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As across-chip interconnect delays can exceed a clock,oyale-pipelining becomes
essential in high performance synchronous designs. Adthaure-pipelining allows
higher frequencies, it may change the circuit altogetheabse of the nonuniform in-
crease in the latencies of the paths and cycles of the cirbote importantly, it can
reduce the delivered performance of a microarchitectuneeshe extra flip-flops in-
serted may increase the operation latencies and stallyElethermore, the addition
of latencies on some wires can have a large impact on thelbtreughput while other
wires are relatively insensitive to additional latencisaddition, the high frequencies,
coupled with high integration densities, have made opsgdgémperature an important
concern due to the nonlinearly increasing cooling costs.

Physical design, which determines the lengths of the nydigowires and the spatial
distribution of power dissipation sources, plays an imgairtrole in determining the
throughput and thermal characteristics of a microarchitec Moreover, changes in the
throughput can affect the power consumption levels throwaghations in the activity
patterns.

In this thesis, we examine two problems related to wire{ppeg and operating
temperature, one each at the circuit- and microarchitectavels. First, we formulate
a method to automatically correct the functionality of aemaipelined circuit. The
proposed method finds the minimal value of the input issue sidwdown required
for a circuit as it affects the throughput of the circuit. Tieemulation may introduce
extra registers into the circuit in the process of corregtand attempts to minimize the

number of extra flip-flops thus added. When experimented enSEAS benchmarks,



the results suggest that wire-pipelining increases theativiroughput in most of the
cases.

The second part of the thesis addresses interactions betweeoarchitecture and
physical design stages. We propose a strategy for floorplgrihat attempts to mini-
mize the throughput loss that comes with wire-pipelininge 8hploy a statistical de-
sign of experiments strategy, which intelligently usesnaitkd number of simulations
to rank the importance of the wires, and this informationgediby the floorplanner to
optimize the throughput-critical wires by keeping themrsh®ur results over a num-
ber of SPEC benchmarks show improvements in the overaksyperformance when
compared with an existing technique. Additionally, we camgpa couple of simulation
time reduction techniques that can be used to speed up tldasion strategy.

Next, we extend the throughput-aware floorplanning metlomgoto incorporate
thermal issues. The approach uses instantaneous dynanwec gissipated in the blocks
of a microarchitecture to find a placement that is optimal corabination of the thermal
and the throughput attributes. We also model the dependssteesen the throughput
and power, and and uses transient analysis for thermal &stim The thermal ob-
jectives that we consider are the peak and average tempegatlihe results indicate
significant improvements in both the peak and the averageapeeviously proposed

approach.

Vi
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Chapter 1

Introduction

CMOS process scaling has allowed a steady increase in thatwgefrequencies
of integrated circuits, as predicted by Moore’s Law [Moo6§]enforcing a steady de-
crease in device intrinsic delays; semiconductor indusényds suggest that the operat-
ing frequencies of leading edge integrated circuits apgprately double every process
generation [Bor00], in tune with the projections of Moore&y [Moo65] and the Inter-
national Technology Roadmap for Semiconductors, ITRS [Hgnfor many years, the
performance of a VLSI circuit was determined solely by thiawge of the devices of the
circuit. However, the impact of wire delays on system perf@ance, which was negligi-
ble in earlier technology generations, has been growiraggdiedue to the mismatch in
the scaling trends of device and interconnect delays owaegs generations. Although
process scaling causes a considerable decrease in delags,dke same is not true in
the case of interconnect delays.

The main reasons behind this trend are the increasing Isista@aces and coupling
capacitances due to the decreasing wire cross-sectiom#aaeayer wire spacing, re-
spectively. The impact of the mismatch is more pronouncethéndeep submicron
(DSM) regime, particularly at the nanometer technologyesyavhere interconnect de-
lay became a major and dominating contributor to the shmmkiock cycle time. The
increasing criticality of the interconnects has preseat&driety of problems to the re-
search community. Various approaches have been proposedmder the interconnect

delay problem, such as:

» The use of copper [EH®7] to replace aluminum for wiring reduces line resis-

tance of the wires due to its lower resistivity.

