay model for PTL, we havewshthat PTL
can certainly match (or improve upon) the delays in staticG@vcircuits, with
a significant area advantage of an average of about 40% thrregiic circuits,

error correcting circuits, and some control circuits.

2. For control circuits, static CMOS may sometimes, but hwags, result in supe-

rior implementations than PTL in terms of area as well asydela

46

Example Number of Transistors
[BNNSV97] | [FMM+98] | Ours
C1355 1969 1013 1037
C1908 2116 1526 1145
C2670 3198 2674 2876
C3540 4997 4440 4757
C432 979 127 1110
C499 1947 1013 998
C5315 8277 4043 8221
C6288 10787 7073 7794
C7552 13268 6590 5347
C880 1622 1339 1467
Total 49160 30438 34752

Table 2.5: Comparison of the number of transistors regyfiom our approach with

previous PTL approaches [BNNSV97, FMd8].

3. Some control circuits, may be implemented well in PTL valightly degraded
delays as compared to static CMOS, but with large area savixitpwing multi-
ple transistor sizes for PTL may improve the results in fasfdPTL, but this has

not been explored in this thesis.

47

2.7 Power Dissipation Driven Synthesis

Power dissipation is becoming a critical problem in modeag deep sub-micron cir-
cuits, especially in case of circuits that are used in péetahttery-operated devices.
The problem of power optimization at various levels of abdion has been addressed
by numerous researchers. At the logic level, power optitiira include techniques
such as gated clocks and precomputation; the latter insdhesuse of the observability
don't caresto disable the clock signal at the input registers [AME]. Employing a
similar approach, Ruaat al. propose bipartitioned codec architecture, in which out-
put values are encoded using the minimum number of bits aem dlecoded utilizing
a decoder in the next clock cycle, or computed conditiond®$L*99, RSLT01]. A
limitation of the precomputation scheme [AMD4] is the addition of extra logic to the
circuit, while the bipartitioning codec approach may notabgays optimal. For power
optimization of PTL circuits, Lindgreet al. propose the use of sifting [Rud93], which
reduces switching activity in BDD mapped PTL circuits [LKUD]. Another approach
by Tavareset al. comprises employing split cofactors based on the Shanngansion
at the root of BDD's, with the variable corresponding to thetrnode being used as a
control input to disable the inverters [TB99]; the disallegerters cannot make low-to-
high transition, resulting in reduced switching activifyhis approach differs from the
method of independent of cofactors by Alidiaaal. in disabling inverters rather than
disabling registers and also in algorithm, as [ANM®4] utilizes area-efficient co-factors,
while [TB99] employs the power-efficient cofactors.

We propose a BDD decomposition technique to minimize thegoalissipation in

combinational logic under the assumption that all primawyuits and primary outputs

48

are registered. Our contributions are summarized as fellow

e We apply the switching probability estimation techniquepgmsed in [LKTDO1]
to estimate the switching probabilities in PTL circuits aiso take into account
the capacitance driven by each node in the PTL circuit, er[liKTDO1] which

uses a linear fanout model.

e Unlike the previous approaches [AMDB4, TB99], which use a single variable
to disable the inputs of independent co-factors, we decemfite logic function
using the max-flow min-cut technique to find a cut in the BDDt tlhgnimizes
the power dissipation; the cut yields a subset of variabdéesi as inputs to select
logic that is used to disable the part of the circuit that doesperform useful

computation in a given clock cycle.

e Our decomposition-based implementation model is morellexhan the bipar-
titioning codec architecture proposed in [RSLT01] andwaflaus to find optimum
decomposition; optimality of decomposition is ensured ttuthe application of

Ford-Fulkerson algorithm [CLR98] to find the min-cut.

2.8 Power Model

Figure 2.11(a) shows the BDD for the functigr+ ab+c(ab’+a’b), while Figure 2.11(b)
shows the corresponding PTL implementationwhich every node in the BDD is trans-
lated into a 2-input multiplexer. Given the probabilities the inputs, the switching

probability of a functionf can be expressed in terms of the probabilities of its co-

8In another implementation, transistors corresponding flamultiplexer driven by ¢, ¢’ can be
replaced by just ¢’. The above implementation is used juslugtrate the capacitance estimation.

49

b oty
\ /@M —hyC b
GOl e e

1 0
) (b)

Figure 2.11: Correspondence between a BDD node and its Pplementation: (a)

The BDD for f=ab+c(ab’+a’b). (b) The corresponding PTL Implementation

factors,f, and f, wherex is an input. Equations (2.5) and (2.6) express the prolabili

of f being 1 and 0, respectively, while switching probabilitgigen by Equation (2.7).

P(f=1) = P(a=1) X P(fo=1) T P(a=0) X P(fz=1) (2.5)
P(f=0) = Pa=1) X D(f,=0) + D(a=0) X D(fz=0) (2.6)
p(fswitching) = 2 X p(le) X p(f:U) (2.7)

The switching probabilities for the nodes in BDD shown inufig2.11 are computed
assuming uniform input probabilities (i.e(a = 1) = p(b=1) = p(c = 1) = 0.5) and
are shown next to the corresponding nodes in Figure 2.14(ag. triplet (.., p1, po)
next to each node corresponds to the switching probahitigyprobability of the node
being evaluated to 1, and the probability of node being etallito O, respectively.
For instance, the nodes in Figure 2.12(a) correspondingaaodes labeled ‘b’ have

the switching probability,,, = 3/8, a probability of being evaluated to #,, of 3/4,

50

3.1.0) Coeih C o
\ \
T s
(5:7575) 4qu
\\ I \\ I
\ | \ |
(0,1,0)| 1 0 (0,01 20| 1 0 |20,
(a) (b)

Figure 2.12: Power estimation in PTL circuits: (a) Switahprobability estimation. (b)

Capacitance estimation.

and a probability of being evaluated to, of 1/4. The capacitances driven by each
node can be computed by examining the PTL implementation.irstance, the node
labeled ‘c’ drives four source capacitancég) of NMOS transistors. The capacitance
driven by each node is shown next to that node in Figure 2)12(ereC; is the input
capacitance of an inverter. Once the switching probabd#iéind capacitances are known,
the dynamic power can be obtained by employing the folloiorgnula, where},, is
supply voltagef is the clock frequencypP,,, andC,,, are switching probabilities and

capacitances, respectively.

Power = Z qucswvjd,f (28)

Vnodes

2.9 Decomposition for Low Power

Figure 2.13 shows a general combinational logic circuihwégistered inputs and out-

puts. Assuming PTL implementation of the combinationaidpge observe that switch-

51

Registers

& T

I
' fi
Combinationa
Logic
I fm
JAN JAN
Clock

Inputs ={1,---, I,,}, Outputs ={ f1,- - -, fin}

Figure 2.13: Combinational logic with registered inputd antputs.

ing activity occurs in the entire PTL network during evergak cycle, although parts of
the network may not perform useful computation. This canliseoved from a property
of BDD’s that for any assignment of inputs, only one path franat to terminal node
is active, so that the PTL implementation of this path penf®useful computation for
a given assignment, while the rest of the PTL circuit stiisifpates power because of
the switching of its inputs. Therefore, reduction in powisisgbation can be achieved, if
we disable the part of the PTL network that does not perforefulsvork. Figure 2.14
shows the decomposition-based implementation model iclwaisubset of inputs is
used to generate latch enable signals for the input registdre enable signals consti-
tute the ‘select logic’ block, while the other combinatibtaic blocks,C'L; through
C'L;, are PTL implementations of logic derived from original BBDas explained in

the following subsection. Multiplexers are used to selbet dutputs from the block

52

Iy — R
]n'—
; LE Cla I S
! : Select . /\
Logic S M
I, — S R
LE || L o
Ij R R clLy, ‘ ‘
'['I'L -
T N

Clock

Inputs ={I,---,1,}, Outputs ={ f1, - - -, f..}, LE = Latch Enable
C'L; = Combinational logic block, M = Multiplexer, R = Register

Figure 2.14: Decomposition model for the implementatiopipklined combinational

logic.

that performs useful computation in a given clock cycle. His tase, we observe that
only the select logic and multiplexers are active all theetimvhile other combinational
blocks are not. Greater power reduction can be achievetkiftdegic and multiplexers
dissipate small power and if the combinational blo€ks, throughC'L; are active with
small probabilities. In this case, the total power dissgrain the combinational logic is
given by Equation (2.9), wherne is the probability of combinational bloak'Z.; being

active andP., . is the power dissipatidrin combinational block” L.

PDecomp - PSelectLo_qic + PMumes + Ef;()lszCI, (29)

"We consider only dynamic power dissipation. In the techgiel® beyond 100 nm, where leakage
power becomes dominant, foot transistors, whose gatesigemdby latch enable signals, can be used for
the different combinational logic block, as in case of Bedsbate MOS (BG MOS) [ITNOO].

53

While the above equation is similar to the equation presemg¢RSLTO1], it is more
general in the sense thatis allowed to take any value, unlike [RSLTO01], whéeres

restricted to 2, in the bipartitioning codec architecture.

2.9.1 Example

Consider the optimized BDD on 6 inputs for the carry outpuiction for a 3-bit adder
as shown in Figure 2.15(a); Figure 2.3 is duplicated heregfadability purposes. If we
map the BDD to PTL using the implementation model of FiguE32then the entire

PTL network will dissipate power in each clock cycle. On thkes hand, if we take

Figure 2.15: (a)BDD for carry function for 3-bit adder. (bfdfoducing dummy nodes in

the original BDD. (c) BDD's for select logic after one-hotceing of dummy nodes.

a cut across the BDD containing the shaded nodes as showmumneF2.15(a), then

54

we can decompose the BDD into smaller BDD’s and build theimaigfunction using
multiplexers and PTL implementation of these BDD'’s.

The process of decomposition can be explained as followgeherate the BDD'’s
for select logic, we introduce dummy terminal nodgs V;, andV, as shown in Fig-
ure 2.15(b) and encode them using scheme such as minimwmneoitling or one-hot en-
coding. This is similar to the BDD decomposition proposef&i01b] for performance-
oriented PTL synthesis. Figure 2.15(c) shows the seledtifums obtained by one-hot
encoding, i.e., to generate,, we setly, = 1, V; = 0, andV, = 0. Similarly, BDD’s
for O, andO, are obtained. Function8,, O,, andO, are used as latch enabidsr
the registers and also as select inputs for the multiplexseliect among three combina-

tional logic blocks whose BDD'’s are shown in Figure 2.16. Aswn in Figure 2.16,

Gy
@ @ (> (2

/i

1 | 1 \

0

0 1 0

Figure 2.16: BDD’s for functions in combinational logic bls.

BDD'’s do not share the nodes with the same functionalityhsumdes are duplicated,
which may cause an area overhead. The decomposed impld¢ineda the carry out-

put function excluding ‘select logic’ is shown in Figure 2.1n this case, total power

8These signals are latched on falling edge of clock to avomhtus.

55

000410,

e [
a2 ——
b2— Go 1+
A
O —LE .
bl— M — ¢
a2 — G - A
b2— |
Or—IE
a2 — Gy [
b2—
A

LE = Latch enable, M = Multiplexer

Figure 2.17: Decomposed implementation of the Carry famcti

dissipation in combinational logic can be computed as ¥adtoprobabilities ot),, Oy,
andO, being evaluated to 1 are computed using uniform probalabumption at the

primary inputs, which can be relaxed for the known input pitmbties.

Py = Poy0,.0, T Ps:ymue + Pi0o=1)FPer, + p01=1)Per, + p0.=1)Per{2.10)

PC3 - POo.,O1-,02 + P(3:1)mux + 0125PG0 + O'5PG1 + 0375PG2 (211)

It is easily seen that the power dissipation in the combometi logic varies depending
on the cut and that there are a large number of candidate mwasyiven BDD. Our
objective is to find a cut such that power given by Equatio®)(% minimized. We

propose an algorithm to find an optimum cut in the followingsection.

56

2.9.2 Algorithm

We represent a BDD as a directed acyclic graph (DAG), whereatides and edges are
identical to the nodes and edges in the BDD, respectivelyaae assigned a direction
corresponding to variable ordering, from a lower indexedalde to a higher indexed
variable. As explained in Section 2.8, the switching prolitstiof a node depends on
its cofactors and probability information of the input \adie at that node. The power
dissipation at each node can be computed employing thegpdst-traversal of a graph.
The probability of node being selected as well as the povesigation in select logic can
be computed in a similar manner. The total power dissipaifdATL implementation
of a function rooted at a given node is just the sum of powesipiaion of its cofactors
and power dissipation at that ndde

The cost of each node is calculated as the sum of the powepaliss in select
logic (P;..;) and product of probability of the node being selected () and power
dissipation at that node”). The cost estimation for the BDD shown in Figure 2.11 (a)
is shown in Figure 2.18; the probability and capacitancenegions have already been
shown in Figures 2.12 (a) and 2.12 (b), respectively. In EQu18, we us€’; = K x C,
and choosé(= 10 for the sake of simplicity. The tripleb(.icct, P, Pseiec:) ShOWN next
to each node in Figure 2.18 corresponds to probability ohthaee being selected, power
dissipation in the PTL network rooted at the node in termswafching capacitance,
and power dissipation in the select logic. As an exampleyrei@.18 lists the three

node cut¥, namely Cut A, Cut B, and Cut C containing one, two, and thredes,

°In this analysis, signal correlations are ignored. Whilis thay lead to some inaccuracies, it is
generally considered as an acceptable approximation. t€ébimique can be substituted by any other
technique for probability computation that considers elation.

ONote that cuts have been enumerated for illustrative peposly and that our algorithm finds the
minimum cut without any such enumeration.

57

Ny
(3 5, 12 @@,

/'

|

I

< I

N |

AN

(3.0. %) 1 0

CutA= {N]}
CutB :{NQ, Ng}
CutC :{NQ, N4, N6}

Figure 2.18: Estimating the cost of nodes.

respectively. The cost of a cut is simply the sum of the costoh node in the cut. After

evaluating the cost of each node, the DAG can be converteaifiow network. Ford-

Fulkerson algorithm [CLR98] is then applied to find a minimeut that corresponds

to the implementation with the minimum power dissipation. chse of Figure 2.18,

the minimum cut is Cut B with the cos£S:, while the cost of Cut A and Cut C is

19C: and 2% respectively. The pseudo-code of the overall proceduas ishown in

16

Algorithm 2.9.1. Once the cut is determined, the verticethan cut are replaced by

dummy terminal nodes, which can be assigned unique codesnterate select logic,

and the complete implementation can be produced, as ahastin the previous section.

The following proposition states the time complexity of algorithm.

Proposition 2.9.1 The procedure shown in Algorithm 2.9.1 tak&sV?) time to find an

optimum cut, wheréV is the number of nodes in the original BDD.

Proof 2.9.1 The Step 1 to Step 5 take(V) time since Step 1, 2, and 3 use post-order

traversal that take® (||V|| + ||E||) time on a graph, wher¥ is a set of nodes and

58

is a set of edges, while Step 4 and Step 5 also require the limea in the size of the
graph. In case of BDD’s, all nodes, except the terminal nodage two fanout edges,
and thereforeQ(||V|| + || E|]) = O(N). The Step 6 take®(||V||||F||*) for Edmond-

Karp implementation of Ford-Fulkerson algorithm [CLR98herefore, the algorithm

takesO(N?) time to find @ minimum cut in the worst case.

CommentAlthough time complexity of our algorithm i@ (N?), a tighter upper bound
can be obtained, since we have observed that algorithm &sskthan a second in case
of most of the MCNC benchmarks on Sun Ultra-60 machine anttheaactual run
times do not increase cubically. This is because the noddsatie not in the min-
cut have higher costs, as we move away from the cut and therafomber of flow
augmentations performed by Edmonds-Karp implementatierfaa less thar)(N?).
Since the Ford-Fulkerson algorithm takesN) time for each augmentation, this more
accurately reflects the trend of run times for the circuithenMCNC suite.

One can observe that each cut corresponds to implemenéatiopower dissipation
equal to the cost of cut, and since the Ford-Fulkerson dlgarcut results in a minimum
cut, the decomposed implementation obtained by the proeaduAlgorithm 2.9.1 is
the implementation that has the minimum power dissipatimhen our approximations.
Specifically, some of the inverters in the select logic careb@cated, and new inverters
can be added or removed leading to inaccuracies in the ¢apeeiestimation. How-
ever, these inaccuracies tend to be small since the areaieddoy the select logic in
the implementation is small as compared to the other cortibma logic blocks. In this
work, we have not taken into account area overhead due tochgaleation and register
duplication. This can be rectified, and a similar algoritbifnfamework can be applied

to trade off area and power of the decomposed implementation

59

2.10 Experimental Results

The above algorithm has been implemented as a C++ prograre. BDID package
CUDD [Som] is employed for generating BDD’s, along with siff [Rud93] for vari-
able ordering for all our experiments. We assume the use oDSNransistors as pass
transistors and the insertion of inverters after everyehuass transistors in series. The
width and channel length for each transistor is assumed tb%hen and0.25.m, re-
spectively. The capacitances of the transistors are med®mploying parameters of
TSMC 0.25um CMOS process [Mos]. The primary inputs are assumed to ha¥%e 5
probability of being at either 0 or 1 throughout the expenisewhile the supply volt-
age and clock frequency is assumed to be 2.5V and 1GHz, tesggc\We estimate
the power dissipation in combinational logic for both thguiar (undecomposed) and
decomposed implementations of several MCNC benchmarkitsr¢he corresponding
results are shown in Table 2.6. Inthe table, Columns 2 thr@ghow the number of in-
puts/outputs, the power dissipation of a regular impleiegmm, the power dissipation of
decomposed implementation, the power reduction, and GiREJdn Sun Ultra-60 ma-
chine, respectively. The CPU time includes the time for gath@n of BDD's, variable
ordering, estimation, and decomposition. The various beracks used here include a
variety of circuits, from arithmetic logic units to randowogic. We observe significant
power reductions in all of the cases, with an average resluaf 47.35%. We also
observe that the power reduction is more significant in cégbeocircuits like ex4p,
alu2, and 9symml, for which the number of outputs are redffigmall as compared to
the number of inputs. On the other hand, in case of 5xpl andxhithe reduction in

power dissipation is relatively lower, and the number ofpoiis are relatively larger as

60

compared to the number of inputs. This correlation can béaeex by observing that
in case of circuits with a large number of outputs, the nundferombinational logic
blocks that may remain active in a given clock cycle is likiglyoe larger, resulting in a
lower potential for power reduction.

