
UNIVERSITY OF MINNESOTA

This is to certify that I have examined this copy of a doctoralthesis by

Rupesh Subhashchandra Shelar

and have found that it is complete and satisfactory in all aspects,

and that any and all revisions required by final

examining commitee have been made.

Professor Sachin S. Sapatnekar

Name of the Faculty Advisor

Signature of the Faculty Advisor

Date

GRADUATE SCHOOL

SYNTHESIS FOR NANOMETER TECHNOLOGIES

A THESIS

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA

BY

RUPESH SUBHASHCHANDRA SHELAR

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY IN ELECTRICAL ENGINEERING

Sachin S. Sapatnekar, Advisor

MAY 2004

c
 Rupesh Subhashchandra Shelar 2004

ACKNOWLEDGEMENTS

I am beholden to my advisor, Prof. Sachin Sapatnekar, for hissupport, encouragement,

and advice for this thesis. I owe him, apart from Prof. MadhavDesai and Prof. H.

Narayanan at Indian Institute of Technology, Mumbai, who nurtured my passion for

research, my development into a researcher. He patiently helped during initial faltering

steps and pointed out even the most minute mistakes that I wasmaking. His insisting

on being meticulous and complete in whatever I do has helped me and will continue to

help in the future.

I am grateful to Prof. Kiarash Bazargan, Prof. Gerald Sobelman, and Prof. Victor

Reiner for serving on my Ph. D. committee. Attending their classes was a sheer plea-

sure and having them on the committee a privilege. I acknowledge the role of funding

agencies for this research: Semiconductor Research Consortium (SRC) supported un-

der contracts 99-TJ-692 and 2002-TJ-1092, while National Science Foundation (NSF)

provided support under contract NSF CCR-0098117.

Part of the work on congestion-aware synthesis presented inthis thesis was carried

out at Intel Labs. (CAD Research) during the summers of 2002 and 2003, which pro-

vided me an unique opportunity to view the research and its applicability through an

industrial perspective. Xinning Wang and Prashant Saxena,who were my mentors at In-

tel, were supportive during my learning process; if it were not for them, the thesis would

have been different. Apart from them, other researchers at Intel Labs., namely Steve

Burns, Pasquale Cocchini, Darshan Patra, Mike Kishinevsky, and Timothy Kam, who

commented on the work or raised appropriate questions, during various stages have con-

tributed indirectly. Members of Intel’s physical design tools team helped in defining the

design flow for experiments. Contemporary interns at Intel Labs., Kavel Buyuksahin,

i

Pankaj Chauhan, Chirayu Amin, Aseem Agarwaal, and Trevor Meyerowitz, made the

labs. a “great place to work” - a reality about which I was skeptic, when representatives

of Intel Human Resources used to mention about it during orientation.

I acknowledge valuable discussions with Prabhakar Kudva, Michel Berkelaar, and

Prof. Andre Reis, whose suggestions helped me for the work onspecific problems in the

thesis. Numerous discussions with many other researchers,whom I met during various

conferences, contributed indirectly towards the development of the thesis.

Former and current members of VLSI Electronic Design Automation (VEDA) and

Reconfigurable Computing lab, who made my stay pleasant and maintained cheerful

surrounding for the work include the following: Anup Sultania, Arvind Karandikar,

Bing Lu, Cheng Wan, Cristinel Ababei, Haitian Hu, Haifeng Qian, Haihua Su, Hongliang

Chang, Jaskirat Singh, Jiang Hu, Mahesh Ketkar, Tianpei Zhang, Venkat Rajappan, and

Vidyasagar Nookala. I will miss their company in the future.A lot of friends supported,

morally or otherwise, at various junctures during the last four years. Although names

of all of them cannot be listed here, their support was invaluable. Some of these include

Arvind, Chirayu, Cristinel, Mahesh, Ramona, Venkat, and Vidyasagar. Thanks are due

to Chimai and Kevin for providing an excellent administrative support for the computing

environment in VEDA Labs.

Finally, I acknowledge my mother, brother Tushar, and sister Sandhya: although we

were physically thousand miles apart, I felt, we never were;they shared my all ups and

downs over phone and email and stood by.

ii

Dedicated to the memories of my father,

efforts of my mother, and love of my siblings

iii

ABSTRACT

The challenges to be faced by Very Large Scale Integrated (VLSI) circuits in nanometer

technologies include increasing power dissipation and interconnect dominance. The

pass transistor logic (PTL) family is an excellent choice for low power designs, but its

use has been limited due to the lack of design automation tools. The first part of the

thesis addresses these design automation needs. The secondpart of the thesis deals with

the aspects of interconnect dominance that manifest themselves in the form of routing

congestion.

For performance-driven synthesis of PTL circuits, we propose a polynomial time

algorithm based on the recursive bipartitioning of binary decision diagrams (BDD’s).

The algorithm can ensure logarithmic depth PTL implementations, while none of the

previous synthesis heuristics guarantee such a lower boundon the depth of PTL circuits.

Experimental results on ISCAS’85 benchmarks obtained employing the algorithm show

that PTL can result in a significant improvement, up to 30% in area as well as delay,

over static CMOS forxor-intensive circuits. For layout generation of PTL circuits,

we propose a method that translates BDD’s into a transistor-level placement, which

minimizes the area by diffusion-sharing, linear tree arrangement of transistor clusters,

and greedy row assignment of the BDD nodes. Apart from their utility for pure PTL

implementations, layouts generated by our method can be used as macro cells in the

context of static CMOS/PTL synthesis, since these layouts can fit into a standard cell

methodology.

The remainder of the thesis considers the problem of routingcongestion, which re-

iv

sults in unroutable designs or detours of wires leading to timing violations. To address

the routing congestion problem at the logic synthesis level, we propose congestion-

aware technology mapping methods. These methods are guidedby a predictive proba-

bilistic congestion map, unlike previous approaches that rely on indirect metrics such as

wirelength. The matching phase in technology mapping uses these predictive conges-

tion maps to store congestion-aware choices. It employs a cost function that allows the

selection of congestion-optimal matches in densely congested regions while permitting

the choice of area- or delay-optimal matches in sparsely congested regions. Similar ap-

proaches based on this matching phase have been applied for area- and delay-oriented

technology mapping. For area-oriented mapping, experimental results using an indus-

trial circuit and ISCAS’85 benchmark circuits, proprietary placers and routers, and a

cell library in high-performance microprocessor design in90nm technology show, on

an average, 37% improvement in routability, measured in terms of track overflows, at

the cost of marginal increase in gate area. The results for delay-oriented mapping show

46% improvement in routability for approximately unchanged delays.

v

TABLE OF CONTENTS

1 Introduction 1

1.1 Power and Interconnect Challenges 2

1.2 Proposed Solutions: An Overview of the Thesis 5

1.3 Organization of the Thesis . 7

2 Pass Transistor Logic Synthesis 8

2.1 Introduction . 8

2.2 Delay-oriented Synthesis .11

2.2.1 Previous Work . 11

2.2.2 Our Contributions . 13

2.3 PTL Implementation using Decomposed BDD’s 15

2.3.1 The Relationship between BDD’s and PTL 15

2.3.2 BDD Decomposition for Delay Optimization16

2.3.3 Trade-offs between the Choice of a One-hot or a RegularMul-

tiplexer . 20

2.4 The BDD Decomposition Algorithm 22

2.4.1 Recursive Bipartitioning for Performance 22

2.4.2 Area Estimation . 27

2.4.3 Complexity analysis . 28

2.5 Delay Modeling and Analysis . 29

2.5.1 Delay Model for BDD-mapped PTL Circuits 30

2.5.2 Delay Analysis for BDD-mapped PTL Circuits34

2.5.3 Post-synthesis Delay Models 36

vi

2.5.4 Post-synthesis Delay Model for PTL 36

2.5.5 Post-synthesis Delay Model for Static CMOS 40

2.6 Experimental Results . 40

2.6.1 Experimental Setup . 40

2.6.2 Synthesis Procedure . 41

2.6.3 Analysis of Results on ISCAS’85 Benchmarks42

2.6.4 Comparison with Previous PTL Approaches46

2.6.5 Conclusions . 46

2.7 Power Dissipation Driven Synthesis 48

2.8 Power Model . 49

2.9 Decomposition for Low Power . 51

2.9.1 Example . 54

2.9.2 Algorithm . 57

2.10 Experimental Results . 60

2.11 Summary . 62

3 Transistor-level Layout Generation for Pass Transistor Logic Circuits 68

3.1 Introduction . 68

3.1.1 Previous Work . 68

3.1.2 Our Contributions . 70

3.2 Layout Model . 71

3.3 Diffusion-sharing in PTL Circuits 72

3.4 Algorithm for Layout Generation .. 75

3.4.1 Recursive Bipartitioning . 78

vii

3.4.2 Greedy Heuristic for Row Assignment 81

3.4.3 Formation of Diffusion-sharing Clusters 83

3.4.4 Linear Placement . 85

3.5 Experimental Results . 87

3.6 Summary . 92

4 Congestion-aware Technology Mapping 93

4.1 Introduction . 94

4.1.1 Motivation . 94

4.1.2 Previous work . 95

4.1.3 Our Contributions . 96

4.2 Preliminaries . 98

4.2.1 Terminology . 98

4.2.2 Problem Definition . 99

4.3 Congestion Fidelity . 100

4.3.1 Experimental Setup . 101

4.3.2 Experimental Results . 102

4.3.3 Justification Based on Experimental Results 107

4.4 Congestion-aware Area-oriented Mapping 108

4.4.1 Example . 109

4.4.2 Congestion Cost Computation 110

4.4.3 Algorithm for Congestion-aware Area-Oriented Mapping 113

4.5 Congestion-aware Delay-oriented Mapping 115

4.5.1 Delay Computation Considering Wires 117

viii

4.5.2 Congestion Cost Penalty Heuristic118

4.5.3 Algorithm for Congestion-aware Delay-oriented Mapping . . . 120

4.6 Complexity, Limitations, and Extensions to the Algorithms 121

4.7 Experimental Results . 123

4.7.1 Results due to Area-oriented Mapping124

4.7.2 Results due to Delay-oriented Mapping125

4.7.3 Wirelength and Detour Distributions 126

4.7.4 Conclusions . 132

4.8 Summary . 133

5 Conclusions 140

5.1 Future Directions . 142

ix

LIST OF TABLES

2.1 One-hot and minimum-bit encoding schemes for the dummy terminal

nodes introduced during decomposition. 18

2.2 A comparison of alternative implementations of c3. 20

2.3 Comparison of SPICE delays with the delays obtained fromstatic tim-

ing analysis using NLDM on several combinational benchmarkcircuits. 39

2.4 Area/Delay comparisons for static CMOS and PTL implementations of

ISCAS’85 benchmarks. 43

2.5 Comparison of the number of transistors resulting from our approach

with previous PTL approaches [BNNSV97,FMM+98]. 47

2.6 Comparison of regular implementation with our decomposition-based

implementation. 66

2.7 Comparison of our decomposition-based implementationwith the meth-

ods of Tavareset al. [TB99] and Lindgrenet al. [LKTD01]. 67

3.1 Comparison of layout area for ISCAS’85 benchmark circuits. 91

4.1 Congestion comparison for the netlists before and aftertechnology map-

ping. Max. (Ave.) corresponds to maximum (average), while H(V)

corresponds to horizontal (vertical). 135

x

4.2 Congestion comparison for the netlists before and aftertechnology map-

ping. Max. (Ave.) corresponds to maximum (average), while H(V)

corresponds to horizontal (vertical). For netlists of circuits from IS-

CAS’85 and MCNC benchmark suite, obtained using different scripts

and mapping options, this table shows congestion correlation between

mapped and corresponding premapped netlists. Similar results are shown

in Table 4.3 for different benchmarks. 136

4.3 Congestion comparison for the netlists before and aftertechnology map-

ping. Max. (Ave.) corresponds to maximum (average), while H(V)

corresponds to horizontal (vertical). For netlists of circuits from IS-

CAS’85 suite, obtained using different scripts and mappingoptions,

this table shows congestion correlation between mapped andcorre-

sponding premapped netlists. 137

4.4 Comparison of conventional area-oriented mapping withcongestion-

aware area-oriented mapping. Placement and routing is performed us-

ing an in-house force-directed placer and a proprietary router, respec-

tively, for a 90nm technology. 138

4.5 Comparison of conventional delay-oriented mapping andcongestion-

aware delay-oriented mapping. Placement and routing is performed

employing a publicly available placer Capo [CKM00] and a router

[HS02], respectively, for 130nm technology [ptm]. 139

xi

LIST OF FIGURES

1.1 Power density trends for microprocessors from [Bor00]:(a) Full-chip

power density. (b) Power densities of logic and memory. 2

1.2 Interconnect delay trends from International Roadmap for Semiconduc-

tors, 2001 [ITR01b]. 4

2.1 Power-delay product (PDP) values for (a) a three-input XOR gate and

(b) a three-input NAND gate. Both circuits are implemented in NMOS-

only PTL and in static CMOS at various technology nodes, and the

results of SPICE simulations using predictive technology models [ptm]

are shown. 9

2.2 (a) The BDD for Carry function for 3-bit adder. (b) Its corresponding

PTL implementation, using inverters with weak pull-ups, shown at the

transistor level in (c). 15

2.3 (a) The BDD for the carry function for a three-bit adder, where the

shaded nodes form the cut that is employed to decompose the BDD. (b)

The upper part of the cut with the dangling edges replaced by dummy

nodesV0, V1, andV2. (c) The select function under a one-hot encod-

ing for V0V1V2. (d) The select function under minimum-bit encoding

for V0V1V2. (e) The data function. In all of these pictures, the solid

edges in the BDD denote the 1-cofactor,Fx, the dashed edges denote

the 0-cofactor,Fx0 , and the dotted edges denote the complemented 0-

cofactor,Fx0. 17

xii

2.4 Alternative implementations of c3 (a) using a one-hot multiplexer and

(b) using a regular multiplexer. 19

2.5 Transistor-level description of (a) a one-hot 4:1 multiplexer, (b) a regu-

lar 4:1 multiplexer. 21

2.6 Creating a flow network: (a) A digraph corresponding to a BDD with

essential and candidate nodes, and (b) the corresponding flow network. 24

2.7 (a) A PTL circuit segment with three pass transistors in series. (b) The

equivalent RC model for the PTL segment in (a). (c) The equivalent

RC network corresponding to PTL implementation in Figure 2.2(b).

(d) A set of assigned directions for the resistances. Here,Rp (Rd) cor-

responds to the pass transistor (driver) resistance, whileCs andCi rep-

resent the source (as well as drain) capacitance and the inverter input

capacitance, respectively. 31

2.8 RC forests for the part of RC network covered by dashed square in

Figure 2.7(c) corresponding to the assignments (a) 000, (b)001, (c)

010, (d) 011, (e) 100, (f) 101, (g) 110, (h) 111 to the tripleta2b1a1. . . 33

2.9 A pictorial illustration of the inverter insertion heuristic in [MBIS01]:

inverters are used for the edges that are indicated as being cut. Under

such an assumption, at most2k assignments must be considered for the

part of the BDD between inverters. 34

xiii

2.10 (a) Timing arcs for delay analysis of PTL circuits showing two timing

arcs, gate-to-drain and source-to-drain, for a pass transistor. (b) If pass

transistorT2 in a multiplexerM2 is ON, a capacitive load (Cload) seen

by a driver at any source terminal for a multiplexerM1 is related toC1
andC2 as follows:Cload = C1 +C2, assuming zero capacitances at the

sources ofM1 and no shielding effect in pass transistors. 37

2.11 Correspondence between a BDD node and its PTL implementation: (a)

The BDD forf=ab+c(ab’+a’b). (b) The corresponding PTL Implemen-

tation. 50

2.12 Power estimation in PTL circuits: (a) Switching probability estimation.

(b) Capacitance estimation. 51

2.13 Combinational logic with registered inputs and outputs. 52

2.14 Decomposition model for the implementation of pipelined combina-

tional logic. 53

2.15 (a)BDD for carry function for 3-bit adder. (b) Introducing dummy

nodes in the original BDD. (c) BDD’s for select logic after one-hot

encoding of dummy nodes. 54

2.16 BDD’s for functions in combinational logic blocks. 55

2.17 Decomposed implementation of the Carry function. 56

2.18 Estimating the cost of nodes. .. 58

3.1 Layout of a multiplexer: (a) A BDD node. (b) Its corresponding layout. 72

3.2 A row-based layout scheme for PTL. 73

3.3 Different multiplexers layout schemes: (a) With vertical transistors. (b)

With horizontal as well as vertical transistors. 74

xiv

3.4 An example of input diffusion-sharing: (a) A BDD. (b) Itscorrespond-

ing PTL implementation. 75

3.5 An example of output diffusion-sharing: (a) A BDD. (b) Its correspond-

ing PTL implementation. 76

3.6 A diffusion-sharing scheme for the case when two cofactors are shared:

(a) A BDD. (b) Its corresponding PTL implementation. 77

3.7 An overview of the algorithm. 78

3.8 A pictorial view of area minimization strategies for thelayout. 79

3.9 Recursive bipartitioning: (a) A multilevel BDD network. (b) Its corre-

sponding flow network. 80

3.10 Cluster formation: (a) A group of BDD nodes to be placed.(b) The

corresponding Eulerian graph. Dotted edges in (b) denote possible dif-

fusion breaks. 84

3.11 Diffusion-sharing clusters corresponding to Figure 3.10. 85

3.12 Linear placement for laying out the clusters: (a) A cluster tree. (b) A

sub-optimal placement. (c) An optimal placement. 86

3.13 Effect of row assignment, clustering, and linear tree placement on rd84.

The figure shows 122 pass transistors and 21 inverters. 88

3.14 Intra- and inter-row routing for rows 1 and 2 in rd84 circuit. 88

3.15 Post-routing layout for rd84 circuit. 89

4.1 Horizontal congestion for C432 for (a) the area-oriented mapped netlist

and (b) the premapped netlist.script.ruggedis used for preprocessing

the netlist and Capo [CKM00] is employed for placement. 103

xv

4.2 Bin-wise congestion difference between pre-mapped andmapped netlists

corresponding to Figure 4.1(a) and 4.1(b), respectively, for C432. . . . 104

4.3 Horizontal congestion for C7552 for (a) the area-oriented mapped netlist

and (b) the premapped netlist.script.algebraicis used for preprocess-

ing the netlist and Kraftwerk [EJ98] is employed for placement. 105

4.4 Vertical congestion for IDC for (a) the mapped netlist and (b) the premapped

netlist.script.booleanis used for preprocessing the netlist and Kraftwerk

[EJ98] is employed for placement. 106

4.5 Mapping choices: (a) Sub-optimal area and track requirement = 12. (b)

Area-optimal and track requirement = 20. (c) Area-optimal and track

requirement = 15. 108

4.6 Computing the congestion cost of a match: (a) An example subject

graph. (b) One possible match. 110

4.7 Context-dependent congestion cost for the wires. 111

4.8 Computing the congestion cost of a wire probabilistically as in [LTKS02].112

4.9 (a) A load-based delay model for a typical standard cell,such as an

inverter. (b) A typical load-delay curve stored during matching. 115

4.10 (a) Wire driven by a gate. (b) The correspondingRC model. 117

4.11 Delay computation for a match: (a) An example subject graph. (b) A

match of 3-input NAND. (c) Delay computation.119

4.12 Design flows for (a) conventional and (b) congestion-aware mapping. . 123

xvi

4.13 Number of nets vs. detour length (�m) for the IDC circuit. The place-

ment of conventionally mapped netlist and that of premappedas well

as mapped netlist, in case of congestion-aware mapping, is performed

using Kraftwerk. 127

4.14 Scatter plots of net-lengths vs. detour length (�m) for the IDC circuit.

In these plots, ‘x’ and ‘+’ denote a net in conventional and congestion-

aware netlist, respectively. 128

4.15 Scatter plots of net-length vs. detour length for long (> 100�m) nets in

the IDC circuit. In these plots, ‘x’ and ‘+’ denote a net in conventional

and congestion-aware netlist, respectively. 129

4.16 Number of nets vs. detour length (�m) for C7552: For congestion-

aware mapping, the placement of premapped netlist is carried out using

Kraftwerk. An in-house library for a 90nm technology is employed

for congestion-aware as well as conventional mapping. The mapped

netlists are placed employing Kraftwerk and routed using proprietary

router. 130

4.17 Number of nets vs. detour length (�m) for C6288: For congestion-

aware mapping, the placement of premapped netlist is performed using

Kraftwerk. An in-house library for a 90nm technology is employed

for congestion-aware as well as conventional mapping. The mapped

netlists are placed employing Kraftwerk and routed using proprietary

router. 131

xvii

LIST OF ALGORITHMS

2.4.1 Find a delay-optimal cut that minimizes area penalty 26

2.5.1 Perform delay analysis on a given BDD. 64

2.9.1 Find an optimum cut to reduce power dissipation 65

3.4.1 Perform row assignment for nodes in a BDD 82

4.4.1 Select the best match considering the congestion 114

4.5.1 Compute load-delay curve for a match 121

xviii

Chapter 1

Introduction

The design complexity of VLSI circuits is governed by deviceand interconnect archi-

tectures, the availability of device and interconnect resources, and consumer demands

for increased functionality [ITR01a]. Over the last few decades, device sizes have been

scaling according to Moore’s law1, which states that the number of transistors on a chip

will double every twenty four months [Moo65]. The somewhat periodic process scaling

and the consumer demands for new functionalities have led, eventually, to the arrival

of the system-on-chip era, where designers are motivated topack more functionality on

the chip. In combination with the process scaling, this has created several new design

challenges, noteworthy among which are those related to managing increasing power

density and interconnect dominance.
1The law predicts that the number of transistors on a chip willdouble every year till 1975, while trends

beyond 1975 are not shown in the article [Moo65]. However, Borkar’s paper [Bor00], which considers
trends from 1970’s till 2000, shows that the number of transistors are doubling, actually increasing 1.96
times, to be accurate, every two years.

1

(a) (b)

Figure 1.1: Power density trends for microprocessors from [Bor00]: (a) Full-chip power

density. (b) Power densities of logic and memory.

1.1 Power and Interconnect Challenges

Due to technology scaling, the number of on-chip transistors have been increasing expo-

nentially, while die-sizes have been growing at much slowerpace: the number of tran-

sistors double after every 2 years, while die-sizes double every 10 years [Bor00]. The

increasing number of on-chip transistors results in a corresponding increase in power

dissipation, and since die-sizes are expanding slowly, power densities have been ris-

ing rapidly. Figure 1.1(a) shows these trends for microprocessor designs, while Fig-

ure 1.1(b) shows the comparison of power densities for logicand memory for these

microprocessors. It can be observed that the power densities for logic are almost one

order higher than those in memory. This is partly because only small part of a memory

block is active at any time, as opposed to a logic block, wherein many components may

be active during every clock cycle. As technology scaling continues, leakage power will

constitute a significant portion, up to 45%, of total power dissipation [Bor00]. Even in

2

such a scenario, these trends will continue to hold, as special circuit techniques to reduce

the leakage power are more amenable to memories than to logic. Therefore, to reduce

the power dissipation in the logic, the use of new circuit families must be explored and

design automation support should be provided for the circuit styles that address power

and performance challenges [ITR01a]. Traditionally, logic has been implemented using

static CMOS standard cells that offer good performance, andhave good tool and design

methodology support. The pass transistor logic (PTL) family is a promising alternative,

since it employs NMOS transistors that have small capacitance, which may reduce the

power dissipation while offering similar performance as static CMOS. Few design au-

tomation solutions are available for PTL, and this has resulted in its limited usage. To

address design automation needs for PTL, we have proposed synthesis and layout gen-

eration algorithms in this thesis; we will present an overview of these algorithms in the

following section.

Another daunting issue that designs in sub-100nm technologies will face is that of

interconnect dominance. High-performance designs are becoming wire-limited, i.e., the

area of a design is not only determined by the area of the cells, but also the area required

to route the wires. This, again, is a consequence of the increasing design complex-

ity: the number of wires grows exponentially with the numberof gates, according to

Rent’s rule [CS00]. Although the exponent is small, usuallybetween 0.2 and 0.8 for

real circuits, the base, i.e., the number of gates, has been increasing rapidly as the num-

ber of transistors increases. Even though a larger number ofmetal layers is available

with the advances in technology, most of the upper metal layers are used for routing

global signals such as clocks, and logic blocks are left withonly a marginal increase

in routing resources. This often results in the unavailability of a sufficient number of

3

Figure 1.2: Interconnect delay trends from International Roadmap for Semiconductors,

2001 [ITR01b].

tracks to route the wires, a problem known as routing congestion. Apart from this prob-

lem, another issue is that interconnect delays have also started dominating gate delays,

according to the trends from the 2001 International Technology Roadmap for Semicon-

ductors [ITR01b], as shown in Figure 1.2. Together, these make the timing closure even

more difficult: if the wires are detoured to avoid congested regions, they may violate

the timing constraints. This thesis proposes congestion-aware mapping methods that

consider the routing congestion early on in the design process, thereby facilitating rapid

design closure.

4

1.2 Proposed Solutions: An Overview of the Thesis

In this thesis, synthesis solutions are provided to the problems of increasing power dis-

sipation and interconnect dominance. The solutions to the former involve performance-

driven synthesis algorithm for the low power circuit familypass transistor logic (PTL).

This family offers an attractive alternative to static CMOSdue to its potential for imple-

menting circuits with a small number of transistor count andhence, small capacitance

and power dissipation. Our simulations using predictive technology models [ptm] show

that PTL will result in better implementations as compared to static CMOS in case of

xor-dominated circuits2. Moreover, the use of PTL in ASIC libraries with feature sizes

smaller than 130nm has also been on rise because of the performance gain that they of-

fer over static CMOS [BHSA03]. However, very few design automation tools for logic

synthesis and physical design for PTL are available for the following reasons:

1. Microprocessor designers, who are possibly the largest users of this family, em-

ploy a hand-crafted approach while designing PTL circuits.

2. ASIC designers rely on static CMOS standard cell libraries for which good tool

support is available.

The unavailability of the design automation tools has resulted in the limited usage of

PTL. Therefore, to fully exploit the potential of PTL, this work has developed synthesis

algorithms targeting performance and power dissipation [SS01a, SS01b, SS02a]. These

algorithms use a libraryless approach (using “fluid/liquidcells”), since library-based

methods result in sub-optimal solutions in case of PTL. To translate these synthesized
2In such a scenario, PTL/Static CMOS mixed synthesis may be a viable approach and for this problem,

design automation solutions will have to be developed.

5

circuits into completed designs, layout generation algorithms for libraryless PTL cir-

cuits are required. To address this need, we have developed atransistor-level placement

algorithm [SS02b] for such circuits to optimize the area.

Logic families such as PTL are, realistically speaking, unlikely to completely dis-

place static CMOS. As a result, the bulk of any design will consist of static CMOS gates,

and the synthesis of high-performance circuits must address problems related to this cir-

cuit style. Prominent among these is the push towards unification of logical and physical

design. While past research has addressed this problem partially, an important unsolved

problem relates to handling routing congestion, which depends on the following factors:� the connectivity of the network,� the placement of the cells, and� the routes taken by the wires.

Although the placement and routing stages offer great flexibilities to alleviate conges-

tion, considering routing congestion only during these stages often results in design

iterations as some parts of circuits are unroutable, or because the routability requires

long detours of wires, leading to timing violations. Therefore, it is necessary to consider

the routing congestion during synthesis stage, as it allowsmore freedom to address the

problem. Technology mapping is a powerful transformation in the synthesis domain

that allows absorption of long wires into complex logic gates or splitting of complex

gates into smaller gates to lower the congestion. We have developed a congestion-aware

technology mapper [SSSW04] that minimizes the area of a circuit while improving its

routability; the algorithm is further extended for delay minimization in the presence of

routing congestion.