* Repeater insertion [vG90], especially for long wires ,itglly linearizes the de-



pendence of interconnect delay on its length.

» Appropriate wire sizing [CL95] can reduce wire delays.

Although such techniques helped in keeping the intercardeainance problem at
bay in the earlier technologies, the high frequencies,cslpyi in the gigahertz range,
projected and employed in the nanometer circuits make ddsmgibility beyond the
scope of wire delay optimization. The scenario is furthegragated by the fact that die
sizes increase by 7% with every process generation [Bor@8{jlting in even longer
wire lengths, and hence longer wire delays. In other words)ewtechniques such
as [vG90, CL95, EHG97] work well for small or local interconnects, even the tietb
cally best optimizers cannot ensure that the delay of a |doigad) wire does not exceed
a clock period. For instance, even after aggressive opitoiz, a 2cm global intercon-
nect, a common occurrence in nanometer designs, has atej@elay of 0.67ns in
70nm technology [Con01], placing an upper bound of abouBH5 on the operating
frequency, much less than the multigigahertz frequenaieggted for that technology.
As pointed out in [SMCKO04], the maximum distance a signal ttamel along an opti-
mized interconnect in a clock cycle gradually decreaselBeatethnology further scales
down, indicating an increase in the fraction of the intereets whose delays exceed a
single clock period.

In addition to the above mentioned interconnect delay gmblanother issue that
has become an important concern in deep submicron techaslisghe operating tem-
perature, particularly in microprocessor circuits dueh® high power densities asso-
ciated with high operating frequencies and integratiorsdess; it has been observed
that the power consumption of cutting-edge microprocesdoubles every four years
[Bor0O, GBCHO1]. For high power dissipations, the cost ddlotgg has a nonlinear re-
lationship with power [GBCHO1], as shown in Figure 1.1. cating expensive cooling

solutions.



Cooling cost vs Thermal dissipation

Cooling solution cost ($))

0 . . . . . . . .
30 35 40 45 50 55 60 65 70 75
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Figure 1.1: The nonlinearly increasing cooling cost. Tha [d taken from [GBCHO1]
1.1 Handling multicycle wire delays

The emerging dominance of the across-chip delays over el@atays has forced
the designers to embrace alternative design methodoltdgaesvill enable multicycle
across-chip communication, so that across-chip interecinis removed from all the
timing constraints, and the chip speed is determined by tys# aritical intra-block/local
combinational path, in order to continue employing highggrating frequencies. Some
of the approaches which can be used to implement multicyoleagcommunication are

listed below:

1.1.1 Slower clock for the flip-flops latching signals from gbbal wires

In this approach, each of the signals from the global wiressehdelay is greater
than the system clock period are latched by the flip-flopskelddy the new, slower
clock network. However, this approach adds new compliaatia the form of routing
the extra clock network and synchronization between thekctitbomains. Moreover,
since the slower clock must consider the worst case actupswire delay, latching

signals from wires whose delay is considerably smaller tinw@nslower clock period

3



degrades the throughput of the circuit.

1.1.2 Globally Asynchronous Locally Synchronous (GALS) d&ign
methodology

This approach, proposed in [Cha84], advocates an asynoisastyle design for
hiding the effects of global interconnect delays. The badsa is to alter a circuit
such that it works under the assumption of zero-delay ibkeck connections. The
communication between the synchronous subsystems (ckd)lo€ a circuit, each of
which can have a different clock, is based on a full handspai®col. For this purpose,
each block of the circuit is wrapped around by an asynchreimerface. Several other
works have been proposed based on this approach, such 84,[B€b7]. However, the
overhead for the asynchronous interface may affect botlpei®rmance and the area

of the design.