Table 2.7 shows a comparison of our algorithms with previopsoposed algo-
rithms [LKTDO1, TB99] for reducing power dissipation in PTdircuits. The experi-
mental results reported in [LKTDO1, TB99] are based on threesassumption of uni-
form probability of primary inputs, and both report switegiactivity reductions and
not the actual power reductions. However, we assume thainttiehing activity reduc-
tions reported in [LKTDO1, TB99] are translated to the sarower reductions when the
BDD’s are mapped on to PTL. Column 2 in Table 2.7 shows the poaductions by
our algorithm while Columns 3 and 4 show the power reductaitained by the algo-
rithms proposed in [LKTDO01, TB99]. The *-" entry in Column 3@ Column 4 means
that results are not available for the particular examp[eKTDO01, TB99]. We observe
that our algorithm performs better in all the cases. As carghéo the average power
reduction of 26.46% by algorithm in [TB99] over the first 8 bamarks, our algorithm
obtains 50.11% power reduction, on an average, over the bamehmarks. Over the
last 3 benchmarks, our algorithm obtains power reductioB308%, on an average, as
compared to the average power reduction of 6.44% obtain¢dkolyDO1].

The results due to the algorithm in Section 2.9 are encongagince they show an
average power reduction of 47.35% over a variety of MCNC herark circuits. The
power reductions obtained by our algorithm, averaged dveeMCNC benchmarks, are
23.65% and 27.16% higher than the power reductions obt&ingdeviously proposed

low power PTL synthesis algorithms [TB99] and [LKTDO1], pestively. Therefore,

61

our algorithm can serve as a viable alternative for low po®EL synthesis. The same
framework of the algorithm can be extended to consider poseer trade-offs in the
decomposed implementations by considering the costs dicdtipn of nodes and reg-

isters.

2.11 Summary

We have presented efficient algorithms based on BDD decatigpofor performance-
driven and low power PTL synthesis. The BDD decompositiompleys one-hot en-
coding of the BDD nodes in a cut, while the cut for the decontsis determined
by transforming bipartitioning of BDD’s into the max-flow micut problem and then,
finding the cut by employing Ford-Fulkerson algorithm. Thgoathms result in opti-
mal, up to the accuracy in estimation, solutions and havgnoohial run-times, which,
in practice, are in seconds for ISCAS’85 benchmarks.

In case of performance-driven synthesis, BDD decompasisgerformed recur-
sively till no delay improvements are possible. Using a $exgelay metric such as the
number of transistors in series for the recursive bipartitig, our algorithm results in
logarithmic depth PTL implementation; none of the previsysthesis heuristic guaran-
tee this lower bound on PTL implementations. The experiaieesults on ISCAS’85
benchmarks show a 31% improvement in delay and 30% improvEmarea, on an av-
erage, as compared to static CMOS implementationgsdpintensive circuits, while in
case of arithmetic logic unit and control circuits that aeadintensive, improvements
over static CMOS are small and inconsistent. This pointatd# a static CMOS/PTL

mixed synthesis; our performance-driven PTL synthesisralgn can be thought of as

62

a step in that direction.

For low power PTL synthesis of combinational circuits whimgrits and outputs are
registered, our algorithm finds an optimum cut that miniraittee power dissipation in
the circuit using a similar algorithmic framework. The expeental results on a set of

MCNC benchmarks show a significant improvement over theipusvapproaches.

63

Algorithm 2.5.1 Perform delay analysis on a given BDD.
Input: G(V, E) = Graph underlying a given BDD; = Number of variables in the BDD; = Inverter

interval, R = Pass transistor resistance
Output: DpgyttomVv € V
1: for level =1to [n/k] do
Yo € {k - level, k- level —1,....k -level — (k —1)},Vb € B*, B = {0,1}
GetDownStreamCapacitanegy;

In topological ordetyv € V
: end for

2
3
4
5: 0.D Bottom MaX{v'.Dpottom + R X v.DoOwWnstreamCap(v’,v) € E}
6
7
8: Procedure GetDownStreamCapacitangg{

9: if (AllFanoutEdgesBuffered]) then

10: v.DownstreamCap- v.Capacitance

11: else

12: ¢+ 0

13: for Ve(v,v') € fanout@) do

14: if (e is not buffered &&b € BooleanExpression)) then
15: ¢ + ¢ + GetDownStreamCapacitancgp);

16: end if

17: end for

18: ¢+ c¢+wv.Capacitance

19: if (¢ > v.DownStreamCap}hen
20: v.DownStreamCap- ¢

21: endif

22: end if

23: }

64

Algorithm 2.9.1 Find an optimum cut to reduce power dissipation

Input: G(V, E') = The graph underlying the BDD
Output: S,,,; = Optimum cut-set
1: Perform power estimation on G, i.e., compiidor v € V
2. Estimate select probabilities, i.e., assjgn.;.; tov € V.
3: Compute power dissipation in the select logic, i.e., as$ign., tov € V.
4: for v € V do
5. 0.CoSt— v.Pypjeert V.pserect X U.P
6: end for
7: Grow < CreateFlowNetworkf(V, E))

8: Ford-Fulkersong riw. G, Seut)

65

Example| # of Regular Decomposed| Reduction| CPU time
/O | Power(mWatt) Power(mWatt) (%) Seconds
5xpl 7/10 0.29 0.21 27.36 0.29
9symml | 9/1 0.12 0.05 52.45 0.09
alu2 10/6 1.48 447 69.9 5.3
alu4 14/8 4.14 3.48 15.86 45
c8 28/18 0.21 0.14 35.0 0.54
cml62a| 14/5 0.15 0.07 51.26 0.1
comp 32/3 0.90 0.41 53.76 1.59
cordic 23/2 0.28 0.14 50.52 1.6
ex4p | 128/28 3.72 1.23 66.78 19.28
f51m 8/8 0.35 0.18 47.86 0.48
i8 133/81 411 1.97 51.95 69.99
inc 7/9 0.39 0.18 52.63 0.42
misex1 8/7 0.16 0.1 35.52 0.11
parity 16/1 0.21 0.1 51.59 0.17
rd53 5/3 0.11 0.05 54.64 0.06
rd73 7/3 0.22 0.1 51.81 0.15
rd84 8/4 0.31 0.14 54.11 0.28
t481 16/1 0.16 0.09 38.12 0.7
z4ml 7/4 0.135 0.82 39.25 0.07
Average 47.35

Table 2.6: Comparison of regular implementation with ouwrateposition-based imple-

mentation.
66

Example Power Reduction(%)

Our | [LKTDO1] | [TB99]

9symml | 52.45 - 18.4
alu2 69.9 - 43.0
cml62a| 51.26 - 39.4
cordic | 50.5 - 44.6
f51m | 47.85 - 32.6
parity | 51.59 - 4.00
t481 38.13 - 10.2
z4ml | 39.25 - 19.50

5xpl | 27.36 6.25 -

duke2 | 20.83 13.08 -

inc 52.63 0 -

Average| 45.61 6.44 26.46

Table 2.7: Comparison of our decomposition-based implé¢atiem with the methods

of Tavareset al.[TB99] and Lindgreret al.[LKTDO1].

67

Chapter 3

Transistor-level Layout Generation for

Pass Transistor Logic Circuits

3.1 Introduction

In the previous chapter, we saw that pass transistor logit.)fean result in better
implementations in case &br-intensive circuits and also some control designs. In spite
of the potential gains in performance due to PTL, its usageblean limited due to the
unavailability of good PTL-specific layout tools. We addrésis problem by proposing

an automatic layout generator for libraryless PTL circuits

3.1.1 Previous Work

Although logic synthesis for PTL circuits targeting areawer, and delay optimization
has been studied by numerous researchers [BNNSV97, FABVSS01b], the layout

generation problem for PTL circuits has received relayiVess attention. In [MBMO1],

68

Macii et al. propose a layout generator for PTL circuits that is suitdbtestandard
cell layouts. The limitation of their approach is that theyrbt fully exploit diffusion-
sharing between the PTL multiplexers, which can potemtisdive a large amount of
area. The PTL layout work by Yaret al. [SRY98] does utilize diffusion-sharing using
the idea of Eulerian trails in PTL multiplexers, but its apgbility is limited to small
cells, typically up to 4-5 inputs. The limitation to smalllisds justified by the fact that
buffers must be inserted after every few pass transistacstfzat blocks of pure pass
transistor logic that lies between buffers, which corregpto cells in their work, tend
to have a small number of inputs. This approach correspanttaditional cell-based
method that generates layouts for individual PTL cells asgkmbles these by placing
blocks of cells in rows in accordance with a standard cethiaynethodology.

Due to the well known relationship between PTL and binaryisien diagrams
(BDD's), we use the BDD representation of a logic functiothesinput to our approach.
Our approach consists of three steps: (1) assigning BDD)odeich represent PTL
multiplexers, to rows in the layout, through a max-flow mint-based recursive bipar-
titioning technique followed by a greedy assignment, airatchinimizing the number
of wires going from one row to another, (2) forming diffusisharing clusters for PTL
multiplexers in the same row using an Eulerian trail appnoatiowing both horizon-
tal and vertical placement of transistors to minimize theaarand (3) placing these
diffusion-sharing clusters optimally within a row employgia linear tree placement al-
gorithm [Yan85] to minimize the wiring overhead for conriens within the same row.
Thus, our approach minimizes the width of the layout by mazing diffusion-sharing
and the height by row assignment and by minimizing the rgudverhead for inter-row

and intra-row connections.

69

3.1.2 Our Contributions

Our layout generation algorithm, which takes flexible vidvzell boundaries and tries
to maximize the diffusion-sharing, has advantages ovdr [8RY98, MBMO01] the pre-

viously published approaches. Our contributions can bensanized as follows.

e Unlike [SRY98], our approach takes a more flexible view of bim@indaries be-
tween cells. While the layouts generated by our algorithrmfd the outline of
a standard cell layout methodology, we do not limit indiatlaells to have rect-
angular boundaries, and permit a more fluid boundary betwekvidual cells of
pure pass transistor logic, and integrate the layout oftmgebuffers into the lay-
out of the pass transistor logic block. In doing so, we allowager flexibility in
layout and perform the layout for an entire block of PTL, udihg regenerating

inverters, instead of working with one cell at a time withyalfew inputs.

¢ Related work that also uses a flexible boundaries betweesettsas proposed re-
cently by Gopalakrishnaet al.,, but in the context of static CMOS cells [GRO1].
Our method differs from their approach in the applicatiorioéar tree place-
ment, bipartitioning, and row assignment as well as in thistel formations. We
assign groups of transistors to rows and minimize the lagoe& by maximiz-
ing diffusion-sharing, minimizing the wiring area requr® route the intra-row

signals, and minimizing the number of inter-row signals.

The organization of the rest of the chapter is as follows.dati®n 3.2, we illustrate
a layout model for PTL circuits, followed by a descriptionSection 3.3 of diffusion-
sharing in PTL circuits based on the adjacency relation eetwithe BDD nodes. Section

3.4 provides a detailed description of various steps in tgerghm, and Section 3.5

70

presents the experimental results and conclusions, wikiddidh 3.6 summarizes the

chapter.

3.2 Layout Model

Figure 3.1(a) shows a PTL multiplexer represented by a Biddle; a Boolean function
f is represented by = Af, + Afx, wheref, and f5 are the Shannon co-factors of
the functionf with respect to the variabld. As pointed out earlier in Section 2.3.1,
this BDD node is well known to map on to a multiplexer, and Fey8.1(b) shows a
layout for this multiplexer that is made compact by allowthg drains of two multi-
plexer transistors share the diffusion. Empirically, islieeen observed in [SRY98] that
exploiting diffusion-sharing at the output of a multiplexgoduces a good quality lay-
outs for small cells, and also reduces the search space pbatlgenerator. Therefore,
our work also employs the approach of maximizing diffusghraring. Unlike previous
work on PTL layout that has largely required transistorsadatid out either all horizon-
tally or all vertically, we allow a mix of the two and explohis flexibility to maximize
diffusion-sharing among transistors.

A typical pass transistor logic circuit contains a set of tiplgxers, normally im-
plemented using NMOS pass transistors, and buffers thahseeted after every three
pass transistors in series to boost the signals. Theserduaffe usually implemented
as inverters that are positioned so as to ensure the comty pf signals within the
network. Our layout model places the inverters and PTL mpigliers in rows of fixed

height, as shown in Figure 3.2. The figure shows two rows atlagth an interven-

1For the purposes of this chapter, all BDD’s are reduced ediBDD’s (ROBDD’s).

71

fa I fa iy
(a) (b)

Figure 3.1: Layout of a multiplexer: (a) A BDD node. (b) Itsmsponding layout.

ing channel for routing, with each row containing PTL mukigers and inverters. The
lower row shows a detailed view of the inside of some typidatks, illustrating the
layout of a 3-input NAND gate employing PTL multiplexers aainverter. Each row
has the same height, and rows are separated by a space fagroath intra-row and
inter-row signals. We attempt to minimize this area by peniog optimal linear tree
placement

The proposed layout model can be extended easily to accoatmsthtic CMOS
cells due to the placement of power supply and ground linesdoh row; however, the

mixed synthesis of PTL and static CMOS is not addressed here.

3.3 Diffusion-sharing in PTL Circuits

The concept of Eulerian trails has often been used for ddfusharing optimizations
in static CMOS standard cells. Static CMOS cells consist ckeaes-parallel net-

work of transistors, and every Eulerian trail representsiasistor ordering that permits

72

P-DIFFUSION

VDD

INVERTER N-DIFFUSION
REGION FOR ROUTING

Multiplexer Inverter

Figure 3.2: A row-based layout scheme for PTL.

diffusion-sharing between series-connected transistorgsur formulation, we use this
notion of Eulerian trails, tailored specially for PTL laytou

The manner in which diffusion can be shared is dependent @rshiapes of lay-
outs and the sizes of the transistors. Shape level optimiminclude making a choice
between laying out the transistors in a multiplexers eitleizontally as shown in Fig-
ure 3.1(b), or vertically, as shown in Figure 3.3(a), or gssnhybrid of the two, as
shown in Figure 3.3(b). In terms of sizing, we consider omifarmly sized transistors
in this work. However, the layout of arbitrarily sized trésters can be handled using

our framework by considering transistor folding in caseafé sized transistors and

73

weighting the BDD nodes corresponding to such transistdisan appropriately large
area cost during bipartitioning and row assignment. Sulpsatty, shape level optimiza-
tions and diffusion-sharing may be used to handle arbitiranysistor sizes. We do not,

however, consider this issue in our current work.

(@) (b)

Figure 3.3: Different multiplexers layout schemes: (a)iWigrtical transistors. (b) With

horizontal as well as vertical transistors.

In case of PTL circuits synthesized from BDD'’s, we obsena thffusion-sharing

between any two nodes may be possible in only the followirgdases:
Input diffusion-sharing Two nodes share the same co-factor, as shown in Figure 3.4(a)

Output diffusion-sharing One node is a co-factor of the other node, as shown in Fig-

ure 3.5(a).

The layouts for each case are shown in Figures 3.4(b) anb)3r&6pectively. Note that
in Figure 3.5(b), the transistor associated with inpuis laid out vertically so that it

shares the diffusion at the output of the multiplexer wita tfansistor associated with

74

ool " T
O X X
A A A A

(@)

Output of Node B
shared by two node

(b)

Figure 3.4: An example of input diffusion-sharing: (a) A BD®) Its corresponding

PTL implementation.

input B, and also with the transistor associated with inpwif the adjacent multiplexer.
If two nodes share both cofactors, as shown in Figure 3.8{a, diffusion-sharing can
be obtained as shown in Figure 3.6(b).

Our approach for maximizing diffusion-sharing betweemnsiators involves finding
Eulerian trails through a walk on the input or output edgethefnodes, as explained in

the next section.

3.4 Algorithm for Layout Generation

Figure 3.7 outlines the overall algorithm for layout of PTikcaits. The algorithm be-
gins with a multilevel BDD networkof the circuit and uses a recursive bipartitioning
scheme to assign the BDD’s corresponding to various regmuéferent parts of the

layout. This is followed by greedy assignment of the rowsh®BDD nodes such that

2A multilevel BDD network [YC99] is similar to a multilevel Balean network. It uses a BDD to
describe the functionality at each node in the network. Iy tpa recalled that in the previous chapter,
multilevel BDD'’s are employed for performance-driven syegis.