6

1.3 Organization of the Thesis

The rest of the thesis is organized as follows. Chapters 2 and3 deal with pass transis-

tor logic, while chapter 4 focuses on congestion-aware technology mapping. Chapter

2 presents a max-flow min-cut based exact polynomial time BDDdecomposition al-

gorithms for delay-oriented and power dissipation driven PTL synthesis. Chapter 3

provides the details of transistor-level placement algorithm, which produces layouts for

PTL that fit in standard cell library methodology. Chapter 4 shows empirical evidence

of congestion correlation and furnishes the particulars ofcongestion-aware technology

mapping algorithms. We conclude the thesis in Chapter 5.

7

Chapter 2

Pass Transistor Logic Synthesis

2.1 Introduction

Static CMOS has been a favorite logic style of VLSI designersfor the last two decades

due to its advantageous noise immunity properties and good performance. However, due

to technology scaling and the increasing number of transistors on chip, the performance

of static CMOS circuits has been achieved at the expense of substantial area/power

dissipation costs that may not be desirable, especially forportable appliances. There-

fore, new logic families that address the power and performance challenges must be

explored [ITR01a], and in this context, the logic styles such as domino and pass transis-

tor logic (PTL) are attractive alternatives to static CMOS.However, with the increasing

on-chip power densities becoming a concern, the use of domino logic circuits, known

for good performance but high power dissipation, is limitedonly to critical parts of the

design. PTL, on the other hand, has a potential for low power and good performance, but

its potential remains unexplored due to lack of PTL-oriented CAD tools and method-

8

10

100

1000

10000

60 80 100 120 140 160 180 200 220 240 260

P
D

P
 (

ps
*w

at
t*

10
e4

)

Technology Node (nm)

PTL/CMOS PDP Comparison for 3 i/p Ex-OR

PTL
CMOS

(a)

1

10

100

1000

60 80 100 120 140 160 180 200 220 240 260

P
D

P
 (

ps
*w

at
t*

10
e4

)

Technology Node (nm)

PTL/CMOS PDP Comparison for 3 i/p NAND

CMOS
PTL

(b)

Figure 2.1: Power-delay product (PDP) values for (a) a three-input XOR gate and (b)

a three-input NAND gate. Both circuits are implemented in NMOS-only PTL and in

static CMOS at various technology nodes, and the results of SPICE simulations using

predictive technology models [ptm] are shown.

ologies. The primary benefits of PTL include the potential for a lower transistor count,

lower capacitance, smaller delays and reduced power consumption.

PTL (or its variants) are known for better implementations as compared to static

CMOS in case of arithmetic circuits, such as adders and multipliers that are

xor-dominated [YYN+90, WE94, YSR96, Rab00]. This trend is likely to continue over

several technology generations beyond 100nm as shown in Figure 2.1(a). The figure

shows power-delay product trends, obtained by performing the simulations using pre-

dictive technology models [ptm], for 3-input XOR gate implemented in NMOS only

PTL and static CMOS. It shows that the power-delay product for NMOS-only PTL

will be, consistently and significantly, better than the corresponding product for the

9

static CMOS implementation over several technology nodes beyond 100nm. Most of

thesexor-dominated arithmetic circuits are designed manually for high-speed micro-

processor designs. For ASIC designs, however, when these circuits are synthesized

along with random logic using standard cell libraries, the structural properties of the

network that are suitable for PTL may remain unexploited, resulting in possibly sub-

optimal solutions. PTL elements are used for these designs even today: ASIC libraries

typically contain PTL-like one-hot multiplexers and pass transistor gates because of the

area/power/performance gains that they offer over static CMOS circuits, even though

the latter have higher noise immunities [BHSA03]. In practice, most of these cells are

used in an ad-hoc manner after verifying that the nets driving PTL cells are appropri-

ately buffered. Thus, although the use of PTL is desirable, it remains underutilized,

and more so because of the lack of good performance-driven synthesis algorithms and

methodologies exploiting the properties of PTL circuits.

It is well known that PTL is not universally better than CMOS for all types of logic

structures: fornand-intensive circuits, for example, static CMOS can result inbetter

implementations than PTL. This is demonstrated in Figure 2.1(b) by our simulations for

a three-input NAND gate in both logic styles at various technology nodes. Therefore,

mixed static CMOS/PTL synthesis is likely to be an attractive alternative in the future.

Even for such an approach, synthesis solutions targeting performance that exploit the

properties of PTL circuits must be developed, and the work presented in this thesis may

be considered as a step in that direction. To address these synthesis needs for PTL,

this chapter presents delay-oriented and power dissipation driven synthesis algorithms.

These algorithms are not tied to any particular PTL library1, since we have observed that
1Ideally, the library should contain all possible functions, with different drive strengths, for a given

number of inputs. For a large library size, characterization and maintenance becomes difficult. Limiting

10

conventional technology mapping based on 2-input NAND decomposition followed by

covering using cells in a library results in sub-optimal PTLimplementations, as PTL is

suitable forxor-based (or Shannon co-factor based) circuits.

The rest of the chapter is organized as follows. Sections 2.2- 2.6 deal with delay

optimization in PTL circuits employing BDD decomposition,while sections 2.7 - 2.10

focus on a similar framework to reduce power dissipation. Section 2.2 reviews previ-

ous work in delay-oriented PTL synthesis and outlines our contributions. Section 2.3

explains PTL implementation using BDD decomposition, for which a recursive bipar-

titioning approach is proposed in Section 2.4. Section 2.5 describes delay modeling

and analysis for PTL circuits, while Section 2.6 presents experimental results. Section

2.7 introduces power dissipation driven synthesis problem, and Section 2.8 describes a

power model for PTL. A decomposition model for low power implementation is pro-

posed in Section 2.9 followed by experimental results and conclusions in Section 2.10.

Section 2.11 summarizes the chapter.

2.2 Delay-oriented Synthesis

2.2.1 Previous Work

Synthesis techniques for PTL circuits have been closely related to the binary decision

diagram (BDD) representation of logic functions, for several reasons: firstly, BDD-

based PTL circuits are guaranteed not to have any sneak paths[YSR96, BNNSV97],

and secondly, the use of BDD-based methods can benefit from the plethora of efficient

the library size, however, affects the quality of design, and this has been observed for standard cell designs
by numerous researchers, for instance [BF98,JSB98,CK00].To overcome the limitation of the libraries,
libraryless or “liquid cell” [CK00] synthesis flows are proposed, for instance, in [RRAR97,JSB98].

11

algorithms available for the construction of BDD’s. The BDDrepresentation of a logic

function affects the PTL implementation, and BDD decomposition methods must be

adapted to optimize cost functions that represent their PTLimplementations.

The idea of decomposing logic functions, in general, and BDDdecomposition, in

particular, for optimizing specific objectives is not new, although there is little work on

considering PTL-based cost functions during BDD decomposition. We review some of

the representative work in the area of Boolean decomposition and BDD decomposition.

In the area of decomposition of switching functions, Ashenhurst performed pioneering

work with a theorem relating column multiplicities in a partition matrix, corresponding

to a partition of variables intobound setandfree setof variables, with the simple disjunc-

tive decomposability of a switching function, and also proved relevant theorems on non-

simple decompositions of the switching function [Ash57]. An excellent review on the

development of theory of decomposition of switching functions in 1960’s and 1970’s is

presented in [DDT78]. Recently, Pedramet al. have proposed an ordered BDD (OBDD)

based function decomposition method that involves forminga cutset in the BDD, and

then encoding the nodes in the cutset to yield disjunctive ornon-disjunctive decompo-

sitions [LPP96]. This OBDD-based decomposition has been applied to the synthesis

of field programmable gate arrays targeting area, measured in terms of the number of

configurable logic blocks, with no depth constraints. In [YC99], a BDD-based logic

synthesis system is developed in which transformations such as AND/OR decomposi-

tion based on 0/1 dominators, and XOR and functional MUX-based decompositions are

proposed; synthesis for performance-driven PTL is not specifically targeted.

Several techniques for PTL synthesis have been suggested inthe recent past. A loose

upper bound of theoretical utility on the number of multiplexers required to implement

12

a given logic function is developed in [Sas00]. Buchet al. propose a greedy heuristic

in [BNNSV97] to decompose larger BDD’s into smaller BDD’s whose sizes are kept

under a specified threshold. For area-driven PTL synthesis,Chaudhryet al. [CLAB98]

present a method similar to traditional multilevel logic optimizations, first invoking the

iterative application of logic transformations, and then mapping the BDD representation

on to a PTL cell library. A similar philosophy has been used for performance-driven

synthesis in [LAB99]. Both [BNNSV97] and [LAB99] imply thatmultilevel BDD’s

are to be employed, but the limitation of these approaches isthat they are unable to

predict the performance gain beforehand; such a predictionis very helpful in directing

the decomposition. Ferrandiet al. propose the use of PTL cell generation and subse-

quent binate covering of the nodes in the Boolean network utilizing a set of heuristically

generated BDD’s to minimize the cost [FMM+98]. Beckeret al. [SB00] report the

application of multiplexer circuits for area and delay optimizations of PTL circuits. Un-

like [BNNSV97], they allow the threshold size of the decomposed BDD’s to be varied,

and their cost function allows area and depth to be traded off.

2.2.2 Our Contributions

In this chapter, we present a novel approach to performing delay-oriented PTL synthesis

through the decomposition of a monolithic BDD representinga circuit. Our contribu-

tions can be summarized as follows:� We explicitly incorporate delay and area considerations simultaneously into a

global technique for finding the decomposition.� Our bipartitioning scheme applies the max-flow min-cut technique to roughly

13

halve the delay of a PTL implementation of a BDD with the leastarea overhead.

The delay in a PTL circuit is well known to be linear in the number of input vari-

ables after buffer insertion, and our recursive bipartitioning approach can result

in logarithmic depth reductions over the PTL implementation of the monolithic

BDD. Although logarithmic depth reductions, in terms of transistors, may not

translate to logarithmic delay reductions, the resulting delay reductions are still

substantial. The area penalty is minimal, up to the accuracyin estimation, as the

algorithm explicitly attempts to minimize this overhead byfinding an optimal cut.� Experimental results, obtained using the above techniques, on a set of ISCAS’85

benchmarks containingxor-dominated arithmetic circuits, such as multiplier and

the circuits for error correcting codes, show that PTL outperforms static CMOS

implementations with 31% improvement in delay and 30% improvement in area,

on an average, for a 0.13�m technology. We found that in case of arithmetic logic

unit (ALU) and control circuits, the improvements over static CMOS are small

and inconsistent, although PTL (or its variant CPL) is knownto yield cost effective

implementations of adders, which are important componentsof ALU and control

circuits. This anomaly may be attributed to the scripts in SIS [Sen92] that are used

for preprocessing and also to the structure of control logic, which is usuallynand-

intensive, in these circuits. Employing our PTL synthesis algorithm in case of the

designs that are inherently well suited for PTL, one may obtain performance that

is close to custom designs while the use of static CMOS standard cell libraries to

obtain the same performance may come at a very high area/power cost.

14

2.3 PTL Implementation using Decomposed BDD’s

2.3.1 The Relationship between BDD’s and PTL

01

16

32

4

a0
a0

a1

a1

a1

a1

a2 a2

a2 a2

b0
b0

b1

b1

b2

b2

a0’

a1’a1’

a2’a2’

b0’

b1’

c3 c3

(a) (b) (c)

Figure 2.2: (a) The BDD for Carry function for 3-bit adder. (b) Its corresponding PTL

implementation, using inverters with weak pull-ups, shownat the transistor level in (c).

A BDD can be mapped on to a PTL implementation as follows. Eachnode of the

BDD implements a Shannon expansion about the variablex associated with the node,

and can be expressed asF = x � Fx + x0 � Fx0, whereFx andFx0 are, respectively,

the Shannon cofactors of the functionF . This may be translated to a multiplexer that

passesFx whenx is high, andFx0 whenx is low; the procedure can then be applied

recursively to the functionsFx andFx0. Therefore, for any logic function, the BDD

15

representation can be used to directly arrive at its PTL implementation, as shown in

Figure 2.2. Moreover, mapping from a BDD on to a PTL circuit ensures a sneak-path-

free implementation: this follows from the property of BDD’s that for any assignment

of inputs, only one path from the root node to a terminal node is active. For the purposes

of this chapter, all BDD’s are reduced ordered BDD’s (ROBDD’s), which implies that

the order of variables on any path from an output node to a leafnode is identical. We

also restrict ourselves to NMOS-only PTL, although the algorithms proposed in this

thesis are applicable to other variants of PTL, such as transmission gate PTL, albeit

with different area/delay trade-offs. For the NMOS-only PTL designs considered here,

buffers with weak pull-ups are inserted after everyk transistors in series to avoid long

chains of pass transistors, and also to recover the voltage drops across pass transistors.

2.3.2 BDD Decomposition for Delay Optimization

Mapping a BDD directly to PTL can result in delays that are linear in the number of input

variables, and BDD decomposition can be used to reduce thesedelays. We outline a

general BDD decomposition technique with the help of the following example. Consider

a carry function for a three-bit adder whose optimized BDD isshown in Figure 2.3(a).

This BDD is built on six variables, a0, b0, a1, b1, a2 and b2, and one output, c3. We

choose a cutset across the BDD that is indicated by the shadednodes in Figure 2.3(a).

When this cut is used to separate the upper and lower parts of the BDD, dangling

edges are created in the upper part, for instance, edges fromnodes labeled a1 to nodes

labeled a2. We introduce dummy nodesV0, V1, andV2 that replace these shaded nodes,

as shown in Figure 2.3(b). These dummy nodes can be assigned unique codes employing

one-hot or minimum-bit encoding, as shown in Table 1. The twotypes of encoding lead

16

O0 O1 O2 S0 S1
V0 V1 V2

a0a0 a0a0a0a0a0

a0

a1a1 a1a1 a1a1

a1a1
a2 a2

a2a2

b0b0 b0b0b0b0b0

b0

b1

b1

b2

b2

b2

c3c3

c3

(a)

(b)(b) (c) (d) (e)(e)

11 1

1

1 0

0

Figure 2.3: (a) The BDD for the carry function for a three-bitadder, where the shaded

nodes form the cut that is employed to decompose the BDD. (b) The upper part of the

cut with the dangling edges replaced by dummy nodesV0, V1, andV2. (c) The select

function under a one-hot encoding forV0V1V2. (d) The select function under minimum-

bit encoding forV0V1V2. (e) The data function. In all of these pictures, the solid edges

in the BDD denote the 1-cofactor,Fx, the dashed edges denote the 0-cofactor,Fx0 , and

the dotted edges denote the complemented 0-cofactor,Fx0 .
17

to two alternative PTL implementations with different area/delay trade-offs.

Once an encoding has been chosen, the original function can be realized using a

decomposition based on this cut. The encoding bits (i.e.,O0O1O2 or S0S1) can be em-

ployed asselectinputs to a multiplexer whosedata lines correspond to the evaluated

values of the BDD’s rooted at the three shaded nodes as shown in Figure 2.3(e), de-

pending on the value of the encoding. Therefore, each suchselectinput corresponds

to a BDD representation that sets the leaf nodes according tothe chosen encoding. As

an example, the select bitO1 for the one-hot encoding corresponds to the combinationV0 = 0, V1 = 1, V2 = 0, and is used to select the BDD rooted at the shaded node b1. By

substituting these values into the dummy terminals in Figure 2.3(b), we can obtain the

BDD for theselectinputO0. The BDD’s for otherselectinputs such asO1 andO2 can

be obtained similarly. The multioutput BDD forO0O1O2 is illustrated in Figure 2.3(c).

One-hot Encoding Minimum-bit Encoding

Terminal Node O0O1O2 Terminal Node S0S1V0 100 V0 00V1 010 V1 01V2 001 V2 11

Table 2.1: One-hot and minimum-bit encoding schemes for thedummy terminal nodes

introduced during decomposition.

If, instead, a minimum bit encoding is employed, a similar procedure may be used

to derive the BDD for theselectinputsS0 andS1; the corresponding multioutput BDD

is depicted in Figure 2.3(d). We observe that depth of the BDD’s for theselectinputs

is the same for one-hot encoding and for minimum-bit encoding. Note that in case of

18

(b)(a)

O0 O1 O2
S0 S1

S 00S 01
V 0V 1V 2

a2

a2
a2

a2

a2

a2’

a2’
a2’

a2’
a2’

b1

b1
b1’

b1’

b2

b2

b2’

b2’b2’

c3

c3

Figure 2.4: Alternative implementations of c3 (a) using a one-hot multiplexer and (b)

using a regular multiplexer.

selectfunctions obtained by one-hot encoding, for any assignmentof a0, b0, and a1,

only one of theselectfunctions is true, and we can utilize a one-hot multiplexer circuit

to implement c3. On the other hand,selectfunctions that correspond to minimum-bit

encoding are implemented using regular multiplexers. Two alternative implementations

of c3 using a one-hot multiplexer and a regular multiplexer are shown in Figure 2.4(a)

and in Figure 2.4(b), respectively. Theselectinputs are simply the PTL implementations

of the BDD’s shown in Figures 2.3(c) and 2.3(d).

Table 2.2 shows the active area and delay, obtained by circuit simulations under an

excitation with a 50ps2 transition time, for alternative implementations obtained by (1)

directly mapping the BDD, and using decomposition based on (2) one-hot multiplexers

and (3) regular multiplexers in 0.13�m technology [ptm]. All of the pass transistors
2The transition time of 50ps is chosen, as it corresponds to a typical microprocessor clock period of

500ps corresponding to a 2GHz frequency.

19

Implementation Active Area(�m2) Delay(ps)

Monolithic BDD 2.974 201

One-hot Multiplexer 3.532 103

Regular Multiplexer 3.768 174

Table 2.2: A comparison of alternative implementations of c3.

have widths of 14� and the inverters are sized as follows: all PMOS transistorshave

widths of 32�, all NMOS transistors have widths of 16�, and all weak pull-ups have

widths of 4�, as shown in Figure 2.2, where� is the minimum feature size. Clearly,

the one-hot multiplexer based implementation has the leastdelay, albeit with a slightly

larger area than that obtained by directly mapping the BDD. We also observe that in

the decomposed implementation using one-hot multiplexers, the depth of the circuit is

halved as compared to the implementation obtained by a direct mapping of the BDD.

Moreover, this procedure can be applied recursively, halving the depth every time to

result in a logarithmic depth PTL implementation.

2.3.3 Trade-offs between the Choice of a One-hot or a RegularMul-

tiplexer

Figures 2.5(a) and 2.5(b) show transistor-level implementations for 4:1 one-hot and

regular multiplexers, respectively. In case of a one-hot multiplexer, fourselectinputs are

required, of which only one can be high at a time. In contrast,the regular multiplexer

has twoselectinputs, which are used to select among fourdata inputs. We observe

that the depth of a one-hot multiplexer circuit, as measuredby the maximum number

20

S 02S 02 S 01S2 S2S1 S1S3 S4I2 I2I1 I1I3 I3I4 I4
O

O

(a) (b)

Figure 2.5: Transistor-level description of (a) a one-hot 4:1 multiplexer, (b) a regular

4:1 multiplexer.

of series transistors, is always one, irrespective of the number ofdata inputs. On the

other hand, the depth of a regular multiplexer increases logarithmically with the number

of data inputs. Apart from the delay advantage that can be obtained from this reduced

depth, a one-hot multiplexer withn data inputs also employs fewer transistors than a

regular multiplexer. Specifically, the number of transistors required to implement a one-

hot multiplexer isn, while the corresponding number for a regular multiplexer is2n�2.

The complete picture, however, is more complex. The number of selectinputs re-

quired for a one-hot multiplexer is the same as the number ofdatainputs, and therefore,

such a multiplexer requires the generation of moreselectfunctions than a regular multi-

plexer. Moreover, although the number of levels for a one-hot multiplexer is always one,

its delay is not constant but increases with the number ofdatainputs. This arises because

an increase in the number of transistors connected to the output results in an increase in

the load driven by the one-hot multiplexer, since additional drain capacitances, which

contribute to the total output capacitance, are brought in by each data input. This is one

of the reasons why the logarithmic depth reductions provided by our approach, which

uses one-hot multiplexers, do not translate into logarithmic delay reductions. However,

21

this is not a significant limitation since the obtained delayreductions, as shown in Ta-

ble 2.2, are nevertheless substantial for real circuit examples.

2.4 The BDD Decomposition Algorithm

The decomposition technique presented in the previous section can be thought of as a

bipartitioning that halves the circuit depth and therefore, shortens the critical path and

its delay. If we take a single cut across the BDD that halves the critical path, then we

find that the delay in the PTL implementation using a one-hot multiplexer, which adds

one extra series transistor, is approximately halved. We can apply this bipartitioning

procedure recursively, such that on each application of theprocedure, the critical path is

roughly halved. The price being paid for this delay reduction is in terms of area, since

the number of transistors required for implementation may increase as we recursively

bipartition the BDD. BDD decomposition for delay reductiondoes not always result in

an area penalty, since one-hot encoding of the select functions may result in simpler

Boolean functions and hence, smaller BDD’s. In such a case, bipartitioning should

be performed so that it approximately halves the delay and also results in area-wise

good implementation. In our algorithm, we perform this bipartitioning to aim for the

minimum area penalty.

2.4.1 Recursive Bipartitioning for Performance

A key step during bipartitioning is that of identifying candidate nodes for the cut that will

succeed in halving the circuit delay. Our delay estimator for the PTL implementation

of a given BDD assumes the insertion of a buffer after at most three pass transistors in

22

series. Based on this assumption, each node in the BDD is assigned two delays:

Delay from Bottom (Dbottom): This is the delay of the PTL network rooted at a given

BDD node.

Delay from Top (Dtop): This is the maximum delay from a given BDD node to any of

the outputs.

These delays can be evaluated employing the delay analysis procedure outlined in Sec-

tion 2.5, which can be used to identify the critical path through the PTL network.

We define three types of nodes for delay-balanced bipartitioning:

Essential Nodes,for whichDbottom lies within a small range (�Æ) of half of the critical

path delay (D
riti
al). In other words, essential nodes lie in the middle of critical

path, with small toleranceÆ.
Candidate Nodes,for whichDtop andDBottom are both less than (D
riti
al=2–Æ).
Non-candidate Nodes,which comprise all of the remaining nodes. These nodes are

not considered for inclusion in the cut.

The optimum cut will halve the critical path, ensuring that no other path in the decom-

posed implementation has a delay of more than half the critical path delay. Therefore,

all essential nodes must be in the cut, while we have the freedom to choose among the

candidate nodes. We assign an area cost, explained in the next subsection, to the candi-

date nodes and then use the max-flow min-cut technique [CLR98] to find an optimum

cut that halves the circuit delay with the smallest area cost.

Figure 2.6 shows an example of how the flow network is created.The procedure be-

gins with a digraph corresponding to the given BDD, illustrated in Figure 2.6(a). In this

23

1
1
2
2

3
3
10
20

30f1 f2 f3

e1e1 e2e2
e10 e20

11
11 11
1 1

1 � � Cut A
Cut B

(a) (b)

A
1 A
2
A
3

s

t

Figure 2.6: Creating a flow network: (a) A digraph corresponding to a BDD with essen-

tial and candidate nodes, and (b) the corresponding flow network.

24

example, let us assume that there are three nodesf1, f2, andf3 corresponding to the three

primary outputs, three candidate nodes
1,
2, and
3, and two essential nodese1 ande2. The dashed edges in Figure 2.6(a) (for instance, an edge from f1 to
1) indicate that

there are directed paths between the corresponding nodes, but the nodes on these paths

are not shown since none of them are essential nodes or candidate nodes. Figure 2.6(b)

shows the corresponding flow network with one source nodes and one destination nodet. Each essential node in the digraph is split into two nodes: for instance, nodee1 is

represented by two nodese1 ande10 with an edge frome1 to e10 that is assigned a small

capacity3, �. Similarly, candidate nodes are also split into two nodes: for instance, node
1 in the digraph is represented by two nodes
1 and
10, respectively. However, the

edge capacity for these nodes is not�, but is set to the area cost of the candidate nodes

in the BDD. In this example, the edge from
1 to
10 has an edge capacity ofA
1. The

remaining edges in the flow network are assigned a capacity of1, and therefore will

not appear in the cut. Thus, in this example two cuts are possible, Cut A and Cut B, cor-

responding to cutsetsA
utset = fe1; e2;
3g andB
utset = fe1; e2;
1;
2g in the digraph

corresponding to the given BDD. The application of the Ford-Fulkerson technique to

find the minimum cut will result in one of these, depending on values ofA
1, A
2, andA
3. The pseudocode for the procedure is shown in Algorithm 2.4.1. Once the cut has

been determined, the vertices in the cut are replaced by dummy terminal nodes, which

can be assigned unique codes and implemented as PTL circuits, as illustrated in Section

2.3.
3The small capacity� to the edges between split essential nodes ensures that all essential nodes are in

the cut. A capacity of 0 cannot be associated with these edgesbecause of the conventions in the max-flow
min-cut algorithm; a capacity of 0 means that edge does not exist.

25

Algorithm 2.4.1 Find a delay-optimal cut that minimizes area penalty
Input: G(V;E) = Graph underlying a given BDD

Output: S
ut = An optimal cut

1: DelayAnalysis(G)

2: D
riti
al maxfv.DBottom8v 2 V g
3: VEssential fv:v 2 V andD
riti
al=2� Æ � Dbottom � D
riti
al=2 + Æg
4: VCandidate fv:v 2 V andDtop; Dbottom < D
riti
al=2� Æ g
5: AreaCostEstimate(VCandidate)
6: GF low CreateFlowNetwork(G,VEssential,VCandidate)
7: Ford-Fulkerson(GF low; G; S
ut)

This bipartitioning procedure can be applied recursively till no further delay reduc-

tion can be achieved. If we define the depth of the implementation as the maximum total

number of series transistors (discounting buffers) from any input to any output, then the

resulting implementation has a depth that is logarithmic innumber of inputs. In contrast,

the original undecomposed BDD yields an implementation whose depth is linear in the

number of variables. This is stated in the following theorem:

Theorem 2.4.1 The recursive application of the method shown in Algorithm 2.4.1 to

any BDD with the use of one-hot multiplexers results in an implementation that has a

depth, in terms of the number of series transistors, ofO(log(DepthM)), whereDepthM
is the depth of the PTL implementation obtained by directly mapping the BDD.

Proof Since the PTL implementation obtained by directly mapping the BDD has depthDepthM , theselectanddata functions obtained by the first level of bipartitioning each

has a depth of at mostdDepthM=2e. The use of the one-hot multiplexer adds a constant

depth of one transistor to this. The bipartitioning procedure can be applied further to

26

these decomposedselectanddata functions, a process that can continue recursively.

There can be at mostdlog(DepthM)e such recursions, and after each recursion only a

constant depth is added due to the one-hot multiplexer. Therefore, at the end of the

recursion, the resulting implementation has the depth ofO(log(DepthM)).
Unlike the regular multiplexer-based implementation for PTL circuits in [SB00]

that obtains a logarithmic depth for onlyxor functions (for which the cutset size is

always two), our use of one-hot multiplexers and recursive bipartitioning results in a

logarithmic depth implementation for any circuit, irrespective of the cutset size. A

logarithmic depth PTL implementation for any BDD is neitherclaimed nor proved

in [SB00] whose approach relies on the use of regular multiplexers. It is clear that if, in-

stead of one-hot multiplexers, regular multiplexers are employed during decomposition,

the reduction in depth is somewhat lower: regular multiplexer based implementation

has depth with a lower bound
(log(DepthM) log(MinCutsize)) and an upper boundO(log(DepthM) log(MaxCutsize)), whereMinCutsize andMaxCutsize denotes the min-

imum and the maximum of cardinalities of cuts at any bipartitioning stage, respectively.

2.4.2 Area Estimation

The flow network described above requires an estimate of the area cost for each can-

didate node in the BDD. To generate this estimate, we assume aBDD-mapped PTL

implementation with pass transistors and buffers after every k transistors. The contribu-

tion of a node to the area cost is estimated as the sum of� the area of the PTL implementation of the BDD rooted at a givennode, and� the area of the PTL network that terminates on the given node.

27

This area cost is computed in linear time by a postorder traversal of the network. At

multi-fanout BDD nodes, the area cost is divided by the number of fanout edges. This

heuristic is similar to that used in technology mappers for standard cell libraries such

as [CP92,Sen92].