1.1.3 Elastic systems

An elastic design or a latency insensitive design [CKG063M@1] is similar to a
GALS system in that each block of a circuit is surrounded byrapper that commu-
nicates with the neighboring blocks. However, the diffeeers that an elastic system
uses a synchronous framework for global communicatiorkartBALS, which relies
on handshake protocols. In such a paradigm, each block dfitbeit is required to
be “stallable”, which is accomplished by encapsulatingliteeks of the circuit with
wrappers and connect them through internally pipelinedhelds called elastic con-
trollers in [CKGO06] and relay stations in [CMSVO01], whichroprise memory elements
such as flip-flops and some control logic. All of the wrapperd eelay stations/elastic
controllers comply with a formally defined protocol, whiarins the basis for a correct-
by-construction methodology. Like GALS, the disadvantafjinis approach is the area

overhead accrued due to the relay stations, in additioretgliells. A further limitation

4



is that every communication channel must be provided witbuple of additional con-
trol signals, such as “valid/void” to identify valid datadhtstop” to implement the back-
pressure or feedback mechanism, which may add up to thewoiaf requirements,
increasing the already critical wire congestion. Althotigé authors of [CMO04a], who
used the software pipelining based approach of [BASBO1{al the blocks of the cir-
cuit, alleviated some of the aforementioned problems byicid) the complexity of
relay stations and eliminating the “valid/void” and “stogignals, elastic systems (and

GALS) have yet to find widespread use, partly due to the lagdefjuate CAD support.

1.1.4 Wire pipelining

The delay of an interconnect is distributed over severalkctycles by inserting flip-
flops along the interconnect. As an example, consider thewhsre a chip has a 2cm
wire, with a projected delay of 0.67ns in 70nm technologyichtputs an upper bound
of 1.5GHz on the operating frequency. To operate the chipfatéquency of 3GHz
(corresponding to a clock period of 0.33ns), the delay ofZbywa wire can be spread
over two clock cycles by inserting a couple of flip-flops on thee. This approach is
analogous to classical hardware pipelining, where theclo@ia circuit is spread over
multiple stages in order to employ a higher clock frequehtrddition,wire-pipelining
can be treated as an extension to the repeater insertiome 8bene of the repeaters
inserted on a wire, while optimizing its delay, are clockieel, memory elements such
as flip-flops.

Though it complicates the clock network routing, wire-pipieg, besides allowing
higher operating frequencies, enables designers to remdime purview of the tra-
ditional VLSI design methodology, and therefore has becanp®pular approach to
realize multicycle global communication in the nanometercpss technologies. For
instance, Intel used wire-pipelining in the Itanium pramdo realize an operating fre-

quency of up to 1.7GHz in 180nm technology [MEBO].



In this thesis, we focus on wire pipelining and propose sohstto a few issues as-
sociated with the technique that are outlined in the nexi@®cln addition, we assume

that all of the flip-flops are edge-triggered.

1.2 Issues with wire-pipelining

Although pipelining the interconnects having multicyckdal/s in a circuit permits
higher operating frequencies, there are several issuesiatsd with the wire-pipelining

scheme:

» Functional correctnessThe nonuniform introduction of extra flip-flops into a
circuit can alter its cycle level behavior, requiring catien. Specifically, the
number of latencies inserted on two different paths fromiaqfeblocks can be

different depending upon the lengths of wires of the paths.

» Throughput reductionThe increase in the number of clock cycles required for

each computation can result in reduced throughput.

The throughput reduction is dictated by the amount of pipedj required by the
wires that form loops or cycles in the circuit. At the cirelével, this is clearly
determined as the ratio of the post- and pre- wire-pipeljii@tencies of the cy-
cles of the circuit. This concept, which we calbwdownis dealt in detail in

section 2.2.

However, at the microarchitecture-level, the throughpdurction can be thought
as the increase in the number of clock cycles to execute amuation. For in-
stance, inserting a flip-flop on the wire connectisgueand adder units of a
microprocessor increases the latencyadfl operation by one clock cycle, which

prolongs the execution of the program run on the micropismes



1.3 Research contributions

In this thesis, we address two problems, one each at thetemod microarchitecture-

levels. The two problems are detailed in Sections 1.3.1 a®.@ Irespectively.

1.3.1 Functional correction

We present an approach for correcting the functionality mépipelined circuits.
Given a circuit and a wire-pipelined version of the circwitich may be functionally
incorrect, we formulate a method to correct the functidagadf the wire-pipelined cir-
cuit. The technique provides a minimum area solution to tiedlem, to minimize the
number of additional flip-flops that are required to be irsgdn some wires of the cir-
cuit to maintain functional equivalence. The method alssuess that the throughput

slowdown described in the previous section is kept at thermim possible level.