75

Output of B shared
as Input of Node A

® I
LK X
* Bommmmmmm A A
(2 B X

(b)

Figure 3.5: An example of output diffusion-sharing: (a) A BOXb) Its corresponding

PTL implementation.

the number of signals across different rows is minimized| aach row has approxi-
mately the same number of nodes and inverters. This bijeaitig approach can be in-
terpreted as performing a coarse layout region assignisiamitar to the use of partition-
ing in placement problems, and can be formulated as a maxdfimacut problem. The
greedy procedure assigns nodes in each BDD in the multitepeesentation to rows
and takes into account possibilities of diffusion-sharifipe assignment is performed
in such a way that the number of wires from any row to anotherisaminimized. Af-
ter the row assignment is completed, the multiplexers haen lassigned to rows, but
their positions within a row have not been finalized. To dowe,first cluster nodes
in each row using an Eulerian trail approach to maximizeuditin-sharing. Once the
clusters have been formed, they are assigned specificqusiti each row; this is per-
formed employing a linear tree placement algorithm progdseYannakakis [Yan85].
Figure 3.8 summarizes the features of our approach for namgthe area of the lay-
out. We minimize the width of each row by diffusion-sharirging Eulerian trails; the

height of the row is fixed. The space for routing is minimizgdoptimizing the num-

76

Diffusion-sharing using
metal strap over diffusion

L
CACHE w on 2 0

Outputs of both B nodes shared
(b)

Figure 3.6: A diffusion-sharing scheme for the case whendefactors are shared: (a)

A BDD. (b) Its corresponding PTL implementation.

ber of inter-row signals; this is addressed using min-cotirgive bipartitioning for the
signals between different BDD’s and by greedy row assignrfarthe inter-row sig-
nals among the nodes of the same BDD. We minimize the numbemaf for routing
intra-row signals by employing linear tree placement fa& diffusion-sharing clusters;
Yannakakis’s algorithm ensures optimal placement forstree

The time complexity of recursive bipartitioning using midow min-cut technique
isO(||V||-Tog ||V]|-]|E]]?) since the complexity of Ford-Fulkerson algorithn@ig]| V|| -
||E||?) [CLR98], whereV and E are set of vertices and edges in the multi-level BDD
network, respectively. The time complexity of the algamitfor row assignment is also
polynomial in the number of nodes in individual BDD’s. Them& complexity of Eule-
rian trail algorithm is linear in number of edges of the notled are assigned the same
row while the complexity of linear tree placement algoritts® (N -log V), whereN is
the number of vertices corresponding to diffusion-shadiugters in a tree. Therefore,

time complexity of overall algorithm is polynomial.

77

Multi-level
BDD Network

l'{eClll.‘S.iVE. Uses Max—flow
Bipartitioning Min—cut Technique

v

Row Assignment | Uses Greedy
of BDD Nodes Algorithm

'

Cluster Formation Use§ Eulerian
among Nodes Trail approach

v

Linear Placement | {jges Linear Tree
of Clusters Placement

v

Routing

Figure 3.7: An overview of the algorithm.
3.4.1 Recursive Bipartitioning

The multilevel BDD network can be treated as a directed gragiere each vertex
corresponds to a BDD and a directed edge means that outputertex represented
by a BDD is an input to the BDD of another vertex; the edges asggaed directions
leaving from primary inputs and pointing towards primantpus. Our aim is to find
a cut that partitions a given multilevel BDD network into apxmately equal parts
in terms of the area occupied by the transistors (both inipleters and in inverters),
and has minimum connectivity among the partitions. To ebsaich an area-balanced
partition, we associate two costs with each node in the rewdti BDD network that are

defined as follows.

78

Minimize by Min—cut\

Partitioning & Greedy I Region §Qr |
Row Assignment nter—row Signals ROUTING
Minimize by Linear\ Region for REGION
Tree Placement Intra—row Signals
INVERTER VDD

Row Height
(fixed)

Row Width — Minimize by Diffusion—sharing

Figure 3.8: A pictorial view of area minimization strategiier the layout.

Lower Cost (A,,we) : Thisis the cost of a PTL implementation of the multilevel BD

network rooted at a given node.

Upper Cost (4,,,¢-) : This is the cost of a PTL implementation of the multilevel BD

network rooted at a given node, assuming the directionsgé®deversed.

The costsd,,.e., and A,,,., can be obtained by a post-order traversal of the multilevel
BDD network. The upper and lower costs reflect the contridsutif a given node to the
total area of a PTL implementation in the part of the mul&éleBDD network towards
the primary outputs and in the part of the multilevel BDD netivtowards primary
inputs, respectively. A node that has almost the same uppuEloaver costs is a good
candidate for inclusion in the cut since it will result in arabalanced partition, and
using all such nodes, we want to find a min-cut partition. VWWedfore define candidate

nodes for the cut as follows.

Candidate Nodesare the nodes for Whict¥,,,e; — Aupper| < A, whereA indicates

79

Figure 3.9: Recursive bipartitioning: (a) A multilevel BDigtwork. (b) Its correspond-

ing flow network.
flexibility while choosing candidate nodes.

Although the idea of recursive bipartitioning proposedgisisimilar to that presented in
the previous chapter, it differs from the latter in the ohijeras well as the application.
The objective here is to generate area-balanced patrtiti@isninimize the connectiv-
ity, while the method in the previous chapter aims to find giddalanced partitions.
Moreover, we apply recursive bipartitioning to a multileB®D network, instead of to
individual BDD'’s.

We now try to find an optimal vertex cut across these candiciat@odes with the

intention of assigning approximately half of the multileBDD network, in terms of

80

area, to each side of the partition, while also ensuringttieae is minimum connectiv-
ity between the partitions. To ensure the minimum connggtiwe transform the bi-
partitioning problem to the max-flow min-cut problem in wihieach candidate node is
assigned a flow capacity equal to its number of fanouts. Ei§u shows a part of mul-
tilevel BDD network containing candidate nodgsc,, c3, andey, and its corresponding
flow network with a source nodeand a destination node To form a flow network for
the minimum vertex cut, each candidate node is split into mwdes connected by an
edge that is assigned a capacity equal to the number of fanéoit instance, the capac-
ity of the edge between, and¢) in Figure 3.9(b) is 2 because the number of fanouts
of the node; in the network of candidate nodes is 2 in Figure 3.9(a). Meegeanode

| 1s connected to nodg andc, in the flow network, since nodg is connected to the
corresponding nodes in the network of candidate nodes. dfesethat are assigned a
capacity ofoc are guaranteed not to appear in the cut. Figure 3.9(b) shvawpdssible
cuts: Cut A with a capacity of 4, and Cut B with a capacity of GheTapplication of
the Ford-Fulkerson algorithm [CLR98] finds the min-cut, ain this case is Cut A.
Therefore, the corresponding nodes that are chosen fotipairig arec; ande,. In the
resulting partition, nodes, ¢, and their predecessors will be in one subset, while nodes
3, ¢4, and their descendents will be in another subset. Recubgdagtitioning of the
multilevel BDD network on these subsets continues untihaalrnetwork containing a

single vertex corresponding to a single BDD of the multilexatwork is obtained.

3.4.2 Greedy Heuristic for Row Assignment
After recursive bipartitioning of the multilevel BDD’s,#BDD’s are assigned an order-

ing for layout. To generate a compact layout for each BDD, wstrassign the nodes in

81

each BDD to rows such that the diffusion-sharing among tleeaadn the same row is

maximized. We use a greedy method for this purpose, as tesdn Algorithm 3.4.1.

Algorithm 3.4.1 Perform row assignment for nodes in a BDD
Input: G(V, E') = The graph underlying the BDD

Output: Mappingf : V — {0, 1, -,rowmazs }
1 Viep <V
2: row <0
3: while V,.;, # ® do
4: Area <+ 0
5 Spow — P

6: while Area < MaximumArea do

7 v < MostAdjacentNodefr,.,, G, Vie 1)
8: Skow < Srow UV

9 Viept < Viept - v

10: Area + AreaEstimation§,.,)

11: end while
12: AssignRow(zo.,, row)
13: row +—row+1

14: end while

The set of multiplexer nodes assigned to each row is firgalided to the empty
set. Subsequently, the algorithm successively adds nodix tset as long as a user-
defined area capacity of the row is not exceeded; this aregitgjgan be used to control
the width of the layout. In each step, the node (found by thestdjacentNode()

routine) that is greedily added to the set is the one that jigcadt to the maximum

82

number of nodes that are already in the set; any ties are toinkavor of a node with a
lower variable index in the variable ordering for the ROBDIDis strategy serves two

purposes:

1. It maximizes the possibility of diffusion-sharing amongdes in a row; more
diffusion-sharing implies compact layouts and a likelidoaf assigning more

nodes to the same row.

2. It minimizes the number of edges going across differenwsr@and therefore, the

routing area required for inter-row signals is also miniaaiz

This greedy algorithm implicitly minimizes the row arean& it considers the effects
of diffusion-sharing. A node that is to be added to the seh@sen depending on the
adjacency to the nodes already in the set, and adjacencyesnpbssible diffusion-

sharing. The following proposition states the complexityhe algorithm.

Proposition 3.4.1 The procedure in Algorithm 3.4.1 terminateSMN - ||S row || - dimaz)
time, whereN is the total number of nodedSg,. || is the cardinality of the row and

d ez 1S the maximum degree among all nodes.

Proof 3.4.1 The FindMostAdjacentNode routine requit@$||Srow || - dma:) time. The
routine AreaEstimation is completed in constant time, esiih¢s incremental in nature.
Therefore, innermost while loop takéX||Srow||* - dmas) time, and since it is repeated

O(N/||Srow||) times, the result follows.

3.4.3 Formation of Diffusion-sharing Clusters
The width of each row can be minimized by diffusion-sharingoag different multi-

plexers placed in the same row. To form diffusion clustees, clusters of transistors that

83

DOOBH OO B®

(a)
Possible diffusion-sharing

@ 1O DO

N, - !
Y Y
N N

T Tnigess o 7 S— Eulerian trall

-

Super node

(b)

Figure 3.10: Cluster formation: (a) A group of BDD nodes tqteced. (b) The corre-

sponding Eulerian graph. Dotted edges in (b) denote p&sdifflsion breaks.

can share diffusion, we use the Eulerian trail algorithmd&&fter Eulerizing a given

graph by adding a super node and connecting nodes with ahdsdplee to it. This

Eulerian trail algorithm is used in [RS99] for two-dimensab micro-cell placement in
the context of CMOS cells. The nodes in our Eulerized graplafiow correspond to
BDD nodes assigned to the row, and the edge set consists dayp&s of edges: ones
that denote possible diffusion-sharing and the othersdbaobte diffusion breaks. As
explained in Section 3.3, in case of PTL, diffusion-sharag occur in case of input
sharing, illustrated in Figure 3.4, or output sharing, asxshin Figure 3.5. To capture

this relationship, we introduce edges between the correipg nodes in the Eulerized

3The nodes with 0 degree are also connected to the super matithis does not affect the number of
diffusion breaks.

84

graph. Dummy edges indicating diffusion breaks connectotie degree nodes to a
super node. Figure 3.10(a) shows an example with five BDD syao@responding to
variables A and C, to be placed in a row; we assume that nodédatiels B, D, and
E are already placed in previous rows. The correspondingrizeld graph is shown in
Figure 3.10(b), and the cluster formations associated télEulerian trail in the figure
are shown in Figure 3.11. Three clusters are identified: atle eme multiplexer and
two with two multiplexers each.

1 2 3 4 5

A A A A

Figure 3.11: Diffusion-sharing clusters correspondingitpure 3.10.

3.4.4 Linear Placement

Although there are potentially exponentially many Euletiails in the Eulerian graph,
itis known that every trail yields a solution with the samemium width corresponding
to the same number of diffusion breaks. However, the routosj varies for different
trails, corresponding to different arrangements of thieidibn-sharing clusters. To opti-
mize this cost, we perform linear tree placement of clustdrige preserving the order of
the multiplexers in each cluster. Since the multiplexeeoid each cluster is preserved,
altering the order of the clusters will not affect the row thid This step can also be

thought of as a generating an Eulerian trail that has betitgability than the previous

85

Eulerian trail. The objective here is to minimize the cosbined in routing the signals

that connect different clusters in the same row.

Cutwidth = 2

I 1 I
V1 V2 V3

@ ®) Cutwidth = 1
@ @ I\/1 : Iv3I : v2I
(@)

(€)

Figure 3.12: Linear placement for laying out the clustews) A cluster tree. (b) A

sub-optimal placement. (c) An optimal placement.

We define a graph, called a cluster grapli},) on clusters, in which every vertex
v € V corresponds to a cluster, and there is an edge between tiheesef there are
signals connecting the corresponding clustersG(¥, E) is a tree, then application
of Yannakakis’ algorithm [Yan85] results in an optimal patent that minimizes the
cut-width; here the cut-width corresponds to the numbepuwfsrrequired to route the
signals between different clusters. Yannakakis’ algamitises dynamic programming
to build the solution in a bottom up manner and run®inV x log N) time, whereN
is the number of vertices. If the cluster graph is not a treentwe arbitrarily remove
some of the edges to make it a tree; in this case, howeverptimaality of solution is
not ensured. In practice, it is seen that for BDD'’s, the @ugtaph is typically close to
atree. To understand this, we observe that a cycle can appeatuster graph, if there
are forward edges in the BDD that connect a node to its angestd the node at either

end of the the forward edge and the parent of the node areddlatiee different clusters

86

of the same row. However, such a structure is likely to raawdtgreat deal of diffusion-

sharing, and this increases the probability that all suaicgires are placed within the
same cluster. Therefore, cycles between clusters, whilemaossible, are improbable.
We verified the same from experiments on the benchmark exanpgtigure 3.12(a)
shows a cluster tree containing three clusters V1, V2, andWwtB connections between
V1 and V3, and between V2 and V3. Figure 3.12(b) shows a suhapplacement of

these clusters that results in a cut-width of two, implyihgtthumber of rows required
to route the signals will be two, if we use two metal layersgufe 3.12(c) shows an
optimal placement with cut-width of 1 that will be found by nfeakakis’ algorithm,

implying that one row suffices to route the signals betweencthsters. This example

shows the impact of linear tree placement and its contobut minimizing the area.

3.5 Experimental Results

We have implemented the algorithms discussed in this chapte C++ program that
generates layouts for PTL circuits from BDD'’s; the CUDD pag& [Som] is employed
to construct multilevel BDD's. Inverters are inserted afteery three pass transistors in
series; we utilize a heuristic for inverter insertion, sitlke general problem of inverter
insertion in PTL circuits is shown to be NP-hard [ZA98]. Tleehnology that we use is
scalable CMOS technology with one poly and three metal &ayRoly is employed for
routing inputs; Metall is utilized for routing intra-rowgsials; and Metal2 and Metal3
are used for routing inter-row signals. Metall is alloweddote in the vertical as well
as the horizontal directions, while Metal2 is employed fartmg mostly in the vertical

direction, and Metal3 is used to route only in the horizodiegction.

87

Figure 3.13: Effect of row assignment, clustering, anddimieee placement on rd84.

The figure shows 122 pass transistors and 21 inverters.

Figure 3.14: Intra- and inter-row routing for rows 1 and 2d84 circuit.

88

Figure 3.15: Post-routing layout for rd84 circuit.

89

Figure 3.13 shows the placement of multiplexer clustersiavelters in five rows
for an MCNC benchmark rd84, while Figures 3.14 and 3.15 sliaaritra- and inter-
row wires for the first two rows and a picture of the completmlat, respectively, after
routing employing a routérin MAGIC [Ous]. The benchmark rd84 has 8 inputs and 4
outputs with a BDD representation that has a size of 63 nadatg its transistor-level
implementation includes 122 transistors apart from 21rbeve. Figure 3.13 clearly
shows the effect of greedy row assignment, which resultsea-aalanced rows with
high amount of diffusion-sharing among each row. Moreoites, quite clear that the
flexibility of placing transistors either horizontally oestically serves to reduce the area
and create a compact layout. All the five rows show the effédiftusion-sharing and
its contribution to the width minimization.

Table 3.1 shows the experimental results on ISCAS’85 beacksn Column 2
shows layout area for static CMOS circuits, while Column 8vgéithe the layout area
for PTL circuits due to our algorithm. The static CMOS citsuare obtained by tech-
nology mapping for area minimization employing lib2.gédibrary in SIS [Sen92]; the
library is characterized for 130nm technology [ptm]. Thenners in Column 2 corre-
spond to the gate-area, and are, therefore, lower boundstoal area. In case of PTL
circuits, multi-level BDD's are directly mapped on to PTL ploying inverter insertion
heuristic proposed in [MBIS01], and transistors are laitusing our algorithm. To per-
form post-placement area comparison, we employ the lefe @thorithm for estimating
the channels required to route the intra-row and inter-rigmads. More sophisticated
routing algorithms such as those employing dog-legs, oagipdication of a commercial

router will, of course, resultin smaller number of routiigaanels and therefore, greater

40ur tool, in its current form, does not perform routing, dudrioduces the netlists that can be used by
publicly available tools such as MAGIC or commercial roster

90

Example Static CMOS Ours

Area (um?) Area (um?)

C1355 (Error correcting codes) 4631 1825 (-60%)
C1908 (Error correcting codes) 4867 1924 (-60%)
C2670 (ALU and Control) 10930 11606 (+6%)
C3540 (ALU and Control) 11247 9040 (-19)
C432 (Priority Decoder) 3007 4303 (+43%)
C499 (Error correcting codes 4611 1123 (-75%)

C5315 (ALU and Selector) 18065 20554 (+13%)

C6288 (16-bit Multiplier) 27947 | 13600 (-51%)
C7552 (ALU and Control) 28817 | 12655 (-56%)
C880 (ALU and Control) 3796 2729 (-28%)

Total 117918 | 79359 (-32%)

Table 3.1: Comparison of layout area for ISCAS’85 benchneanduits.

area reduction. Our results with the left-edge algorithnréaiting are, therefore, upper
bounds on the area. We see that in casebeintensive circuits, such as C1355, C1908,
C499, and C6288, PTL results in 61% reduction in area, whéa anprovements are
not consistent for ALU and control circuits that arendintensive. On an average, area
of PTL circuits that are laid out using our algorithm has b&2f6 smaller than the

corresponding gate-areas of static CMOS circuits.

91

3.6 Summary

In this chapter, we have described an algorithm for traosisivel placement of PTL
circuits. The algorithm is useful for translating the libfi@ss PTL circuits into layouts.
The lack of any such tools has been one of the reasons fomtlitedi usage of library-
less PTL circuits despite their advantages. The layoutsrgéed by the algorithm are
amenable to static CMOS/PTL mixed synthesis, since theyficamto standard cell
methodology. It has advantages over previously publispedoaches, and comparison
with the static CMOS circuits for ISCAS’85 benchmarks sholarge improvement in

area, especially in case wbr-intensive circuits.