2.4.3 Complexity analysis

The computation time required to find essential and candidate nodes is linear in the size

of the BDD network, as it involves a traversal, similar to thecritical path method [SK92],

of the the BDD. The time required for area cost estimation is also linear in the size of

the network. The only computationally expensive procedureis the max-flow min-cut

algorithm, which is employed to find an optimum cut with minimum area penalty. The

time complexity of the Edmonds-Karp implementation of the Ford-Fulkerson algorithm

for finding the max-flow and min-cut isO(kV kkEk2), whereV (E) is the set of nodes

(edges) in the flow network [CLR98]. While this seems expensive, in practice the time

complexity of this algorithm is hardly reflected in the CPU times for the following rea-

sons:

1. In our case, the size of flow network is very small as compared with the size of the

BDD to be bipartitioned, since only a small fraction of all the BDD nodes qualify

as either essential or candidate nodes.

2. Since the capacity assignment to the nodes is such that essential nodes are as-

signed very small capacity and are always in an optimum cut, amajority of flow

augmentations are associated only with the part of the network that involves paths

with candidate nodes. In other words, the flow network effectively contains only

28

the candidate nodes and related edges.

Since bipartitioning is applied recursively, the following recurrence equation describes

the time complexity of the entire algorithm for a BDD containing n nodes.T (n) = 2T (n=a) + f(n) (2.1)

In the above equation,a � 2 to account for the possible increase in number of BDD

nodes for theselectfunctions,f(n) =
(n) due to linear time complexity of delay

analysis andf(n) = O(n3) assuming the size of flow network to be same as that of

the size of the BDD. Note that assumption that the size of the flow network isO(n3) is

highly pessimistic for the two reasons mentioned before, but is useful enough to derive

an loose upper bound on the time complexity. Employing the master theorem [CLR98],

the above equation yieldsT (n) =
(nloga 2); T (n) = O(n3) (2.2)

In practice, the algorithm requires CPU times that vary between super-linear to quadratic

in number of BDD nodes, and in absolute terms, the run-times for the ISCAS’85 bench-

marks are of the order of seconds.

2.5 Delay Modeling and Analysis

To identify essential and candidate nodes, it is important to perform delay analysis using

a delay model that has good fidelity. The Elmore delay model [Elm48] satisfies such a

requirement while being computationally inexpensive and has even been applied in the

past for timing verification of complex microprocessor chips [NDH98]. We adapt this

model for computing delays in PTL networks that are mapped directly from BDD’s. It

29

is important to note that the Elmore delay model is utilized only for identifying essen-

tial and candidate nodes during the synthesis stage, while for the post-synthesis delay

analysis of netlists for the PTL and static CMOS circuits, weemploy the widely used

non-linear delay model (NLDM) [WE94, CW97] that involves other factors, such as

consideration of the slope of the input signal transition and load. In the following sub-

sections, we describe the adaptation of Elmore delay model to PTL circuits, the corre-

sponding delay analysis procedure and the post-synthesis delay model.

2.5.1 Delay Model for BDD-mapped PTL Circuits

The insertion of buffers that break up long transistor chains can result in short pass

transistor segments such as that shown in Figure 2.7(a). Each pass transistor in such a

segment can be modeled using an RC� model, where R denotes the resistance of the

transistor and C denotes the drain/source capacitance. Pass transistors offer different

resistance for rising and falling transitions: typically,for NMOS pass transistors, falling

transitions are faster than the rising transitions. To account for this, two different values

of resistance, one for the rising and one for the falling transition, are associated with

each pass transistor. The value of the resistance is obtained by characterization of a pass

transistor employing circuit simulator such as SPICE.

Figure 2.7(b) shows the corresponding RC network for the pass transistor segment

in Figure 2.7(a). This is a special case where the pass transistor segment maps to an

RC line. For more complex BDD’s, it is likely that the pass transistor segment may

be more complex, as illustrated in Figure 2.7(c). From this picture, it can be seen that

BDD-mapped PTL networks, when modeled using an RC� model, look like an RC

mesh rather than an RC line. In such a mesh, directions can be assigned to the resistive

edges since transistors act as unidirectional switches; such methods have long been used

30

 Cs
Cs Cs CsCs

Cs
2Cs

2Cs2Cs
2Cs 2Cs

3Cs3Cs
4Cs 4Cs4Cs 4Cs 4Cs4Cs

Cs + Ci 2Cs + Ci
2Cs + Ci2Cs + Ci

2Cs + CiRp Rp
Rp

Rp
Rp
RpRpRpRp Rp

Rp Rp
RpRpRpRpRp

RpRp Rp RpRpRp
RpRp RpRpRp

Rp Rp
Rp
Rd

Rd
Rd

Rd
Rd

Rd RdB1 B1 B2B2

B3 B3

G1

G2

G3

(a) (b)

(c) (d)

I

I

O O

1 1

2 2
3 3

4 4

55

Figure 2.7: (a) A PTL circuit segment with three pass transistors in series. (b) The

equivalent RC model for the PTL segment in (a). (c) The equivalent RC network cor-

responding to PTL implementation in Figure 2.2(b). (d) A setof assigned directions

for the resistances. Here,Rp (Rd) corresponds to the pass transistor (driver) resistance,

whileCs andCi represent the source (as well as drain) capacitance and the inverter input

capacitance, respectively.

in delay analysis tools and have even been employed in very old timing verifiers such

as Crystal [Ous85]. Therefore, we can model a BDD-mapped PTLnetwork, using RC� models, as a set of RC directed acyclic graphs (DAG’s) between buffers, as shown in

Figure 2.7(d).

Delay analysis for an RC tree can be performed using tree traversal in linear time in

the size of a tree [SK92], while delay analysis for RC meshes using tree/link partitioning

requiresO(nm2) time, wheren is the number of edges in a tree andm, the number of

links, which when removed from an RC mesh results in an RC tree[CK90]. In our

31

case, however, the resulting RC structure is neither a tree nor a mesh, but an RC DAG

– a more complex structure than trees and perhaps, simpler than meshes, from a graph

theoretic perspective. The delay for an RC DAG can be defined as the maximum of the

delay along any path and the Elmore delay along any path is defined similar to RC trees,

as in [SK92] DElmore = Xi2pathRi � Cidownstream (2.3)

This model of the network as an RC DAG does not take into account the logical

dependencies between signals. If we consider these, we can see that depending on the

input assignments, some of the resistances can be treated asopen circuits, when the cor-

responding gate signals to the transistors are not high and may be removed from the RC

network. The RC DAG’s that model BDD-mapped PTL networks have a peculiar prop-

erty that arises from a well known property of BDD’s, namely,that for any assignment

of inputs, only one path from a terminal node to a given node isactive. The implication

of this for RC DAG’s is stated by the following observation.

Observation For any assignment of inputs, a given RC DAG must reduce to an RC

forest.

Proof The proof proceeds by contradiction. Assume that for some assignment of in-

puts, a given RC DAG does not reduce to an RC forest. It impliesthat there is a cycle,

which in turn implies that there exists a node which is drivenby two different signals –

a contradiction, since only one path to any node in a BDD is active.

For the part of the RC DAG covered by the dashed square in Figure 2.7(c), a num-

ber of different RC forests corresponding to all possible input assignments is shown in

Figure 2.8. The Elmore delay can be computed for each of the trees.

32

Cs Cs
Cs Cs

Cs Cs
Cs

2Cs
2Cs 2Cs

2Cs
2Cs

2Cs2Cs

2Cs3Cs
4Cs

4Cs
4Cs 4Cs

4Cs 4Cs

4Cs4Cs4Cs 4Cs
4Cs 4Cs

4Cs 4Cs
4Cs 4Cs 4Cs 4Cs

4Cs4Cs

4Cs
4Cs4Cs 4Cs

Cs + Ci

2Cs + Ci

2Cs + Ci
2Cs + Ci

2Cs + Ci2Cs + Ci

2Cs + Ci

2Cs + Ci

2Cs + Ci

2Cs + Ci
2Cs + Ci2Cs + Ci

2Cs + Ci 2Cs + Ci

2Cs + Ci 2Cs + Ci 2Cs + CiRp RpRp
RpRpRpRp RpRp RpRp Rp
RpRpRp Rp Rp

Rp
Rp RpRpRp RpRp

RpRp RpRp

Rp

RpRpRpRp

Rp

Rp
Rp

RpRp

Rp(a) (b)

(c) (d)

(e) (f)

(g) (h)

1

1 1

1

1

1

1

1

2 2

2 2

2 2

22

3 3

33

3

3 3

3

4
4

4

4

4

4

4

4

5

55

5

5 5

5

5

Figure 2.8: RC forests for the part of RC network covered by dashed square in Fig-

ure 2.7(c) corresponding to the assignments (a) 000, (b) 001, (c) 010, (d) 011, (e) 100,

(f) 101, (g) 110, (h) 111 to the tripleta2b1a1.
33

2.5.2 Delay Analysis for BDD-mapped PTL Circuits

To analyze RC DAG’s, we may have to consider all possible input assignments; this

number of such assignments is exponential in the number of inputs, assuming that the

primary inputs are independent of each other. Fortunately,we can assume a reasonable

PTL implementation from a given BDD that will allow us to perform delay analysis in

linear time4.

a0

a1 a1

a2a2

b0

b1

b2

c3

Cut after 3rd level

Cut after 6th level

01
(a)

Figure 2.9: A pictorial illustration of the inverter insertion heuristic in [MBIS01]: in-

verters are used for the edges that are indicated as being cut. Under such an assumption,

at most2k assignments must be considered for the part of the BDD between inverters.

One such implementation5 is shown in Figure 2.9. This assumes that each BDD
4Performing the delay analysis in linear time is critical to keep the time complexity of our bipartition-

ing algorithm reasonable, since the delay analysis procedure is invoked during each bipartitioning call of
our algorithm.

5Although our delay analysis procedure is targeted for this particular implementation, it can be ex-
tended to consider other PTL implementations that may use different heuristics for inverter insertion.

34

node is mapped on to a PTL multiplexer and the edges that crossevery multiple of thekth level (edges crossing the cuts in the figure, wherek = 3) have inverters/buffers on

them [MBIS01]. This buffer insertion heuristic ensures that there is an inverter after at

mostk transistors in series. In case of such a BDD-mapped PTL network that has buffers

or inverters after at mostk transistors in series, wherek is bounded by a small constant,

it is adequate to consider only2k different assignments for parts of the RC DAG that lies

between successive buffer levels to find the maximum delay. Each edge will have to be

traversed no more than2k�1 times, as stated by the following observation.

ObservationFor a PTL network that has at mostk transistors in series between buffers,

the total number of edges in all of the forests correspondingto various input assignments

is bounded by2k�1 � kEk, wherekEk is the number of edges in the RC DAG.

Proof Each edge in the BDD is associated with the true or complementary form of a

variable in the BDD. Since inverters are inserted in such a way that at mostk variables

lie between two successive inverter insertion levels, only2k different assignments must

be considered for a given part of the DAG. For exactly half of these assignments, a

variable associated with the edge is true, and therefore, any edge can appear only in half

of the forests. Since there arekEk edges in the DAG corresponding to a BDD, the total

number of edges in all the trees is bounded byO(2k�1kEk).
Remark In the Figure 2.8,k = 3 andkEk = 10. It can be verified from the Figure 2.8

that the total number of edges, summed up over all of the RC trees, is2k�1 � kEk = 40.

Different portions of the RC DAG can be successively considered to yield a linear

time delay analysis procedure. We exploit this idea in the delay analysis algorithm.

Algorithm 2.5.1 shows the pseudocode for the latter. The maximum downstream capac-

itance for a given node is computed by callingGetDownStreamCapacitance()

35

procedure for all possiblek�bit Boolean assignments. This procedure traverses all the

fanout edges that satisfy a specifick�bit Boolean assignment till the buffers are reached,

adds the capacitances at the visited nodes, and stores the maximum downstream capaci-

tance. Once the maximum downstream capacitance is computed, the delays at each node

can be computed by sorting the nodes in topological order andcomputing the maximum

arrival time at each node. The following theorem states the time complexity of the delay

analysis algorithm.

Theorem 2.5.1 The delay analysis using the Algorithm 2.5.1 takes no more thanO(kEk)
time, whereE is the set of edges in the BDD.

Proof Using the arguments from the previous observation, it can bestated that the com-

putation of downstream capacitance requires each edge to bevisited at most2k�1 times.

The topological sort of the nodes requires linear time in thesize of graph [CLR98].

Therefore, time required by delay analysis routine isO(kEk), sincek is a constant.

2.5.3 Post-synthesis Delay Models

2.5.4 Post-synthesis Delay Model for PTL

Figure 2.10 (a) shows timing arcs in PTL circuits, which correspond to two possible

paths going through each transistor. Nonlinear delay models (NLDM’s) are a popular

way of representing the delays on the arcs of a timing graph. The widely used nonlinear

Synopsys delay model for timing analysis involves the following equation [CW97]:� = � �C + � � �r +
 � C � �r + Æ (2.4)

36

...

(b)

...

...

(a)

M1
M2T2C1

C2
source-to-drain

gate-to-drain

Figure 2.10: (a) Timing arcs for delay analysis of PTL circuits showing two timing

arcs, gate-to-drain and source-to-drain, for a pass transistor. (b) If pass transistorT2 in a

multiplexerM2 is ON, a capacitive load (Cload) seen by a driver at any source terminal

for a multiplexerM1 is related toC1 andC2 as follows:Cload = C1+C2, assuming zero

capacitances at the sources ofM1 and no shielding effect in pass transistors.

In the above equation,C stands for the load capacitance,�r the transition slope of input

signal,� the delay from input pin to output, while�, �,
, andÆ are the parameters ob-

tained by characterization employing a circuit simulator such as SPICE. Each timing arc

in the timing graph has four NLDM parameters associated withit, which are, typically,

stored in lookup tables. The sizes of these lookup tables blow up when different supply

voltages and temperatures are considered. To overcome thislimitation, scalable poly-

nomial delay models (SPDM) [spd] are used currently in commercial tools. However,

NLDM is still accurate with a single supply voltage and a given temperature. There-

fore, for comparison purposes at the logic synthesis level,where only a single supply

voltage and a single temperature is considered, non-lineardelay model of the form of

Equation 2.4 is still valid and we use the same delay model forstatic CMOS and PTL

37

synthesis results.

Adapting NLDM to timing analysis for PTL circuits requires the computation of

downstream capacitance that may be beyond the given PTL multiplexer, as shown in

Figure 2.10 (b). We employ a DAG traversal similar that is similar to that of the proce-

dure shown in Algorithm 2.5.1 to compute the downstream capacitance by traversing the

downstream DAG. Unfortunately, the resulting pass transistor network does not possess

a structure that will allow the incorporation of logical dependencies between signals dur-

ing computation of downstream capacitance. This is becausethe consideration of these

logical dependencies is at least as difficult as the NP-harddynamic path sensitization

problem, as pointed out in [DY96]. This differs from the problem of delay analysis used

during recursive bipartitioning, where the gates of all of the multiplexers are controlled

by primary inputs, which, however, is not true in case of the pass transistor network

obtained after recursive bipartitioning. For this reason,this analysis ignores logical de-

pendencies and computes the downstream capacitance by simply traversing the DAG

until the buffers are reached. This may result in an overestimate of the downstream

capacitance and hence, an overestimate of the delay. Apart from logical dependencies,

another source of pessimism in the capacitance estimate is the shielding effect due to

the (nonlinear) resistance of the pass transistors that areON.

Once the downstream capacitance for all multiplexers is computed, the precharacter-

ized NLDM parameters are used to compute the delays in an entire PTL circuit. After

precharacterization, it was verified that the delay estimated by the model was indeed

an overestimate, as compared to SPICE, as illustrated on several benchmark circuits in

Table 2.3. All of these circuits were mapped directly on to a PTL network with inverters

with weak pull-ups inserted after every three series-connected transistors. Because of

38

Example #. Transistors SPICE delay (ps) Timing Analysis Delay (ps)

9sym 102 462.40 618.50

parity 100 999.90 1172.64

rd84 194 501.50 628.34

rd73 144 401.40 473.65

rd53 72 196.10 205.54

Table 2.3: Comparison of SPICE delays with the delays obtained from static timing

analysis using NLDM on several combinational benchmark circuits.

the direct mapping, the critical paths in these circuits arelong and contain at least as

many number of transistors as there are primary inputs (besides the inverters with weak

pull-ups). Technology parameters for0:13�m technology [ptm] are used for SPICE

simulations and all of the transistors have a length of0:13�m, while the widths of the

transistors are as follows. The widths of NMOS pass transistor are0:91�m, the widths

for transistors in inverters with weak pull-ups arewn = 1:04�m, wp = 2:08�m, andwpull�up = 0:26�m, wherewp, wn, andwpull�up are widths of PMOS, NMOS, and

weak pull-up, respectively. The critical paths are determined using static timing analy-

sis (STA) and simulated by applying appropriate stimulus. The transition time for rising

as well as falling transition of input signal is 50ps. We can verify from the table that

the delays estimated by static timing analysis are always overestimates. For long critical

paths, overestimates tend to be high because of the cumulative effect.

39

2.5.5 Post-synthesis Delay Model for Static CMOS

We use the same Equation 2.4 for the static timing analysis ofstatic CMOS standard cell

circuits. For each cell, all input-to-output timing arcs are precharacterized for NLDM

parameters employing SPICE. We note that in case of static CMOS circuits, there is

no pessimism in capacitive load estimation, unlike PTL circuits, since all the inputs are

always connected to the gates of the transistors.

2.6 Experimental Results

2.6.1 Experimental Setup

The algorithms described in the sections 2.4 and 2.5 are implemented in a C++ program

called PTLS (Pass Transistor Logic Synthesizer). For all ofour experiments, the BDD

package CUDD [Som] is employed for generating BDD’s, along with sifting [Rud93]

for variable ordering. We use NMOS transistors as pass transistors and employ invert-

ers with weak pull-ups after every three pass transistors inseries. Inverters with weak

pull-ups are also inserted to drive the gates of transistorsin one-hot multiplexer for the

implementations obtained by our recursive bipartitioningtechnique. We synthesize both

the PTL and static CMOS circuits (which are used to compare the PTL circuits against)

in a0:13�m technology [ptm]. All transistor lengths are set to0:13�m, and the follow-

ing two sets of transistor sizes are employed for the PTL implementations:� Set 1: All NMOS pass transistors havewn = 1:82�m, and inverters have sizeswp
= 4:16�m andwn = 2:08�m, while the weak pull-up transistor in each inverters

are sized to a width of0:52�m.

40

� Set 2: All NMOS pass transistors havewn = 0:91�m, and inverters have sizeswp
= 2:08�m andwn = 1:04�m, while the weak pull-ups in the inverters are sized to

a width of0:26�m. In other words, all the transistors inSet 2have half the widths

of the corresponding transistors inSet 1.

For static CMOS circuits, we choose the lib2.genlib libraryin [Sen92] and add at least

two strengths (weffe
tive = 0:78�m andweffe
tive = 1:56�m) for each of the cells in

the library. Simpler gates such as inverters, NAND’s (up to four inputs), and NOR’s

(up to four inputs), have up to four strengths (weffe
tive = 0:78�m, 1.56�m, 2.34�m,

3.12�m). All of these gates and pass transistors are characterized for falling and rising

input transitions, with the input signal transition times varying from 50ps to 130ps in

steps of 5ps, while the characterized loads vary from 1fF to 50fF in steps of 1fF. The

supply voltage and temperature used are 1.3V and 25oC.

Under this sizing scheme, we see that PTL circuits have uniform sizes for pass tran-

sistors and inverters, while the static CMOS implementations use better sizing, with each

gate having several choices for the transistor sizes. In spite of this, we show that PTL

results in implementations that have the same (or better) delay as that of static CMOS

implementation with a significant area average in case of arithmetic, error correcting,

and some control circuits in ISCAS’85 benchmark suite. If weallow a larger variety of

transistor sizes for PTL circuits, it is likely that these results may improve even further

in favor of PTL.

2.6.2 Synthesis Procedure

Static CMOS circuits are preprocessed by runningscript.ruggedin SIS [Sen92] before

performing technology mapping for optimizing delays. For PTL synthesis, we use the

41

same Boolean network obtained fromscript.rugged, and create a multilevel BDD rep-

resentation. Our recursive bipartitioning procedure is then applied level-by-level on this

multilevel BDD representation.

While creating this multilevel BDD representation, it is important to control the

number of BDD nodes, since the number of transistors in the resulting implementa-

tion depends on this number. It has been shown in [YC99] that the use of traditional

multilevel boolean network optimization, followed by the construction of BDD’s for

nodes in the network, results in reasonable BDD sizes. Thesesizes are comparable to

those obtained by applying area-oriented pass transistor logic synthesis techniques such

as [CLAB98]. We employ these multilevel BDD representations, which have reasonable

sizes, for delay-oriented decomposition. Further improvements may be possible if the

multilevel BDD’s are preprocessed using algorithms such aseliminate, as in [CLAB98],

and by applying better variable ordering heuristic such as symmetric sifting.

2.6.3 Analysis of Results on ISCAS’85 Benchmarks

Table 2.4 shows the area/delay comparison between PTL circuits and their correspond-

ing static CMOS implementations for all of the ISCAS’85 benchmarks. In this compar-

ison, the PTL circuits in Table 2.4 have transistor sizes from Set 1andSet 2described

in Section 5.1. For the same table, Column 1 shows the name of the benchmark and

its functionality, while columns 2 and 3 show the area and delay, respectively, for the

static CMOS implementation. Columns 4 and 5 show the area anddelay, respectively,

for the PTL implementation with the transistor sizes fromSet 1, while Column 6 shows

the CPU time required for our PTL synthesis algorithm on a 400MHz Sun Ultra-Sparc

60 machine. Columns 7 and 8 show the area and delay, respectively, for the PTL imple-

mentation with the transistor sizes fromSet 2.

42

Example (Functionality) Static CMOS PTL Set 1 PTL Set 2

Area Delay Area Delay CPU Area Delay�m2 ps �m2 ps s �m2 ps

C1355 (Error correcting codes)4886 962 3521(38%) 599(60%) 00.1 1760 (177%)1009 (-4%)

C1908 (Error correcting codes)5157 1205 3726(38%) 980(20%) 00.2 1863 (176%)1432 (-15%)

C2670 (ALU and Control) 12307 1208 8781(40%) 1660(-27%)02.7 4390 (180%)2132 (-43%)

C3540 (ALU and Control) 34280 1796 15409 (122%)1850 (-2%)22.4 7704 (344%)2454 (-26%)

C432 (Priority Decoder) 3370 1334 3981(-15%) 1278(4%) 00.2 1990 (69%)1758 (-24%)

C499 (Error correcting codes)4784 938 3259(46%) 630(48%) 00.1 1692 (182%) 929 (1%)

C5315 (ALU and Selector)24042 1355 24612 (-2%)2233 (-39%)17.4 12306 (95%)2668 (-49%)

C6288 (16-bit Multiplier) 29592 4799 25771(14%) 4152(15%)17.712885 (129%)5563 (-13%)

C7552 (ALU and Control) 32051 1323 16649(92%)2112(-37%)10.7 8324 (285%)2528 (-47%)

C880 (ALU and Control) 5579 1080 4748 (17%) 952 (13%) 01.1 2374 (134%)1430 (-24%)

Avg. Improvement 39% 5% 177% -24%

Table 2.4: Area/Delay comparisons for static CMOS and PTL implementations of IS-

CAS’85 benchmarks.

For the comparison between static CMOS implementations andPTL implementa-

tions with transistor sizes fromSet 1, the following observations can be made from

Table 2.4.� For circuits that implement error correcting codes, namely, C1355, C1908, and

C499, for the multiplier circuit, C6288, and for the arithmetic logic unit (ALU)

and control circuit, C880, PTL implementations are superior in terms of area as

well as delay. On average, the area advantage is 30% while thedelay advantage

is 31%.� For ALU and Control circuits such as C2670, C7552, and C3540,the PTL im-

43

plementations are superior in terms of area but could not match the static CMOS

delay. On average, the area advantage is 84%, while the delaydisadvantage is

22%. With the area numbers strongly favoring PTL, it is likely that static CMOS

delays may be matched with sizing for PTL circuits, perhaps even while retaining

some area advantage.� For the priority decoder circuit, C432, PTL has a marginal delay advantage of 4%

at the cost of a 15% area increase.� For the ALU and selector circuit, C5315, PTL produces inferior results both in

terms of area as well as delay. The area disadvantage is minor, at 2%, while the

delay disadvantage is 39%.

Note that the observations are made with a pessimistic delaymodel for PTL, as de-

scribed in Section 4.3. From the above observations, the following conclusions can be

arrived at:� For the ALU and control circuit, C5315, static CMOS results in a superior im-

plementation. In case of other ALU and control circuits suchas C2670, C3540,

and C7552, static CMOS yields a superior delay, but with a significant area cost.

For the ALU and control circuit, C880, using even näive transistor sizing PTL re-

sults in a superior implementation as compared to static CMOS. All these circuits

contain arithmetic components such as adders apart from control logic. Since

these circuits containnand-intensive control logic, scripts in SIS [Sen92], which

are skewed towards control logic synthesis, perhaps destroy the structure of arith-

metic components in these circuits and PTL implementation due to our PTL syn-

thesis algorithm with näive transistor sizing is not able to match (or outperform)

44

the static CMOS delay consistently. PTL implementations still have a good area

advantage that can be utilized by a sizer to match delays due to static CMOS

implementations.� The PTL implementation provides large area savings and improved delays in

case of the purely arithmetic and error correcting circuits(C1355, C1908, C499,

C6288) as compared to the static CMOS implementations. In these cases, SIS

[Sen92], perhaps, is not able to destroy the structure as much, since most of these

circuits are heavilyxor-dominated circuits.

A comparison between PTL implementations with smaller transistor sizes and static

CMOS implementations is also shown in Columns 7 and 8 in Table2.4. For these

columns, the PTL circuit implementations employ transistor sizes that are chosen ac-

cording toSet 2 in Section 2.6.1. With the smaller transistor sizes, the delays in PTL

circuits are degraded, as expected. Although the transistor sizes are halved, the delay

in static CMOS is still matched in case of C499, and is within 20% for the circuits

C1355, C1908, C6288, but with a large average area advantageof 166%. Given such

an area margin, it is likely that an intelligent sizer may be able to match the delays in

static CMOS circuits, while maintaining an area that is lessthan that of the PTL circuits

shown in Column 4 of Table 2.4, which use double the transistor sizes of this case. For

the set of circuits that includes ALU and control circuits such as C2670, C7552, C432,

C880, C3540, and C5315, the average area advantage is 184%, while delays degrade

by 35%, on an average. It is likely that improved transistor sizing in these cases may

improve the results in favor of PTL, since as shown in Table 2.4, simplistically doubling

the sizes of all transistors results in a large improvement in delay, while maintaining

significant area savings in most cases.

45

2.6.4 Comparison with Previous PTL Approaches

We now present a comparison of the number of transistors in our PTL implementations

with the previous PTL synthesis approaches such as [BNNSV97,FMM+98]. The delay

comparison could not be performed because of the unavailability of parameters for the

delay models. Moreover, these approaches do not specifically optimize for delay, and

primarily target the area of the PTL implementation.

Table 2.5 shows the number of transistors required for the PTL implementation of

the ISCAS’85 circuits as a result of applying the algorithm of [BNNSV97] in Column

2, the algorithm of [FMM+98] in Column 3, and our approach in Column 4. For most of

the benchmarks, the number of transistors due to our method is comparable with that of

the other two approaches, with an average increase of 12% with respect to [FMM+98]

and an average reduction of 41% with respect to [BNNSV97].

2.6.5 Conclusions

Based on the experimental results, we can conclude the following.

1. Using the delay-driven synthesis algorithm, näive uniform transistor sizing for

PTL circuits and a pessimistic delay model for PTL, we have shown that PTL

can certainly match (or improve upon) the delays in static CMOS circuits, with

a significant area advantage of an average of about 40% for arithmetic circuits,

error correcting circuits, and some control circuits.