1.3.2 Microarchitecture-aware floorplanning

A typical microprocessor design methodology, shown in Fegli2, can be broadly

classified into the following three steps:

» Microarchitecture design: In this step, the basic funwidy issues of the design
are dealt. The step determines the Instruction Set Ardorte¢ISA) of the archi-
tecture and the high-level implementation details suchipaliping, cache sizes,

etc.

» Compiler design: This step involves translating text appliaations written in a

programming language such as C into assembly instructaribé ISA.

« Circuit design: The objective of this step is to transfohma high-level description

of the processor into a transistor-level circuit. The stegudes routines such as



logic design, where the high-level description is traredahto a network of tran-
sistors and wires, and physical design that determinescamlent of the network
on the chip layout. The circuit design step is followed byodatygeneration, and

finally a silicon implementation of the circuit.

Microarchitecture design

O

Compiler design Circuit design

Figure 1.2: An abstract view of microprocessor design flow.

The total execution timel,,.., of a program on a microprocessor can be expressed

as the product of three terms [Lil00], as shown below:

Teacec - Ninst - CPI- Tclk (11)

WherelV,,.; is the number of executed instructions, typically the mstion count of the
program, CPI is the average number of instructions per @i ;. is the clock period.
The throughput of the microprocessor, measured as thegesatanber of instructions
per clock cycle (IPC), is the reciprocal of CPI.

It can be observed that the execution time can be reduceddogaieng either of the
three terms. In a typical design flow, optimizing for the n&mbf instructionV;,,,; and
CPI has been solely in the hands of the microarchitecturecantpiler design stages.
The job of circuit design has been to minimize the clock cyte 7, subject to the
design specification passed on from the microarchitecteseyd step.

As noted in Section 1.2, wire pipelining can cause a redadtidhe throughput of
the circuit, i.e., increase in CPI, due to the increase imtlmaber of clock cycles per

computation. In addition, the amount of pipelining reqdit®y the wires of a circuit is



typically determined at the physical design step, pardidyl at the higher stages such as
floorplanning, i.e., block-level placement. This indicatkat circuit design can impact
the throughput of a microarchitecture, through the rogtiofethe physical design stage.

Under such a scenario, traditional physical design metloggpwhich focuses only
on minimizing the clock period and topological aspects saglarea and aspect ratio,
can result in processors that are suboptimal in throughPpécifically, the impact of
inserting additional flip-flops can vary across the busessvof the microprocessor,
depending upon the instruction mix executed. For betteunput, it is imperative to
minimize the amount of pipelining required by performanaéical wires by keeping
them short.

On the similar lines, the thermal characteristics of a chig @etermined by not
only the power consumption but also the placement of thecdsvon the chip layout
through various mechanisms of heat transfer that take phetbe chip. Therefore, for a
better thermal solution, microarchitecture optimizasigwhich typically involve power
minimization and other similar procedures, must go handamdhwith the placement
strategy.

Such a scenario asks for interaction between the micrdanthre and lower design
phases, particularly physical design, in order to achieteeb performance or thermal
characteristics. In this thesis, we propose methodoldgigards introducing microar-
chitecture awareness in floorplanning, an early physicsigtlestage that has a major
share in determining global wire delays. We first proposechrtigjue for throughput-
aware floorplanning and then extend it to include operagngperature in the optimiza-
tion objectives. We apply the methodology on two differerh#ectures, namely, the
DLX [HP97] and the Pentium (P6) [HP96] machines.

As is typical with microarchitecture optimizations, thetimedology requires cycle-
accurate simulations on a set of benchmarks to evaluatétbeghput and power con-
sumption of a microarchitecture. Due to the exponential Inemof floorplan configu-

rations possible, it is impractical to use simulations facle candidate floorplan that is
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evaluated during optimization. We employ a statisticaligle®f experiments (DOE)
based approach [Mon0O] to reduce the number of cycle-atgmnulations required

from exponential to a manageable limit.