92

Chapter 4

Congestion-aware Technology

Mapping

Interconnect dominance is a daunting issue for sub-100n®Idesigns. This is a con-
sequence of the rising design complexity: following Moeraw [Mo065], the number
of on-chip transistors are doubling every twenty four maentthile, according to Rent’s
rule [LR71, CS00], the number of wires also grows expondptigith the number of

gates. As a result, even today’s designs have regions whenenavailability of suffi-

cient number of tracks to route the wires causes the cireitit®r to be unroutable or
to violate the timing constraints due to long wire detoursisTis often referred to as
the routing congestion problem. In this chapter, we focuseshnology mapping, an

important logic synthesis transformation, to alleviate tongestion.

93

4.1 Introduction

4.1.1 Motivation

Although exact routing congestion information is knownyoafter global routing, a
failure to address congestion prior to this point impliest tine designer is left with few
degrees of freedom. Moving one step back, to placementjges\greater flexibilities,
but is still not enough and it is known that this does not reenthe need for a number
of design iterations. This is often due to the poor fidelit)cohgestion-unaware delay
estimates, which cannot accurately estimate the effectaf Wire detours required for
congestion reduction, or due to the unroutability of som&gles where there may not
be enough tracks available for routing.

It is imperative to address congestion issues early in ts@derocess to allow for
more freedom to reduce congestion. Previous work on wirernte in logic synthe-
sis [GNBSV98, GKSV01] at the technology-independent ofation stage is targeted
towards wirelength estimation to consider the wire delagopposed to our work which
targets routing congestion). At this phase of logic optatian, it is not entirely clear
which wires will be in the logic netlist, as this is decidedidg the technology map-
ping step. Technology mapping provides powerful capagdlifor absorbing long inter-
connect wires into internal connections within complexegabr for splitting complex
gates into simpler gates, thus helping to alter the oveiattidution of wires in the
layout. Thus, it is an ideal step where the routing congegtimblem may be attacked
with relatively more freedom (albeit relatively less infmation) than during placement
and routing. Although several methods for integrating pdaigdesign with technology

mapping have been proposed, there is little work on inc@fooy congestion consider-

94

ations. Existing methods for this purpose, which are baseahdirect metrics such as
wirelength, are unsatisfactory, and the work presentedischapter is directed towards
filling that void.

While congestion is an important consideration for tecbhgglmapping, the over-
riding objectives continue to be metrics such as area orydmigpower. Therefore, it
iS more appropriate to use congestion as a constraint riditheras an objective. While
optimizing for area and delay, it is desirable to ensurettatinal netlist does not have
congested spots, so that long detours are avoided and fist rexhains routable. Typ-
ically, very few places in the circuit (ideally, zero) shduiave congestion values that
are greater than some threshold, and the final netlist sh@ndell optimized from the

area and/or delay perspectives.

4.1.2 Previous work

We review some of the previous works on congestion-awatentdogy mapping ap-
proaches in the literature. Stak al. proposed a clustering of closely placed cells
during technology mapping so that the matching choicesrauyeéistantly placed cells
in the subject graph are ruled out [SKO1]. This approach reaylt in long wires in the
final netlist, and more importantly, may be so limiting asdaJe a significant portion
of the design space unexplored. Pandinal. proposed wirelength as a metric to be
minimized during technology mapping in order to reduce thegestion [PPS02]. Al-
though large wirelength may be correlated with high corigasthe correlation is rather
poor, and therefore, this may not result in an effectiveroation. This observation
has been borne out by recent work by the same authors [PR833]state that such a

metric, when considered during technology mapping emplpgi traditional cost func-

95

tion (K, xAreat K, x Delay+ K3 x Wirelength, wherel;, K,, and K3 are constants),
may not result in decreased congestion. As pointed out by tkkengestion is a local
property that varies from bin to bin, and it is difficult to ¢ape its effects using a global
metric like wirelength. This inference led them to the casabn that congestion can
only be targeted using iterative placement and technologgpimg. However, such a
conclusionis valid only when the congestion optimizat®peérformed using an indirect

global metric in a traditional fashion, and is not generéibe.

4.1.3 Our Contributions

We present a technique for performing congestion-awaretdogy mapping. Instead
of trying to absorb the congestion information into a singletric, we work with infor-
mation about the distribution of congestion over the eréiyout. The contributions of

our work can be summarized as follows.

e Using empirical data on several benchmarks, employingdifit script and li-
braries, we show the fidelity between the congestion mapthésubject graph

and the mapped netlists, which is later exploited duringelsnology mapping.

e Instead of applying an indirect metric such as wirelengt3gB2, SIS99], we uti-
lize probabilistic congestion estimates [LTKS02] to gum#& technology map-
ping; these estimates are shown in [LTKS02] to have gooditiyjd<h post rout-

ing congestion estimates and have even been implementezbmmercial tool.

e We define the congestion cost function in such a way thataiallthe mapper
to choose the area- or delay-optimal choices, when the smoreling wires are

likely to pass through sparsely congested region. At theedame, the cost func-

96

tion allows the choice of congestion-optimal matches, wivees are likely to
pass through densely congested region. Thus, differemhigaition modes are
applied at different places in the circuit depending on thetext. To the best of
our knowledge, such selective optimization has not beetfiexppefore during

technology mapping.

e Experimental results due to congestion-aware technolagyping algorithms on
an industrial benchmark and ISCAS’85 circuits show an impnoeent of 37%,
on an average, in track overflows as compared to conventioapping, when
area minimization is targeted, while, on an average, 46%orgment in track
overflows is obtained over the regular method, when the itidlay is an op-
timization objective. These improvements come at the cbahd% and a 2%

gate-area penalty, respectively, for area and delay maaitioin.

The organization of the rest of the chapter is as follows tiee.2 introduces the
terminology and problem definition, while Section 4.3 preaseempirical and intuitive
justifications for congestion fidelity for pre-mapped andoped netlists. Sections 4.4
and 4.5 illustrate congestion-aware technology mappiggrahms targeting area and
delay, respectively, while Section 4.6 discusses time dexity and the possible ex-
tensions to these algorithms. Section 4.7 presents expetairesults and conclusions

followed by the summary of the chapter in Section 4.8.

97

4.2 Preliminaries

4.2.1 Terminology

The following terminology is used throughout this chap#Boolean network is a di-
rected acyclic graph (DAG), in which a node denotes a Bodleaction, f : B" — B,
whereB = {0, 1}, andn is the number of inputs to the node. The traditional technol-
ogy mapping is usually preceded by a decomposition of thésratt network into one
that contains primitive gates, such as 2-input NAND’s anetiters. The decomposed
network is referred to as a subject graph or a premappedneilne subject graph is
mapped on to a set of cells in the library during technologppirag; the resulting net-
work is known as a mapped netlist, which is placed in a giveckhrea and routed.
The block area is divided into bins for congestion analysiigppses or for global rout-
ing. Each bin contains a limited number of horizontal andigal tracks. The track

overflow and congestion can be defined for every bin as follows

Definition 4.2.1 The horizontal (vertical) track overflow for a given bin isfided as
the difference between the number of horizontal (vertitallks required to route the

nets through the bin and the available number of horizontatt{cal) tracks.

Definition 4.2.2 The horizontal (vertical) congestion for a given bin is taéo of num-
ber of horizontal (vertical) tracks required to route thesiehrough the bin to the number

of horizontal (vertical) tracks available.

A positive track overflow or a congestion more than 1.0 meaas sufficient tracks
are unavailable for the routing, while negative value of alverflow or the congestion

smaller than 1.0 indicates the availability of tracks.

98

4.2.2 Problem Definition
Routing congestion depends on the following factors:
1. the connectivity of the network,
2. the placement of cells in the layout, and
3. the routing of interconnects between the placed cells.

Since there is relatively less freedom to attack routinggestion during the placement
and routing stages, we concentrate on the first factor. T¢tentdogy mapping step
makes crucial decisions regarding the connectivity of tbevork, since the mapping
of primitive gates to the library cells determines the sewvivés that will be present in
the circuit netlist. Traditionally, this has been carriad without any placement infor-
mation. Although this has changed in recent physical syaidheendor offerings, most
approaches focus on the prediction of wirelength based anding box estimates that
ignore congestion. The estimation of routing congestidhait a placement for a net-
work is, if not impossible, liable to be highly inaccuratedesone may have to rely on
high level metrics such as adhesion (defined as a sum of nisnbetween all pairs of
nodes in the network) [KSD02]. However, this is a very newnneind several open
guestions about it remain unanswered: for example, whétloan be measured in a
computationally efficient manner, and whether its fidelgyalid for mapped netlists.
On the other hand, probabilistic congestion estimatiork[g02] used after the place-
ment of a mapped network has been demonstrated to corredditesith the congestion
map generated after the routing, on both academic and malusénchmark circuits.

The estimation method divides the layout into bins and cdegthe congestion for a

99

given bin under all possible routes for a given net. We uses#ime method to guide
our technology mapping algorithm. However, even such a ateth difficult to adapt,
since only the premapped netlist is available prior to tetdgy mapping, and the level
of correlation between the probabilistic congestion mdps® premapped netlist and
the mapped netlist has not been studied in the past. Onalagrin of this work is to
perform such a study. From empirical evidence obtained ey different logic syn-
thesis scripts and placement algorithms on a variety of ti@acks, we show a good
congestion correlation between premapped and mappedtaetliOnce we establish
the congestion correlation between the premapped and mapgiksts, the problem

of congestion-aware technology mapping can be defined lasvil

Problem definition 4.2.1 Given a subject graph of a network and a library of gates,
synthesize a network optimizing area or delay such that geemmum (horizontal/vertical)

congestion over all of the bins is less than the given thrigsho

4.3 Congestion Fidelity

This section explores the level of fidelity between the catiga estimates before and
after technology mapping for any given circuit. For a giveouit, a premapped netlist
contains primitive gates such as 2-input NAND’s, while a pegbnetlist contains a set
of cells from a given library. Intuitively, the premappeddamapped netlist for a circuit
share the same global connectivity, since the mapper absonne wires of the sub-
ject graph into the internal nodes of library cells, leavatger wires untouched. This
points towards the possibility of good fidelity between cestipn maps for premapped

and mapped netlists. However, congestion also dependsgidbement of elements,

100

primitive gates or gates in the library, in the netlist. Rlaent algorithms employed
by commercial tools and in academia are typically base@edh recursive multi-level

bisectioning or force-directed quadratic programmingvdtld be useful to understand,
even empirically, whether these placement algorithmst ieeithe same global connec-
tivity and block area constraints in a similar way. If so,rihenay be a good congestion
correlation between premapped and mapped netlist. We rextfis issue by perform-

ing a set of experiments using a variety of placers, logi¢sssis scripts, libraries, and

benchmarks.

4.3.1 Experimental Setup

To verify the fidelity between congestion estimates befor@ after technology map-
ping, we placed several premapped netlists, and the camdgpy mapped netlists us-
ing the same block area and the same placement of inputtoigipninals. Two dif-
ferent placement algorithms were employed — a recursivechaning based algorithm
in a publicly available tool, Capo [CKMO0O0], and a force-dited quadratic algorithm,
Kraftwerk [EJ98], implemented in a proprietary industpédcer. Different scripts, such
asrugged, boolean, algebraic, espressmdspeedupn SIS [Sen92] were applied for
preprocessing the netlists before technology mapping @ different libraries in
SIS as well as an industrial library used for high-perforoemicroprocessor designs.

The following options were used for mapping and placement.

e Mapping was performed in SIS using theap -s -n 0 -AFG -pcommand that
performs area and fanout optimization. No layout inform@ativas utilized to

guide this technology mapping.

101

e Placement using Capo [CKMO0O] was performed with defaultor®to minimize

the total wirelength based on half perimeter bounding bdixeges, while

e As an alternative to Capo, Kraftwerk [EJ98] was employededgrm placement

to minimize total wirelength as well as congestion.

The premapped netlist is an abstract Boolean network auntpiprimitive gates
such as 2-input NAND'’s and inverters. For the placement ohsunetlist, the primitive
gates must be assigned areas. We assign the areas of trepoadi®g minimum-sized
gates in the library to these primitive elements. Since timalmer of nodes in this netlist
is large, the area of primitive gates must be scaled by aindaetor to present the same
white space constraints as the mapped netlist for the placenhhis factor is computed
a priori as a ratio of the targeted gate area to the area of premappedrkeising the
following equation.

Block area— White space area

ling factor=
Scaling factor Area of premapped network

(4.1)

Note that this factor is readily available given the block&agrthe white space area, the

premapped netlist, and the cell library, and does not redry testcase-specific tuning.

4.3.2 Experimental Results

We show results for a few representative benchmarks: C4828& C7552, and an
industrial circuit containing an instruction decoder (ID@ a high-performance micro-
processor. Apart from the vastly different functionabti¢he sizes of these benchmarks
also vary from a few hundred cells to a few thousand cells. uféig4.1 (a) and (b) show
congestion maps for the benchmark C432 for the mapped amdapreed netlists, re-

spectively. The placement of both the networks is perforasdg Capo. In these plots,

102

14

(b)

Figure 4.1: Horizontal congestion for C432 for (a) the aneanted mapped netlist
and (b) the premapped netlisscript.ruggeds used for preprocessing the netlist and

Capo [CKMO0O0] is employed for placement.

103

Figure 4.2: Bin-wise congestion difference between premed and mapped netlists

corresponding to Figure 4.1(a) and 4.1(b), respectivelyC#32.

the XY plane shows the two dimensions of the layout area,enthié Z-axis depicts the
congestion. Visually, one can conclude that the distrdsushown in Figure 4.1(b) is
similar in nature to the congestion map shown in Figure ;i@ bin-wise difference
in the congestion values is shown in Figure 4.2. One can wbdbat, for most of the
bins, the difference between the congestion in the prentbgpe mapped netlists is less
than 10%. Similarly, the congestion maps for the benchmiackiit C7552 and for the
circuit IDC for the mapped and premapped netlists are shovwgures 4.3 and 4.4,
respectively; the netlists for these benchmarks are plasea) Kraftwerk [EJ98]. The
congestion maps for the premapped netlists for C7552 anddilfv characteristics
similar to those of the corresponding mapped netlists.
Representative results for some ISCAS’85 benchmarks antDi@ circuit employ-

ing different scripts, libraries, and placers are shownabl& 4.1, while similar results

on more extensive set of benchmarks are presented in tabkand 4.3. Columns

104

(b)

Figure 4.3: Horizontal congestion for C7552 for (a) the asganted mapped netlist

and (b) the premapped netlisicript.algebraids used for preprocessing the netlist and

Kraftwerk [EJ98] is employed for placement.

105

\A\\ l' ”I" ‘\
AN
e XD VA
n/{ﬁ%gg«\\,\m‘\

Ui
,\“{\\\\"}\ L |

I\

(@

N A ‘\‘A
oI

v

(b)
Figure 4.4: Vertical congestion for IDC for (a) the mappetlisteand (b) the premapped

netlist. script.booleanis used for preprocessing the netlist and Kraftwerk [EJS8] i

employed for placement.

106

2, 3, and 4 show the scripts used, the number of cells in theathpetlists, and place-
ment tools used, respectively. Technology mapping in SEa92] is performed using
the area and fanout optimization option, employing the.gealib library in SIS and
an industrial library. It is worth noting that the mappedlisétis fanout-optimized,
which possibly restructures the network after the mappimg) may affect the global
connectivity adversely. Columns 5 (6) and 7 (8) in the tahleixsthe average and max-
imum horizontal (vertical) congestion, respectively, lwhgolumns 9 and 10 show the
statistical correlation between the congestion in preradpgnd mapped netlist. The

correlation is defined a&lX—£)0" =)l ‘\where £ is the expectatiory, is the mean,

OX0y

o is the standard deviation; in our cas€,andY correspond to the congestion in the
premapped and mapped netlists, respectively. A correlaatue closerto 1 (-1) means
that two random variables are strongly positively (negdyiycorrelated, while a value

close to 0 means that variables are weakly correlated [DS01]

4.3.3 Justification Based on Experimental Results

In spite of fanout optimization that may affect the globahgectivity and hence con-
gestion fidelity, the congestion correlation between sutljeaph and mapped netlist is
always greater than 0.6 for all the netlists. One may decheotiowing based on these

experimental results.

e Across different libraries, scripts, benchmarks, fanautiroization, and place-
ment algorithms, a good correlation exists between the estiran map for the

subject graph and congestion map for a mapped netlist.

e The reasons for the congestion correlation are likely tohieesimilarities in the

107

global connectivity in the subject graph and the mappedstetihe similar block
area and I/O terminal constraints, and the way any reasermdatement algo-
rithms react to such resemblances in global connectivitythe block area con-

straints.

4.4 Congestion-aware Area-oriented Mapping

| Match

|_Match —Ouput

| Match

Figure 4.5: Mapping choices: (a) Sub-optimal area and tragkirement = 12. (b)

Area-optimal and track requirement = 20. (c) Area-optinmal &rack requirement = 15.

In this section, we focus on area optimization as an objedby technology map-
ping. For the purposes of congestion-aware mapping, threaslgaongested and densely
congested regions must be identified. From the experimanisei previous section,
which demonstrate the congestion correlation between jg&ulraph and its mapped
netlist, we can conclude that the former netlist is accuzataigh for this purpose. Since
the primary objective of our congestion-aware technologypper is area minimization,
we employ a variation of a widely used dynamic programmiagda technology map-
ping algorithm [Keu87]. The technology mapping proceduk@lves the matching and

covering phases: the former comprises storing the set ahapmatches at each node,

108

while the latter involves constructing the network by sefecfrom the matches stored

during the matching.