2. For control circuits, static CMOS may sometimes, but not always, result in supe-

rior implementations than PTL in terms of area as well as delay.

46

Example Number of Transistors

[BNNSV97] [FMM+98] Ours

C1355 1969 1013 1037

C1908 2116 1526 1145

C2670 3198 2674 2876

C3540 4997 4440 4757

C432 979 727 1110

C499 1947 1013 998

C5315 8277 4043 8221

C6288 10787 7073 7794

C7552 13268 6590 5347

C880 1622 1339 1467

Total 49160 30438 34752

Table 2.5: Comparison of the number of transistors resulting from our approach with

previous PTL approaches [BNNSV97,FMM+98].

3. Some control circuits, may be implemented well in PTL withslightly degraded

delays as compared to static CMOS, but with large area savings. Allowing multi-

ple transistor sizes for PTL may improve the results in favorof PTL, but this has

not been explored in this thesis.

47

2.7 Power Dissipation Driven Synthesis

Power dissipation is becoming a critical problem in modern day deep sub-micron cir-

cuits, especially in case of circuits that are used in portable battery-operated devices.

The problem of power optimization at various levels of abstraction has been addressed

by numerous researchers. At the logic level, power optimizations include techniques

such as gated clocks and precomputation; the latter involves the use of the observability

don’t caresto disable the clock signal at the input registers [AMD+94]. Employing a

similar approach, Ruanet al. propose bipartitioned codec architecture, in which out-

put values are encoded using the minimum number of bits and then decoded utilizing

a decoder in the next clock cycle, or computed conditionally[RSL+99, RSLT01]. A

limitation of the precomputation scheme [AMD+94] is the addition of extra logic to the

circuit, while the bipartitioning codec approach may not bealways optimal. For power

optimization of PTL circuits, Lindgrenet al. propose the use of sifting [Rud93], which

reduces switching activity in BDD mapped PTL circuits [LKTD01]. Another approach

by Tavareset al. comprises employing split cofactors based on the Shannon expansion

at the root of BDD’s, with the variable corresponding to the root node being used as a

control input to disable the inverters [TB99]; the disabledinverters cannot make low-to-

high transition, resulting in reduced switching activity.This approach differs from the

method of independent of cofactors by Alidinaet al. in disabling inverters rather than

disabling registers and also in algorithm, as [AMD+94] utilizes area-efficient co-factors,

while [TB99] employs the power-efficient cofactors.

We propose a BDD decomposition technique to minimize the power dissipation in

combinational logic under the assumption that all primary inputs and primary outputs

48

are registered. Our contributions are summarized as follows.� We apply the switching probability estimation technique proposed in [LKTD01]

to estimate the switching probabilities in PTL circuits andalso take into account

the capacitance driven by each node in the PTL circuit, unlike [LKTD01] which

uses a linear fanout model.� Unlike the previous approaches [AMD+94, TB99], which use a single variable

to disable the inputs of independent co-factors, we decompose the logic function

using the max-flow min-cut technique to find a cut in the BDD that minimizes

the power dissipation; the cut yields a subset of variables used as inputs to select

logic that is used to disable the part of the circuit that doesnot perform useful

computation in a given clock cycle.� Our decomposition-based implementation model is more flexible than the bipar-

titioning codec architecture proposed in [RSLT01] and allows us to find optimum

decomposition; optimality of decomposition is ensured dueto the application of

Ford-Fulkerson algorithm [CLR98] to find the min-cut.

2.8 Power Model

Figure 2.11(a) shows the BDD for the functionf = ab+c(ab’+a’b), while Figure 2.11(b)

shows the corresponding PTL implementation6 in which every node in the BDD is trans-

lated into a 2-input multiplexer. Given the probabilities for the inputs, the switching

probability of a functionf can be expressed in terms of the probabilities of its co-
6In another implementation, transistors corresponding to a2:1 multiplexer driven by c, c’ can be

replaced by just c’. The above implementation is used just toillustrate the capacitance estimation.

49

 f

(a) (b)

aa

bb b b

cc

a’

b’

c’f
01

Figure 2.11: Correspondence between a BDD node and its PTL implementation: (a)

The BDD forf=ab+c(ab’+a’b). (b) The corresponding PTL Implementation.

factors,fx andfx, wherex is an input. Equations (2.5) and (2.6) express the probability

of f being 1 and 0, respectively, while switching probability isgiven by Equation (2.7).p(f=1) = p(x=1) � p(fx=1) + p(x=0) � p(fx=1) (2.5)p(f=0) = p(x=1) � p(fx=0) + p(x=0) � p(fx=0) (2.6)p(fswit
hing) = 2� p(f=1) � p(f=0) (2.7)

The switching probabilities for the nodes in BDD shown in Figure 2.11 are computed

assuming uniform input probabilities (i.e.,p(a = 1) = p(b = 1) = p(
 = 1) = 0:5) and

are shown next to the corresponding nodes in Figure 2.12(a).The triplet (psw; p1; p0)
next to each node corresponds to the switching probability,the probability of the node

being evaluated to 1, and the probability of node being evaluated to 0, respectively.

For instance, the nodes in Figure 2.12(a) corresponding to the nodes labeled ‘b’ have

the switching probabilitypsw = 3=8, a probability of being evaluated to 1,p1, of 3=4,

50

(0; 1; 0) (0; 0; 1)
(12 ; 12 ; 12)

(12 ; 12 ; 12)(38 ; 34 ; 14) (38 ; 34 ; 14)
2Cs2Cs

3Cs 3Cs4Cs
2Cs + Ci

(a) (b)

aa

bbbb

ccf
00 11

Figure 2.12: Power estimation in PTL circuits: (a) Switching probability estimation. (b)

Capacitance estimation.

and a probability of being evaluated to 0,p0, of 1=4. The capacitances driven by each

node can be computed by examining the PTL implementation. For instance, the node

labeled ‘c’ drives four source capacitances (Cs) of NMOS transistors. The capacitance

driven by each node is shown next to that node in Figure 2.12(b), whereCi is the input

capacitance of an inverter. Once the switching probabilities and capacitances are known,

the dynamic power can be obtained by employing the followingformula, where,Vdd is

supply voltage,f is the clock frequency,Psw andCsw are switching probabilities and

capacitances, respectively.Power = X8nodesPswCswV 2ddf (2.8)

2.9 Decomposition for Low Power

Figure 2.13 shows a general combinational logic circuit with registered inputs and out-

puts. Assuming PTL implementation of the combinational logic, we observe that switch-

51

Inputs =fI1; � � � ; Ing, Outputs =ff1; � � � ; fmg
Combinational

Logic

Clock

RegistersI1
In

f1
fm:
:::::

Figure 2.13: Combinational logic with registered inputs and outputs.

ing activity occurs in the entire PTL network during every clock cycle, although parts of

the network may not perform useful computation. This can be observed from a property

of BDD’s that for any assignment of inputs, only one path fromroot to terminal node

is active, so that the PTL implementation of this path performs useful computation for

a given assignment, while the rest of the PTL circuit still dissipates power because of

the switching of its inputs. Therefore, reduction in power dissipation can be achieved, if

we disable the part of the PTL network that does not perform useful work. Figure 2.14

shows the decomposition-based implementation model in which a subset of inputs is

used to generate latch enable signals for the input registers. The enable signals consti-

tute the ‘select logic’ block, while the other combinational logic blocks,CL1 throughCLk, are PTL implementations of logic derived from original BDD’s, as explained in

the following subsection. Multiplexers are used to select the outputs from the block

52

R

R

R

 ...

M

Inputs =fI1; � � � ; Ing, Outputs =ff1; � � � ; fmg, LE = Latch EnableCLi = Combinational logic blocki, M = Multiplexer, R = Register

Select
Logic

Clock

I1
I1

In
In
Ij
Ij

Ik
Ik f1fm

:
::
:: ::::::::::::: ::

::::LE

LE

CL1
CLk

Figure 2.14: Decomposition model for the implementation ofpipelined combinational

logic.

that performs useful computation in a given clock cycle. In this case, we observe that

only the select logic and multiplexers are active all the time, while other combinational

blocks are not. Greater power reduction can be achieved if select logic and multiplexers

dissipate small power and if the combinational blocksCL1 throughCLk are active with

small probabilities. In this case, the total power dissipation in the combinational logic is

given by Equation (2.9), wherepi is the probability of combinational blockCLi being

active andPCLi is the power dissipation7 in combinational blockCLi.PDe
omp = PSele
tLogi
 + PMuxes + �k�1i=0 piPCLi (2.9)
7We consider only dynamic power dissipation. In the technologies beyond 100 nm, where leakage

power becomes dominant, foot transistors, whose gates are driven by latch enable signals, can be used for
the different combinational logic block, as in case of Boosted Gate MOS (BG MOS) [ITN+00].

53

While the above equation is similar to the equation presented in [RSLT01], it is more

general in the sense thatk is allowed to take any value, unlike [RSLT01], wherek is

restricted to 2, in the bipartitioning codec architecture.

2.9.1 Example

Consider the optimized BDD on 6 inputs for the carry output function for a 3-bit adder

as shown in Figure 2.15(a); Figure 2.3 is duplicated here forreadability purposes. If we

map the BDD to PTL using the implementation model of Figure 2.13, then the entire

PTL network will dissipate power in each clock cycle. On the other hand, if we take

O0

O0 O1 O2
V0 V1 V2

a0a0a0a0a0

a0

a1

a1

a1a1 a1a1

a1

a2a2

b0 b0b0b0b0

b0

b1

b2

c3c3

c3

(a)

(b)(b) (c)

1

1 0

Figure 2.15: (a)BDD for carry function for 3-bit adder. (b) Introducing dummy nodes in

the original BDD. (c) BDD’s for select logic after one-hot encoding of dummy nodes.

a cut across the BDD containing the shaded nodes as shown in Figure 2.15(a), then

54

we can decompose the BDD into smaller BDD’s and build the original function using

multiplexers and PTL implementation of these BDD’s.

The process of decomposition can be explained as follows. Togenerate the BDD’s

for select logic, we introduce dummy terminal nodesV0, V1, andV2 as shown in Fig-

ure 2.15(b) and encode them using scheme such as minimum-bitencoding or one-hot en-

coding. This is similar to the BDD decomposition proposed in[SS01b] for performance-

oriented PTL synthesis. Figure 2.15(c) shows the select functions obtained by one-hot

encoding, i.e., to generateO0, we setV0 = 1, V1 = 0, andV2 = 0. Similarly, BDD’s

for O1 andO2 are obtained. FunctionsO0, O1, andO2 are used as latch enables8 for

the registers and also as select inputs for the multiplexer to select among three combina-

tional logic blocks whose BDD’s are shown in Figure 2.16. As shown in Figure 2.16,

a2 a2a2 a2

b1

b2 b2b2

G0 G1 G2
00 0 11 1

Figure 2.16: BDD’s for functions in combinational logic blocks.

BDD’s do not share the nodes with the same functionality; such nodes are duplicated,

which may cause an area overhead. The decomposed implementation for the carry out-

put function excluding ‘select logic’ is shown in Figure 2.17. In this case, total power
8These signals are latched on falling edge of clock to avoid hazards.

55

a2

a2

a2

b1

b2

b2

b2

c3

G0
G1
G2

O0 O0
O1

O1O2

O2 M
LE

LE

LE

LE = Latch enable, M = Multiplexer

Figure 2.17: Decomposed implementation of the Carry function.

dissipation in combinational logic can be computed as follows: probabilities ofO0, O1,
andO2 being evaluated to 1 are computed using uniform probabilityassumption at the

primary inputs, which can be relaxed for the known input probabilities.P
3 = PO0;O1;O2 + P(3:1)mux + p(O0=1)PCL0 + p(O1=1)PCL1 + p(O2=1)PCL2(2.10)P
3 = PO0;O1;O2 + P(3:1)mux + 0:125PG0 + 0:5PG1 + 0:375PG2 (2.11)

It is easily seen that the power dissipation in the combinational logic varies depending

on the cut and that there are a large number of candidate cuts in a given BDD. Our

objective is to find a cut such that power given by Equation (2.9) is minimized. We

propose an algorithm to find an optimum cut in the following subsection.

56

2.9.2 Algorithm

We represent a BDD as a directed acyclic graph (DAG), where the nodes and edges are

identical to the nodes and edges in the BDD, respectively, and are assigned a direction

corresponding to variable ordering, from a lower indexed variable to a higher indexed

variable. As explained in Section 2.8, the switching probability of a node depends on

its cofactors and probability information of the input variable at that node. The power

dissipation at each node can be computed employing the post-order traversal of a graph.

The probability of node being selected as well as the power dissipation in select logic can

be computed in a similar manner. The total power dissipationof PTL implementation

of a function rooted at a given node is just the sum of power dissipation of its cofactors

and power dissipation at that node9.

The cost of each node is calculated as the sum of the power dissipation in select

logic (Psele
t) and product of probability of the node being selected (psele
t) and power

dissipation at that node (P). The cost estimation for the BDD shown in Figure 2.11 (a)

is shown in Figure 2.18; the probability and capacitance estimations have already been

shown in Figures 2.12 (a) and 2.12 (b), respectively. In Figure 2.18, we useCi = K�Cs
and chooseK = 10 for the sake of simplicity. The triplet (psele
t; P; Psele
t) shown next

to each node in Figure 2.18 corresponds to probability of thenode being selected, power

dissipation in the PTL network rooted at the node in terms of switching capacitance,

and power dissipation in the select logic. As an example, Figure 2.18 lists the three

node cuts10, namely Cut A, Cut B, and Cut C containing one, two, and three nodes,
9In this analysis, signal correlations are ignored. While this may lead to some inaccuracies, it is

generally considered as an acceptable approximation. Thistechnique can be substituted by any other
technique for probability computation that considers correlation.

10Note that cuts have been enumerated for illustrative purposes only and that our algorithm finds the
minimum cut without any such enumeration.

57

a

b b

c

01

N1N2 N3N4N5 N6
(1; 49Cs4 ; 0)(12 ; 25Cs8 ; 12Cs8) (12 ; 25Cs8 ; 12Cs8)(12 ; 2Cs; 33Cs8)

(12 ; 0; 49Cs8) (12 ; 0; 49Cs8) Cut A = fN1g
Cut B =fN2; N3g
Cut C =fN2; N4; N6g

Figure 2.18: Estimating the cost of nodes.

respectively. The cost of a cut is simply the sum of the cost ofeach node in the cut. After

evaluating the cost of each node, the DAG can be converted into a flow network. Ford-

Fulkerson algorithm [CLR98] is then applied to find a minimumcut that corresponds

to the implementation with the minimum power dissipation. In case of Figure 2.18,

the minimum cut is Cut B with the cost73Cs8 , while the cost of Cut A and Cut C is49Cs4 and 253Cs16 , respectively. The pseudo-code of the overall procedure isas shown in

Algorithm 2.9.1. Once the cut is determined, the vertices inthe cut are replaced by

dummy terminal nodes, which can be assigned unique codes to generate select logic,

and the complete implementation can be produced, as illustrated in the previous section.

The following proposition states the time complexity of ouralgorithm.

Proposition 2.9.1 The procedure shown in Algorithm 2.9.1 takesO(N3) time to find an

optimum cut, whereN is the number of nodes in the original BDD.

Proof 2.9.1 The Step 1 to Step 5 takeO(N) time since Step 1, 2, and 3 use post-order

traversal that takesO(kV k + kEk) time on a graph, whereV is a set of nodes andE
58

is a set of edges, while Step 4 and Step 5 also require the linear time in the size of the

graph. In case of BDD’s, all nodes, except the terminal nodes, have two fanout edges,

and therefore,O(kV k + kEk) = O(N). The Step 6 takesO(kV kkEk2) for Edmond-

Karp implementation of Ford-Fulkerson algorithm [CLR98].Therefore, the algorithm

takesO(N3) time to find a minimum cut in the worst case.

Comment: Although time complexity of our algorithm isO(N3), a tighter upper bound

can be obtained, since we have observed that algorithm took less than a second in case

of most of the MCNC benchmarks on Sun Ultra-60 machine and that the actual run

times do not increase cubically. This is because the nodes that are not in the min-

cut have higher costs, as we move away from the cut and therefore, number of flow

augmentations performed by Edmonds-Karp implementation are far less thanO(N2).
Since the Ford-Fulkerson algorithm takesO(N) time for each augmentation, this more

accurately reflects the trend of run times for the circuits inthe MCNC suite.

One can observe that each cut corresponds to implementationwith power dissipation

equal to the cost of cut, and since the Ford-Fulkerson algorithm cut results in a minimum

cut, the decomposed implementation obtained by the procedure in Algorithm 2.9.1 is

the implementation that has the minimum power dissipation under our approximations.

Specifically, some of the inverters in the select logic can berelocated, and new inverters

can be added or removed leading to inaccuracies in the capacitance estimation. How-

ever, these inaccuracies tend to be small since the area occupied by the select logic in

the implementation is small as compared to the other combinational logic blocks. In this

work, we have not taken into account area overhead due to nodeduplication and register

duplication. This can be rectified, and a similar algorithmic framework can be applied

to trade off area and power of the decomposed implementation.

59

2.10 Experimental Results

The above algorithm has been implemented as a C++ program. The BDD package

CUDD [Som] is employed for generating BDD’s, along with sifting [Rud93] for vari-

able ordering for all our experiments. We assume the use of NMOS transistors as pass

transistors and the insertion of inverters after every three pass transistors in series. The

width and channel length for each transistor is assumed to be0:5�m and0:25�m, re-

spectively. The capacitances of the transistors are measured employing parameters of

TSMC 0:25�m CMOS process [Mos]. The primary inputs are assumed to have 50%

probability of being at either 0 or 1 throughout the experiments, while the supply volt-

age and clock frequency is assumed to be 2.5V and 1GHz, respectively. We estimate

the power dissipation in combinational logic for both the regular (undecomposed) and

decomposed implementations of several MCNC benchmark circuits; the corresponding

results are shown in Table 2.6. In the table, Columns 2 through 6 show the number of in-

puts/outputs, the power dissipation of a regular implementation, the power dissipation of

decomposed implementation, the power reduction, and CPU time on Sun Ultra-60 ma-

chine, respectively. The CPU time includes the time for generation of BDD’s, variable

ordering, estimation, and decomposition. The various benchmarks used here include a

variety of circuits, from arithmetic logic units to random logic. We observe significant

power reductions in all of the cases, with an average reduction of 47.35%. We also

observe that the power reduction is more significant in case of the circuits like ex4p,

alu2, and 9symml, for which the number of outputs are relatively small as compared to

the number of inputs. On the other hand, in case of 5xp1 and misex1 the reduction in

power dissipation is relatively lower, and the number of outputs are relatively larger as

60

compared to the number of inputs. This correlation can be explained by observing that

in case of circuits with a large number of outputs, the numberof combinational logic

blocks that may remain active in a given clock cycle is likelyto be larger, resulting in a

lower potential for power reduction.

Table 2.7 shows a comparison of our algorithms with previously proposed algo-

rithms [LKTD01, TB99] for reducing power dissipation in PTLcircuits. The experi-

mental results reported in [LKTD01, TB99] are based on the same assumption of uni-

form probability of primary inputs, and both report switching activity reductions and

not the actual power reductions. However, we assume that theswitching activity reduc-

tions reported in [LKTD01,TB99] are translated to the same power reductions when the

BDD’s are mapped on to PTL. Column 2 in Table 2.7 shows the power reductions by

our algorithm while Columns 3 and 4 show the power reductionsobtained by the algo-

rithms proposed in [LKTD01, TB99]. The ‘-’ entry in Column 3 and Column 4 means

that results are not available for the particular example in[LKTD01,TB99]. We observe

that our algorithm performs better in all the cases. As compared to the average power

reduction of 26.46% by algorithm in [TB99] over the first 8 benchmarks, our algorithm

obtains 50.11% power reduction, on an average, over the samebenchmarks. Over the

last 3 benchmarks, our algorithm obtains power reduction of33.6%, on an average, as

compared to the average power reduction of 6.44% obtained by[LKTD01].

The results due to the algorithm in Section 2.9 are encouraging, since they show an

average power reduction of 47.35% over a variety of MCNC benchmark circuits. The

power reductions obtained by our algorithm, averaged over the MCNC benchmarks, are

23.65% and 27.16% higher than the power reductions obtainedby previously proposed

low power PTL synthesis algorithms [TB99] and [LKTD01], respectively. Therefore,

61

our algorithm can serve as a viable alternative for low powerPTL synthesis. The same

framework of the algorithm can be extended to consider area-power trade-offs in the

decomposed implementations by considering the costs of duplication of nodes and reg-

isters.

2.11 Summary

We have presented efficient algorithms based on BDD decomposition for performance-

driven and low power PTL synthesis. The BDD decomposition employs one-hot en-

coding of the BDD nodes in a cut, while the cut for the decomposition is determined

by transforming bipartitioning of BDD’s into the max-flow min-cut problem and then,

finding the cut by employing Ford-Fulkerson algorithm. The algorithms result in opti-

mal, up to the accuracy in estimation, solutions and have polynomial run-times, which,

in practice, are in seconds for ISCAS’85 benchmarks.

In case of performance-driven synthesis, BDD decomposition is performed recur-

sively till no delay improvements are possible. Using a simple delay metric such as the

number of transistors in series for the recursive bipartitioning, our algorithm results in

logarithmic depth PTL implementation; none of the previoussynthesis heuristic guaran-

tee this lower bound on PTL implementations. The experimental results on ISCAS’85

benchmarks show a 31% improvement in delay and 30% improvement in area, on an av-

erage, as compared to static CMOS implementations forxor-intensive circuits, while in

case of arithmetic logic unit and control circuits that arenand-intensive, improvements

over static CMOS are small and inconsistent. This points towards a static CMOS/PTL

mixed synthesis; our performance-driven PTL synthesis algorithm can be thought of as

62

a step in that direction.

For low power PTL synthesis of combinational circuits whoseinputs and outputs are

registered, our algorithm finds an optimum cut that minimizes the power dissipation in

the circuit using a similar algorithmic framework. The experimental results on a set of

MCNC benchmarks show a significant improvement over the previous approaches.

63

Algorithm 2.5.1 Perform delay analysis on a given BDD.
Input: G(V;E) = Graph underlying a given BDD,n = Number of variables in the BDD,k = Inverter

interval,R = Pass transistor resistance

Output: DBottom8v 2 V
1: for level = 1 to dn=ke do

2: 8v 2 fk � level; k � level� 1; :::; k � level� (k � 1)g, 8b 2 Bk, B = f0; 1g
3: GetDownStreamCapacitance(v,b);
4: In topological order,8v 2 V
5: v.DBottom maxfv0.DBottom + R� v.DownstreamCapj (v0; v) 2 Eg
6: end for

7:

8: Procedure GetDownStreamCapacitance(v,b)f
9: if (AllFanoutEdgesBuffered(v)) then

10: v.DownstreamCap v.Capacitance

11: else

12:
 0
13: for 8e(v; v0) 2 fanout(v) do

14: if (e is not buffered &&b 2 BooleanExpression(e)) then

15:

 + GetDownStreamCapacitance(v0,b);
16: end if

17: end for

18:

 + v.Capacitance

19: if (
 > v.DownStreamCap)then

20: v.DownStreamCap

21: end if

22: end if

23: g
64

Algorithm 2.9.1 Find an optimum cut to reduce power dissipation
Input: G(V;E) = The graph underlying the BDD

Output: S
ut = Optimum cut-set

1: Perform power estimation on G, i.e., computeP for v 2 V
2: Estimate select probabilities, i.e., assignpselel
t to v 2 V .

3: Compute power dissipation in the select logic, i.e., assignPsele
t to v 2 V .

4: for v 2 V do

5: v.Cost v.Psele
t+ v.psele
t � v.P
6: end for

7: GF low CreateFlowNetwork(G(V;E))
8: Ford-Fulkerson(GF low; G; S
ut)

65

Example # of Regular Decomposed Reduction CPU time

I/O Power(mWatt) Power(mWatt) (%) Seconds

5xp1 7/10 0.29 0.21 27.36 0.29

9symml 9/1 0.12 0.05 52.45 0.09

alu2 10/6 1.48 .447 69.9 5.3

alu4 14/8 4.14 3.48 15.86 45

c8 28/18 0.21 0.14 35.0 0.54

cm162a 14/5 0.15 0.07 51.26 0.1

comp 32/3 0.90 0.41 53.76 1.59

cordic 23/2 0.28 0.14 50.52 1.6

ex4p 128/28 3.72 1.23 66.78 19.28

f51m 8/8 0.35 0.18 47.86 0.48

i8 133/81 4.11 1.97 51.95 69.99

inc 7/9 0.39 0.18 52.63 0.42

misex1 8/7 0.16 0.1 35.52 0.11

parity 16/1 0.21 0.1 51.59 0.17

rd53 5/3 0.11 0.05 54.64 0.06

rd73 7/3 0.22 0.1 51.81 0.15

rd84 8/4 0.31 0.14 54.11 0.28

t481 16/1 0.16 0.09 38.12 0.7

z4ml 7/4 0.135 0.82 39.25 0.07

Average 47.35

Table 2.6: Comparison of regular implementation with our decomposition-based imple-

mentation.
66

Example Power Reduction(%)

Our [LKTD01] [TB99]

9symml 52.45 - 18.4

alu2 69.9 - 43.0

cm162a 51.26 - 39.4

cordic 50.5 - 44.6

f51m 47.85 - 32.6

parity 51.59 - 4.00

t481 38.13 - 10.2

z4ml 39.25 - 19.50

5xp1 27.36 6.25 -

duke2 20.83 13.08 -

inc 52.63 0 -

Average 45.61 6.44 26.46

Table 2.7: Comparison of our decomposition-based implementation with the methods

of Tavareset al. [TB99] and Lindgrenet al. [LKTD01].

67

Chapter 3

Transistor-level Layout Generation for

Pass Transistor Logic Circuits

3.1 Introduction

In the previous chapter, we saw that pass transistor logic (PTL) can result in better

implementations in case ofxor-intensive circuits and also some control designs. In spite

of the potential gains in performance due to PTL, its usage has been limited due to the

unavailability of good PTL-specific layout tools. We address this problem by proposing

an automatic layout generator for libraryless PTL circuits.

3.1.1 Previous Work

Although logic synthesis for PTL circuits targeting area, power, and delay optimization

has been studied by numerous researchers [BNNSV97, FMM+98, SS01b], the layout

generation problem for PTL circuits has received relatively less attention. In [MBM01],

68

Macii et al. propose a layout generator for PTL circuits that is suitablefor standard

cell layouts. The limitation of their approach is that they do not fully exploit diffusion-

sharing between the PTL multiplexers, which can potentially save a large amount of

area. The PTL layout work by Yanoet al. [SRY98] does utilize diffusion-sharing using

the idea of Eulerian trails in PTL multiplexers, but its applicability is limited to small

cells, typically up to 4-5 inputs. The limitation to small cells is justified by the fact that

buffers must be inserted after every few pass transistors, and that blocks of pure pass

transistor logic that lies between buffers, which correspond to cells in their work, tend

to have a small number of inputs. This approach corresponds to traditional cell-based

method that generates layouts for individual PTL cells and assembles these by placing

blocks of cells in rows in accordance with a standard cell layout methodology.

Due to the well known relationship between PTL and binary decision diagrams

(BDD’s), we use the BDD representation of a logic function asthe input to our approach.

Our approach consists of three steps: (1) assigning BDD nodes, which represent PTL

multiplexers, to rows in the layout, through a max-flow min-cut based recursive bipar-

titioning technique followed by a greedy assignment, aimedat minimizing the number

of wires going from one row to another, (2) forming diffusion-sharing clusters for PTL

multiplexers in the same row using an Eulerian trail approach, allowing both horizon-

tal and vertical placement of transistors to minimize the area, and (3) placing these

diffusion-sharing clusters optimally within a row employing a linear tree placement al-

gorithm [Yan85] to minimize the wiring overhead for connections within the same row.

Thus, our approach minimizes the width of the layout by maximizing diffusion-sharing

and the height by row assignment and by minimizing the routing overhead for inter-row

and intra-row connections.