1.4 Techniques for wire-pipelining

In case of the Itanium processor, wire-pipelining was pentd manually: the
global wires violating the clock cycle time were identifiatd flip-flops were manually
inserted into the RTL description by the designer. Untikergty, there have been few,
if any, methods for automated wire-pipelining, and severathods have been proposed
in the last couple of years, some of which are explained im# few paragraphs.

It is reasonable to assume that the delay of an optimallyebedfinterconnect varies
linearly with its length [She95]. If we can determine the maxm length of a wire
whose delay is within a clock period, calledtical sequential lengthn [SMCKO04],
then the number of clock cycles required by a signal tragdine length of a particular
wire can be estimated as the ratio of its length to the ctiseguential length. The
authors of [LZKCO02] use this idea to pipeline an interconrfec a given clock cycle
time. The approach uses the Elmore delay model [EIm48] ttyacally compute the
minimal number of buffers required to optimize the delay ofiee of a certain length,
and from this, estimate the critical sequential length.

In addition, the work identifies the feasible regions foreirimg each of the esti-
mated number of flip-flops and buffers on a wire, without Miolg the clock period
requirements.

Two other recent works [Coc02,HAT02] approach wire-pipielg at the global rout-
ing level. The technique of [Coc02] finds a wire-pipeliniragion to optimize a given
interconnect topology such as a Steiner tree [She95]. Ppiso@ach extends the dynamic
programming based buffer insertion algorithm of [vG90] lmgementing the buffer li-

brary with flip-flops. Given a Steiner tree, target clock pdrirequired times at each
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of the destinations, candidate buffer/flip-flops inserfimrations, a buffer and flip-flop
library, the algorithm finds an optimal assignment of flippBaand buffers on the buffer
locations, which minimizes the number of flip-flops betweka source and the lat-
est destination of the net. Another work [SZH04] extendsrttethod of [Coc02] for
pipelining using latches, instead of edge-triggered flyp4l

In [HATO2], wire-pipelining is handled in conjunction withlobal routing. The
approach, based on the fast path algorithm [ZLAOO], is touiameously route and
insert buffers and flip-flops to optimize a two pin wire. Thgaithm transforms the
chip area into a grid graph, where the edges and verticessmonding to the given
blockages are deleted, and finds a minimal latency route fr@rsource to the sink
of the net. The solution involves the propagation of wawefrfrom a vertex to its
neighbors, similar to maze routing [She95]. Both of the apphes use distributed
Elmore wire delay models, and keep track of multiple pag@utions at every step and

use techniques to prune inferior solutions to decreasectirels space.

1.5 Thesis organization

The remainder of the thesis is organized as follows. Ch&ptetroduces the func-
tional correctness problem in wire-pipelined circuits etall and presents a solution
for regaining the functionality. Chapter 3 details somekigacund information on su-
perscalar processors and other preliminaries associatiedh& content of the next few
chapters. A methodology for throughput-aware floorplagralong with a comparison
of various simulation time reduction techniques is prodide Chapter 4. Chapter 5
applies the methodology of Chapter 4 for the Pentium archite. In Chapter 6, the
floorplanning flow is extended to incorporate temperatusaeas into optimization. Fi-

nally, Chapter 7 presents conclusions of this thesis aneédotare directions.
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Chapter 2

Functional correction of wire-pipelined circuits

In this chapter, we propose a minimum area solution to thetfonal correction
problem introduced in Section 1.3.1. The solution is forated as an Integer Linear
Program (ILP).

The chapter is organized as follows. Section 2.1 overviewsesrelated work on
wire-pipelining, which is followed by Section 2.2, whichsteibes the problem and an
intuition behind the solution. Section 2.3 introduces teminology used in this pa-
per, while a mathematical formulation for the problem soluand area minimization
is developed in Section 2.4. Section 2.5 presents the ingaiéation details and experi-
mental results, while Section 2.6 addresses a few relatasidVe finally conclude the
chapter in section 2.7.

A preliminary version of the work has been published as thetbta thesis [Noo04]
of the author. The new contributions include optimizatidrihe the ILP run time and

an analysis of power dissipation in the context of wire-pipeg.