4.4.1 Example

A pure area/delay minimization objective during technglatapping can result in poor
congestion, and Figure 4.5 illustrates a case where subapthatches may reduce
congestion. Assume that all of the bins, shown as dashedesjuathe figure, are
congested and a match for the AOI33 function is considerdut ifiputs to the match
enter through top and bottom bins on the left, while the oulpaves from the middle
bin on the right. Figure 4.5(a) shows one possible matchaboing two three-input
NAND'’s, a two-input NAND, and an inverter, while Figure 49(and Figure 4.5(c)
show an alternative match, an AOI33, under two different@haents. To simplify
the computations, if we use the number of bin-boundary angssas the congestion
metric, instead of the probabilistic congestion metrigrtiihe cost for the match in
Figure 4.5(a) is 12, while that for the AOI33 matches in Feg#.5(b) and (c) are 20 and
15, respectively. The latter also happens to be the minimeenail placements for the
area-optimal AOI33 match. Itis clear that the match in Fegub(a) distributes the logic
and therefore, creates lower congestion. This examplehadgdights limitations of the
placement in alleviating congestion, when area-optimathes are chosen ignoring the
costs of wires associated with them.

The cost of wires depends on the context: wires are inexpemsisparsely con-
gested regions, but are expensive in densely congestazhsedue to possible detours
and hampered routability. One way to reduce this cost in elgnsongested zones

without penalizing the design excessively is to accountieir congestion contribu-

109

tions only in those zones. Our congestion-aware mappingdteuserves this purpose
well: in densely congested spots, it considers probaigilisutes based on the center-
of-gravity locations for all possible matches and chookeswatch that minimizes the

congestion, while in sparsely congested spots, it choasesaptimal matches.

4.4.2 Congestion Cost Computation

wl
w2 wl’
w2’ wé’
w3 — L w3
@ (b)

Figure 4.6: Computing the congestion cost of a match: (a) ¥amgle subject graph.

(b) One possible match.

The congestion-aware mapping heuristic requires the ms> of a congestion
cost, along with an area cost, to each match. The congegigirdepends on the total
congestion caused due to the nets subsumed by a match,iitsnfets and its fanout

nets. Specifically, it is given by,

C C
tnet_created — X COStnet_subsumed

(4.2)

¢ —
COSt Y aren, = 2 COS

where,cost;,,., is the congestion cost of the matehst$,, ...oiea (0SS, cibsumea) IS
the congestion cost of the nets created (subsumed) by trehmBor example, for a
3-input NAND match shown in Figure 4.6(b) correspondingi® subject graph shown

in Figure 4.6(a), the congestion cost is as follows:
COSt%andS = va + CwQ’ + ngl + Cwﬁf - (Cwl + Cw2 + Cw3 + Cw4 + CwS + @3))

110

The netsw1’, w2', w3', andw6’ correspond to the new location of the match and the
fanins and fanouts of the match; we compute the new locafi@naatch as the center
of gravity of the locations of its fanin and fanout gates. ¥Mtérminal nets are modeled
using cliques for the congestion computation, and congesbntribution of each edge

is scaled by a factor af/n, wheren is the number of edges.

7 ‘) ~ mm Congestior1.0, 2.0)
] . .~ I Congestiorj0.5,1.0)
wire—-—r"] ‘ ‘ - Congestior0.0, 0.5)
- D
T T T 1 I\UZ.T\GQ\

Figure 4.7: Context-dependent congestion cost for theswire

The congestion cost of a wire depends on the route and theestiog in the bins
that the route passes through. Probabilistically, all efritutes in the bounding box of
the net are assumed to be equally possifhi€EKS02]. If a congestion (say 0.4) in a bin
in the bounding box of the net is small as compared to thetlofdsongestion (say 1.0,
for instance), then the congestion contribution of thatfaethat bin is assumed to be 0.
This is because a small value of the congestion metric quoress to the availability of
numerous tracks, and the routability of the net through thesunaffected. However,

if the bin is congested, then the probabilistic congestiomtigbution of the net to that

1This assumption may not always be true. Typically, routersd minimize vias and therefore, for
two terminal nets only L and Z routes are considered. Sudrimition can be taken into account while
generating the congestion map.

111

bin must be considered as its routability is hampered. I cdsFigure 4.7 wire;
andwire, will have different congestion costs even though the skortautes in both
the cases may have the same length; the congestion cost trther will be zero,
while that of the latter will have a positive value as its bdung box contains congested
bins. The following equation captures this causality refabetween routability and

congestion while computing the congestion cost of anet’ .,

C Bin
COStnet - Z{BmeBoundingBox(net):C(Bm)>(1m,m} Cnet (44)

whereC'(Bin) is the congestion in a bii,,,.. is the threshold congestion, a6f" is
the congestion due to the specific net within the bin. It islgasen that this definition

filters out the contributions of uncongested bins from thegastion cost.

Terminal2 poute 1
0.5 | ___(?_.___1___.1___"_ 0.8 . Route z
| !

041099 12 09 ___ Route:
i ; !

07| 06 04 08 mowes
| : |

0§.-...95_7_ _0_5-6_ L _:0-8 ——.— Route ¢

- - — - Route ¢

Terminal 1

Figure 4.8: Computing the congestion cost of a wire prolpgttmally as in [LTKS02].

The bounding box for a two-terminal net is shown in Figure. 4l8contains 16
bins, and the congestion value associated with each biroisrsin the figure. For the
net connecting terminals 1 and 2, six possible L- and Z-sthapetes are shown for

the purpose of illustratich To compute the congestion cost, if the threshold value of

2In practice, we use probabilistic congestion estimatesahiasider river routes as well.

112

congestion (,,....) is set to 1.0, then we consider only the congested bins factwh
congestion value is greater than 1.0, i.e., bins for whielcthngestion metric is 1.1 and
1.2. Three routes (route 1, 4, and 5) pass through the binoeigestion 1.1, while two
routes (route 3 and 5) pass through the bin with congest@nAlssuming all the routes
to be equally possible, the demand (the ratio of number dfgpaéssing through the bin
to the total number of paths) for tracks in the latter bir%.isSimiIarIy, the demand for
tracks in the former bin i%. Using the definition 2.1, congestion contribution of the
net for these bins can be computed by dividing the demandsédogumber of available

tracks (Vr,qc1s). Employing Equation 3, the congestion cost of the net isgivy

1 2 3
T =+ = 4.5
0% ner NTrack:s 8 <6 * 6> ()

The congestion cost for a match can be calculated from thés afcident nets. A
positive cost implies that it may increase the congestigobe the threshold value in
some bins, while a negative cost implies that it may decrdaseongestion in some of

the bins where congestion exceeds the threshold value.

4.4.3 Algorithm for Congestion-aware Area-Oriented Mapping

Algorithm 4.4.1 shows the pseudo-code for choosing therbasth at a node during
the matching phase of the technology mapping. The trigletA4;, D;) associated with
a match); denotes the congestion cost, area cost, and delay cosiaesgowith the
match. The algorithm is called for every match at a node duitie matching phase to
decide the best one to be stored at the node. The congestbis given priority over
the area and delay only in congested regions, and areaalptiatches will be chosen

for the nodes in the sparsely congested regions, as statibe ligilowing proposition.

113

Algorithm 4.4.1 Select the best match considering the congestion
Input: Match M, (Cy, Ay, D) and matchViy (Cy, Ay, Do)

Output: The best match between thé, and M,

1: if (C] == CQ) then

2: if (A; < A)|[((A; == A2)&&(D; < Dy)) then
3: returnMy;

4: else

5: return M;

6: endif

7: end if

8: if (C; < () then

9: returnMy;

10: else

11: returnMs;

12: end if

Proposition 4.4.1 If bins in bounding boxes of all of the nets, correspondingito
of the matches at a node, have congestion values that ardesrttzn the threshold

congestion, then an area-optimal match will be stored astst match at that node.

Proof 4.4.1 This is a direct consequence from the fact that the congesbet for all
nets corresponding to all of the matches for such a caseadmen Equation (4.4), and

the pseudocode shows that under this scenario, the armaabptatch is always chosen.

Remark 4.4.1 The above result is important for congestion-aware mapsinge pre-

vious work in [PPS03] has shown that the traditional way ofisidering the cost,

114

(K, x Area+ K, x Wirelength) during technology mapping requires differealues
of K, in the different regions in the circuit as a single valugif fails to capture the
importance of congestion in different regions. Choosiniggls value ofK’; may corre-
spond to the case in which entire circuit is uniformly corigdwith a single congestion
value. In reality, the congestion in the circuit varies aombusly from O to 1, or is even
>1, while the routability changes in a discrete manner: ire@ds bin with congestion
value> 1, at least, some nets are detoured, or are unroutable, veitability of all
the nets is unaffected when the congestion for the binlis Assigning the congestion
cost to the nets in the congested bins accounts for thisadesoature of routability and
also allows the mapper to select area-optimal matches spiduesely congested regions.
Both of these purposes are critical and are served by ouritdgg while previous ap-

proaches [SK01, PPS02] have not addressed these.

4.5 Congestion-aware Delay-oriented Mapping

\ M3

i i
Delay Delay

Ruriver
Dinternal driver

»

Load ly l, Load

(@) (b)

Figure 4.9: (a) A load-based delay model for a typical stashdall, such as an inverter.

(b) A typical load-delay curve stored during matching.

115

The congestion-aware area-oriented mapping framewodepted in the previous
section can be extended to delay-oriented technology mgppihis typically employs
one of the following two classes of delay models: load- ongzased. In this section, we
focus only on delay-oriented mapping based on the formeeesan extension based on
the latter is similar. The load-based delay model is showkignre 4.9(a) for a typical
standard cell: it shows a straight line with the internabgiedf the gateD;,;crna, S an
intercept on delay axis, while the slope of the line indisadke effective driver resistance
3. Technology mapping targeting delays involves storing@iwise linear load-delay
curves{(ly, D), (I3, Dy), - - -}, during the matching phase, whérand D; denote load
and delay co-ordinates, respectively, of an end-point aéegpwise linear segment. At
each node, a set of matches that are delay-optimal for nddad ranges are stored on
these curves; one such curve is shown in Figure 4.9(b) widettifferent matches/ 1,
M2, and M3, whereM 1 is optimal for the load rang, /;], M2 for the rang€(/;, [»],
and) 3 for larger load values. During the covering phase, whend@ad known, delay-
optimal matches are chosen from the curves. SIS [Sen92&icendn implementation
of a delay-oriented mapper based on this scheme, but thedeiays that are ignored
in this mapper may lead to suboptimal results. To perforrayderiented mapping, it is
necessary to consider wire-delays; delay computationiderisg the effects of wires is

explained in the following subsection.

116

mED S
] gl

@ (b)

Figure 4.10: (a) Wire driven by a gate. (b) The correspondiagmodel.
4.5.1 Delay Computation Considering Wires

The delay computation involves accounting for wire-loadsaeell as wire-delays by
modeling the wires usind?C' = model as shown in Figure 4.10. In Figure 4.10(a),
gateg1 drives gatey2 through wirew; the correspondingC' model is shown in Fig-
ure 4.10(b). The delay from the inputs of the gatéo the input ofy, through the wire

shown the figure is given by the following equation
D =D, + D, (4.6)

whereD,, andD,, are the delays of the gate and the wirew, respectively. Employing

the EImore delay mod&[EIm48], the gate delay,; is given by
Dgl - Dmternal + Rdriver X <Cw + CgQ) (47)

whereD;,.;.... IS the internal delay of the gat&,,;.., is the effective resistance of the

gate,C,, is the capacitance of the wire, andC, is the input capacitance of the gate

3The delay of a cell also depends on the slope of the input ktgaasitions, which are considered
during precise timing analysis, but are often ignored indlay models at the technology mapping stage.

“More accurate delay models, such as asymptotic waveforinai@n (AWE) [PR90], can be em-
ployed while keeping the rest of the algorithmic framewanact.

117

go. Similarly, the wire delayD,, is given by

Dw:wa(%

5 + Cyo) (4.8)

whereR,, is the resistance of the wire.

In general, the resistance (and capacitance) of a wire is&ifn of the distance
and a choice of metal layers. Since the resistivity of theeuppetal layers is smaller
because of the higher width and thickness as compared ta lmetal layers, these
metal layers are used to route the long wires. For the shoeswiower metal layers
are utilized, since reliability and resistance of the viasig with subsequent congestion
does not justify the use of upper metal layers. The range dl@ngths and choice of
metal layers can be determined empirically for a given pget¢echnology and used to
compute wire delays during technology mapping. We empla/sbheme to account

for the wire-loads and delays during congestion-awareye@ieented mapping.

4.5.2 Congestion Cost Penalty Heuristic

To store congestion-aware choices during the matchinggpbatutions that increase the
congestion should be penalized. It can be achieved by congptlte congestion cost
of a match and adding the corresponding delay penalty wtokeng the match on the
load-delay curve. This heuristic is a natural extensiorotmestion-aware area-oriented
mapping presented in the section 4.4, where a match thatmazies the congestion is
stored as the best match for a given node. In case of delapted mapping, multiple
choices are stored on the load-delay curve, each choicg bpiimal for a certain load
range. The congestion cost for a match depends on the condisyy cost of fanin and

fanout nets, and nets that are subsumed by the match, ashyi\Egquation 4.2, which

118

is reproduced below for the sake of readability

— Y cost® (4.9)

cost$apen = 5 cost

‘net_created "net_subsumed

where, cost{;,,., is the congestion cost of the matelyst¢ (cost®

‘net_created ‘net_ subsumed)

is the congestion cost of the nets created (subsumed) by atehmTo penalize the
matches that cause congestion and to favor those that rédageenalty is added to the
delay due to a match before storing it on load-delay curves @énalty corresponding

to the congestion cost of a match is given by the followingeeigun
Dpenalty - D11)ire<COStCMatch X bindimension) (410)

where,bingimension represents either the width or the height of a bin, wiiilg,..(s)
denotes the delay of a wire of a lengthThe heuristic is explained using the following

example.

wl w4 wWH
(:D i {>Q 1 ?1)6 1/ Dy + D,y %
/ D +D / a
w2 2 w2 o
vt RSy
(c)

Figure 4.11: Delay computation for a match: (a) An examphget graph. (b) A match

of 3-input NAND. (c) Delay computation.

Consider an example of a match of 3-input NAND, which is sasiéha example
in Section 4.4.2, shown in Figure 4.11. It subsumes wirésw?2, w3, w4, wb, and
w6, as shown in Figure 4.11(a), while it creates wite, w2, w3’, andw6’, as shown

in Figure 4.11(b); we assume that the match is placed at thiercef gravity of its

119

fanins and fanouts, as in case of area-oriented mappingrd-&g11(c) shows the delay
computation, wherd®,;+ D, i = 1,2, 3, are arrival times, including the corresponding
wire delays, at the inputs of the match, whileare internal delays for the corresponding

pins. The delay of the match is given by the following equatio
D= ma,x(D1 + Dw]’ + d], D2 + Dw2’ + dg, D3 + Dwgl + dg) (411)

The congestion cost of the match, repeated from Equatignsigdsen by the following

equation
COStgfmd:; = Cwl’ + 011)2’ + 011)3’ + Cw(i’ - <Cwl + 011)2 + 011)3 + 011)4 + 011)5 —1'(4:"11@)

To make the match congestion-aware, delay penalty prapatitito the above cost is

added to the delay. Therefore, the delay of the match is neandiy
Dcongestionfaware - D + Dpenalty(COSt%andg X bindimension) (413)

It is obvious that matches with positive congestion costpamalized, while those with
the negative congestion cost are favored. Note that, irsspacongested regions no
delay penalty is added and therefore, delay-optimal matele still chosen in those

regions.

4.5.3 Algorithm for Congestion-aware Delay-oriented Mapjng
During the matching phase, all nodes are processed in tgigaloorder, and their
load-delay curves are computed. Algorithm 4.5.1 shows geig@o-code for compu-
tation of the load-delay curve. For each matehfrom the setM, the delay,D, is
computed considering the arrival times of the inplfs wire delaysD,,;, and internal

delay, d;, of the gate corresponding to the match. The congestionafdsie match,

120

Algorithm 4.5.1 Compute load-delay curve for a match
Input: n = A node,M = A set of matches at the node

Output: Load-delay curve fon

1: for m e M do

2. for i« 1,---,|inputs,,| do
3: D < max(D; + Dy,; + d;)
4: end for

5: Cost® < ComputeCongestionCostOfMateh)
6: D <« D+ WireDelay(CostS x bingimension)
7. UpdateLoadDelayCurve(m, D)

8: end for

CostC, is then computed considering the corresponding costsbsfsned and created
wires, and an appropriate penalty employing Equation & Xglded to the delay of the
match. The load-delay curve is then updated to store thehmiéttis optimal for some

range of loads. The covering phase proceeds in a traditroaaher to choose matches

that are optimal for given loads.

4.6 Complexity, Limitations, and Extensions to the Al-
gorithms

The time complexity of our congestion-aware technology piagalgorithms is almost
unchanged from that of a conventional technology mappitg. dongestion cost com-
putation of amatch tak&3(|Netsyiaten| X Npins), Where|Netsyaren| is the num-

ber of nets associated with a match a¥ig,,,, is the number of bins over entire layout;

121

NpginsiS a constant for a given layout, although it may be large agp@ved to other con-
stants subsumed k(). Therefore, congestion cost computation takesV et s qien|)
time, which is same as that of structural matching used imtagper [Sen92].

Since this technology mapping procedure is applied to thetsires after the ini-
tial subject graph generation and the decomposition of RAGD trees, the algorithm
does not have any control over high fanout nets, or over theutanets created due to
matches at the root®f the trees. The congestion due to these high fanout netsis ¢
trolled by the structure of initial network and fanout opization. The effectiveness of
the congestion-aware mapper proposed here is influencduelsctipts used for tech-
nology independent optimization, technology decompasjtand fanout optimization
after technology mapping.