69

3.1.2 Our Contributions

Our layout generation algorithm, which takes flexible view of cell boundaries and tries

to maximize the diffusion-sharing, has advantages over both [SRY98,MBM01] the pre-

viously published approaches. Our contributions can be summarized as follows.� Unlike [SRY98], our approach takes a more flexible view of theboundaries be-

tween cells. While the layouts generated by our algorithm fitinto the outline of

a standard cell layout methodology, we do not limit individual cells to have rect-

angular boundaries, and permit a more fluid boundary betweenindividual cells of

pure pass transistor logic, and integrate the layout of inverting buffers into the lay-

out of the pass transistor logic block. In doing so, we allow greater flexibility in

layout and perform the layout for an entire block of PTL, including regenerating

inverters, instead of working with one cell at a time with only a few inputs.� Related work that also uses a flexible boundaries between thecells is proposed re-

cently by Gopalakrishnanet al., but in the context of static CMOS cells [GR01].

Our method differs from their approach in the application oflinear tree place-

ment, bipartitioning, and row assignment as well as in the cluster formations. We

assign groups of transistors to rows and minimize the layoutarea by maximiz-

ing diffusion-sharing, minimizing the wiring area required to route the intra-row

signals, and minimizing the number of inter-row signals.

The organization of the rest of the chapter is as follows. In Section 3.2, we illustrate

a layout model for PTL circuits, followed by a description inSection 3.3 of diffusion-

sharing in PTL circuits based on the adjacency relation between the BDD nodes. Section

3.4 provides a detailed description of various steps in the algorithm, and Section 3.5

70

presents the experimental results and conclusions, while Section 3.6 summarizes the

chapter.

3.2 Layout Model

Figure 3.1(a) shows a PTL multiplexer represented by a BDD1 node; a Boolean functionf is represented byf = AfA + AfA, wherefA andfA are the Shannon co-factors of

the functionf with respect to the variableA. As pointed out earlier in Section 2.3.1,

this BDD node is well known to map on to a multiplexer, and Figure 3.1(b) shows a

layout for this multiplexer that is made compact by allowingthe drains of two multi-

plexer transistors share the diffusion. Empirically, it has been observed in [SRY98] that

exploiting diffusion-sharing at the output of a multiplexer produces a good quality lay-

outs for small cells, and also reduces the search space of a layout generator. Therefore,

our work also employs the approach of maximizing diffusion-sharing. Unlike previous

work on PTL layout that has largely required transistors to be laid out either all horizon-

tally or all vertically, we allow a mix of the two and exploit this flexibility to maximize

diffusion-sharing among transistors.

A typical pass transistor logic circuit contains a set of multiplexers, normally im-

plemented using NMOS pass transistors, and buffers that areinserted after every three

pass transistors in series to boost the signals. These buffers are usually implemented

as inverters that are positioned so as to ensure the correct parity of signals within the

network. Our layout model places the inverters and PTL multiplexers in rows of fixed

height, as shown in Figure 3.2. The figure shows two rows of logic with an interven-
1For the purposes of this chapter, all BDD’s are reduced ordered BDD’s (ROBDD’s).

71

f f
A A AfA fAfA fA
(a) (b)

Figure 3.1: Layout of a multiplexer: (a) A BDD node. (b) Its corresponding layout.

ing channel for routing, with each row containing PTL multiplexers and inverters. The

lower row shows a detailed view of the inside of some typical blocks, illustrating the

layout of a 3-input NAND gate employing PTL multiplexers andan inverter. Each row

has the same height, and rows are separated by a space for routing both intra-row and

inter-row signals. We attempt to minimize this area by performing optimal linear tree

placement

The proposed layout model can be extended easily to accommodate static CMOS

cells due to the placement of power supply and ground lines for each row; however, the

mixed synthesis of PTL and static CMOS is not addressed here.

3.3 Diffusion-sharing in PTL Circuits

The concept of Eulerian trails has often been used for diffusion-sharing optimizations

in static CMOS standard cells. Static CMOS cells consist of aseries-parallel net-

work of transistors, and every Eulerian trail represents a transistor ordering that permits

72

REGION FOR ROUTING

C

VDD

VDD

GND

GND

INVERTERS

MULTIPLEXERS

InverterMultiplexer

A B
A B

P-DIFFUSION

N-DIFFUSION

Figure 3.2: A row-based layout scheme for PTL.

diffusion-sharing between series-connected transistors. In our formulation, we use this

notion of Eulerian trails, tailored specially for PTL layout.

The manner in which diffusion can be shared is dependent on the shapes of lay-

outs and the sizes of the transistors. Shape level optimizations include making a choice

between laying out the transistors in a multiplexers eitherhorizontally as shown in Fig-

ure 3.1(b), or vertically, as shown in Figure 3.3(a), or using a hybrid of the two, as

shown in Figure 3.3(b). In terms of sizing, we consider only uniformly sized transistors

in this work. However, the layout of arbitrarily sized transistors can be handled using

our framework by considering transistor folding in case of large sized transistors and

73

weighting the BDD nodes corresponding to such transistors with an appropriately large

area cost during bipartitioning and row assignment. Subsequently, shape level optimiza-

tions and diffusion-sharing may be used to handle arbitrarytransistor sizes. We do not,

however, consider this issue in our current work.

(a) (b)

Figure 3.3: Different multiplexers layout schemes: (a) With vertical transistors. (b) With

horizontal as well as vertical transistors.

In case of PTL circuits synthesized from BDD’s, we observe that diffusion-sharing

between any two nodes may be possible in only the following two cases:

Input diffusion-sharing Two nodes share the same co-factor, as shown in Figure 3.4(a).

Output diffusion-sharing One node is a co-factor of the other node, as shown in Fig-

ure 3.5(a).

The layouts for each case are shown in Figures 3.4(b) and 3.5(b), respectively. Note that

in Figure 3.5(b), the transistor associated with inputB is laid out vertically so that it

shares the diffusion at the output of the multiplexer with the transistor associated with

74

shared by two nodes

AA

AA

B

AA(a)

(b)

Output of Node B

Figure 3.4: An example of input diffusion-sharing: (a) A BDD. (b) Its corresponding

PTL implementation.

inputB, and also with the transistor associated with inputA of the adjacent multiplexer.

If two nodes share both cofactors, as shown in Figure 3.6(a),then diffusion-sharing can

be obtained as shown in Figure 3.6(b).

Our approach for maximizing diffusion-sharing between transistors involves finding

Eulerian trails through a walk on the input or output edges ofthe nodes, as explained in

the next section.

3.4 Algorithm for Layout Generation

Figure 3.7 outlines the overall algorithm for layout of PTL circuits. The algorithm be-

gins with a multilevel BDD network2 of the circuit and uses a recursive bipartitioning

scheme to assign the BDD’s corresponding to various regionsto different parts of the

layout. This is followed by greedy assignment of the rows to the BDD nodes such that
2A multilevel BDD network [YC99] is similar to a multilevel Boolean network. It uses a BDD to

describe the functionality at each node in the network. It may be recalled that in the previous chapter,
multilevel BDD’s are employed for performance-driven synthesis.

75

Output of B shared

A

A

B
B A
B(a)

(b)

as Input of Node A

Figure 3.5: An example of output diffusion-sharing: (a) A BDD. (b) Its corresponding

PTL implementation.

the number of signals across different rows is minimized, and each row has approxi-

mately the same number of nodes and inverters. This bipartitioning approach can be in-

terpreted as performing a coarse layout region assignment,similar to the use of partition-

ing in placement problems, and can be formulated as a max-flowmin-cut problem. The

greedy procedure assigns nodes in each BDD in the multilevelrepresentation to rows

and takes into account possibilities of diffusion-sharing. The assignment is performed

in such a way that the number of wires from any row to another row is minimized. Af-

ter the row assignment is completed, the multiplexers have been assigned to rows, but

their positions within a row have not been finalized. To do so,we first cluster nodes

in each row using an Eulerian trail approach to maximize diffusion-sharing. Once the

clusters have been formed, they are assigned specific positions in each row; this is per-

formed employing a linear tree placement algorithm proposed by Yannakakis [Yan85].

Figure 3.8 summarizes the features of our approach for minimizing the area of the lay-

out. We minimize the width of each row by diffusion-sharing using Eulerian trails; the

height of the row is fixed. The space for routing is minimized by optimizing the num-

76

A A

A A
B B

A A
(a)

(b)

Diffusion-sharing using
metal strap over diffusion

Outputs of both B nodes shared

Figure 3.6: A diffusion-sharing scheme for the case when twocofactors are shared: (a)

A BDD. (b) Its corresponding PTL implementation.

ber of inter-row signals; this is addressed using min-cut recursive bipartitioning for the

signals between different BDD’s and by greedy row assignment for the inter-row sig-

nals among the nodes of the same BDD. We minimize the number ofrows for routing

intra-row signals by employing linear tree placement for the diffusion-sharing clusters;

Yannakakis’s algorithm ensures optimal placement for trees.

The time complexity of recursive bipartitioning using max-flow min-cut technique

isO(kV k� log kV k�kEk2) since the complexity of Ford-Fulkerson algorithm isO(kV k�kEk2) [CLR98], whereV andE are set of vertices and edges in the multi-level BDD

network, respectively. The time complexity of the algorithm for row assignment is also

polynomial in the number of nodes in individual BDD’s. The time complexity of Eule-

rian trail algorithm is linear in number of edges of the nodesthat are assigned the same

row while the complexity of linear tree placement algorithmisO(N �logN), whereN is

the number of vertices corresponding to diffusion-sharingclusters in a tree. Therefore,

time complexity of overall algorithm is polynomial.

77

Multi−level

Uses Eulerian

Uses Linear Tree

Placement

Cluster Formation
Trail approach

Algorithm

Row Assignment

of BDD Nodes

Bipartitioning

 Recursive

Linear Placement

of Clusters

Routing

Uses Greedy

among Nodes

Min−cut Technique

BDD Network

Uses Max−flow

Figure 3.7: An overview of the algorithm.

3.4.1 Recursive Bipartitioning

The multilevel BDD network can be treated as a directed graph, where each vertex

corresponds to a BDD and a directed edge means that output of avertex represented

by a BDD is an input to the BDD of another vertex; the edges are assigned directions

leaving from primary inputs and pointing towards primary outputs. Our aim is to find

a cut that partitions a given multilevel BDD network into approximately equal parts

in terms of the area occupied by the transistors (both in multiplexers and in inverters),

and has minimum connectivity among the partitions. To obtain such an area-balanced

partition, we associate two costs with each node in the multilevel BDD network that are

defined as follows.

78

Intra−row Signals

Inter−row Signals

Row Height
 (fixed)

ROUTING
 REGION Region for

 Region for
Minimize by Min−cut
Partitioning & Greedy

Minimize by Linear
Tree Placement

Row Assignment

Row Width − Minimize by Diffusion−sharing

INVERTER

}

GND

VDD

MULTIPLEXERS

Figure 3.8: A pictorial view of area minimization strategies for the layout.

Lower Cost (Alower) : This is the cost of a PTL implementation of the multilevel BDD

network rooted at a given node.

Upper Cost (Aupper) : This is the cost of a PTL implementation of the multilevel BDD

network rooted at a given node, assuming the directions of edges reversed.

The costsAlower andAupper can be obtained by a post-order traversal of the multilevel

BDD network. The upper and lower costs reflect the contribution of a given node to the

total area of a PTL implementation in the part of the multilevel BDD network towards

the primary outputs and in the part of the multilevel BDD network towards primary

inputs, respectively. A node that has almost the same upper and lower costs is a good

candidate for inclusion in the cut since it will result in an area-balanced partition, and

using all such nodes, we want to find a min-cut partition. We therefore define candidate

nodes for the cut as follows.

Candidate Nodesare the nodes for whichjAlower � Aupperj � �, where� indicates

79

(a) (b)

1
1
01
2
2
02
3

3

03

4

4

04

11

1 1
1 111

Cut A

Cut B

s

t

2 2
2 2

33

3 3

Figure 3.9: Recursive bipartitioning: (a) A multilevel BDDnetwork. (b) Its correspond-

ing flow network.

flexibility while choosing candidate nodes.

Although the idea of recursive bipartitioning proposed here is similar to that presented in

the previous chapter, it differs from the latter in the objective as well as the application.

The objective here is to generate area-balanced partitionsthat minimize the connectiv-

ity, while the method in the previous chapter aims to find delay-balanced partitions.

Moreover, we apply recursive bipartitioning to a multilevel BDD network, instead of to

individual BDD’s.

We now try to find an optimal vertex cut across these candidatecut nodes with the

intention of assigning approximately half of the multilevel BDD network, in terms of

80

area, to each side of the partition, while also ensuring thatthere is minimum connectiv-

ity between the partitions. To ensure the minimum connectivity, we transform the bi-

partitioning problem to the max-flow min-cut problem in which each candidate node is

assigned a flow capacity equal to its number of fanouts. Figure 3.9 shows a part of mul-

tilevel BDD network containing candidate nodes
1,
2,
3, and
4, and its corresponding

flow network with a source nodes and a destination nodet. To form a flow network for

the minimum vertex cut, each candidate node is split into twonodes connected by an

edge that is assigned a capacity equal to the number of fanouts. For instance, the capac-

ity of the edge between
1 and
01 in Figure 3.9(b) is 2 because the number of fanouts

of the node
1 in the network of candidate nodes is 2 in Figure 3.9(a). Moreover, node
01 is connected to node
3 and
4 in the flow network, since node
1 is connected to the

corresponding nodes in the network of candidate nodes. The edges that are assigned a

capacity of1 are guaranteed not to appear in the cut. Figure 3.9(b) shows two possible

cuts: Cut A with a capacity of 4, and Cut B with a capacity of 6. The application of

the Ford-Fulkerson algorithm [CLR98] finds the min-cut, which in this case is Cut A.

Therefore, the corresponding nodes that are chosen for partitioning are
1 and
2. In the

resulting partition, nodes
1,
2, and their predecessors will be in one subset, while nodes
3,
4, and their descendents will be in another subset. Recursivebipartitioning of the

multilevel BDD network on these subsets continues until a trivial network containing a

single vertex corresponding to a single BDD of the multilevel network is obtained.

3.4.2 Greedy Heuristic for Row Assignment

After recursive bipartitioning of the multilevel BDD’s, the BDD’s are assigned an order-

ing for layout. To generate a compact layout for each BDD, we must assign the nodes in

81

each BDD to rows such that the diffusion-sharing among the nodes in the same row is

maximized. We use a greedy method for this purpose, as described in Algorithm 3.4.1.

Algorithm 3.4.1 Perform row assignment for nodes in a BDD
Input: G(V;E) = The graph underlying the BDD

Output: Mappingf : V ! f0; 1;� � �,rowmaxg
1: Vleft V
2: row 0
3: while Vleft 6= � do

4: Area 0
5: Srow �
6: while Area < MaximumArea do

7: v MostAdjacentNode(SRow,G,Vleft)
8: SRow SRow S v
9: Vleft Vleft - v

10: Area AreaEstimation(SRow)

11: end while

12: AssignRow(SRow, row)

13: row row + 1
14: end while

The set of multiplexer nodes assigned to each row is first initialized to the empty

set. Subsequently, the algorithm successively adds nodes to the set as long as a user-

defined area capacity of the row is not exceeded; this area capacity can be used to control

the width of the layout. In each step, the node (found by the MostAdjacentNode()

routine) that is greedily added to the set is the one that is adjacent to the maximum

82

number of nodes that are already in the set; any ties are broken in favor of a node with a

lower variable index in the variable ordering for the ROBDD.This strategy serves two

purposes:

1. It maximizes the possibility of diffusion-sharing amongnodes in a row; more

diffusion-sharing implies compact layouts and a likelihood of assigning more

nodes to the same row.

2. It minimizes the number of edges going across different rows, and therefore, the

routing area required for inter-row signals is also minimized.

This greedy algorithm implicitly minimizes the row area, since it considers the effects

of diffusion-sharing. A node that is to be added to the set is chosen depending on the

adjacency to the nodes already in the set, and adjacency implies possible diffusion-

sharing. The following proposition states the complexity of the algorithm.

Proposition 3.4.1 The procedure in Algorithm 3.4.1 terminates inO(N �kSRowk�dmax)
time, whereN is the total number of nodes,kSRowk is the cardinality of the row anddmax is the maximum degree among all nodes.

Proof 3.4.1 The FindMostAdjacentNode routine requiresO(kSRowk � dmax) time. The

routine AreaEstimation is completed in constant time, since it is incremental in nature.

Therefore, innermost while loop takesO(kSRowk2 � dmax) time, and since it is repeatedO(N=kSRowk) times, the result follows.

3.4.3 Formation of Diffusion-sharing Clusters

The width of each row can be minimized by diffusion-sharing among different multi-

plexers placed in the same row. To form diffusion clusters, i.e., clusters of transistors that

83

(a)

(b)

A A AA

A A A A

B B B

C

C

D D E E E

S

1

1

2

2 3

3

4

4

5

5

Super node

Possible diffusion-sharing

Eulerian trail

Figure 3.10: Cluster formation: (a) A group of BDD nodes to beplaced. (b) The corre-

sponding Eulerian graph. Dotted edges in (b) denote possible diffusion breaks.

can share diffusion, we use the Eulerian trail algorithm [PS98] after Eulerizing a given

graph by adding a super node and connecting nodes with an odd3 degree to it. This

Eulerian trail algorithm is used in [RS99] for two-dimensional micro-cell placement in

the context of CMOS cells. The nodes in our Eulerized graph for a row correspond to

BDD nodes assigned to the row, and the edge set consists of twotypes of edges: ones

that denote possible diffusion-sharing and the others thatdenote diffusion breaks. As

explained in Section 3.3, in case of PTL, diffusion-sharingcan occur in case of input

sharing, illustrated in Figure 3.4, or output sharing, as shown in Figure 3.5. To capture

this relationship, we introduce edges between the corresponding nodes in the Eulerized
3The nodes with 0 degree are also connected to the super node, and this does not affect the number of

diffusion breaks.

84

graph. Dummy edges indicating diffusion breaks connect theodd degree nodes to a

super node. Figure 3.10(a) shows an example with five BDD nodes, corresponding to

variables A and C, to be placed in a row; we assume that nodes with labels B, D, and

E are already placed in previous rows. The corresponding Eulerized graph is shown in

Figure 3.10(b), and the cluster formations associated withthe Eulerian trail in the figure

are shown in Figure 3.11. Three clusters are identified: one with one multiplexer and

two with two multiplexers each.

1 2 3

A A

A

5

CCA

4

A

A

AA

Figure 3.11: Diffusion-sharing clusters corresponding toFigure 3.10.

3.4.4 Linear Placement

Although there are potentially exponentially many Eulerian trails in the Eulerian graph,

it is known that every trail yields a solution with the same minimum width corresponding

to the same number of diffusion breaks. However, the routingcost varies for different

trails, corresponding to different arrangements of the diffusion-sharing clusters. To opti-

mize this cost, we perform linear tree placement of clusterswhile preserving the order of

the multiplexers in each cluster. Since the multiplexer order in each cluster is preserved,

altering the order of the clusters will not affect the row width. This step can also be

thought of as a generating an Eulerian trail that has better routability than the previous

85

Eulerian trail. The objective here is to minimize the cost involved in routing the signals

that connect different clusters in the same row.

(b)

V1 V3 V2

Cutwidth = 2

Cutwidth = 1

(c)(a)

V1 V2 V3

V1 V2

V3

Figure 3.12: Linear placement for laying out the clusters: (a) A cluster tree. (b) A

sub-optimal placement. (c) An optimal placement.

We define a graph, called a cluster graph,G(V;E) on clusters, in which every vertexv 2 V corresponds to a cluster, and there is an edge between the vertices if there are

signals connecting the corresponding clusters. IfG(V;E) is a tree, then application

of Yannakakis’ algorithm [Yan85] results in an optimal placement that minimizes the

cut-width; here the cut-width corresponds to the number of rows required to route the

signals between different clusters. Yannakakis’ algorithm uses dynamic programming

to build the solution in a bottom up manner and runs inO(N � logN) time, whereN
is the number of vertices. If the cluster graph is not a tree, then we arbitrarily remove

some of the edges to make it a tree; in this case, however, the optimality of solution is

not ensured. In practice, it is seen that for BDD’s, the cluster graph is typically close to

a tree. To understand this, we observe that a cycle can appearin a cluster graph, if there

are forward edges in the BDD that connect a node to its ancestor, and the node at either

end of the the forward edge and the parent of the node are placed in the different clusters

86

of the same row. However, such a structure is likely to resultin a great deal of diffusion-

sharing, and this increases the probability that all such structures are placed within the

same cluster. Therefore, cycles between clusters, while not impossible, are improbable.

We verified the same from experiments on the benchmark examples. Figure 3.12(a)

shows a cluster tree containing three clusters V1, V2, and V3, with connections between

V1 and V3, and between V2 and V3. Figure 3.12(b) shows a suboptimal placement of

these clusters that results in a cut-width of two, implying that number of rows required

to route the signals will be two, if we use two metal layers. Figure 3.12(c) shows an

optimal placement with cut-width of 1 that will be found by Yannakakis’ algorithm,

implying that one row suffices to route the signals between the clusters. This example

shows the impact of linear tree placement and its contribution to minimizing the area.

3.5 Experimental Results

We have implemented the algorithms discussed in this chapter in a C++ program that

generates layouts for PTL circuits from BDD’s; the CUDD package [Som] is employed

to construct multilevel BDD’s. Inverters are inserted after every three pass transistors in

series; we utilize a heuristic for inverter insertion, since the general problem of inverter

insertion in PTL circuits is shown to be NP-hard [ZA98]. The technology that we use is

scalable CMOS technology with one poly and three metal layers. Poly is employed for

routing inputs; Metal1 is utilized for routing intra-row signals; and Metal2 and Metal3

are used for routing inter-row signals. Metal1 is allowed toroute in the vertical as well

as the horizontal directions, while Metal2 is employed for routing mostly in the vertical

direction, and Metal3 is used to route only in the horizontaldirection.

87

Figure 3.13: Effect of row assignment, clustering, and linear tree placement on rd84.

The figure shows 122 pass transistors and 21 inverters.

Figure 3.14: Intra- and inter-row routing for rows 1 and 2 in rd84 circuit.

88

Figure 3.15: Post-routing layout for rd84 circuit.

89

Figure 3.13 shows the placement of multiplexer clusters andinverters in five rows

for an MCNC benchmark rd84, while Figures 3.14 and 3.15 show the intra- and inter-

row wires for the first two rows and a picture of the complete layout, respectively, after

routing employing a router4 in MAGIC [Ous]. The benchmark rd84 has 8 inputs and 4

outputs with a BDD representation that has a size of 63 nodes,while its transistor-level

implementation includes 122 transistors apart from 21 inverters. Figure 3.13 clearly

shows the effect of greedy row assignment, which results in area-balanced rows with

high amount of diffusion-sharing among each row. Moreover,it is quite clear that the

flexibility of placing transistors either horizontally or vertically serves to reduce the area

and create a compact layout. All the five rows show the effect of diffusion-sharing and

its contribution to the width minimization.

Table 3.1 shows the experimental results on ISCAS’85 benchmarks. Column 2

shows layout area for static CMOS circuits, while Column 3 shows the the layout area

for PTL circuits due to our algorithm. The static CMOS circuits are obtained by tech-

nology mapping for area minimization employing lib2.genlib library in SIS [Sen92]; the

library is characterized for 130nm technology [ptm]. The numbers in Column 2 corre-

spond to the gate-area, and are, therefore, lower bounds on actual area. In case of PTL

circuits, multi-level BDD’s are directly mapped on to PTL employing inverter insertion

heuristic proposed in [MBIS01], and transistors are laid out using our algorithm. To per-

form post-placement area comparison, we employ the left-edge algorithm for estimating

the channels required to route the intra-row and inter-row signals. More sophisticated

routing algorithms such as those employing dog-legs, or theapplication of a commercial

router will, of course, result in smaller number of routing channels and therefore, greater
4Our tool, in its current form, does not perform routing, but it produces the netlists that can be used by

publicly available tools such as MAGIC or commercial routers.

90

Example Static CMOS Ours

Area (�m2) Area (�m2)
C1355 (Error correcting codes) 4631 1825 (-60%)

C1908 (Error correcting codes) 4867 1924 (-60%)

C2670 (ALU and Control) 10930 11606 (+6%)

C3540 (ALU and Control) 11247 9040 (-19)

C432 (Priority Decoder) 3007 4303 (+43%)

C499 (Error correcting codes) 4611 1123 (-75%)

C5315 (ALU and Selector) 18065 20554 (+13%)

C6288 (16-bit Multiplier) 27947 13600 (-51%)

C7552 (ALU and Control) 28817 12655 (-56%)

C880 (ALU and Control) 3796 2729 (-28%)

Total 117918 79359 (-32%)

Table 3.1: Comparison of layout area for ISCAS’85 benchmarkcircuits.

area reduction. Our results with the left-edge algorithm for routing are, therefore, upper

bounds on the area. We see that in case ofxor-intensive circuits, such as C1355, C1908,

C499, and C6288, PTL results in 61% reduction in area, while area improvements are

not consistent for ALU and control circuits that arenand-intensive. On an average, area

of PTL circuits that are laid out using our algorithm has been32% smaller than the

corresponding gate-areas of static CMOS circuits.

91

3.6 Summary

In this chapter, we have described an algorithm for transistor-level placement of PTL

circuits. The algorithm is useful for translating the libraryless PTL circuits into layouts.

The lack of any such tools has been one of the reasons for the limited usage of library-

less PTL circuits despite their advantages. The layouts generated by the algorithm are

amenable to static CMOS/PTL mixed synthesis, since they canfit in to standard cell

methodology. It has advantages over previously published approaches, and comparison

with the static CMOS circuits for ISCAS’85 benchmarks show alarge improvement in

area, especially in case ofxor-intensive circuits.

92

Chapter 4

Congestion-aware Technology

Mapping

Interconnect dominance is a daunting issue for sub-100nm VLSI designs. This is a con-

sequence of the rising design complexity: following Moore’s law [Moo65], the number

of on-chip transistors are doubling every twenty four months, while, according to Rent’s

rule [LR71, CS00], the number of wires also grows exponentially with the number of

gates. As a result, even today’s designs have regions where the unavailability of suffi-

cient number of tracks to route the wires causes the circuitseither to be unroutable or

to violate the timing constraints due to long wire detours. This is often referred to as

the routing congestion problem. In this chapter, we focus ontechnology mapping, an

important logic synthesis transformation, to alleviate the congestion.

93

4.1 Introduction

4.1.1 Motivation

Although exact routing congestion information is known only after global routing, a

failure to address congestion prior to this point implies that the designer is left with few

degrees of freedom. Moving one step back, to placement, provides greater flexibilities,

but is still not enough and it is known that this does not remove the need for a number

of design iterations. This is often due to the poor fidelity ofcongestion-unaware delay

estimates, which cannot accurately estimate the effect of long wire detours required for

congestion reduction, or due to the unroutability of some designs where there may not

be enough tracks available for routing.

It is imperative to address congestion issues early in the design process to allow for

more freedom to reduce congestion. Previous work on wire planning in logic synthe-

sis [GNBSV98, GKSV01] at the technology-independent optimization stage is targeted

towards wirelength estimation to consider the wire delays (as opposed to our work which

targets routing congestion). At this phase of logic optimization, it is not entirely clear

which wires will be in the logic netlist, as this is decided during the technology map-

ping step. Technology mapping provides powerful capabilities for absorbing long inter-

connect wires into internal connections within complex gates, or for splitting complex

gates into simpler gates, thus helping to alter the overall distribution of wires in the

layout. Thus, it is an ideal step where the routing congestion problem may be attacked

with relatively more freedom (albeit relatively less information) than during placement

and routing. Although several methods for integrating physical design with technology

mapping have been proposed, there is little work on incorporating congestion consider-

94

ations. Existing methods for this purpose, which are based on indirect metrics such as

wirelength, are unsatisfactory, and the work presented in this chapter is directed towards

filling that void.