2.1 Related work

There have been some attempts to address wire-pipelinitigcatt-level in the re-
cent few years, most of them use the technique of retimingS&®R as the underlying
framework. The works of [LZ03, CYTDO03] extend retiming byclading the intercon-
nect delays, in addition to the gate delays, for pipelinlmgwires of a circuit. Another
work [TTBNOO] combines retiming at floorplanning level withodule selection to con-
sider wire latencies. The objective is to find a floorplan,hwitodule selection, that
minimizes the area of the floorplan subject to a lower boundawh wire latency. The

advantage of such (retiming-based) implementations isthigefunctionality of the cir-
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cuit is not altered, due to the use of retiming as the undgglfiamework. On the other
hand, since retiming preserves the latencies of the cydeésmput-output paths of the

circuit, there is a lower bound on the achievable clock ctiohe.

2.2 Problem description

A typical design flow may proceed as follows. After the bloeksl modules of
the circuit are designed subject to a clock frequency, akbleeel placement of the
circuit is performed. Wire pipelining is then carried out thre global wires of the
circuit, sometimes concurrently with routing [HAT02], ooraetimes after routing is
done [Coc02], and this may insert flip-flops on a wire if theagadf the wire exceeds a
clock cycle. After the wires of a circuit are pipelined, tledldwing two problems must

be resolved:
* Increase in the latencies of the cycles of the circuit.

* Nonuniform increase in the latencies of different patha tock from the inputs

of the circuit.

ckt; ckt,
e R FoRE
By a B By |<C>| B
= FL RIS ER

(a) (b)

Figure 2.1: A circuit with two inputs andb. Signalsy and z are the input ports of
the block By. (a) The circuit before pipelining its wiresit;). (b) The circuit after

pipelining its wires ¢kt,,).

Consider Figure 2.1, which depicts a circuit comprising twamnbinational logic

blocks B, and By, which also form the cycl€’, before and after pipelining the wires

13



of the circuit. The two scenarios are labeldd; andckt,, as shown in Figures 2.1(a)
and 2.1(b), respectively. The insertion of an extra flip-ttopthe cycleC increases its
latency to 2 inckt, from 1 in ckt;. Hence, the output of each block 6f propagates
back to itself after 1 clock cycle inkt;, whereas it takes an extra clock cyclecit,,
thus altering the original functionality of the cycle. Moker, with the insertion of an
extra flip-flop betweem andy, the inputsa andb reachy andz, respectively, after an
equal number of clock cycles itkt,,, which is not the case iekt;,. Henceckt; andckt,

are not functionally equivalent.

o e
(\Q,\f’
Xl G

Figure 2.2: A solution to the problem shown in Figure 2.1. \&ker to this circuit as

By

C/{th.

Wire-pipelining can therefore result in a totally diffetamicroarchitecture. This
is not the desired result and therefore, must be correctadl tras thesis proposes a
method for doing so. The solution lies in ensuring that exdogk receives its inputs
at the correct clock cycle. For increased cycle latenciesyse an approach similar to
thec-slowconcept mentioned in [LRS83]. The idea isstowdowrthe input issue rate
of the circuit by some factop, i.e., inputs are allowed to change only evef¥ clock
cycle. The issue rate of the initial circuitt; is assumed to be 1.

For instance, the cyclée' of ckt, will be functionally equivalent to the cyclé’
of ckt;, if the inputsa andb are permitted to change only every other clock cycle in
ckt,. As aresultckt, computes its outputs only every 2 clock cycles, which intdisa

a reduction in the throughput of the circuit. In additiore thtency difference between

1The issue rate is defined as the number of clock cycles betaigsressive input changes.
An issue rate of 1 indicates that the inputs can change el@ck cycle.
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any two paths to a block from the inputs of a circuit must alsontaintained in its
wire-pipelined version. Going by this argument, since #tericy difference between
the pathss — z anda — y is 1 in ckt;, and O inckt,, one extra flip-flop must be
inserted on the path— = in ckt, to make it functionally equivalent tekt;. However,
the slowdown has implications on the path latencies of a-pipelined circuit. For
example, the latency difference of the paths> y andb — z in ckt; must be amplified
by a factor ofp = 2 in ckt,, since it receives its inputs only every 2 clock cycles.
Therefore, 2 extra flip-flops must be inserted on the path =z in ckt,, as shown in
Figure 2.2.