Pre-routed blockages in the design can be incorporatedintgongestion cost by
reducing the appropriate number of tracks in the corresipgrins. Most placers are
adequate at handling blockages. Therefore, subject gragédsror mapped cells are not
placed in blocked areas. While long wires may require regpedhat are not visible in
the subject graph, observe that these buffers do not chlegmhgestion cost.

In the current implementation, we do not update the congestiap dynamically
during technology mapping. However, this update can bésthout during the covering
phase, thus allowing a more accurate selection of the bashraored at a node. In case
of area-oriented mapping, multiple congestion-awareagsmust be stored during the
matching phase in addition to the area-optimal one, in di@enable the selection of
a good congestion-aware solution with the updated coragestiap available during

covering.

5All of the nodes in the tree have a fanout of 1 but the root.

122

4.7 Experimental Results

1
S“bJeCt graph Cogl/[vaeprg:glgla H Placement H Routing

Subject graph
Congestion Congestion-aware)
Placement Map Generation Mapping Placement | = Routing
Floorplan
‘ ()

Figure 4.12: Design flows for (a) conventional and (b) cotigasaware mapping.

The probabilistic congestion estimation algorithm fromiS02] and the congestion-
aware technology mapper were implemented in C/C++ andpacated in SIS [Sen92].
The subject graphs were created by runrsngpt.ruggedollowed bytechdecomp -o
2 in SIS [Sen92]. For area-oriented technology mapping, vesent a set of experi-
mental results obtained using a force-directed quadrédivep, Kraftwerk [EJ98], and
a proprietary industrial maze router, while for delay-otedl mapping, we show re-
sults generated employing a recursive bipartitioninggi&apo [CKMO0O0] and a global
router [HS02]. The experimental flow used in our experimeatas shown in Fig-
ure 4.12. For congestion-aware mapping, a subject graphfirghreated. It was
placed using Kraftwerk for area-oriented mapping, whilgp&aas employed for the
placement in case of delay-oriented mapping. The congestap for the subject graph
was then generated and used in our congestion-aware m&ffgerarea-oriented tech-
nology mapping, the circuits were placed using Kraftwerlkofged by global routing
using a proprietary industrial router for area-orientegppiag. For delay-oriented map-

ping, Capo and a global router in [HS02] were employed, retspy, for placement

123

and routing. In all of our experiments, a bin-sizetdf x 4.8;m* was used. We present

the results due to area-oriented mapping followed by theedamdelay-oriented map-

ping.

4.7.1 Results due to Area-oriented Mapping

Table 4.4 shows the post-routing results obtained usingtaftwerk placer and propri-
etary maze router for conventionally mapped and congesiizare netlists. Technol-
ogy mapping is performed employing a proprietary indubtd library used in high-
performance microprocessor designs. Our experimentsagna@®Onm technology and
allow the router to use 4 metal lay&rsnetal 1 with no preferred direction, metals 2 and
4 for the horizontal direction, and metal 3 for the verticmkdtion. The entries of the
form ‘a / b’ in the Columns 3 through 7 mean ‘a’ (‘b’) correspsnto conventionally
(congestion-aware) mapped netlist. The block area shovoinmn 2 is used for both
of these netlists for the benchmarks shown in Column 1. Sineesame block area is
used for both the netlists, there is no area penalty. Colunds and 5 show the av-
erage row utilization, the total track overflow over all thasafter global routing, and
the number of bins with congestion more than 1.0, respdygtiwdhile Columns 6 and
7 show the maximum and average congestion, respectivalysrfall benchmarks such
as C1355, C432, and C880, a few number of bins are congesthd sonventionally
mapped netlists while none of the bins is congested in thgesiion-aware mapped
netlists. This shows that congestion problem for a smalllmemof bins can be easily

resolved by congestion-aware mapped netlist without aeg penalty. C499 and C1908

SWhile 90 nm and subsequent process generations have a langeen of metal layers, the upper
layers are usually reserved for global signals, clock andepdlistributions, leaving block synthesis to
operate in the lower layers [SMCKO03].

124

show zero routing track overflows, while other small benctks&iave only a few con-
gested bins, indicating that routing congestion is not gooirtant issue for designs up
to a few hundred cells. As the design size grows beyond a #malsells, routing con-
gestion starts becoming a critical problem, as indicatedhbyeased track overflows
for benchmarks such as IDC, C6288, and C7552. In these dagsespngestion-aware
mapped netlists have been able to reduce the track overflp\83%, 43%, and 29%
while the number of congested bins has decreased by 81%,8%925%, respectively.
Based on the increase in average congestion for all of thehnearks, accompanied by
a reduction in the number of congested bins and the numbeack overflows, we see
that congestion-aware mapping tends to map the logic sodisttdute the congestion
from densely congested regions to the sparsely congegjexhse The improvement in
congestion comes at the cost of an increase in gate-areeh whieflected in higher row

utilization in case of congestion-aware netlist for all Hechmarks.

4.7.2 Results due to Delay-oriented Mapping

Table 4.5 show post routing results for delay-oriented nrappbtained using recur-
sive bisectioning based placer Capo [CKMO0O0] and a globakemjiiS02]. Technology
mapping was performed employing lib2.genlib library in $8&n92]. Up to 4 differ-
ent strengths were added for each cell in the library, whielk then characterized for
130nm technology [ptm]. Column 1 in the table shows the beragk circuit, while
column 2 shows the block area. Columns 3, 4, 5, and 6 show grage row utilization
percentage, the circuit delay in ps, the maximum congesaiod the total overflow, re-
spectively. The entries of the form ‘a/ b’ in these columngenthe same meaning as

before. Congestion-aware netlists tend to have, on an geelarger gate-area, which

125

is reflected in overall 2% increase in average row utilizapercentage. The delays in
the congestion-aware netlists have remained almost ugekanom those in the corre-
sponding conventional netlists. This indicates that f@ri8 technology, interconnects
are not sufficiently resistive to dominate the gate delayllye margin, especially for
benchmarks up to few hundred cells. Track overflows haveoneat consistently for all
the benchmarks due to congestion-aware mapping; the avearggovement over con-
ventional mapping is 46%. This shows that our heuristic fieative in alleviating the
routing congestion without penalizing the delay valuesicWlare, in fact, improved in
most of the cases. The maximum congestion is improved irmaébut C880, in which
case, however, track overflows and delays have improved oVéell improvement in

maximum congestion has been 9%.

4.7.3 Wirelength and Detour Distributions

For large benchmarks, the wiring distributions obtainetgrafjlobal routing showed
significant improvements as a result of our congestion-awega-oriented technology
mapping flow. The improvement in the wiring distribution iesh exemplified by a
reduction in the incidence of detours on the routes, wherdefiae the detour of a route
as the difference between its actual length and the totaldizts minimum spanning
tree (MST).

Figure 4.13 shows plot of the number of nets vs. detour forbégrechmark IDC.
Similar wire distribution plots were obtained for other bemarks. In the figure, the
log-scale Y-axis shows the number of nets, while the X-ak®s the detour, inm,

for all the nets on a linear scale. The height of a brown (@)rphr in the figure rep-

"Because of the canonicity of MST’s, MST estimates are usemtopute the detours even though
they tend to be overestimates as compared to minimum Stestierates.

126

Number of nets vs. detour

1000

O Congestion-aware
| Conventional

100 i

Mumber of nets

Figure 4.13: Number of nets vs. detour lengtim(for the IDC circuit. The placement
of conventionally mapped netlist and that of premapped dsagemapped netlist, in

case of congestion-aware mapping, is performed using \Kealkt

resents the number of nets in the conventional (congesticare) netlist for a given
detour range. It can be observed that for shorter detouresnfie number of nets
in the congestion-aware netlist dominates their conveaticounterpart, while as the
detour length increases, the number of nets from the colraitnetlist dominates
that in congestion-aware netlist. Although the total numdfewires increases in the
congestion-aware case, most of this increase occurs dtwinerlengths, as seen from
the figure.

Figure 4.14 shows plot of net-length vs. detour length fothed nets in congestion-
aware and conventionally mapped netlist for IDC. In the fgtine symbols ‘+’ andx’

indicate the actual length, imm, of a net belonging to the corresponding detour range,

127

Net lengths vs. detour for conventional netlist

1000 T T T
5 : ST LI : 5
= X X
2 100 b § %E%éx]
= E xex X]
[%2] r J
2 [
g 10 g E
@ E
3]
“ 1
é | | | E
0 50 100 150 200
Detour length (micron)
Net lengths vs. detour for congestion-aware netlist
1000 T T T
E +
= ++ + oy
o I +t44 + 4+
S 100 Liiif i%%ﬁ“ * .
£ 3 ++1
£ 3 v
2 10 F _
@ E
3]
z 1
é | | | 1
0 50 100 150 200

Detour length (micron)
Figure 4.14: Scatter plots of net-lengths vs. detour lerfgth) for the IDC circuit.
In these plots, ‘X’ and ‘+’ denote a net in conventional anagestion-aware netlist,

respectively.

128

Net lengths vs. detour for conventional netlist

500 T T T

450 T
400 T
350 x .
300 T
250 T
200
150 | x % ¥

100 —é—?ﬁ% L I

0 50 100 150 200
Detour length (micron)

XX

XX

P8
XK X X

Net lengths (micron)
XX XX
X XK
X
X

K X

X XXX X

Net lengths vs. detour for congestion-aware netlist

500 T T T
~ 450 - -
5 "
5 400 .
£ 350 + -
2 300 F . i -
<3
s 250 % T+ + .
g 200 - T ++++ i |
=z + +

150 (af, Ft D ts . -

100 %i%% ii+i++]]

0 50 100 150 200
Detour length (micron)

Figure 4.15: Scatter plots of net-length vs. detour lengtidng (> 100 zm) nets in
the IDC circuit. In these plots, ‘X’ and ‘+’ denote a net in @entional and congestion-

aware netlist, respectively.

129

MNumber of nets vs. detour

1000

O Congestion-aware
| Comrentional

100 15

Number of nets

Figure 4.16: Number of nets vs. detour lengtim) for C7552: For congestion-aware
mapping, the placement of premapped netlist is carried suiguKraftwerk. An in-
house library for a 90nm technology is employed for congestiware as well as con-
ventional mapping. The mapped netlists are placed empadymaftwerk and routed

using proprietary router.

in um, specified on the X-axis, for the congestion-aware and extmnally mapped
netlist, respectively. In the figure, &’ corresponding to 23(:m on the Y-axis and
in the column for 70um on the X-axis implies that there is a net of length 230
whose detour length lies between 67.5 to 7215 in the conventional netlist. It can be
seen from the figure that the conventional netlist tends e h@nger detours than the
congestion-aware netlist, especially on its longer wifdge congestion-aware technol-
ogy mapping not only tends to reduce the length of the longsyibut also tends to route

them with smaller detours (hence, making them more prdaletarior to the routing).

130

MNumber of nets vs. detour

1000

O Congestion-aware
| Comrentional

100 15

Number of nets

Figure 4.17: Number of nets vs. detour lengtim) for C6288: For congestion-aware
mapping, the placement of premapped netlist is performargusraftwerk. An in-
house library for a 90nm technology is employed for congestiware as well as con-
ventional mapping. The mapped netlists are placed emmadymaftwerk and routed

using proprietary router.

Figure 4.15 shows the nets whose length is greater thamid0®ince these are the
nets that are usually responsible for the routing problésisand ‘ x’ have the same
meaning as in Figure 4.14. Congestion-aware mapping terésitice the length of the
longest wires, as is apparent from a larger populatiorxofa's compared to ‘+’ in the
figure. This is achieved by allowing the shorter wires to hshghtly longer detours
as compared to conventional mapping. However, since thdiqadility of the short
wires is usually not a problem, the increased detours of llogt svires do not impact

the design convergence adversely. Furthermore, the ieductthe detours of the wires

131

under congestion-aware mapping also improves the préidlicgaof their length, delay,
load, and repeater requirements prior to routing.

The wirelength distribution trends for large benchmark§%&2Zand C6288 are shown
in Figure 4.16 and 4.17, respectively. The heights of bronth purple bars in these
plots have the same meanings as before. The sets of congastave mapped netlists
are generated for these benchmarks using Kraftwerk forlteement of the premapped
netlists. Technology mapping, conventional as well as estign-aware, is performed
using a 90nm technology library used in high-performancgoprocessor designs. The
final placement of mapped netlists, conventional and cditgeaware, is carried out
employing Kraftwerk, while routing is performed using a prietary maze router. We
can see from Figure 4.16 and 4.17 that as detour length sesethe number of wires
in conventional netlist starts dominating the correspogdiumbers in the congestion-
aware netlist. The length of the longest wires in convemtioretlist is also large as
compared to that of the longest wire in congestion-awaréshethe number of nets in
congestion-aware netlist dominate their counterpartsiwentional netlists only for the
short detours. This is due to increase in the number shoeswitr case of congestion-
aware netlist. Thus, congestion-aware mapping has beenaishprove the wirelength
distribution by trading off the detours of long wires with alher wires. In these cases,
congestion-aware mapping has not only improved the totalength but the length of

the longest wire also.

4.7.4 Conclusions

The following conclusions may be drawn from the experimiemgsults.

1. The congestion-aware algorithms for area and delayvatiketechnology map-

132

ping show consistent improvements in track overflows ovaveational mapping
methods. The improvement is significant: 37% in case of areated mapping
and 46% in case of delay-oriented mapping. These resulisaitedthat technol-

ogy mapping is indeed effective in handling routing conigest

2. The consistency in the results also indicate that ouriies are effective. More
importantly, it also validates a point that there existsrargl congestion correla-
tion between premapped and mapped netlists and justifiessthef congestion

map prediction employing premapped netlists to guide thepmg process.

3. As compared to conventionally mapped netlists, congestivare netlists tend
to have better wirelength distribution: typically, the dgih of the longest wire is

shorter and the number of nets with long detours are smaller.

4.8 Summary

In this chapter, we have proposed technology mapping dhgos for alleviating the

routing congestion. These algorithms employ a predictivegestion map based on
the premapped netlists. Using empirical data, we have sliloatrthere exists a strong
correlation between the predictive congestion map basea mremapped netlist and
the congestion map of the corresponding mapped netlists @mipirical evidence is

utilized to justify the use of predictive congestion mapgudale the technology mapping
algorithms. These algorithms employ congestion cost fanstsuch that in sparsely
congested regions, area- or delay-optimal matches areyslel@gosen and hence, the
corresponding penalty is minimized. Experimental resuliss to these algorithms show

average improvements of 37% and 46% in track overflows, otispéy, for area and

133

delay-oriented mappings, over conventional methods walgmal gate area and delay
penalty. Moreover, congestion-aware netlists tend to batter wirelength distributions

as compared to their conventional counterparts.

134

Example | script/mapping | # Cells Placer congestion after/before mapping Correlation

Max. H Max. V Ave. H Ave. V H \Y

C432 rugged/area 257 Capo 1.27/1.45| 1.46/1.99| 0.41/0.47| 0.48/0.65| 0.91 | 0.90
C432 rugged/delay 328 Capo 1.17/1.45| 1.51/1.99| 0.39/0.47 | 0.46/0.65| 0.96 | 0.95
C432 algebraic/area 237 Capo 1.22/1.15| 1.38/1.6 | 0.37/0.35| 0.44/0.51| 0.97 | 0.96
C432 algebraic/delay| 279 Capo 1.06/1.15| 1.21/1.6 | 0.35/0.35| 0.40/0.51| 0.93 | 0.93
C432 boolean/area 375 Capo 1.04/1.55| 1.42/1.68| 0.43/0.45| 0.51/0.67 | 0.95 | 0.94
C432 boolean/delay 501 Capo 1.47/1.41| 1.46/1.51| 0.54/0.50| 0.63/0.70| 0.93 | 0.93
C432 speedup/area 265 Capo 1.08/1.22| 1.25/1.5 | 0.34/0.41| 0.40/0.55| 0.92 | 0.91
C432 speedup/delay| 314 Capo 1.03/1.29| 1.27/1.81| 0.37/0.52| 0.44/0.67 | 0.93 | 0.94

C6288 rugged/area 2311 Capo 1.73/1.34| 1.88/2.00| 0.69/0.57| 0.81/0.82| 0.85 | 0.86

C6288 rugged/delay 2383 Capo 1.45/1.34| 1.75/2.00| 0.61/0.57| 0.71/0.82| 0.86 | 0.87

C6288 algebraic/area| 2275 Capo 1.37/1.79| 1.55/2.20| 0.50/0.73| 0.60/0.98 | 0.76 | 0.78

C6288 | algebraic/delay| 2620 Capo 1.38/1.05| 1.59/1.31| 0.48/0.52| 0.58/0.73| 0.83 | 0.79

C6288 boolean/area | 2329 Capo 0.89/0.85| 1.05/1.32| 0.40/0.40| 0.48/0.66| 0.75 | 0.71

C6288 boolean/delay | 2605 Capo 1.38/1.23| 1.53/1.72| 0.47/0.48| 0.56/0.70| 0.79 | 0.79

C6288 speedup/area| 4182 Capo 1.11/1.10| 1.34/1.39| 0.41/0.48| 0.51/0.66| 0.78 | 0.81

C6288 speedup/delay| 4395 Capo 1.19/1.20| 1.47/1.58| 0.48/0.51| 0.58/0.63 | 0.86 | 0.82

C7552 algebraic/area| 1521 | Kraftwerk | 2.60/2.70| 2.70/2.40| 0.61/0.71| 0.66/0.71| 0.81 | 0.76

C7552 rugged/area 2060 | Kraftwerk | 2.04/2.05| 2.27/2.26| 0.65/0.69| 0.71/0.79| 0.64 | 0.68

C7552 boolean/area | 1582 | Kraftwerk | 2.23/2.50| 2.50/2.00| 0.61/0.74| 0.66/0.71| 0.82 | 0.83

C7552 espresso/area| 1457 | Kraftwerk | 1.68/2.10| 1.85/2.20| 0.64/0.69 | 0.69/0.79| 0.73 | 0.65

C6288 algebraic/area| 2528 | Kraftwerk | 1.60/1.48| 1.05/1.35| 0.52/0.61| 0.58/0.64 | 0.77 | 0.76

C6288 rugged/area 2391 | Kraftwerk | 1.50/2.00| 2.00/2.00| 0.53/0.62| 0.58/0.63 | 0.63 | 0.62

C6288 boolean/area 2583 | Kraftwerk | 1.49/1.79| 1.61/1.82| 0.47/0.54| 0.53/0.57| 0.64 | 0.70

C6288 espresso/area| 2549 | Kraftwerk | 1.76/1.79| 2.06/2.09 | 0.52/0.62 | 0.59/0.66 | 0.61 | 0.64

IDC rugged/area 972 Kraftwerk | 1.25/1.30| 1.13/1.47| 0.65/0.60| 0.60/0.65| 0.67 | 0.68

IDC algebraic/area| 800 Kraftwerk | 2.09/1.67 | 2.06/1.80| 0.50/0.47| 0.53/0.45| 0.70 | 0.61

IDC boolean/area 1622 | Kraftwerk | 1.75/1.78| 1.52/1.23| 0.57/0.59| 0.64/0.65| 0.67 | 0.66

IDC espresso/area| 2233 | Kraftwerk | 1.89/1.93| 2.17/2.24| 0.51/0.55| 0.56/0.55| 0.75 | 0.74

Table 4.1: Congestion comparison for the netlists befoceadier technology mapping.
Max. (Ave.) corresponds to maximum (average), while H (Mresponds to horizontal

(vertical).