While congestion is an important consideration for technology mapping, the over-

riding objectives continue to be metrics such as area or delay or power. Therefore, it

is more appropriate to use congestion as a constraint ratherthan as an objective. While

optimizing for area and delay, it is desirable to ensure thatthe final netlist does not have

congested spots, so that long detours are avoided and the netlist remains routable. Typ-

ically, very few places in the circuit (ideally, zero) should have congestion values that

are greater than some threshold, and the final netlist shouldbe well optimized from the

area and/or delay perspectives.

4.1.2 Previous work

We review some of the previous works on congestion-aware technology mapping ap-

proaches in the literature. Stoket al. proposed a clustering of closely placed cells

during technology mapping so that the matching choices covering distantly placed cells

in the subject graph are ruled out [SK01]. This approach may result in long wires in the

final netlist, and more importantly, may be so limiting as to leave a significant portion

of the design space unexplored. Pandiniet al. proposed wirelength as a metric to be

minimized during technology mapping in order to reduce the congestion [PPS02]. Al-

though large wirelength may be correlated with high congestion, the correlation is rather

poor, and therefore, this may not result in an effective optimization. This observation

has been borne out by recent work by the same authors [PPS03],who state that such a

metric, when considered during technology mapping employing a traditional cost func-

95

tion (K1�Area+K2�Delay+K3�Wirelength, whereK1, K2, andK3 are constants),

may not result in decreased congestion. As pointed out by them, congestion is a local

property that varies from bin to bin, and it is difficult to capture its effects using a global

metric like wirelength. This inference led them to the conclusion that congestion can

only be targeted using iterative placement and technology mapping. However, such a

conclusion is valid only when the congestion optimization is performed using an indirect

global metric in a traditional fashion, and is not generallytrue.

4.1.3 Our Contributions

We present a technique for performing congestion-aware technology mapping. Instead

of trying to absorb the congestion information into a singlemetric, we work with infor-

mation about the distribution of congestion over the entirelayout. The contributions of

our work can be summarized as follows.� Using empirical data on several benchmarks, employing different script and li-

braries, we show the fidelity between the congestion maps forthe subject graph

and the mapped netlists, which is later exploited during thetechnology mapping.� Instead of applying an indirect metric such as wirelength [PPS02,SIS99], we uti-

lize probabilistic congestion estimates [LTKS02] to guideour technology map-

ping; these estimates are shown in [LTKS02] to have good fidelity with post rout-

ing congestion estimates and have even been implemented in acommercial tool.� We define the congestion cost function in such a way that it allows the mapper

to choose the area- or delay-optimal choices, when the corresponding wires are

likely to pass through sparsely congested region. At the same time, the cost func-

96

tion allows the choice of congestion-optimal matches, whenwires are likely to

pass through densely congested region. Thus, different optimization modes are

applied at different places in the circuit depending on the context. To the best of

our knowledge, such selective optimization has not been applied before during

technology mapping.� Experimental results due to congestion-aware technology mapping algorithms on

an industrial benchmark and ISCAS’85 circuits show an improvement of 37%,

on an average, in track overflows as compared to conventionalmapping, when

area minimization is targeted, while, on an average, 46% improvement in track

overflows is obtained over the regular method, when the circuit delay is an op-

timization objective. These improvements come at the cost of an 8% and a 2%

gate-area penalty, respectively, for area and delay minimization.

The organization of the rest of the chapter is as follows. Section 4.2 introduces the

terminology and problem definition, while Section 4.3 presents empirical and intuitive

justifications for congestion fidelity for pre-mapped and mapped netlists. Sections 4.4

and 4.5 illustrate congestion-aware technology mapping algorithms targeting area and

delay, respectively, while Section 4.6 discusses time complexity and the possible ex-

tensions to these algorithms. Section 4.7 presents experimental results and conclusions

followed by the summary of the chapter in Section 4.8.

97

4.2 Preliminaries

4.2.1 Terminology

The following terminology is used throughout this chapter.A Boolean network is a di-

rected acyclic graph (DAG), in which a node denotes a Booleanfunction,f : Bn ! B,

whereB = f0; 1g, andn is the number of inputs to the node. The traditional technol-

ogy mapping is usually preceded by a decomposition of this abstract network into one

that contains primitive gates, such as 2-input NAND’s and inverters. The decomposed

network is referred to as a subject graph or a premapped netlist. The subject graph is

mapped on to a set of cells in the library during technology mapping; the resulting net-

work is known as a mapped netlist, which is placed in a given block area and routed.

The block area is divided into bins for congestion analysis purposes or for global rout-

ing. Each bin contains a limited number of horizontal and vertical tracks. The track

overflow and congestion can be defined for every bin as follows.

Definition 4.2.1 The horizontal (vertical) track overflow for a given bin is defined as

the difference between the number of horizontal (vertical)tracks required to route the

nets through the bin and the available number of horizontal (vertical) tracks.

Definition 4.2.2 The horizontal (vertical) congestion for a given bin is the ratio of num-

ber of horizontal (vertical) tracks required to route the nets through the bin to the number

of horizontal (vertical) tracks available.

A positive track overflow or a congestion more than 1.0 means that sufficient tracks

are unavailable for the routing, while negative value of theoverflow or the congestion

smaller than 1.0 indicates the availability of tracks.

98

4.2.2 Problem Definition

Routing congestion depends on the following factors:

1. the connectivity of the network,

2. the placement of cells in the layout, and

3. the routing of interconnects between the placed cells.

Since there is relatively less freedom to attack routing congestion during the placement

and routing stages, we concentrate on the first factor. The technology mapping step

makes crucial decisions regarding the connectivity of the network, since the mapping

of primitive gates to the library cells determines the set ofwires that will be present in

the circuit netlist. Traditionally, this has been carried out without any placement infor-

mation. Although this has changed in recent physical synthesis vendor offerings, most

approaches focus on the prediction of wirelength based on bounding box estimates that

ignore congestion. The estimation of routing congestion without a placement for a net-

work is, if not impossible, liable to be highly inaccurate, and one may have to rely on

high level metrics such as adhesion (defined as a sum of min-cuts between all pairs of

nodes in the network) [KSD02]. However, this is a very new metric and several open

questions about it remain unanswered: for example, whetherit can be measured in a

computationally efficient manner, and whether its fidelity is valid for mapped netlists.

On the other hand, probabilistic congestion estimation [LTKS02] used after the place-

ment of a mapped network has been demonstrated to correlate well with the congestion

map generated after the routing, on both academic and industrial benchmark circuits.

The estimation method divides the layout into bins and computes the congestion for a

99

given bin under all possible routes for a given net. We use thesame method to guide

our technology mapping algorithm. However, even such a method is difficult to adapt,

since only the premapped netlist is available prior to technology mapping, and the level

of correlation between the probabilistic congestion maps of the premapped netlist and

the mapped netlist has not been studied in the past. One contribution of this work is to

perform such a study. From empirical evidence obtained employing different logic syn-

thesis scripts and placement algorithms on a variety of benchmarks, we show a good

congestion correlation between premapped and mapped netlists. Once we establish

the congestion correlation between the premapped and mapped netlists, the problem

of congestion-aware technology mapping can be defined as follows.

Problem definition 4.2.1 Given a subject graph of a network and a library of gates,

synthesize a network optimizing area or delay such that the maximum (horizontal/vertical)

congestion over all of the bins is less than the given threshold.

4.3 Congestion Fidelity

This section explores the level of fidelity between the congestion estimates before and

after technology mapping for any given circuit. For a given circuit, a premapped netlist

contains primitive gates such as 2-input NAND’s, while a mapped netlist contains a set

of cells from a given library. Intuitively, the premapped and mapped netlist for a circuit

share the same global connectivity, since the mapper absorbs some wires of the sub-

ject graph into the internal nodes of library cells, leavingother wires untouched. This

points towards the possibility of good fidelity between congestion maps for premapped

and mapped netlists. However, congestion also depends on the placement of elements,

100

primitive gates or gates in the library, in the netlist. Placement algorithms employed

by commercial tools and in academia are typically based either on recursive multi-level

bisectioning or force-directed quadratic programming. Itwould be useful to understand,

even empirically, whether these placement algorithms react to the same global connec-

tivity and block area constraints in a similar way. If so, there may be a good congestion

correlation between premapped and mapped netlist. We explore this issue by perform-

ing a set of experiments using a variety of placers, logic synthesis scripts, libraries, and

benchmarks.

4.3.1 Experimental Setup

To verify the fidelity between congestion estimates before and after technology map-

ping, we placed several premapped netlists, and the corresponding mapped netlists us-

ing the same block area and the same placement of input/output terminals. Two dif-

ferent placement algorithms were employed – a recursive bisectioning based algorithm

in a publicly available tool, Capo [CKM00], and a force-directed quadratic algorithm,

Kraftwerk [EJ98], implemented in a proprietary industrialplacer. Different scripts, such

asrugged, boolean, algebraic, espresso, andspeedupin SIS [Sen92] were applied for

preprocessing the netlists before technology mapping employing different libraries in

SIS as well as an industrial library used for high-performance microprocessor designs.

The following options were used for mapping and placement.� Mapping was performed in SIS using themap -s -n 0 -AFG -pcommand that

performs area and fanout optimization. No layout information was utilized to

guide this technology mapping.

101

� Placement using Capo [CKM00] was performed with default options to minimize

the total wirelength based on half perimeter bounding box estimates, while� As an alternative to Capo, Kraftwerk [EJ98] was employed to perform placement

to minimize total wirelength as well as congestion.

The premapped netlist is an abstract Boolean network containing primitive gates

such as 2-input NAND’s and inverters. For the placement of such a netlist, the primitive

gates must be assigned areas. We assign the areas of the corresponding minimum-sized

gates in the library to these primitive elements. Since the number of nodes in this netlist

is large, the area of primitive gates must be scaled by a certain factor to present the same

white space constraints as the mapped netlist for the placement. This factor is computed

a priori as a ratio of the targeted gate area to the area of premapped network using the

following equation.

Scaling factor= Block area�White space area
Area of premapped network

(4.1)

Note that this factor is readily available given the block area, the white space area, the

premapped netlist, and the cell library, and does not require any testcase-specific tuning.

4.3.2 Experimental Results

We show results for a few representative benchmarks: C432, C6288, C7552, and an

industrial circuit containing an instruction decoder (IDC) in a high-performance micro-

processor. Apart from the vastly different functionalities, the sizes of these benchmarks

also vary from a few hundred cells to a few thousand cells. Figures 4.1 (a) and (b) show

congestion maps for the benchmark C432 for the mapped and premapped netlists, re-

spectively. The placement of both the networks is performedusing Capo. In these plots,

102

1
2

3
4

5
6

7
8

0

2

4

6

8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

(a)

1
2

3
4

5
6

7
8

0

2

4

6

8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

(b)

Figure 4.1: Horizontal congestion for C432 for (a) the area-oriented mapped netlist

and (b) the premapped netlist.script.ruggedis used for preprocessing the netlist and

Capo [CKM00] is employed for placement.

103

1
2

3
4

5
6

7
8

0

2

4

6

8
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Figure 4.2: Bin-wise congestion difference between pre-mapped and mapped netlists

corresponding to Figure 4.1(a) and 4.1(b), respectively, for C432.

the XY plane shows the two dimensions of the layout area, while the Z-axis depicts the

congestion. Visually, one can conclude that the distribution shown in Figure 4.1(b) is

similar in nature to the congestion map shown in Figure 4.1(a); the bin-wise difference

in the congestion values is shown in Figure 4.2. One can observe that, for most of the

bins, the difference between the congestion in the premapped and mapped netlists is less

than 10%. Similarly, the congestion maps for the benchmark circuit C7552 and for the

circuit IDC for the mapped and premapped netlists are shown in Figures 4.3 and 4.4,

respectively; the netlists for these benchmarks are placedusing Kraftwerk [EJ98]. The

congestion maps for the premapped netlists for C7552 and IDCshow characteristics

similar to those of the corresponding mapped netlists.

Representative results for some ISCAS’85 benchmarks and the IDC circuit employ-

ing different scripts, libraries, and placers are shown in Table 4.1, while similar results

on more extensive set of benchmarks are presented in tables 4.2 and 4.3. Columns

104

0
5

10
15

20
25

0

5

10

15

20

25
0

0.5

1

1.5

2

2.5

3

(a)

0
5

10
15

20
25

0

5

10

15

20

25
0

0.5

1

1.5

2

2.5

3

(b)

Figure 4.3: Horizontal congestion for C7552 for (a) the area-oriented mapped netlist

and (b) the premapped netlist.script.algebraicis used for preprocessing the netlist and

Kraftwerk [EJ98] is employed for placement.

105

0
5

10
15

20
25

30

0

5

10

15

20

25
0

0.5

1

1.5

2

2.5

3

3.5

(a)

0
5

10
15

20
25

30

0

5

10

15

20

25
0

0.5

1

1.5

2

2.5

(b)

Figure 4.4: Vertical congestion for IDC for (a) the mapped netlist and (b) the premapped

netlist. script.booleanis used for preprocessing the netlist and Kraftwerk [EJ98] is

employed for placement.

106

2, 3, and 4 show the scripts used, the number of cells in the mapped netlists, and place-

ment tools used, respectively. Technology mapping in SIS [Sen92] is performed using

the area and fanout optimization option, employing the lib2.genlib library in SIS and

an industrial library. It is worth noting that the mapped netlist is fanout-optimized,

which possibly restructures the network after the mapping and may affect the global

connectivity adversely. Columns 5 (6) and 7 (8) in the table show the average and max-

imum horizontal (vertical) congestion, respectively, while columns 9 and 10 show the

statistical correlation between the congestion in premapped and mapped netlist. The

correlation is defined asE[(X��X)(Y ��Y)℄�X�Y , whereE[℄ is the expectation,� is the mean,� is the standard deviation; in our case,X andY correspond to the congestion in the

premapped and mapped netlists, respectively. A correlation value closer to 1 (-1) means

that two random variables are strongly positively (negatively) correlated, while a value

close to 0 means that variables are weakly correlated [DS01].

4.3.3 Justification Based on Experimental Results

In spite of fanout optimization that may affect the global connectivity and hence con-

gestion fidelity, the congestion correlation between subject graph and mapped netlist is

always greater than 0.6 for all the netlists. One may deduce the following based on these

experimental results.� Across different libraries, scripts, benchmarks, fanout optimization, and place-

ment algorithms, a good correlation exists between the congestion map for the

subject graph and congestion map for a mapped netlist.� The reasons for the congestion correlation are likely to be the similarities in the

107

global connectivity in the subject graph and the mapped netlist, the similar block

area and I/O terminal constraints, and the way any reasonable placement algo-

rithms react to such resemblances in global connectivity and the block area con-

straints.

4.4 Congestion-aware Area-oriented Mapping

Match
Inputs

Match
Inputs

Match
Inputs

Match
Inputs

Match
Inputs

Match
Inputs

AOI33 AOI33

Output
Match

Output
Match
Output

Match

(a) (b) (c)

Figure 4.5: Mapping choices: (a) Sub-optimal area and trackrequirement = 12. (b)

Area-optimal and track requirement = 20. (c) Area-optimal and track requirement = 15.

In this section, we focus on area optimization as an objective for technology map-

ping. For the purposes of congestion-aware mapping, the sparsely congested and densely

congested regions must be identified. From the experiments in the previous section,

which demonstrate the congestion correlation between a subject graph and its mapped

netlist, we can conclude that the former netlist is accurateenough for this purpose. Since

the primary objective of our congestion-aware technology mapper is area minimization,

we employ a variation of a widely used dynamic programming-based technology map-

ping algorithm [Keu87]. The technology mapping procedure involves the matching and

covering phases: the former comprises storing the set of optimal matches at each node,

108

while the latter involves constructing the network by selecting from the matches stored

during the matching.

4.4.1 Example

A pure area/delay minimization objective during technology mapping can result in poor

congestion, and Figure 4.5 illustrates a case where suboptimal matches may reduce

congestion. Assume that all of the bins, shown as dashed squares in the figure, are

congested and a match for the AOI33 function is considered. The inputs to the match

enter through top and bottom bins on the left, while the output leaves from the middle

bin on the right. Figure 4.5(a) shows one possible match containing two three-input

NAND’s, a two-input NAND, and an inverter, while Figure 4.5(b) and Figure 4.5(c)

show an alternative match, an AOI33, under two different placements. To simplify

the computations, if we use the number of bin-boundary crossings as the congestion

metric, instead of the probabilistic congestion metric, then the cost for the match in

Figure 4.5(a) is 12, while that for the AOI33 matches in Figures 4.5(b) and (c) are 20 and

15, respectively. The latter also happens to be the minimum over all placements for the

area-optimal AOI33 match. It is clear that the match in Figure 4.5(a) distributes the logic

and therefore, creates lower congestion. This example alsohighlights limitations of the

placement in alleviating congestion, when area-optimal matches are chosen ignoring the

costs of wires associated with them.

The cost of wires depends on the context: wires are inexpensive in sparsely con-

gested regions, but are expensive in densely congested regions due to possible detours

and hampered routability. One way to reduce this cost in densely congested zones

without penalizing the design excessively is to account fortheir congestion contribu-

109

tions only in those zones. Our congestion-aware mapping heuristic serves this purpose

well: in densely congested spots, it considers probabilistic routes based on the center-

of-gravity locations for all possible matches and chooses the match that minimizes the

congestion, while in sparsely congested spots, it chooses area-optimal matches.

4.4.2 Congestion Cost Computationw1w2w3 w4 w5 w6 w10w20w30 w60
(a) (b)

Figure 4.6: Computing the congestion cost of a match: (a) An example subject graph.

(b) One possible match.

The congestion-aware mapping heuristic requires the assignment of a congestion

cost, along with an area cost, to each match. The congestion cost depends on the total

congestion caused due to the nets subsumed by a match, its fanin nets and its fanout

nets. Specifically, it is given by,
ostCMat
h = �
ostCnet
reated � �
ostCnet subsumed (4.2)

where,
ostCMat
h is the congestion cost of the match,
ostCnet
reated (
ostCnet subsumed) is

the congestion cost of the nets created (subsumed) by the match. For example, for a

3-input NAND match shown in Figure 4.6(b) corresponding to the subject graph shown

in Figure 4.6(a), the congestion cost is as follows:
ostCNand3 = Cw10 + Cw20 + Cw30 + Cw60 � (Cw1 + Cw2 + Cw3 + Cw4 + Cw5 + Cw6)(4.3)

110

The netsw10, w20, w30, andw60 correspond to the new location of the match and the

fanins and fanouts of the match; we compute the new location of a match as the center

of gravity of the locations of its fanin and fanout gates. Multi-terminal nets are modeled

using cliques for the congestion computation, and congestion contribution of each edge

is scaled by a factor of2=n, wheren is the number of edges.

wire1 wire2
Congestion[1:0; 2:0)
Congestion[0:5; 1:0)
Congestion[0:0; 0:5)

Figure 4.7: Context-dependent congestion cost for the wires.

The congestion cost of a wire depends on the route and the congestion in the bins

that the route passes through. Probabilistically, all of the routes in the bounding box of

the net are assumed to be equally possible1 [LTKS02]. If a congestion (say 0.4) in a bin

in the bounding box of the net is small as compared to the threshold congestion (say 1.0,

for instance), then the congestion contribution of that netfor that bin is assumed to be 0.

This is because a small value of the congestion metric corresponds to the availability of

numerous tracks, and the routability of the net through the bin is unaffected. However,

if the bin is congested, then the probabilistic congestion contribution of the net to that
1This assumption may not always be true. Typically, routers try to minimize vias and therefore, for

two terminal nets only L and Z routes are considered. Such information can be taken into account while
generating the congestion map.

111

bin must be considered as its routability is hampered. In case of Figure 4.7,wire1
andwire2 will have different congestion costs even though the shortest routes in both

the cases may have the same length; the congestion cost of theformer will be zero,

while that of the latter will have a positive value as its bounding box contains congested

bins. The following equation captures this causality relation between routability and

congestion while computing the congestion cost of a net,
ostCnet,
ostCnet = �fBin2BoundingBox(net):C(Bin)>Cmaxg CBinnet (4.4)

whereC(Bin) is the congestion in a bin,Cmax is the threshold congestion, andCBinnet is

the congestion due to the specific net within the bin. It is easily seen that this definition

filters out the contributions of uncongested bins from the congestion cost.

Route 1

Route 2

Route 3

Route 4

Route 5

Route 6

1.1 0.90.90.5

0.4

0.7 0.6 0.4

0.7 0.60.8

0.9

0.6

0.8

1.20.99

Terminal 1

Terminal 2

Figure 4.8: Computing the congestion cost of a wire probabilistically as in [LTKS02].

The bounding box for a two-terminal net is shown in Figure 4.8. It contains 16

bins, and the congestion value associated with each bin is shown in the figure. For the

net connecting terminals 1 and 2, six possible L- and Z-shaped routes are shown for

the purpose of illustration2. To compute the congestion cost, if the threshold value of
2In practice, we use probabilistic congestion estimates that consider river routes as well.

112

congestion (Cmax) is set to 1.0, then we consider only the congested bins for which

congestion value is greater than 1.0, i.e., bins for which the congestion metric is 1.1 and

1.2. Three routes (route 1, 4, and 5) pass through the bin withcongestion 1.1, while two

routes (route 3 and 5) pass through the bin with congestion 1.2. Assuming all the routes

to be equally possible, the demand (the ratio of number of paths passing through the bin

to the total number of paths) for tracks in the latter bin is26 . Similarly, the demand for

tracks in the former bin is36 . Using the definition 2.1, congestion contribution of the

net for these bins can be computed by dividing the demands by the number of available

tracks (NTra
ks). Employing Equation 3, the congestion cost of the net is given by
ostCnet = 1NTra
ks � (26 + 36) (4.5)

The congestion cost for a match can be calculated from that ofits incident nets. A

positive cost implies that it may increase the congestion beyond the threshold value in

some bins, while a negative cost implies that it may decreasethe congestion in some of

the bins where congestion exceeds the threshold value.

4.4.3 Algorithm for Congestion-aware Area-Oriented Mapping

Algorithm 4.4.1 shows the pseudo-code for choosing the bestmatch at a node during

the matching phase of the technology mapping. The triplet(Ci; Ai; Di) associated with

a matchMi denotes the congestion cost, area cost, and delay cost associated with the

match. The algorithm is called for every match at a node during the matching phase to

decide the best one to be stored at the node. The congestion cost is given priority over

the area and delay only in congested regions, and area-optimal matches will be chosen

for the nodes in the sparsely congested regions, as stated bythe following proposition.

113

Algorithm 4.4.1 Select the best match considering the congestion
Input: MatchM1(C1; A1; D1) and matchM2(C2; A2; D2)
Output: The best match between theM1 andM2

1: if (C1 == C2) then

2: if (A1 < A2)jj((A1 == A2)&&(D1 < D2)) then

3: returnM1;
4: else

5: returnM2;
6: end if

7: end if

8: if (C1 < C2) then

9: returnM1;
10: else

11: returnM2;
12: end if

Proposition 4.4.1 If bins in bounding boxes of all of the nets, corresponding toall

of the matches at a node, have congestion values that are smaller than the threshold

congestion, then an area-optimal match will be stored as thebest match at that node.

Proof 4.4.1 This is a direct consequence from the fact that the congestion cost for all

nets corresponding to all of the matches for such a case is zero from Equation (4.4), and

the pseudocode shows that under this scenario, the area-optimal match is always chosen.

Remark 4.4.1 The above result is important for congestion-aware mapping, since pre-

vious work in [PPS03] has shown that the traditional way of considering the cost,

114

(K1 � Area+ K2 �Wirelength) during technology mapping requires differentvalues

of K2 in the different regions in the circuit as a single value ofK2 fails to capture the

importance of congestion in different regions. Choosing a single value ofK2 may corre-

spond to the case in which entire circuit is uniformly congested with a single congestion

value. In reality, the congestion in the circuit varies continuously from 0 to 1, or is even>1, while the routability changes in a discrete manner: in case of a bin with congestion

value> 1, at least, some nets are detoured, or are unroutable, whileroutability of all

the nets is unaffected when the congestion for the bin is<1. Assigning the congestion

cost to the nets in the congested bins accounts for this discrete nature of routability and

also allows the mapper to select area-optimal matches in thesparsely congested regions.

Both of these purposes are critical and are served by our algorithm, while previous ap-

proaches [SK01,PPS02] have not addressed these.

4.5 Congestion-aware Delay-oriented Mapping

Delay Delay

Load Load

Dinternal Rdriver l1 l2
M1 M2 M3

(a) (b)

Figure 4.9: (a) A load-based delay model for a typical standard cell, such as an inverter.

(b) A typical load-delay curve stored during matching.

115

The congestion-aware area-oriented mapping framework presented in the previous

section can be extended to delay-oriented technology mapping. This typically employs

one of the following two classes of delay models: load- or gain-based. In this section, we

focus only on delay-oriented mapping based on the former, since an extension based on

the latter is similar. The load-based delay model is shown inFigure 4.9(a) for a typical

standard cell: it shows a straight line with the internal delay of the gate,Dinternal, as an

intercept on delay axis, while the slope of the line indicates the effective driver resistance

3. Technology mapping targeting delays involves storing piece-wise linear load-delay

curves,f(l1; D1); (l2; D2); � � �g, during the matching phase, whereli andDi denote load

and delay co-ordinates, respectively, of an end-point of a piece-wise linear segment. At

each node, a set of matches that are delay-optimal for certain load ranges are stored on

these curves; one such curve is shown in Figure 4.9(b) with three different matchesM1,M2, andM3, whereM1 is optimal for the load range[0; l1℄, M2 for the range(l1; l2℄,
andM3 for larger load values. During the covering phase, when loads are known, delay-

optimal matches are chosen from the curves. SIS [Sen92] contains an implementation

of a delay-oriented mapper based on this scheme, but the wire-delays that are ignored

in this mapper may lead to suboptimal results. To perform delay-oriented mapping, it is

necessary to consider wire-delays; delay computation considering the effects of wires is

explained in the following subsection.

116

g1 g2 Rdriver RwCw2 Cw2 + Cg2w
(a) (b)

Figure 4.10: (a) Wire driven by a gate. (b) The correspondingRC model.

4.5.1 Delay Computation Considering Wires

The delay computation involves accounting for wire-loads as well as wire-delays by

modeling the wires usingRC � model as shown in Figure 4.10. In Figure 4.10(a),

gateg1 drives gateg2 through wirew; the correspondingRC model is shown in Fig-

ure 4.10(b). The delay from the inputs of the gateg1 to the input ofg2 through the wire

shown the figure is given by the following equationD = Dg1 +Dw (4.6)

whereDg1 andDw are the delays of the gateg1 and the wirew, respectively. Employing

the Elmore delay model4 [Elm48], the gate delayDg1 is given byDg1 = Dinternal +Rdriver � (Cw + Cg2) (4.7)

whereDinternal is the internal delay of the gate,Rdriver is the effective resistance of the

gate,Cw is the capacitance of the wirew, andCg2 is the input capacitance of the gate
3The delay of a cell also depends on the slope of the input signal transitions, which are considered

during precise timing analysis, but are often ignored in thedelay models at the technology mapping stage.
4More accurate delay models, such as asymptotic waveform evaluation (AWE) [PR90], can be em-

ployed while keeping the rest of the algorithmic framework intact.

117

g2. Similarly, the wire delayDw is given byDw = Rw � (Cw2 + Cg2) (4.8)

whereRw is the resistance of the wire.

In general, the resistance (and capacitance) of a wire is a function of the distance

and a choice of metal layers. Since the resistivity of the upper metal layers is smaller

because of the higher width and thickness as compared to lower metal layers, these

metal layers are used to route the long wires. For the short wires, lower metal layers

are utilized, since reliability and resistance of the vias along with subsequent congestion

does not justify the use of upper metal layers. The range of wirelengths and choice of

metal layers can be determined empirically for a given process technology and used to

compute wire delays during technology mapping. We employ this scheme to account

for the wire-loads and delays during congestion-aware delay-oriented mapping.