Our work finds the minimal value of slowdown required for auit as this directly
affects its throughput and also minimizes the increase @éa aue to the insertion of

extra flip-flops in the process of correction.

2.3 Preliminaries

In the example in section 2.2, it was assumed that all bloak®wurely combina-
tional. In general, a circuit may have sequential as wellashinational blocks, i.e.,
the blocks may have internal flip-flops and/or cycles. Thstexice of cycles in a circuit
may require that extra flip-flops be inserted within a segaéhlock of the circuit. For
instance, consider a scenario where there are two pathsdromput of a sequential
block to one of its outputs. If the two paths have differeme¢mheies, and if the circuit
requires a slowdowp > 1, then the solution will require that the difference of |atiers
be increased by a factor pf Therefore, all of the wires of the block must be considered
for the insertion of extra flip-flops. However, in most cagks,blocks are internally un-
defined blocks at an early stage of design, or IP cores, aneftine, arbitrary insertion
of extra flip-flops on the wires within the blocks is not deblea To avoid this, we use
an abstract model for a sequential block that decompose®itiset of combinational

sub-blocks, interconnected by wires having flip-flops. Hrisures that for any sequen-
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tial block, only those interconnections that have flip-flagowsthem are considered for
insertion of extra flip-flops. Figure 2.3 shows a sequent@thband the abstract model
of the block. The block is modeled as two combinational sldeis, S; and S,, with

flip-flops on the interconnections between them.

/Sl S2

o LT e

Figure 2.3: A sequential block and its abstracted model.

For a general circuit, we will consider three scenarios: itfitgal circuit, a wire-
pipelinedversion of the initial circuit, and &orrected wire-pipelinedrersion of the
initial circuit. Flip-flops and repeaters apart, each of the=e circuits consists of the
same placed and routed combinational block level or subkid&vel netlist. Each net of
the circuits is a routed tree that connects the output of ekfdob-block (source) to the
inputs of other blocks/gates (sinks) through branch paint as Steiner points [She95].
We use three edge weighted directed graphs, each of whidmpysreferred to as
“graph” henceforth, to model the three scenarios. The gréwle the same vertex and
edge sets, representediagnd F, respectively. The vertex sét of the graphs models
the blocks/sub-blocks, the inputs, the outputs and thecbranints of the circuit. The

setF is the collection of the nets of the circuit. The graphs ascdbed below:

» The graphy; = (V, E, w;) represents thimitial circuit, which may not satisfy the
frequency requirements. The weight(e), Ve € E is the number of flip-flops

along the wire modeled hyin G;.
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» The graphG, = (V, E,w,) represents thaire-pipelinedversion of the initial
circuit G;, obtained using some wire pipelining method such as [Cd4BZ02].
AlthoughG,, satisfies the timing constraints, it may not be functionatjyivalent
to G;. The weightw,(e), Ye € E is the number of flip-flops along the wire
modeled bye in G,. We assume that the weighi,(e) is the lower bound on
the required number of flip-flops by the wire modeledehn order to satisfy the

target clock period requirements.

» The graphG;; = (V, E,wy) represents theorrected wire-pipelineaircuit, ob-
tained after alteringx, to make it functionally correct. Hencé; satisfies the
timing constraints, and is also functionally equivalentto The weightu(e), Ve €

E is the number of flip-flops along the wire modeleddon G ;.

It can be noticed that the circuit model used is similar ta tiaetiming formulation
[LRS83]. In additionp is the amount of input issue rate slowdown required so¢hat
is functionally equivalent t@~;. For the example discussed in section 2.2, the graphs
Gy, G, andG; model the circuits of Figures 2.1(a), 2.1(b) and 2.2, respely. This
thesis accept&; andG,, as inputs and presents a method to ob@@jrandp. The input
issue rate of7; is assumed to be 1, i.e., inputs of the initial circuit can bhe@ged every
clock cycle.