135

Example | script/mapping | # Cells | Placer congestion after/before mapping Correlation
Max. H Max. V Ave. H Ave. V H \Y
9sym rugged/area 314 Capo | 1.40/1.28| 1.68/1.29| 0.29/0.32| 0.32/0.34| 0.79 | 0.82
9sym rugged/delay 422 Capo | 1.20/1.46| 1.30/1.50| 0.32/0.34| 0.33/0.36| 0.84 | 0.87
9sym algebraic/area| 283 Capo | 1.05/1.02| 0.99/.92 | 0.24/0.23| 0.25/0.21| 0.83 | 0.88
9sym algebraic/delay| 341 Capo | 1.31/1.12| 1.16/1.02| 0.25/0.21| 0.26/0.19| 0.81 | 0.84
9sym boolean/area 284 Capo | 1.23/1.12| 1.59/1.16| 0.27/0.24| 0.29/0.27| 0.83 | 0.88
9sym boolean/delay 397 Capo | 1.46/1.16| 1.62/1.30| 0.31/0.29| 0.29/0.29| 0.78 | 0.80
rdg84 rugged/area 406 Capo | 1.23/1.14| 1.11/1.07| 0.29/0.26 | 0.31/0.25| 0.76 | 0.82
rdg84 rugged/delay 459 Capo | 1.23/1.11| 1.39/1.21| 0.29/0.23| 0.31/0.22| 0.81 | 0.84
rdg84 algebraic/area 672 Capo | 1.39/1.19| 1.46/1.25| 0.38/0.28 | 0.41/0.37| 0.79 | 0.86
rdg84 algebraic/delay| 680 Capo | 1.62/1.51| 1.81/1.59| 0.45/0.40| 0.41/0.41| 0.79 | 0.78
rdg84 boolean/area 559 Capo | 1.36/1.27| 1.38/1.28| 0.37/0.36| 0.40/0.35| 0.81 | 0.81
rdg84 boolean/delay 629 Capo | 1.14/1.07| 1.51/1.28| 0.35/0.26| 0.32/0.26| 0.75 | 0.73
alu2 rugged/area 353 Capo | 1.09/1.05| 1.27/1.17| 0.29/0.30| 0.31/0.38| 0.78 | 0.84
alu2 rugged/delay 454 Capo | 1.32/1.11| 1.34/1.28| 0.32/0.34| 0.34/0.35| 0.76 | 0.75
alu2 algebraic/area| 405 Capo | 1.17/1.02| 1.18/1.10| 0.30/0.26 | 0.33/0.34| 0.83 | 0.89
alu2 algebraic/delay| 441 Capo | 1.24/1.11| 1.54/1.34| 0.34/0.34| 0.32/0.33| 0.76 | 0.79
alu2 boolean/area 457 Capo | 1.39/1.29| 1.23/1.16| 0.30/0.26 | 0.33/0.34| 0.68 | 0.70
alu2 boolean/delay 579 Capo | 1.43/1.33| 1.49/1.41| 0.32/0.32| 0.34/0.31| 0.71 | 0.67
C1355 rugged/area 356 Capo | 1.23/1.32| 1.58/1.39| 0.50/0.37| 0.55/0.38| 0.82 | 0.86
C1355 rugged/delay 422 Capo | 2.24/2.06| 2.24/2.26| 0.51/0.49| 0.55/0.46| 0.70 | 0.72
C1355 algebraic/area 602 Capo | 1.49/1.28| 1.70/1.32| 0.42/0.37| 0.45/0.36| 0.76 | 0.78
C1355 | algebraic/delay| 638 Capo | 1.32/1.03| 1.23/1.21| 0.46/0.41| 0.48/0.41| 0.79 | 0.85
C1355 boolean/area 601 Capo | 1.04/1.21| 1.09/1.00| 0.40/0.36| 0.44/0.37| 0.76 | 0.74
C1355 boolean/delay 654 Capo | 1.32/1.21| 1.47/1.16| 0.47/0.40| 0.50/0.46| 0.74 | 0.83

Table 4.2: Congestion comparison for the netlists befoceadter technology mapping.
Max. (Ave.) corresponds to maximum (average), while H (Viresponds to hori-
zontal (vertical). For netlists of circuits from ISCAS’85I&MCNC benchmark suite,
obtained using different scripts and mapping options,tdite shows congestion corre-

lation between mapped and corresponding premapped se8istilar results are shown

in Table 4.3 for different benchmarks.

136

Example | script/mapping | # Cells | Placer congestion after/before mapping Correlation

Max. H Max. V Ave. H Ave. V H \%

C1908 rugged/area 386 Capo | 0.98/1.10| 1.10/1.33| 0.37/41 0.43/43 | 0.83 | 0.84

C1908 rugged/delay 479 Capo | 1.57/1.46| 1.27/1.68| 0.35/46 0.32/46 | 0.79 | 0.80

C1908 algebraic/area| 342 Capo | 1.25/1.15| 1.55/1.30| 0.42/0.40| 0.45/0.41| 0.88 | 0.90

C1908 | algebraic/delay| 580 Capo | 1.57/1.08| 1.48/1.16| 0.47/0.42| 0.51/0.46| 0.81 | 0.82

C1908 boolean/area 569 Capo | 1.54/1.37| 2.03/1.55| 0.45/0.39| 0.49/0.39| 0.82 | 0.84

C1908 boolean/delay 620 Capo | 1.46/1.62| 1.81/1.75| 0.50/0.49 | 0.53/0.49| 0.82 | 0.82

C499 rugged/area 391 Capo | 1.28/1.28| 1.26/1.60| 0.43/0.40| 0.46/0.42| 0.80 | 0.78

C499 rugged/delay 402 Capo | 1.70/1.50| 1.92/1.51| 0.51/0.49| 0.54/0.50| 0.63 | 0.64

C499 algebraic/area| 593 Capo | 1.01/1.15| 1.13/1.24| 0.40/0.31| 0.42/0.33| 0.74 | 0.82

C499 algebraic/delay| 641 Capo | 1.29/1.26| 1.26/1.30| 0.43/0.36| 0.45/0.36| 0.76 | 0.79

C499 boolean/area 611 Capo | 1.09/1.21| 1.20/1.22| 0.35/0.33| 0.37/0.33| 0.77 | 0.77

C499 boolean/delay 642 Capo | 1.75/1.62| 1.26/1.30| 0.42/0.36 | 0.44/0.36| 0.69 | 0.69

C880 rugged/area 328 Capo | 1.42/1.27| 1.57/1.38| 0.59/0.45| 0.66/0.46| 0.85 | 0.85

C880 rugged/delay 557 Capo | 1.98/1.77| 1.87/1.59| 0.51/0.48 | 0.48/0.48| 0.68 | 0.66

C880 algebraic/area| 409 Capo | 1.37/1.25| 1.38/1.54| 0.48/0.43| 0.51/0.43| 0.82 | 0.85

C880 algebraic/delay| 410 Capo | 1.49/1.13| 2.03/1.65| 0.43/0.37| 0.51/0.48| 0.81 | 0.82

C880 boolean/area 448 Capo | 1.83/1.66| 1.39/1.44| 0.41/0.34| 0.43/0.35| 0.79 | 0.74

C880 boolean/delay 597 Capo | 1.46/1.34| 1.67/1.35| 0.51/0.48 | 0.55/0.49| 0.72 | 0.72

C7552 rugged/area 1930 Capo | 1.84/1.39| 1.48/1.41| 0.55/0.39| 0.50/0.37| 0.66 | 0.64

C7552 rugged/delay 2688 Capo | 1.61/1.42| 1.31/1.36| 0.46/0.47 | 0.48/0.50| 0.63 | 0.66

C7552 algebraic/area| 2378 Capo | 2.03/2.17| 2.14/2.32| 0.76/0.68 | 0.74/0.71| 0.77 | 0.78

C7552 | algebraic/delay| 2279 Capo | 2.73/2.58| 2.51/2.26| 0.80/0.82| 0.79/0.77| 0.68 | 0.68

C7552 boolean/area | 2321 Capo | 2.48/2.17| 2.98/2.32| 0.81/0.82| 0.86/0.77| 0.71 | 0.70

C7552 boolean/delay | 2735 Capo | 2.59/2.48| 2.67/2.49| 0.86/0.83 | 0.78/0.74| 0.64 | 0.65

Table 4.3: Congestion comparison for the netlists befoceadter technology mapping.
Max. (Ave.) corresponds to maximum (average), while H (Myesponds to horizontal
(vertical). For netlists of circuits from ISCAS’85 suitehtained using different scripts
and mapping options, this table shows congestion corogldtetween mapped and cor-

responding premapped netlists.

137

Circuit | Area | Row utilization | Overflow | Congested binsg Congestion
pm? % # Maximum | Average

C1355 | 2380 68/79 2/0 1/0 1.3/0.9 | 0.35/0.43
C1908 | 2457 68/78 0/0 0/0 0.8/0.9 | 0.34/0.40
C432 1728 66 /69 1/0 1/0 1.1/0.9 | 0.35/0.37
C499 2618 64/73 0/0 0/0 0.9/1.0 | 0.34/0.40
C6288 | 16920 61/68 32/18 20/7 1.3/1.3 | 0.49/0.52
C7552 | 17633 61/67 655/461 258/193 1.3/1.3 | 0.65/0.69
C880 | 2534 71/82 4/1 2/1 1.3/1.2 | 0.42/0.48
IDC 6919 63/70 83/10 32/6 1.3/1.2 | 0.53/0.60
Average 65/73 97/61 39/25 1.16/1.08| 0.43/0.48

Table 4.4: Comparison of conventional area-oriented nrgppiith congestion-aware

area-oriented mapping. Placement and routing is performsedy an in-house force-

directed placer and a proprietary router, respectivelyaf@0nm technology.

138

Example Area | Row utilization Delay Maximum congestior] Overflow
12 % ps
C1355 6237 80/83 1061/1135 1.60/1.30 39/18
C1908 7568 80/80 1388/1440 1.40/1.20 18/2
C432 2912 90/94 1222171180 1.20/1.10 5/1
C499 6318 80/79 1040/1040 1.40/1.40 14/12
C6288 44099 80/80 7305/7078 1.50/1.20 16/8
C7552 47520 75177 1755/1750 1.64/1.42 83/74
C880 9504 80/76 1276/1270 1.20/1.30 715
Avg. Improvement 2 0.42 -9 -46

Table 4.5: Comparison of conventional delay-oriented nrappnd congestion-aware
delay-oriented mapping. Placement and routing is perfdremploying a publicly

available placer Capo [CKMO0OQ] and a router [HS02], respetyi for 130nm technol-

ogy [ptm].

139

Chapter 5

Conclusions

In this thesis, we have proposed synthesis solutions tetatthe prominent challenges
in hanometer technologies, namely, power density anddoterect dominance. For
the former, synthesis and layout generation algorithmddar power pass transistor
logic (PTL) are presented, while for the latter, congesa@rare technology mapping
methods are proposed.

For performance-driven PTL synthesis, our recursive higpaming algorithm can
result in a logarithmic depth implementation, while nonetloé previous synthesis
heuristics guarantee such a lower bound on the depth of Pplementation. By us-
ing max-flow min-cut formulation, we also ensure minimumaapenalty, up to the
accuracy in estimation, and the method can further be egtetalconsider other cost
functions, such as power. A similar bipartitioning techreqgs presented to minimize
the total power dissipation in pipelined combinationalitggvhen a low power PTL
implementation is sought. As is well known, no logic styl@ipanacea and PTL is no

exception. Our results on performance-driven PTL synthesnfirm that PTL results

140

in a significant improvement, up to 30% in area as well as daelagr static CMOS
for xor-intensive circuits, such as those that implement muéiglior error correcting
codes. In these cases, even under a naive uniform transigitog scheme, PTL outper-
forms static CMOS implementation with a more sophisticatiethg optimization. For
circuits that arenandintensive, static CMOS may result in better implementatitan
PTL. In such a scenario, static CMOS/PTL mixed synthesisvigble approach. For
that approach, our synthesis algorithms may still be udefugfficiently implementing
the PTL part of the circuitry.

For layout generation of PTL circuits, we have proposed ahotethat translates
binary decision diagrams (BDD’s) into a transistor-levielged circuit that minimizes
the area by diffusion-sharing, linear tree placement ofdistor clusters and greedy row
assignment of the BDD nodes. One of the advantages of thisithlon is that it is not
tied to any particular PTL library, and it exploits the natiof librarylessness to form
multiplexer clusters that are amenable to layout. Aparmnftbeir utility for pure PTL
implementations, layouts generated by our algorithm caodeel as PTL macro cells
in the context of static CMOS/PTL synthesis, since theseugs/can fit into a standard
cell methodology.

For the routing congestion problem for static CMOS cirguwits present congestion-
aware technology mapping methods. These methods are goydegredictive proba-
bilistic congestion map, unlike previous approaches #lgtan indirect metrics such as
wirelength. Using extensive experiments employing défétbenchmarks, libraries, and
scripts, we have shown that there exists a correlation egtlee congestion maps of a
pre-mapped netlist and a corresponding mapped netlistcdinelation is exploited to

overcome the “chicken and egg” problem between the mappidgéacement stages.

141

The matching phase in technology mapping uses these pvedatingestion-maps to
store congestion-aware choices. It employs a cost fundhiah selects congestion-
optimal matches in densely congested regions, while pgngithe choice of area- or
delay-optimal matches in sparsely congested regions. I@impproaches, based on
this matching phase, have been applied for area and delayted technology mapping
algorithms. For area-oriented technology mapping, theexgental results using an
industrial circuit and publicly available ISCAS’85 bencark circuits, proprietary plac-
ers and routers, and a cell library in high-performance opiwcessor design in 90nm
technology show, on an average, 37% improvement in routighiieasured in terms of
track overflows, at the cost of marginal gate area increase rdsults for delay-oriented

mapping show 46% improvement in routability for approxietgtunchanged delays.

5.1 Future Directions

The cost effectiveness of PTL should be exploited for thdé@mentation okor-intensive
functions, such as circuits for error correcting codes arithraetic circuits. ASIC
designers have realized this, and the use of PTL cells inibmaries has been on
rise [BHSAO03]. However, current approaches are ad-hoc, agarithms for mixed
static CMOS and PTL, which use the best of both the logic stydee required. PTL
synthesis algorithms presented in this thesis may be eraglmside the inner loop of
those algorithms to yield, at least locally, optimum PTL lerpentation. The layout
generation method for PTL presented in this thesis may aésaded to guide these
algorithms, since it can provide accurate, up to the placeesel, area and delay es-

timates for PTL choices. The layouts may also be generatamratically for these

142

mixed circuits, since layouts for standard cells are ab&land those for PTL can be
generated using our algorithm.

There is scope for improvement in case of congestion-awapping algorithms: in
the current variants, the matching phase is congestiomeawiile the covering phase
uses a conventional method and does not try to reduce theestoig actively. In the
covering phase, wire planning for non-critical nets may bgleyed for congestion
alleviation. For interconnect-aware technology indegendogic synthesis, our result
on congestion correlation is useful, since it will allow attemsion of the probabilistic
metric to even higher level of abstraction. Logic synthésiasforms, such asollapse
that remove a node from the fanin, may then be made congestiare; a collection
of such congestion-aware transforms may lead eventuallydgnthesis package that
is interconnect-aware. Such a synthesis system is desiseitiferconnect dominance
increases with the technology scaling, since today’s gsithalgorithms that minimize
interconnect-unaware metrics such as literals and levielsgic are inadequate and
may, in fact, lead to design points that do not satisfy tingogstraints and are difficult
to route.