4.5.2 Congestion Cost Penalty Heuristic

To store congestion-aware choices during the matching phase, solutions that increase the

congestion should be penalized. It can be achieved by computing the congestion cost

of a match and adding the corresponding delay penalty while storing the match on the

load-delay curve. This heuristic is a natural extension to congestion-aware area-oriented

mapping presented in the section 4.4, where a match that minimizes the congestion is

stored as the best match for a given node. In case of delay-oriented mapping, multiple

choices are stored on the load-delay curve, each choice being optimal for a certain load

range. The congestion cost for a match depends on the corresponding cost of fanin and

fanout nets, and nets that are subsumed by the match, as givenby Equation 4.2, which

118

is reproduced below for the sake of readability
ostCMat
h = �
ostCnet
reated � �
ostCnet subsumed (4.9)

where,
ostCMat
h is the congestion cost of the match,
ostCnet
reated (
ostCnet subsumed)
is the congestion cost of the nets created (subsumed) by the match. To penalize the

matches that cause congestion and to favor those that reduceit, a penalty is added to the

delay due to a match before storing it on load-delay curve. The penalty corresponding

to the congestion cost of a match is given by the following equationDpenalty = Dwire(
ostCMat
h � bindimension) (4.10)

where,bindimension represents either the width or the height of a bin, whileDwire(s)
denotes the delay of a wire of a lengths. The heuristic is explained using the following

example.w1w2w3 w4 w5 w6 w10w20w30 w60 D1 +Dw10D2 +Dw20D3 +Dw30 d1d2d3
(a) (b) (c)

Figure 4.11: Delay computation for a match: (a) An example subject graph. (b) A match

of 3-input NAND. (c) Delay computation.

Consider an example of a match of 3-input NAND, which is same as the example

in Section 4.4.2, shown in Figure 4.11. It subsumes wiresw1, w2, w3, w4, w5, andw6, as shown in Figure 4.11(a), while it creates wiresw10, w20, w30, andw60, as shown

in Figure 4.11(b); we assume that the match is placed at the center of gravity of its

119

fanins and fanouts, as in case of area-oriented mapping. Figure 4.11(c) shows the delay

computation, whereDi+Dwi0, i = 1; 2; 3, are arrival times, including the corresponding

wire delays, at the inputs of the match, whiledi are internal delays for the corresponding

pins. The delay of the match is given by the following equationD = max(D1 +Dw10 + d1; D2 +Dw20 + d2; D3 +Dw30 + d3) (4.11)

The congestion cost of the match, repeated from Equation 4.3, is given by the following

equation
ostCNand3 = Cw10 + Cw20 + Cw30 + Cw60 � (Cw1 + Cw2 + Cw3 + Cw4 + Cw5 + Cw6)(4.12)

To make the match congestion-aware, delay penalty proportional to the above cost is

added to the delay. Therefore, the delay of the match is now given byD
ongestion�aware = D +Dpenalty(
ostCNand3 � bindimension) (4.13)

It is obvious that matches with positive congestion cost arepenalized, while those with

the negative congestion cost are favored. Note that, in sparsely congested regions no

delay penalty is added and therefore, delay-optimal matches are still chosen in those

regions.

4.5.3 Algorithm for Congestion-aware Delay-oriented Mapping

During the matching phase, all nodes are processed in topological order, and their

load-delay curves are computed. Algorithm 4.5.1 shows the pseudo-code for compu-

tation of the load-delay curve. For each matchm from the setM , the delay,D, is

computed considering the arrival times of the inputsDi, wire delaysDwi, and internal

delay,di, of the gate corresponding to the match. The congestion costof the match,

120

Algorithm 4.5.1 Compute load-delay curve for a match
Input: n = A node,M = A set of matches at the node

Output: Load-delay curve forn
1: for m 2M do

2: for i 1; � � � ; jinputsmj do

3: D max(Di +Dwi + di)
4: end for

5: CostCm ComputeCongestionCostOfMatch(m)

6: D D+ WireDelay(CostCm � bindimension)

7: UpdateLoadDelayCurve(n, m, D)

8: end forCostCm, is then computed considering the corresponding costs of subsumed and created

wires, and an appropriate penalty employing Equation 4.13 is added to the delay of the

match. The load-delay curve is then updated to store the match, if it is optimal for some

range of loads. The covering phase proceeds in a traditionalmanner to choose matches

that are optimal for given loads.

4.6 Complexity, Limitations, and Extensions to the Al-

gorithms

The time complexity of our congestion-aware technology mapping algorithms is almost

unchanged from that of a conventional technology mapping. The congestion cost com-

putation of a match takesO(jNetsMat
hj � NBins), wherejNetsMat
hj is the num-

ber of nets associated with a match andNBins is the number of bins over entire layout;

121

NBinsis a constant for a given layout, although it may be large as compared to other con-

stants subsumed byO(). Therefore, congestion cost computation takesO(jNetsMat
hj)
time, which is same as that of structural matching used in themapper [Sen92].

Since this technology mapping procedure is applied to tree structures after the ini-

tial subject graph generation and the decomposition of DAG’s into trees, the algorithm

does not have any control over high fanout nets, or over the fanout nets created due to

matches at the roots5 of the trees. The congestion due to these high fanout nets is con-

trolled by the structure of initial network and fanout optimization. The effectiveness of

the congestion-aware mapper proposed here is influenced by the scripts used for tech-

nology independent optimization, technology decomposition, and fanout optimization

after technology mapping.

Pre-routed blockages in the design can be incorporated intoour congestion cost by

reducing the appropriate number of tracks in the corresponding bins. Most placers are

adequate at handling blockages. Therefore, subject graph nodes or mapped cells are not

placed in blocked areas. While long wires may require repeaters that are not visible in

the subject graph, observe that these buffers do not change the congestion cost.

In the current implementation, we do not update the congestion map dynamically

during technology mapping. However, this update can be carried out during the covering

phase, thus allowing a more accurate selection of the best match stored at a node. In case

of area-oriented mapping, multiple congestion-aware choices must be stored during the

matching phase in addition to the area-optimal one, in orderto enable the selection of

a good congestion-aware solution with the updated congestion map available during

covering.
5All of the nodes in the tree have a fanout of 1 but the root.

122

4.7 Experimental Results

Routing

Placement

Floorplan

Placement

Map Generation
Congestion

Subject graph

Subject graph

Conventional
Mapping

Routing
Congestion−aware
 Mapping Placement

(a)

(b)

Figure 4.12: Design flows for (a) conventional and (b) congestion-aware mapping.

The probabilistic congestion estimation algorithm from [LTKS02] and the congestion-

aware technology mapper were implemented in C/C++ and incorporated in SIS [Sen92].

The subject graphs were created by runningscript.ruggedfollowed by techdecomp -o

2 in SIS [Sen92]. For area-oriented technology mapping, we present a set of experi-

mental results obtained using a force-directed quadratic placer, Kraftwerk [EJ98], and

a proprietary industrial maze router, while for delay-oriented mapping, we show re-

sults generated employing a recursive bipartitioning placer Capo [CKM00] and a global

router [HS02]. The experimental flow used in our experimentsis as shown in Fig-

ure 4.12. For congestion-aware mapping, a subject graph wasfirst created. It was

placed using Kraftwerk for area-oriented mapping, while Capo was employed for the

placement in case of delay-oriented mapping. The congestion map for the subject graph

was then generated and used in our congestion-aware mapper.After area-oriented tech-

nology mapping, the circuits were placed using Kraftwerk followed by global routing

using a proprietary industrial router for area-oriented mapping. For delay-oriented map-

ping, Capo and a global router in [HS02] were employed, respectively, for placement

123

and routing. In all of our experiments, a bin-size of4:8� 4:8�m2 was used. We present

the results due to area-oriented mapping followed by the same for delay-oriented map-

ping.

4.7.1 Results due to Area-oriented Mapping

Table 4.4 shows the post-routing results obtained using theKraftwerk placer and propri-

etary maze router for conventionally mapped and congestion-aware netlists. Technol-

ogy mapping is performed employing a proprietary industrial cell library used in high-

performance microprocessor designs. Our experiments employ a 90nm technology and

allow the router to use 4 metal layers6: metal 1 with no preferred direction, metals 2 and

4 for the horizontal direction, and metal 3 for the vertical direction. The entries of the

form ‘a / b’ in the Columns 3 through 7 mean ‘a’ (‘b’) corresponds to conventionally

(congestion-aware) mapped netlist. The block area shown inColumn 2 is used for both

of these netlists for the benchmarks shown in Column 1. Sincethe same block area is

used for both the netlists, there is no area penalty. Columns3, 4, and 5 show the av-

erage row utilization, the total track overflow over all the bins after global routing, and

the number of bins with congestion more than 1.0, respectively, while Columns 6 and

7 show the maximum and average congestion, respectively. For small benchmarks such

as C1355, C432, and C880, a few number of bins are congested inthe conventionally

mapped netlists while none of the bins is congested in the congestion-aware mapped

netlists. This shows that congestion problem for a small number of bins can be easily

resolved by congestion-aware mapped netlist without any area penalty. C499 and C1908
6While 90 nm and subsequent process generations have a large number of metal layers, the upper

layers are usually reserved for global signals, clock and power distributions, leaving block synthesis to
operate in the lower layers [SMCK03].

124

show zero routing track overflows, while other small benchmarks have only a few con-

gested bins, indicating that routing congestion is not an important issue for designs up

to a few hundred cells. As the design size grows beyond a thousand cells, routing con-

gestion starts becoming a critical problem, as indicated byincreased track overflows

for benchmarks such as IDC, C6288, and C7552. In these cases,the congestion-aware

mapped netlists have been able to reduce the track overflows by 87%, 43%, and 29%

while the number of congested bins has decreased by 81%, 65%,and 25%, respectively.

Based on the increase in average congestion for all of the benchmarks, accompanied by

a reduction in the number of congested bins and the number of track overflows, we see

that congestion-aware mapping tends to map the logic so as todistribute the congestion

from densely congested regions to the sparsely congested regions. The improvement in

congestion comes at the cost of an increase in gate-area, which is reflected in higher row

utilization in case of congestion-aware netlist for all thebenchmarks.

4.7.2 Results due to Delay-oriented Mapping

Table 4.5 show post routing results for delay-oriented mapping obtained using recur-

sive bisectioning based placer Capo [CKM00] and a global router [HS02]. Technology

mapping was performed employing lib2.genlib library in SIS[Sen92]. Up to 4 differ-

ent strengths were added for each cell in the library, which was then characterized for

130nm technology [ptm]. Column 1 in the table shows the benchmark circuit, while

column 2 shows the block area. Columns 3, 4, 5, and 6 show the average row utilization

percentage, the circuit delay in ps, the maximum congestion, and the total overflow, re-

spectively. The entries of the form ‘a / b’ in these columns have the same meaning as

before. Congestion-aware netlists tend to have, on an average, larger gate-area, which

125

is reflected in overall 2% increase in average row utilization percentage. The delays in

the congestion-aware netlists have remained almost unchanged from those in the corre-

sponding conventional netlists. This indicates that for 130nm technology, interconnects

are not sufficiently resistive to dominate the gate delays bylarge margin, especially for

benchmarks up to few hundred cells. Track overflows have improved consistently for all

the benchmarks due to congestion-aware mapping; the average improvement over con-

ventional mapping is 46%. This shows that our heuristic is effective in alleviating the

routing congestion without penalizing the delay values, which are, in fact, improved in

most of the cases. The maximum congestion is improved in all cases but C880, in which

case, however, track overflows and delays have improved. Theoverall improvement in

maximum congestion has been 9%.

4.7.3 Wirelength and Detour Distributions

For large benchmarks, the wiring distributions obtained after global routing showed

significant improvements as a result of our congestion-aware area-oriented technology

mapping flow. The improvement in the wiring distribution is best exemplified by a

reduction in the incidence of detours on the routes, where wedefine the detour of a route

as the difference between its actual length and the total size of its minimum spanning

tree (MST7).

Figure 4.13 shows plot of the number of nets vs. detour for thebenchmark IDC.

Similar wire distribution plots were obtained for other benchmarks. In the figure, the

log-scale Y-axis shows the number of nets, while the X-axis shows the detour, in�m,

for all the nets on a linear scale. The height of a brown (purple) bar in the figure rep-
7Because of the canonicity of MST’s, MST estimates are used tocompute the detours even though

they tend to be overestimates as compared to minimum Steinerestimates.

126

Figure 4.13: Number of nets vs. detour length (�m) for the IDC circuit. The placement

of conventionally mapped netlist and that of premapped as well as mapped netlist, in

case of congestion-aware mapping, is performed using Kraftwerk.

resents the number of nets in the conventional (congestion-aware) netlist for a given

detour range. It can be observed that for shorter detour ranges, the number of nets

in the congestion-aware netlist dominates their conventional counterpart, while as the

detour length increases, the number of nets from the conventional netlist dominates

that in congestion-aware netlist. Although the total number of wires increases in the

congestion-aware case, most of this increase occurs at short wire lengths, as seen from

the figure.

Figure 4.14 shows plot of net-length vs. detour length for all the nets in congestion-

aware and conventionally mapped netlist for IDC. In the figure, the symbols ‘+’ and ‘�’

indicate the actual length, in�m, of a net belonging to the corresponding detour range,

127

1

10

100

1000

0 50 100 150 200

N
et

 le
ng

th
s

(m
ic

ro
n)

Detour length (micron)

Net lengths vs. detour for conventional netlist

1

10

100

1000

0 50 100 150 200

N
et

 le
ng

th
s

(m
ic

ro
n)

Detour length (micron)

Net lengths vs. detour for congestion-aware netlist

Figure 4.14: Scatter plots of net-lengths vs. detour length(�m) for the IDC circuit.

In these plots, ‘x’ and ‘+’ denote a net in conventional and congestion-aware netlist,

respectively.

128

100

150

200

250

300

350

400

450

500

0 50 100 150 200

N
et

 le
ng

th
s

(m
ic

ro
n)

Detour length (micron)

Net lengths vs. detour for conventional netlist

100

150

200

250

300

350

400

450

500

0 50 100 150 200

N
et

 le
ng

th
s

(m
ic

ro
n)

Detour length (micron)

Net lengths vs. detour for congestion-aware netlist

Figure 4.15: Scatter plots of net-length vs. detour length for long (> 100�m) nets in

the IDC circuit. In these plots, ‘x’ and ‘+’ denote a net in conventional and congestion-

aware netlist, respectively.

129

Figure 4.16: Number of nets vs. detour length (�m) for C7552: For congestion-aware

mapping, the placement of premapped netlist is carried out using Kraftwerk. An in-

house library for a 90nm technology is employed for congestion-aware as well as con-

ventional mapping. The mapped netlists are placed employing Kraftwerk and routed

using proprietary router.

in �m, specified on the X-axis, for the congestion-aware and conventionally mapped

netlist, respectively. In the figure, a ’�’ corresponding to 230�m on the Y-axis and

in the column for 70�m on the X-axis implies that there is a net of length 230�m

whose detour length lies between 67.5 to 72.5�m in the conventional netlist. It can be

seen from the figure that the conventional netlist tends to have longer detours than the

congestion-aware netlist, especially on its longer wires.The congestion-aware technol-

ogy mapping not only tends to reduce the length of the long wires, but also tends to route

them with smaller detours (hence, making them more predictable prior to the routing).

130

Figure 4.17: Number of nets vs. detour length (�m) for C6288: For congestion-aware

mapping, the placement of premapped netlist is performed using Kraftwerk. An in-

house library for a 90nm technology is employed for congestion-aware as well as con-

ventional mapping. The mapped netlists are placed employing Kraftwerk and routed

using proprietary router.

Figure 4.15 shows the nets whose length is greater than 100�m, since these are the

nets that are usually responsible for the routing problems;‘+’ and ‘�’ have the same

meaning as in Figure 4.14. Congestion-aware mapping tends to reduce the length of the

longest wires, as is apparent from a larger population of ‘�’ as compared to ‘+’ in the

figure. This is achieved by allowing the shorter wires to haveslightly longer detours

as compared to conventional mapping. However, since the predictability of the short

wires is usually not a problem, the increased detours of the short wires do not impact

the design convergence adversely. Furthermore, the reduction in the detours of the wires

131

under congestion-aware mapping also improves the predictability of their length, delay,

load, and repeater requirements prior to routing.

The wirelength distribution trends for large benchmarks C7552 and C6288 are shown

in Figure 4.16 and 4.17, respectively. The heights of brown and purple bars in these

plots have the same meanings as before. The sets of congestion-aware mapped netlists

are generated for these benchmarks using Kraftwerk for the placement of the premapped

netlists. Technology mapping, conventional as well as congestion-aware, is performed

using a 90nm technology library used in high-performance microprocessor designs. The

final placement of mapped netlists, conventional and congestion-aware, is carried out

employing Kraftwerk, while routing is performed using a proprietary maze router. We

can see from Figure 4.16 and 4.17 that as detour length increases, the number of wires

in conventional netlist starts dominating the corresponding numbers in the congestion-

aware netlist. The length of the longest wires in conventional netlist is also large as

compared to that of the longest wire in congestion-aware netlist. The number of nets in

congestion-aware netlist dominate their counterparts in conventional netlists only for the

short detours. This is due to increase in the number short wires in case of congestion-

aware netlist. Thus, congestion-aware mapping has been able to improve the wirelength

distribution by trading off the detours of long wires with smaller wires. In these cases,

congestion-aware mapping has not only improved the total wirelength but the length of

the longest wire also.

4.7.4 Conclusions

The following conclusions may be drawn from the experimental results.

1. The congestion-aware algorithms for area and delay-oriented technology map-

132

ping show consistent improvements in track overflows over conventional mapping

methods. The improvement is significant: 37% in case of area-oriented mapping

and 46% in case of delay-oriented mapping. These results indicate that technol-

ogy mapping is indeed effective in handling routing congestion.

2. The consistency in the results also indicate that our heuristics are effective. More

importantly, it also validates a point that there exists a strong congestion correla-

tion between premapped and mapped netlists and justifies theuse of congestion

map prediction employing premapped netlists to guide the mapping process.

3. As compared to conventionally mapped netlists, congestion-aware netlists tend

to have better wirelength distribution: typically, the length of the longest wire is

shorter and the number of nets with long detours are smaller.

4.8 Summary

In this chapter, we have proposed technology mapping algorithms for alleviating the

routing congestion. These algorithms employ a predictive congestion map based on

the premapped netlists. Using empirical data, we have shownthat there exists a strong

correlation between the predictive congestion map based ona premapped netlist and

the congestion map of the corresponding mapped netlist. This empirical evidence is

utilized to justify the use of predictive congestion maps toguide the technology mapping

algorithms. These algorithms employ congestion cost functions such that in sparsely

congested regions, area- or delay-optimal matches are always chosen and hence, the

corresponding penalty is minimized. Experimental resultsdue to these algorithms show

average improvements of 37% and 46% in track overflows, respectively, for area and

133

delay-oriented mappings, over conventional methods with marginal gate area and delay

penalty. Moreover, congestion-aware netlists tend to havebetter wirelength distributions

as compared to their conventional counterparts.

134

Example script/mapping # Cells Placer congestion after/before mapping Correlation

Max. H Max. V Ave. H Ave. V H V

C432 rugged/area 257 Capo 1.27/1.45 1.46/1.99 0.41/0.47 0.48/0.65 0.91 0.90

C432 rugged/delay 328 Capo 1.17/1.45 1.51/1.99 0.39/0.47 0.46/0.65 0.96 0.95

C432 algebraic/area 237 Capo 1.22/1.15 1.38/1.6 0.37/0.35 0.44/0.51 0.97 0.96

C432 algebraic/delay 279 Capo 1.06/1.15 1.21/1.6 0.35/0.35 0.40/0.51 0.93 0.93

C432 boolean/area 375 Capo 1.04/1.55 1.42/1.68 0.43/0.45 0.51/0.67 0.95 0.94

C432 boolean/delay 501 Capo 1.47/1.41 1.46/1.51 0.54/0.50 0.63/0.70 0.93 0.93

C432 speedup/area 265 Capo 1.08/1.22 1.25/1.5 0.34/0.41 0.40/0.55 0.92 0.91

C432 speedup/delay 314 Capo 1.03/1.29 1.27/1.81 0.37/0.52 0.44/0.67 0.93 0.94

C6288 rugged/area 2311 Capo 1.73/1.34 1.88/2.00 0.69/0.57 0.81/0.82 0.85 0.86

C6288 rugged/delay 2383 Capo 1.45/1.34 1.75/2.00 0.61/0.57 0.71/0.82 0.86 0.87

C6288 algebraic/area 2275 Capo 1.37/1.79 1.55/2.20 0.50/0.73 0.60/0.98 0.76 0.78

C6288 algebraic/delay 2620 Capo 1.38/1.05 1.59/1.31 0.48/0.52 0.58/0.73 0.83 0.79

C6288 boolean/area 2329 Capo 0.89/0.85 1.05/1.32 0.40/0.40 0.48/0.66 0.75 0.71

C6288 boolean/delay 2605 Capo 1.38/1.23 1.53/1.72 0.47/0.48 0.56/0.70 0.79 0.79

C6288 speedup/area 4182 Capo 1.11/1.10 1.34/1.39 0.41/0.48 0.51/0.66 0.78 0.81

C6288 speedup/delay 4395 Capo 1.19/1.20 1.47/1.58 0.48/0.51 0.58/0.63 0.86 0.82

C7552 algebraic/area 1521 Kraftwerk 2.60/2.70 2.70/2.40 0.61/0.71 0.66/0.71 0.81 0.76

C7552 rugged/area 2060 Kraftwerk 2.04/2.05 2.27/2.26 0.65/0.69 0.71/0.79 0.64 0.68

C7552 boolean/area 1582 Kraftwerk 2.23/2.50 2.50/2.00 0.61/0.74 0.66/0.71 0.82 0.83

C7552 espresso/area 1457 Kraftwerk 1.68/2.10 1.85/2.20 0.64/0.69 0.69/0.79 0.73 0.65

C6288 algebraic/area 2528 Kraftwerk 1.60/1.48 1.05/1.35 0.52/0.61 0.58/0.64 0.77 0.76

C6288 rugged/area 2391 Kraftwerk 1.50/2.00 2.00/2.00 0.53/0.62 0.58/0.63 0.63 0.62

C6288 boolean/area 2583 Kraftwerk 1.49/1.79 1.61/1.82 0.47/0.54 0.53/0.57 0.64 0.70

C6288 espresso/area 2549 Kraftwerk 1.76/1.79 2.06/2.09 0.52/0.62 0.59/0.66 0.61 0.64

IDC rugged/area 972 Kraftwerk 1.25/1.30 1.13/1.47 0.65/0.60 0.60/0.65 0.67 0.68

IDC algebraic/area 800 Kraftwerk 2.09/1.67 2.06/1.80 0.50/0.47 0.53/0.45 0.70 0.61

IDC boolean/area 1622 Kraftwerk 1.75/1.78 1.52/1.23 0.57/0.59 0.64/0.65 0.67 0.66

IDC espresso/area 2233 Kraftwerk 1.89/1.93 2.17/2.24 0.51/0.55 0.56/0.55 0.75 0.74

Table 4.1: Congestion comparison for the netlists before and after technology mapping.

Max. (Ave.) corresponds to maximum (average), while H (V) corresponds to horizontal

(vertical).

135

Example script/mapping # Cells Placer congestion after/before mapping Correlation

Max. H Max. V Ave. H Ave. V H V

9sym rugged/area 314 Capo 1.40/1.28 1.68/1.29 0.29/0.32 0.32/0.34 0.79 0.82

9sym rugged/delay 422 Capo 1.20/1.46 1.30/1.50 0.32/0.34 0.33/0.36 0.84 0.87

9sym algebraic/area 283 Capo 1.05/1.02 0.99/.92 0.24/0.23 0.25/0.21 0.83 0.88

9sym algebraic/delay 341 Capo 1.31/1.12 1.16/1.02 0.25/0.21 0.26/0.19 0.81 0.84

9sym boolean/area 284 Capo 1.23/1.12 1.59/1.16 0.27/0.24 0.29/0.27 0.83 0.88

9sym boolean/delay 397 Capo 1.46/1.16 1.62/1.30 0.31/0.29 0.29/0.29 0.78 0.80

rd84 rugged/area 406 Capo 1.23/1.14 1.11/1.07 0.29/0.26 0.31/0.25 0.76 0.82

rd84 rugged/delay 459 Capo 1.23/1.11 1.39/1.21 0.29/0.23 0.31/0.22 0.81 0.84

rd84 algebraic/area 672 Capo 1.39/1.19 1.46/1.25 0.38/0.28 0.41/0.37 0.79 0.86

rd84 algebraic/delay 680 Capo 1.62/1.51 1.81/1.59 0.45/0.40 0.41/0.41 0.79 0.78

rd84 boolean/area 559 Capo 1.36/1.27 1.38/1.28 0.37/0.36 0.40/0.35 0.81 0.81

rd84 boolean/delay 629 Capo 1.14/1.07 1.51/1.28 0.35/0.26 0.32/0.26 0.75 0.73

alu2 rugged/area 353 Capo 1.09/1.05 1.27/1.17 0.29/0.30 0.31/0.38 0.78 0.84

alu2 rugged/delay 454 Capo 1.32/1.11 1.34/1.28 0.32/0.34 0.34/0.35 0.76 0.75

alu2 algebraic/area 405 Capo 1.17/1.02 1.18/1.10 0.30/0.26 0.33/0.34 0.83 0.89

alu2 algebraic/delay 441 Capo 1.24/1.11 1.54/1.34 0.34/0.34 0.32/0.33 0.76 0.79

alu2 boolean/area 457 Capo 1.39/1.29 1.23/1.16 0.30/0.26 0.33/0.34 0.68 0.70

alu2 boolean/delay 579 Capo 1.43/1.33 1.49/1.41 0.32/0.32 0.34/0.31 0.71 0.67

C1355 rugged/area 356 Capo 1.23/1.32 1.58/1.39 0.50/0.37 0.55/0.38 0.82 0.86

C1355 rugged/delay 422 Capo 2.24/2.06 2.24/2.26 0.51/0.49 0.55/0.46 0.70 0.72

C1355 algebraic/area 602 Capo 1.49/1.28 1.70/1.32 0.42/0.37 0.45/0.36 0.76 0.78

C1355 algebraic/delay 638 Capo 1.32/1.03 1.23/1.21 0.46/0.41 0.48/0.41 0.79 0.85

C1355 boolean/area 601 Capo 1.04/1.21 1.09/1.00 0.40/0.36 0.44/0.37 0.76 0.74

C1355 boolean/delay 654 Capo 1.32/1.21 1.47/1.16 0.47/0.40 0.50/0.46 0.74 0.83

Table 4.2: Congestion comparison for the netlists before and after technology mapping.

Max. (Ave.) corresponds to maximum (average), while H (V) corresponds to hori-

zontal (vertical). For netlists of circuits from ISCAS’85 and MCNC benchmark suite,

obtained using different scripts and mapping options, thistable shows congestion corre-

lation between mapped and corresponding premapped netlists. Similar results are shown

in Table 4.3 for different benchmarks.