Another sub-100nm technology effect related to intercatses that of repeaters.
Traditionally, repeaters have been ignored during syighesd considered only dur-
ing post routing optimizations to speed-up the intercotsetn technologies beyond
100 nm, where interconnect delays dominate, ignoring tea and power cost of re-
peaters during logic synthesis will inherently lead to sytimal netlists requiring de-
sign iterations. As technology progresses, the powerhssil by global interconnects
also increases, even with copper interconnects [KCS02]Js iBhbecause, the resis-

tivity of copper interconnect increases due to surfacetexgat) effect and copper bar-

143

rier effect, even with the barrier deposition techniqué&e IAtomic Layer Deposition
(ALD) [KCSO02], which is one of the most effective technigues lowering the re-
sistivity. To overcome this, wider wires and/or repeateesraquired to speed-up the
interconnects as the technology progresses, which resatsincreased power dissipa-
tion. It is estimated that at the 50 nm node, for a typical opecocessor chip, the power
dissipation due to buffers for copper interconnects willa@eW [KCS02], while the
entire chip will dissipate about 170 W. In such a scenariodpcing a netlist that mini-
mizes the number of buffers required in a synthesizablekakequivalent to, a certain
extent, minimizing power dissipation. Interconnects (ardce, repeaters) are strongly
affected by the logic synthesis optimizations, but loginteesis tools still rely on the
traditional metrics such as gate area, fanout load, etcdamobt consider interconnects
and repeaters [SMCKO03]. Logic synthesis transformatidfecawires, and hence, re-
peaters. For instance, teéminatetransform [Sen92] that removes a node with a value
that is less than certain threshold from the network is eaeit to eliminating a wire;
the value is measured in terms of literal gains, and intereondelay and overheads due
to repeaters are ignored. Making such transforms awareeddfthcts that they produce
will lead to synthesis algorithms that are interconnects@nand are able to cope up

with nanometer technology challenges.

144

[AMD +94]

[Ash57]

[BFO8]

[BHSAO3]

[BNNSV97]

[Bor0O0]

BIBLIOGRAPHY

M. Alidina, J. Monteiro, S. Devadas, A. Ghosh, and M. Rdfgymiou.
Precomputation-Based Sequential Logic Optimization fmwlPower. In
Proceedings of the IEEE/ACM International Conference om@oter-

Aided Designpages 74-81, November 1994.

R. L. Ashenhurst. The decomposition of switchingdtions. InProceed-
ings of the International Symposium of Theory of Switchirmyume 1,

pages 74-116, April 1957.

J. L. Burns and J. A. Feldman. C5M-A control-logic day synthe-
sis system for high-performance microprocesstiE&E Transactions on
Computer-Aided Design of Integrated circuits and Systdmgl):14—23,

January 1998.

C. Bittlestone, A. Hill, V. Singhal, and N. V. Arvth Architecting ASIC
libraries and flows in nanometer era. Broceedings of the ACM/IEEE

Design Automation Conferengeages 776—781, June 2003.

P. Buch, A. Narayan, A. R. Newton, and A. Sangiavavincentelli.
Logic synthesis for large pass transistor circuits. Phoceedings of the
IEEE/ACM International Conference on Computer-Aided Despages

663—670, November 1997.

S. Borkar. Obeying Moore’s law beyond 0.18 micron.Proceedings of
the IEEE International ASIC/SOC Conferenpages 26—-31, September
2000.

145

[CK90]

[CKOO]

[CKMOOQ]

[CLABOS]

[CLR98]

[CP92]

[CS00]

P. K. Chan and K. Karplus. Computing signal delay imgel RC net-
works by tree/link partitioning.IEEE Transactions on Computer-Aided

Design of Integrated circuits and Systera€3):898—902, June 1990.

D. G. Chinnery and K. Keutzer. Closing the gap betwa&iC and Cus-
tom: An ASIC perspective. IProceedings of the ACM/IEEE Design

Automation Conferen¢c@ages 637—-642, June 2000.

A. E. Caldwell, A. B. Kahng, and I. L. Markov. Can remive bisection
alone produce routable placements? Phoceedings of the ACM/IEEE

Design Automation Conferengeages 477-482, June 2000.

R. Chaudhry, T. Liu, A. Aziz, and J. Burns. Area arted synthesis for
pass transistor logic. IRroceedings of IEEE International Conference on

Computer Designpages 160-167, October 1998.

T. H. Cormen, C. E. Leiserson, and R. L. Rivestiroduction to Algo-

rithms Prentice-Hall India, New Delhi, India, 1998.

K. Chaudhary and M. Pedram. A near optimal algoritomtéchnology
mapping minimizing area under delay constraintsPtaceedings of the

ACM/IEEE Design Automation Conferengages 492—-498, June 1992.

P. Christie and D. Stroobandt. The interpretatiod application of
Rent’s rule. IEEE Transactions on Very Large Scale Integrated Systems

8(6):639-648, December 2000.

146

[CWIT7] J. F. Croix and D. F. Wong. A fast and accurate techaitguoptimize char-
acterization tables for logic synthesis. Pnoceedings of the ACM/IEEE

Design Automation Conferengeages 337—340, June 1997.

[DDT78] M. Davio, J-P. Deschamps, and A. ThayBescrete and Switching Func-

tions McGraw-Hill, Berkshire, UK, 1978.

[DS01] M. H. DeGroot and M. J. SchervisProbability and StatisticsAddison

Wesley, Boston, MA, 3rd edition, 2001.

[DY96] M. P. Desai and Y. T. Yen. A systematic technique forifygng critical
path delays in a 300 MHz Alpha CPU design using circuit sirmoia
In Proceedings of the ACM/IEEE Design Automation Conferepages

125-130, June 1996.

[EJ98] H. Eisenmann and F. M. Johannes. Generic global plextand floor-
planning. InProceedings of the ACM/IEEE Design Automation Confer-

ence pages 269-274, June 1998.

[EImA48] W. C. Elmore. The transient response of damped fimetworks with
particular regard to wideband amplifierslournal of Applied Physics

19(2):55—-63, January 1948.

[FMM*98] F. Ferrandi, A. Macii, E. Macii, M. Poncino, R. ScarsidaR Somenzi.
Symbolic algorithms for layout oriented synthesis of paasgistor logic
circuits. InProceedings of the IEEE/ACM International Conference on

Computer-Aided Desigmpages 235-241, November 1998.

147

[GKSVO01]

[GNBSV98]

[GRO1]

[HS02]

[ITN+00]

[ITRO1a]

W. Gosti, S. R. Khatri, and A. L. Sangiovanni-Vimtelli. Addressing
timing closure problem by integrating logic optimizatiomdaplacement.
In Proceedings of the IEEE/ACM International Conference om@oter-

Aided Designpages 224-231, November 2001.

W. Gosti, A. Narayan, R. K. Brayton, and A. L. Saonanni-Vincentelli.
Wireplanning in logic synthesis. IRroceedings of the IEEE/ACM Inter-
national Conference on Computer-Aided Desigages 26—33, November

1998.

P. Gopalakrishnan and R. Rutenbar. Direct translsteel layout for digi-
tal blocks. InProceedings of the IEEE/ACM International Conference on

Computer-Aided Desigpages 577-584, November 2001.

J. Hu and S. Sapatnekar. A timing-constrained siamaldus global rout-
ing algorithm. IEEE Transactions on Computer-Aided Design of Inte-

grated circuits and System®1(9):1025-1036, September 2002.

T. Inukai, M. Takamiya, K. Nose, H. Kawaguchi, T. Hiraraptand
T. Sakurai. Boosted gate mos (BGMOS): Device/circuit coapen
scheme to achieve leakage-free giga-scale integratioRrdceedings of
the IEEE Custom Integrated Circuits Conferenpages 409-412, May
2000.

International technology roadmap for semicorides; 2001 edition: De-
sign. http://public.itrs.net/Files/2001ITRS/Design.
pdf , 2001.

148

[ITRO1b]

[JSB9g]

[KCS02]

[Keu87]

[KSD02]

[LAB9O]

[LKTDO1]

International technology roadmap for semicortdug, 2001 edition:
Interconnect. http://public.itrs.net/Files/2001ITRS/

Interconnect.pdf , 2001.

Y. Jiang, S. S. Sapatnekar, and C. Bamiji. A fast dlghte collapsing
technique for high performance designs using static CMQfoass tran-
sistor logic. InProceedings of the IEEE International Conference on Com-

puter Designpages 276—281, October 1998.

P. Kapur, G. Chandra, and K. C. Saraswat. Power atmin global
interconnects and its reduction using a novel repeatertioeemethod-
ology. InProceedings of the ACM/IEEE Design Automation Conference

pages 461-466, June 2002.

K. Keutzer. DAGON: Technology Binding and Local @pization by
DAG Matching. InProceedings of the ACM/IEEE Design Automation

Conferencepages 341-347, June 1987.

P. Kudva, A. Sullivan, and W. Dougherty. Metrics fstructural logic
synthesis. IrProceedings of the IEEE/ACM International Conference on

Computer-Aided Desigpages 551-556, November 2002.

T. Liu, A. Aziz, and J. Burns. Performance driven $iyesis for pass tran-
sistor logic. InProceedings of the VLSI Design Conferengages 372—

377, January 1999.

P. Lindgren, M. Kerttu, M. Thornton, and R. Drecksl Low Power Op-

timization Techngiue for BDD Mapped Circuits. FProceedings of the

149

[LPP96]

[LR71]

[LTKS02]

[MBISO1]

[MBMO1]

[M0065]

Asia South Pacific Design Automation Conferenuages 615-621, Jan-
uary 2001.

Y-T. Lai, K-R. R. Pan, and M. Pedram. OBDD-based fiorcdecompo-
sition: algorithms and implementatiolEEE Transactions on Computer-
Aided Design of Integrated circuits and Systety8):977-990, August
1996.

B. S. Landman and R. L. Russo. On a pin versus blockioglship for
partitions of logic graphslEEE Transactions on ComputeiS-20:1469—
1479, 1971.

J. Lou, S. Thakur, S. Krishnamoorthy, and H. S. Shdgstimating routing
congestion using probabilistic analysiEEE Transactions on Computer-
Aided Design of Integrated circuits and Syster@$(1):32—-41, January
2002.

M. Munteanu, I. Bogdan, P. Ivey, and L. Seed. Sirgheled pass tran-
sistor loic (SPL) - A design handbookttp://www.shef.ac.uk/

eee/esg/lowpower/pdf-papers/d4.5.pdf , 2001.

L. Macchiarulo, L. Benini, and E. Macii. On-the-flyayout generation
for PTL macrocells. InProceedings of Design Automation and Test in

Europe pages 546-551, March 2001.

G. E. Moore. Cramming more components onto integtatircuits. In

Electronics Magazinevolume 38, pages 114-117, April 1965.

150

[Mos]

[NDH98]

[Ous]

[Ous85]

[PPS02]

[PPSO03]

MOSIS Parametric Test Results for TSMQ.25; CMOS Runs.
http://www.mosis.org/cgi-bin/cgiwrap/umosis/swp/aaus/ tsmc-

025/t04r-params.txt.

N. Nassif, M. P. Desai, and D. H. Hall. Robust elmoetay models suit-
able for full chip timing verification of a 600 MHz CMOS micrapressor.
In Proceedings of the ACM/IEEE Design Automation Conferepages

230-235, June 1998.

J. Ousterhout. MAGIC: An interactive layout editor. http:
bwrc.eecs.berkeley.edu/Classes/IcBook/magic/

index.html

J. K. Ousterhout. A switch-level timing verifier fdigital MOS VLSI.
IEEE Transactions on Computer-Aided Design of Integrafezlits and

Systems4(3):336—-349, July 1985.

D. Pandini, L. T. Pileggi, and A. J. Strojwas. Cotigesaware logic
synthesis. IlProceedings of Design Automation and Test in Eurpages

664—-671, March 2002.

D. Pandini, L. T. Pileggi, and A. J. Strojwas. Glodadl local congestion
optimization in technology mappinglEEE Transactions on Computer-
Aided Design of Integrated Circuits aand Syste2%(4):498-505, April

2003.

151

[PROO]

[PS98]

[ptm]

[Rab00]

[RRAR97]

[RS99]

[RSL*+99]

[RSLTO1]

L. T. Pillage and R. A. Rohrer. Asymptotic wavefornatation for tim-
ing analysisIEEE Transactions on Computer-Aided Design of Integrated

circuits and System98(4):352-366, April 1990.

C. H. Papadimitriou and K. Steiglit€ombinatorial Optimization: Algo-

rithms and ComplexityDover Publications, New York, NY, 1998.

Berkeley predictive technology modéttp://www-device.eecs.

berkeley.edu/"ptm/download.html

J. M. RabeyDigital Integrated Circuits: A Design PerspectivErentice-

Hall India, New Delhi, India, Second edition, September@00

A. Reis, R. Reis, D. Auvregne, and M. Robert. Thediy free technology
mapping problem. IilMorkshop notes of the IEEE/ACM International

Workshop on Logic and Synthediday 1997.

M. A. Riepe and K. A. Sakallah. Transistor level miglacement and
routing for two-dimensional digital visi cell synthesisn Proceedings
of the ACM International Symposium on Physical Desjgges 74-81,
April 1999.

S. Ruan, R. Shang, F. Lai, S. Chen, and X. Huang. A Bipamti€Codec
Architecture to Reduce Power in Pipelined CircuitsPhoceedings of the
IEEE/ACM International Conference on Computer-Aided Despages

84-90, November 1999.

S. Ruan, R. Shang, F. Lai, and K. Tsai. A Bipartitidadec Architecture

to Reduce Power in Pipelined CircuitEE Transactions on Computer-

152

[Rud93]

[Sas00]

[SBOO]

[Sen92]

[SIS99]

[SK92]

[SKO1]

Aided Design of Integrated circuits and Systeft¥2):343-349, February
2001.

R. Rudell. Dynamic variable ordering for ordereddry decision dia-
grams. InProceedings of the ACM/IEEE Design Automation Conference

pages 42—-47, June 1993.

T. SasadSwitching Theory for Logic SynthesiKluwer Academic Pub-

lishers, Boston, MA, 2000.

C. Scholl and B. Becker. On the generation of multeteircuits for pass
transistor logic. IrProceedings of Design Automation and Test in Euyope

pages 372-378, March 2000.

E. M. Sentovich. SIS: A system for sequential cireynthesis. Memo-

randum No. UCB/ERL M92/41, May 1992.

L. Stok, M. A. lyer, and A.J. Sullivan. Wavefront tewlogy mapping.
In Proceedings of the IEEE/ACM International Conference om@oter

Aided Designpages 531-536, November 1999.

S. S. Sapatnekar and S. M. KanBesign Automation of Timing-Driven

Layout SynthesiKluwer Academic Publishers, Boston, MA, 1992.

L. Stok and T. Kutzschebauch. Congestion aware lagioven logic syn-
thesis. InProceedings of the IEEE/ACM International Conference on

Computer Aided Desigmpages 216—223, November 2001.

153

[SMCKO03] P. Saxena, N. Menezes, P. Cocchini, and D. A. Kitkple. The scal-
ing challenge: Can correct-by-construction design helpPrbceedings
of the ACM International Symposium on Physical Desjggges 51-58,
April 2003.

[Som] F. Somenzi. CUDD: CU Decision Diagram package, rel@a3.0 http:

/Ivisi.colorado.edu/ fabio/CUDD/

[spd] Scalable polynomial delay modelhhttp://www.synopsys.com/

products/library/lib_comp_spdm.html

[SRY98] Y. Sasaki, K. Rikino, and K. Yano. ALPS: An automdtsigouter for pass-
transistor cell synthesis. IRBroceedings of the Asia South Pacific Design

Automation Conferen¢@ages 227-232, February 1998.

[SS014a] R. S. Shelarand S. S. Sapatnekar. BDD decompafitithve synthesis of
high performance PTL circuits. Morkshop notes of the IEEE/ACM In-

ternational Workshop on Logic and Synthepiages 298—-303, June 2001.

[SS01b] R. S. Shelar and S. S. Sapatnekar. Recursive hipairtg of BDD's for
performance driven pass transistor logic synthesidroteedings of the
IEEE/ACM International Conference on Computer-Aided Despages

449-452, November 2001.

[SS023a] R. S. Shelar and S. S. Sapatnekar. An efficient #hgorfior low power
pass transistor logic synthesis. Pnoceedings of the Asia South Pacific

Design Automation Conferengeages 87—-92, January 2002.

154

[SS02b]

[SSSW04]

[TBIY]

[WE94]

[Yan85]

[YC99]

[YSRO6]

[YYN +90]

R. S. Shelar and S. S. Sapatnekar. Efficient layouhegis algorithm for
pass transistor logic circuits. Morkshop notes of the IEEE/ACM Inter-

national Workshop on Logic and Synthegiages 209-214, June 2002.

R. S. Shelar, S. S. Sapatnekar, P. Saxena, and Xj. Warpredictive
distributed congestion metric and its application to tetbgy mapping.
In Proceedings of the ACM International Symposium on Phy§leaign
pages 210-217, April 2004.

R. Tavares and M. Berkelaar. Reducing switchingvagtin pass transis-
tor circuits. InWorkshop notes of the IEEE/ACM International Workshop

on Logic and Synthesidune 1999.

N. H. E. Weste and K. EshraghiaRrinciples of CMOS VLSI Design: A

Systems PerspectivAddison-Wesley, New York, NY, October 1994.

M. Yannakakis. A polynomial algorithm for the minxclinear arrange-
ment of trees. Journal of the Association for Computing Machingery

32(4):950-988, October 1985.

C. Yang and M. Ciesielski. BDD decomposition for eifict logic syn-
thesis. InProceedings of the IEEE International Conference on Coeput

Design pages 626-631, October 1999.

K. Yano, Y. Sasaki, and K. Rikino. Top-down passasiator logic design.

IEEE Journal of Solid-State Circuit81(6):792—-803, June 1996.

K. Yano, T. Yamanaka, T. Nishida, M. Saito, K. Shimohigasand

A. Shimizu. A 3.8ns CMOS 16 x 16 multiplier using complementa

155

pass transistor logiclEEE Journal of Solid State Circuit5(2):388—

395, April 1990.

[ZA98] H. Zhou and A. Aziz. Buffer Minimization in Pass Traesor Logic. In
Workshop notes of the IEEE/ACM International Workshop ogid.and

Synthesispages 105-110, May 1998.

156