136

Example script/mapping # Cells Placer congestion after/before mapping Correlation

Max. H Max. V Ave. H Ave. V H V

C1908 rugged/area 386 Capo 0.98/1.10 1.10/1.33 0.37/41 0.43/43 0.83 0.84

C1908 rugged/delay 479 Capo 1.57/1.46 1.27/1.68 0.35/46 0.32/46 0.79 0.80

C1908 algebraic/area 342 Capo 1.25/1.15 1.55/1.30 0.42/0.40 0.45/0.41 0.88 0.90

C1908 algebraic/delay 580 Capo 1.57/1.08 1.48/1.16 0.47/0.42 0.51/0.46 0.81 0.82

C1908 boolean/area 569 Capo 1.54/1.37 2.03/1.55 0.45/0.39 0.49/0.39 0.82 0.84

C1908 boolean/delay 620 Capo 1.46/1.62 1.81/1.75 0.50/0.49 0.53/0.49 0.82 0.82

C499 rugged/area 391 Capo 1.28/1.28 1.26/1.60 0.43/0.40 0.46/0.42 0.80 0.78

C499 rugged/delay 402 Capo 1.70/1.50 1.92/1.51 0.51/0.49 0.54/0.50 0.63 0.64

C499 algebraic/area 593 Capo 1.01/1.15 1.13/1.24 0.40/0.31 0.42/0.33 0.74 0.82

C499 algebraic/delay 641 Capo 1.29/1.26 1.26/1.30 0.43/0.36 0.45/0.36 0.76 0.79

C499 boolean/area 611 Capo 1.09/1.21 1.20/1.22 0.35/0.33 0.37/0.33 0.77 0.77

C499 boolean/delay 642 Capo 1.75/1.62 1.26/1.30 0.42/0.36 0.44/0.36 0.69 0.69

C880 rugged/area 328 Capo 1.42/1.27 1.57/1.38 0.59/0.45 0.66/0.46 0.85 0.85

C880 rugged/delay 557 Capo 1.98/1.77 1.87/1.59 0.51/0.48 0.48/0.48 0.68 0.66

C880 algebraic/area 409 Capo 1.37/1.25 1.38/1.54 0.48/0.43 0.51/0.43 0.82 0.85

C880 algebraic/delay 410 Capo 1.49/1.13 2.03/1.65 0.43/0.37 0.51/0.48 0.81 0.82

C880 boolean/area 448 Capo 1.83/1.66 1.39/1.44 0.41/0.34 0.43/0.35 0.79 0.74

C880 boolean/delay 597 Capo 1.46/1.34 1.67/1.35 0.51/0.48 0.55/0.49 0.72 0.72

C7552 rugged/area 1930 Capo 1.84/1.39 1.48/1.41 0.55/0.39 0.50/0.37 0.66 0.64

C7552 rugged/delay 2688 Capo 1.61/1.42 1.31/1.36 0.46/0.47 0.48/0.50 0.63 0.66

C7552 algebraic/area 2378 Capo 2.03/2.17 2.14/2.32 0.76/0.68 0.74/0.71 0.77 0.78

C7552 algebraic/delay 2279 Capo 2.73/2.58 2.51/2.26 0.80/0.82 0.79/0.77 0.68 0.68

C7552 boolean/area 2321 Capo 2.48/2.17 2.98/2.32 0.81/0.82 0.86/0.77 0.71 0.70

C7552 boolean/delay 2735 Capo 2.59/2.48 2.67/2.49 0.86/0.83 0.78/0.74 0.64 0.65

Table 4.3: Congestion comparison for the netlists before and after technology mapping.

Max. (Ave.) corresponds to maximum (average), while H (V) corresponds to horizontal

(vertical). For netlists of circuits from ISCAS’85 suite, obtained using different scripts

and mapping options, this table shows congestion correlation between mapped and cor-

responding premapped netlists.

137

Circuit Area Row utilization Overflow Congested bins Congestion�m2 % # Maximum Average

C1355 2380 68 / 79 2 / 0 1 / 0 1.3 / 0.9 0.35 / 0.43

C1908 2457 68 / 78 0 / 0 0 / 0 0.8 / 0.9 0.34 / 0.40

C432 1728 66 / 69 1 / 0 1 / 0 1.1 / 0.9 0.35 / 0.37

C499 2618 64 / 73 0 / 0 0 / 0 0.9 / 1.0 0.34 / 0.40

C6288 16920 61 / 68 32 / 18 20 / 7 1.3 / 1.3 0.49 / 0.52

C7552 17633 61 / 67 655 / 461 258 / 193 1.3 / 1.3 0.65 / 0.69

C880 2534 71 / 82 4 / 1 2 / 1 1.3 / 1.2 0.42 / 0.48

IDC 6919 63 / 70 83 / 10 32 / 6 1.3 / 1.2 0.53 / 0.60

Average 65 / 73 97 / 61 39 / 25 1.16 / 1.08 0.43 / 0.48

Table 4.4: Comparison of conventional area-oriented mapping with congestion-aware

area-oriented mapping. Placement and routing is performedusing an in-house force-

directed placer and a proprietary router, respectively, for a 90nm technology.

138

Example Area Row utilization Delay Maximum congestion Overflow�2 % ps

C1355 6237 80 / 83 1061 / 1135 1.60 / 1.30 39 /18

C1908 7568 80 / 80 1388 / 1440 1.40 / 1.20 18 / 2

C432 2912 90 / 94 1222 / 1180 1.20 / 1.10 5 / 1

C499 6318 80 / 79 1040 / 1040 1.40 / 1.40 14 / 12

C6288 44099 80 / 80 7305 / 7078 1.50 / 1.20 16 / 8

C7552 47520 75 / 77 1755 / 1750 1.64 / 1.42 83 / 74

C880 9504 80 / 76 1276 / 1270 1.20 / 1.30 7 / 5

Avg. Improvement 2 0.42 -9 -46

Table 4.5: Comparison of conventional delay-oriented mapping and congestion-aware

delay-oriented mapping. Placement and routing is performed employing a publicly

available placer Capo [CKM00] and a router [HS02], respectively, for 130nm technol-

ogy [ptm].

139

Chapter 5

Conclusions

In this thesis, we have proposed synthesis solutions related to the prominent challenges

in nanometer technologies, namely, power density and interconnect dominance. For

the former, synthesis and layout generation algorithms forlow power pass transistor

logic (PTL) are presented, while for the latter, congestion-aware technology mapping

methods are proposed.

For performance-driven PTL synthesis, our recursive bipartitioning algorithm can

result in a logarithmic depth implementation, while none ofthe previous synthesis

heuristics guarantee such a lower bound on the depth of PTL implementation. By us-

ing max-flow min-cut formulation, we also ensure minimum area penalty, up to the

accuracy in estimation, and the method can further be extended to consider other cost

functions, such as power. A similar bipartitioning technique is presented to minimize

the total power dissipation in pipelined combinational logic, when a low power PTL

implementation is sought. As is well known, no logic style isa panacea and PTL is no

exception. Our results on performance-driven PTL synthesis confirm that PTL results

140

in a significant improvement, up to 30% in area as well as delay, over static CMOS

for xor-intensive circuits, such as those that implement multipliers or error correcting

codes. In these cases, even under a näive uniform transistor sizing scheme, PTL outper-

forms static CMOS implementation with a more sophisticatedsizing optimization. For

circuits that arenand-intensive, static CMOS may result in better implementation than

PTL. In such a scenario, static CMOS/PTL mixed synthesis is aviable approach. For

that approach, our synthesis algorithms may still be usefulfor efficiently implementing

the PTL part of the circuitry.

For layout generation of PTL circuits, we have proposed a method that translates

binary decision diagrams (BDD’s) into a transistor-level placed circuit that minimizes

the area by diffusion-sharing, linear tree placement of transistor clusters and greedy row

assignment of the BDD nodes. One of the advantages of this algorithm is that it is not

tied to any particular PTL library, and it exploits the notion of librarylessness to form

multiplexer clusters that are amenable to layout. Apart from their utility for pure PTL

implementations, layouts generated by our algorithm can beused as PTL macro cells

in the context of static CMOS/PTL synthesis, since these layouts can fit into a standard

cell methodology.

For the routing congestion problem for static CMOS circuits, we present congestion-

aware technology mapping methods. These methods are guidedby a predictive proba-

bilistic congestion map, unlike previous approaches that rely on indirect metrics such as

wirelength. Using extensive experiments employing different benchmarks, libraries, and

scripts, we have shown that there exists a correlation between the congestion maps of a

pre-mapped netlist and a corresponding mapped netlist. Thecorrelation is exploited to

overcome the “chicken and egg” problem between the mapping and placement stages.

141

The matching phase in technology mapping uses these predictive congestion-maps to

store congestion-aware choices. It employs a cost functionthat selects congestion-

optimal matches in densely congested regions, while permitting the choice of area- or

delay-optimal matches in sparsely congested regions. Similar approaches, based on

this matching phase, have been applied for area and delay-oriented technology mapping

algorithms. For area-oriented technology mapping, the experimental results using an

industrial circuit and publicly available ISCAS’85 benchmark circuits, proprietary plac-

ers and routers, and a cell library in high-performance microprocessor design in 90nm

technology show, on an average, 37% improvement in routability, measured in terms of

track overflows, at the cost of marginal gate area increase. The results for delay-oriented

mapping show 46% improvement in routability for approximately unchanged delays.

5.1 Future Directions

The cost effectiveness of PTL should be exploited for the implementation ofxor-intensive

functions, such as circuits for error correcting codes and arithmetic circuits. ASIC

designers have realized this, and the use of PTL cells in the libraries has been on

rise [BHSA03]. However, current approaches are ad-hoc, andalgorithms for mixed

static CMOS and PTL, which use the best of both the logic styles, are required. PTL

synthesis algorithms presented in this thesis may be employed inside the inner loop of

those algorithms to yield, at least locally, optimum PTL implementation. The layout

generation method for PTL presented in this thesis may also be used to guide these

algorithms, since it can provide accurate, up to the placement level, area and delay es-

timates for PTL choices. The layouts may also be generated automatically for these

142

mixed circuits, since layouts for standard cells are available and those for PTL can be

generated using our algorithm.

There is scope for improvement in case of congestion-aware mapping algorithms: in

the current variants, the matching phase is congestion-aware, while the covering phase

uses a conventional method and does not try to reduce the congestion actively. In the

covering phase, wire planning for non-critical nets may be employed for congestion

alleviation. For interconnect-aware technology independent logic synthesis, our result

on congestion correlation is useful, since it will allow an extension of the probabilistic

metric to even higher level of abstraction. Logic synthesistransforms, such ascollapse

that remove a node from the fanin, may then be made congestion-aware; a collection

of such congestion-aware transforms may lead eventually toa synthesis package that

is interconnect-aware. Such a synthesis system is desired,as interconnect dominance

increases with the technology scaling, since today’s synthesis algorithms that minimize

interconnect-unaware metrics such as literals and levels of logic are inadequate and

may, in fact, lead to design points that do not satisfy timingconstraints and are difficult

to route.

Another sub-100nm technology effect related to interconnects is that of repeaters.

Traditionally, repeaters have been ignored during synthesis and considered only dur-

ing post routing optimizations to speed-up the interconnects. In technologies beyond

100 nm, where interconnect delays dominate, ignoring the area and power cost of re-

peaters during logic synthesis will inherently lead to sub-optimal netlists requiring de-

sign iterations. As technology progresses, the power dissipated by global interconnects

also increases, even with copper interconnects [KCS02]. This is because, the resis-

tivity of copper interconnect increases due to surface scattering effect and copper bar-

143

rier effect, even with the barrier deposition techniques like Atomic Layer Deposition

(ALD) [KCS02], which is one of the most effective techniquesfor lowering the re-

sistivity. To overcome this, wider wires and/or repeaters are required to speed-up the

interconnects as the technology progresses, which resultsin an increased power dissipa-

tion. It is estimated that at the 50 nm node, for a typical microprocessor chip, the power

dissipation due to buffers for copper interconnects will be60 W [KCS02], while the

entire chip will dissipate about 170 W. In such a scenario, producing a netlist that mini-

mizes the number of buffers required in a synthesizable block is equivalent to, a certain

extent, minimizing power dissipation. Interconnects (andhence, repeaters) are strongly

affected by the logic synthesis optimizations, but logic synthesis tools still rely on the

traditional metrics such as gate area, fanout load, etc. anddo not consider interconnects

and repeaters [SMCK03]. Logic synthesis transformations affect wires, and hence, re-

peaters. For instance, theeliminatetransform [Sen92] that removes a node with a value

that is less than certain threshold from the network is equivalent to eliminating a wire;

the value is measured in terms of literal gains, and interconnect delay and overheads due

to repeaters are ignored. Making such transforms aware of the effects that they produce

will lead to synthesis algorithms that are interconnect-aware and are able to cope up

with nanometer technology challenges.

144

BIBLIOGRAPHY

[AMD +94] M. Alidina, J. Monteiro, S. Devadas, A. Ghosh, and M. Papaefthymiou.

Precomputation-Based Sequential Logic Optimization for Low Power. In

Proceedings of the IEEE/ACM International Conference on Computer-

Aided Design, pages 74–81, November 1994.

[Ash57] R. L. Ashenhurst. The decomposition of switching functions. InProceed-

ings of the International Symposium of Theory of Switching, volume 1,

pages 74–116, April 1957.

[BF98] J. L. Burns and J. A. Feldman. C5M–A control-logic layout synthe-

sis system for high-performance microprocessors.IEEE Transactions on

Computer-Aided Design of Integrated circuits and Systems, 17(1):14–23,

January 1998.

[BHSA03] C. Bittlestone, A. Hill, V. Singhal, and N. V. Arvind. Architecting ASIC

libraries and flows in nanometer era. InProceedings of the ACM/IEEE

Design Automation Conference, pages 776–781, June 2003.

[BNNSV97] P. Buch, A. Narayan, A. R. Newton, and A. Sangiovanni-Vincentelli.

Logic synthesis for large pass transistor circuits. InProceedings of the

IEEE/ACM International Conference on Computer-Aided Design, pages

663–670, November 1997.

[Bor00] S. Borkar. Obeying Moore’s law beyond 0.18 micron. In Proceedings of

the IEEE International ASIC/SOC Conference, pages 26–31, September

2000.

145

[CK90] P. K. Chan and K. Karplus. Computing signal delay in general RC net-

works by tree/link partitioning.IEEE Transactions on Computer-Aided

Design of Integrated circuits and Systems, 9(8):898–902, June 1990.

[CK00] D. G. Chinnery and K. Keutzer. Closing the gap betweenASIC and Cus-

tom: An ASIC perspective. InProceedings of the ACM/IEEE Design

Automation Conference, pages 637–642, June 2000.

[CKM00] A. E. Caldwell, A. B. Kahng, and I. L. Markov. Can recursive bisection

alone produce routable placements? InProceedings of the ACM/IEEE

Design Automation Conference, pages 477–482, June 2000.

[CLAB98] R. Chaudhry, T. Liu, A. Aziz, and J. Burns. Area oriented synthesis for

pass transistor logic. InProceedings of IEEE International Conference on

Computer Design, pages 160–167, October 1998.

[CLR98] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.Introduction to Algo-

rithms. Prentice-Hall India, New Delhi, India, 1998.

[CP92] K. Chaudhary and M. Pedram. A near optimal algorithm for technology

mapping minimizing area under delay constraints. InProceedings of the

ACM/IEEE Design Automation Conference, pages 492–498, June 1992.

[CS00] P. Christie and D. Stroobandt. The interpretation and application of

Rent’s rule. IEEE Transactions on Very Large Scale Integrated Systems,

8(6):639–648, December 2000.

146

[CW97] J. F. Croix and D. F. Wong. A fast and accurate technique to optimize char-

acterization tables for logic synthesis. InProceedings of the ACM/IEEE

Design Automation Conference, pages 337–340, June 1997.

[DDT78] M. Davio, J-P. Deschamps, and A. Thayse.Discrete and Switching Func-

tions. McGraw-Hill, Berkshire, UK, 1978.

[DS01] M. H. DeGroot and M. J. Schervish.Probability and Statistics. Addison

Wesley, Boston, MA, 3rd edition, 2001.

[DY96] M. P. Desai and Y. T. Yen. A systematic technique for verifying critical

path delays in a 300 MHz Alpha CPU design using circuit simulation.

In Proceedings of the ACM/IEEE Design Automation Conference, pages

125–130, June 1996.

[EJ98] H. Eisenmann and F. M. Johannes. Generic global placement and floor-

planning. InProceedings of the ACM/IEEE Design Automation Confer-

ence, pages 269–274, June 1998.

[Elm48] W. C. Elmore. The transient response of damped linear networks with

particular regard to wideband amplifiers.Journal of Applied Physics,

19(2):55–63, January 1948.

[FMM+98] F. Ferrandi, A. Macii, E. Macii, M. Poncino, R. Scarsi, and F. Somenzi.

Symbolic algorithms for layout oriented synthesis of pass transistor logic

circuits. In Proceedings of the IEEE/ACM International Conference on

Computer-Aided Design, pages 235–241, November 1998.

147

[GKSV01] W. Gosti, S. R. Khatri, and A. L. Sangiovanni-Vincentelli. Addressing

timing closure problem by integrating logic optimization and placement.

In Proceedings of the IEEE/ACM International Conference on Computer-

Aided Design, pages 224–231, November 2001.

[GNBSV98] W. Gosti, A. Narayan, R. K. Brayton, and A. L. Sangiovanni-Vincentelli.

Wireplanning in logic synthesis. InProceedings of the IEEE/ACM Inter-

national Conference on Computer-Aided Design, pages 26–33, November

1998.

[GR01] P. Gopalakrishnan and R. Rutenbar. Direct transistor-level layout for digi-

tal blocks. InProceedings of the IEEE/ACM International Conference on

Computer-Aided Design, pages 577–584, November 2001.

[HS02] J. Hu and S. Sapatnekar. A timing-constrained simultaneous global rout-

ing algorithm. IEEE Transactions on Computer-Aided Design of Inte-

grated circuits and Systems, 21(9):1025–1036, September 2002.

[ITN+00] T. Inukai, M. Takamiya, K. Nose, H. Kawaguchi, T. Hiramoto, and

T. Sakurai. Boosted gate mos (BGMOS): Device/circuit cooperation

scheme to achieve leakage-free giga-scale integration. InProceedings of

the IEEE Custom Integrated Circuits Conference, pages 409–412, May

2000.

[ITR01a] International technology roadmap for semiconductors, 2001 edition: De-

sign. http://public.itrs.net/Files/2001ITRS/Design.

pdf , 2001.

148

[ITR01b] International technology roadmap for semiconductors, 2001 edition:

Interconnect. http://public.itrs.net/Files/2001ITRS/

Interconnect.pdf , 2001.

[JSB98] Y. Jiang, S. S. Sapatnekar, and C. Bamji. A fast global gate collapsing

technique for high performance designs using static CMOS and pass tran-

sistor logic. InProceedings of the IEEE International Conference on Com-

puter Design, pages 276–281, October 1998.

[KCS02] P. Kapur, G. Chandra, and K. C. Saraswat. Power estimation in global

interconnects and its reduction using a novel repeater insertion method-

ology. InProceedings of the ACM/IEEE Design Automation Conference,

pages 461–466, June 2002.

[Keu87] K. Keutzer. DAGON: Technology Binding and Local Optimization by

DAG Matching. InProceedings of the ACM/IEEE Design Automation

Conference, pages 341–347, June 1987.

[KSD02] P. Kudva, A. Sullivan, and W. Dougherty. Metrics forstructural logic

synthesis. InProceedings of the IEEE/ACM International Conference on

Computer-Aided Design, pages 551–556, November 2002.

[LAB99] T. Liu, A. Aziz, and J. Burns. Performance driven synthesis for pass tran-

sistor logic. InProceedings of the VLSI Design Conference, pages 372–

377, January 1999.

[LKTD01] P. Lindgren, M. Kerttu, M. Thornton, and R. Drechsler. Low Power Op-

timization Technqiue for BDD Mapped Circuits. InProceedings of the

149

Asia South Pacific Design Automation Conference, pages 615–621, Jan-

uary 2001.

[LPP96] Y-T. Lai, K-R. R. Pan, and M. Pedram. OBDD-based function decompo-

sition: algorithms and implementation.IEEE Transactions on Computer-

Aided Design of Integrated circuits and Systems, 15(8):977–990, August

1996.

[LR71] B. S. Landman and R. L. Russo. On a pin versus block relationship for

partitions of logic graphs.IEEE Transactions on Computers, C-20:1469–

1479, 1971.

[LTKS02] J. Lou, S. Thakur, S. Krishnamoorthy, and H. S. Sheng. Estimating routing

congestion using probabilistic analysis.IEEE Transactions on Computer-

Aided Design of Integrated circuits and Systems, 21(1):32–41, January

2002.

[MBIS01] M. Munteanu, I. Bogdan, P. Ivey, and L. Seed. Single-ended pass tran-

sistor loic (SPL) - A design handbook.http://www.shef.ac.uk/

eee/esg/lowpower/pdf-papers/d4.5.pdf , 2001.

[MBM01] L. Macchiarulo, L. Benini, and E. Macii. On-the-fly layout generation

for PTL macrocells. InProceedings of Design Automation and Test in

Europe, pages 546–551, March 2001.

[Moo65] G. E. Moore. Cramming more components onto integrated circuits. In

Electronics Magazine, volume 38, pages 114–117, April 1965.

150

[Mos] MOSIS Parametric Test Results for TSMC0:25� CMOS Runs.

http://www.mosis.org/cgi-bin/cgiwrap/umosis/swp/params/ tsmc-

025/t04r-params.txt.

[NDH98] N. Nassif, M. P. Desai, and D. H. Hall. Robust elmore delay models suit-

able for full chip timing verification of a 600 MHz CMOS microprocessor.

In Proceedings of the ACM/IEEE Design Automation Conference, pages

230–235, June 1998.

[Ous] J. Ousterhout. MAGIC: An interactive layout editor. http:

bwrc.eecs.berkeley.edu/Classes/IcBook/magic/

index.html .

[Ous85] J. K. Ousterhout. A switch-level timing verifier fordigital MOS VLSI.

IEEE Transactions on Computer-Aided Design of Integrated circuits and

Systems, 4(3):336–349, July 1985.

[PPS02] D. Pandini, L. T. Pileggi, and A. J. Strojwas. Congestion aware logic

synthesis. InProceedings of Design Automation and Test in Europe, pages

664–671, March 2002.

[PPS03] D. Pandini, L. T. Pileggi, and A. J. Strojwas. Globaland local congestion

optimization in technology mapping.IEEE Transactions on Computer-

Aided Design of Integrated Circuits aand Systems, 22(4):498–505, April

2003.

151

[PR90] L. T. Pillage and R. A. Rohrer. Asymptotic waveform evaluation for tim-

ing analysis.IEEE Transactions on Computer-Aided Design of Integrated

circuits and Systems, 9(4):352–366, April 1990.

[PS98] C. H. Papadimitriou and K. Steiglitz.Combinatorial Optimization: Algo-

rithms and Complexity. Dover Publications, New York, NY, 1998.

[ptm] Berkeley predictive technology model.http://www-device.eecs.

berkeley.edu/˜ptm/download.html .

[Rab00] J. M. Rabey.Digital Integrated Circuits: A Design Perspective. Prentice-

Hall India, New Delhi, India, Second edition, September 2000.

[RRAR97] A. Reis, R. Reis, D. Auvregne, and M. Robert. The library free technology

mapping problem. InWorkshop notes of the IEEE/ACM International

Workshop on Logic and Synthesis, May 1997.

[RS99] M. A. Riepe and K. A. Sakallah. Transistor level micro-placement and

routing for two-dimensional digital vlsi cell synthesis. In Proceedings

of the ACM International Symposium on Physical Design, pages 74–81,

April 1999.

[RSL+99] S. Ruan, R. Shang, F. Lai, S. Chen, and X. Huang. A Bipartition-Codec

Architecture to Reduce Power in Pipelined Circuits. InProceedings of the

IEEE/ACM International Conference on Computer-Aided Design, pages

84–90, November 1999.

[RSLT01] S. Ruan, R. Shang, F. Lai, and K. Tsai. A Bipartition-Codec Architecture

to Reduce Power in Pipelined Circuits.IEEE Transactions on Computer-

152

Aided Design of Integrated circuits and Systems, 20(2):343–349, February

2001.

[Rud93] R. Rudell. Dynamic variable ordering for ordered binary decision dia-

grams. InProceedings of the ACM/IEEE Design Automation Conference,

pages 42–47, June 1993.

[Sas00] T. Sasao.Switching Theory for Logic Synthesis. Kluwer Academic Pub-

lishers, Boston, MA, 2000.

[SB00] C. Scholl and B. Becker. On the generation of multplexer circuits for pass

transistor logic. InProceedings of Design Automation and Test in Europe,

pages 372–378, March 2000.

[Sen92] E. M. Sentovich. SIS: A system for sequential circuit synthesis. Memo-

randum No. UCB/ERL M92/41, May 1992.

[SIS99] L. Stok, M. A. Iyer, and A.J. Sullivan. Wavefront technology mapping.

In Proceedings of the IEEE/ACM International Conference on Computer

Aided Design, pages 531–536, November 1999.

[SK92] S. S. Sapatnekar and S. M. Kang.Design Automation of Timing-Driven

Layout Synthesis. Kluwer Academic Publishers, Boston, MA, 1992.

[SK01] L. Stok and T. Kutzschebauch. Congestion aware layout driven logic syn-

thesis. InProceedings of the IEEE/ACM International Conference on

Computer Aided Design, pages 216–223, November 2001.

153

[SMCK03] P. Saxena, N. Menezes, P. Cocchini, and D. A. Kirkpatrick. The scal-

ing challenge: Can correct-by-construction design help? In Proceedings

of the ACM International Symposium on Physical Design, pages 51–58,

April 2003.

[Som] F. Somenzi. CUDD: CU Decision Diagram package, release 2.3.0.http:

//vlsi.colorado.edu/˜fabio/CUDD/ .

[spd] Scalable polynomial delay model.http://www.synopsys.com/

products/library/lib_comp_spdm.html .

[SRY98] Y. Sasaki, K. Rikino, and K. Yano. ALPS: An automaticlayouter for pass-

transistor cell synthesis. InProceedings of the Asia South Pacific Design

Automation Conference, pages 227–232, February 1998.

[SS01a] R. S. Shelar and S. S. Sapatnekar. BDD decompositionfor the synthesis of

high performance PTL circuits. InWorkshop notes of the IEEE/ACM In-

ternational Workshop on Logic and Synthesis, pages 298–303, June 2001.

[SS01b] R. S. Shelar and S. S. Sapatnekar. Recursive bipartitioning of BDD’s for

performance driven pass transistor logic synthesis. InProceedings of the

IEEE/ACM International Conference on Computer-Aided Design, pages

449–452, November 2001.

[SS02a] R. S. Shelar and S. S. Sapatnekar. An efficient algorithm for low power

pass transistor logic synthesis. InProceedings of the Asia South Pacific

Design Automation Conference, pages 87–92, January 2002.

154

[SS02b] R. S. Shelar and S. S. Sapatnekar. Efficient layout synthesis algorithm for

pass transistor logic circuits. InWorkshop notes of the IEEE/ACM Inter-

national Workshop on Logic and Synthesis, pages 209–214, June 2002.

[SSSW04] R. S. Shelar, S. S. Sapatnekar, P. Saxena, and X. Wang. A predictive

distributed congestion metric and its application to technology mapping.

In Proceedings of the ACM International Symposium on PhysicalDesign,

pages 210–217, April 2004.

[TB99] R. Tavares and M. Berkelaar. Reducing switching activity in pass transis-

tor circuits. InWorkshop notes of the IEEE/ACM International Workshop

on Logic and Synthesis, June 1999.

[WE94] N. H. E. Weste and K. Eshraghian.Principles of CMOS VLSI Design: A

Systems Perspective. Addison-Wesley, New York, NY, October 1994.

[Yan85] M. Yannakakis. A polynomial algorithm for the min-cut linear arrange-

ment of trees. Journal of the Association for Computing Machinery,

32(4):950–988, October 1985.

[YC99] C. Yang and M. Ciesielski. BDD decomposition for efficient logic syn-

thesis. InProceedings of the IEEE International Conference on Computer

Design, pages 626–631, October 1999.

[YSR96] K. Yano, Y. Sasaki, and K. Rikino. Top-down pass-transistor logic design.

IEEE Journal of Solid-State Circuits, 31(6):792–803, June 1996.

[YYN +90] K. Yano, T. Yamanaka, T. Nishida, M. Saito, K. Shimohigashi, and

A. Shimizu. A 3.8ns CMOS 16 x 16 multiplier using complementary

155

pass transistor logic.IEEE Journal of Solid State Circuits, 25(2):388–

395, April 1990.

[ZA98] H. Zhou and A. Aziz. Buffer Minimization in Pass Transistor Logic. In

Workshop notes of the IEEE/ACM International Workshop on Logic and

Synthesis, pages 105–110, May 1998.

156