We extend the weight functions;, w, andw; to (simple) paths and (simple) cycles
of the graphs. The weight of a path/cycle is defined as the $uveights of all edges on
the path/cycle. For the graplis andG), to have a physical meaning, the edge weights
(and consequently path weights) andw, must be nonnegative, as they represent the
number of registers along the wires of the circuits. Moreosiace the graphs represent
synchronous systems, every cycle in the graphs must haviettygiositive weight, i.e.,
at least one edge of each cycle must have a weight greatezéhanin both’; andG,.

The weights of any edge, path and cycleGp cannot be less than the corresponding

weights inG,, as we do not wish tanpipelinethe wires ofGG,. However, the weights
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w, can be less than the corresponding weights G, indicating the presence of more
than necessary number of flip-flops required to meet the é&necpconstraints. Thus, for
any edge or path in the graphs, the weightin G ; can be less tha&rhe corresponding
weightw; in the graphG;. To indicate thak is an edge from: andv in the graphs,
we will use the notation: = v. We will also use the terms “graph” and “circuit”
interchangeably.

We have seen in section 2.2 that any attempt to correct thetifuality of G, to
obtainG; may involve the insertion of extra flip-flops, thus resultangincrease in the
area. The proposed method also minimizes the area incraage the insertion of extra
flip-flops, which is detailed in section 2.4. To accuratelydeiathe area, we define two

nonnegative weight functions ar, as shown below:

» The weightr,(e), Ye € E represents the number of repeaters along the wire

modeled by in G,,.

» The weightr;(e), Ve € E represents the number of repeaters along the wire

modeled by in G .

We assume that all repeaters are identical and therefoeedtpial area. We make a
similar assumption for the flip-flops as well, i.e., each flgp has equal area. If extra
flip-flops are to be inserted along a wire, in going fra¥y to Gs, some or all of the
repeaters along the wire i@, can be replaced with flip-flops, without violating any
timing constraints. The repeaters@f are ignored in our model since they do not have

any role in area minimization.

2This not true for a cycle though. For any cyelew(c) > w;(c), sincep(c) > 1.
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2.4 Solution technique

2.4.1 Obtaining the optimalp

As explained in section 2.2, the concept of slowing down tipui issue rate (by
a factor ofp) can be used to correct the functionality of a cycle in theevgipelined
circuit G,,. By restricting inputs to be allowed to change only evewiock cycles, we
are providing “extra” clock cycles to the cycle @#, to complete its computations. In
other words, slowdown (of the input issue rate) can be thbafjas a compensating
factor for increased cycle latenciesah, at the expense of decreased throughput, since
the circuit computes its outputs only everglock cycles.

Let ¢ be any cycle of the graphs, whose latencie&jrandG,, are given byw;(c)
andw,(c), respectively. Consider a block on the cycle, and suppdsssian inpuy, not
belonging to the cycfe By the time the output computed by the block propagates back
to itself through the other blocks of the cycle, the numbetiraés the signal seen at
may have changed is equaldg(c) in G;, andw,(c) in G,. For functional equivalence
of the two circuits, the number of input changes seen atust be identical in both
circuits, equal taw;(c). Since inputs can change every clock cyclesin this can be
achieved if the inpuy is permitted to change only eveilﬁg% clock cycles inG,. This
ratio gives the slowdowp(c) required for the cycle in G,,. Applying this idea to the
cycle C of Figure 2.1, wherey;(C) = 1 andw,(C) = 2, we havep(C) = 2 = 2.
However, ifw;(c) does not dividev,(c), then the weightv,(c¢) must be increased to the
next higher multiple ofv;(c), as we can only have an integral slowdown. For instance,
if the values ofw;(c) andw,(c) are 2 and 5, respectively, then a slowdowmpf) = 3
is required forc in G, and the weightv,(c) must be increased o- w;(c) = 6.

In general, a circuit may have more than one cycle and eadiesétmay require a

different slowdown. The critical cycle is the cycle whiclyugres the maximum value of

3An example of such a situation is illustrated by ingun Figure 2.1.
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slowdown. The slowdown required for this cycle is the loweuhd for the slowdown
required for the entire circuit’s, since the latencies of other cycles can be increased
to match this slowdown. If(Gy), or p in short denotes the minimal (also optimal)

slowdown required by~ ; to exhibit correct behavior, then we have

= e { [ 22}

where( is the set of cycles of the graphs.

The equation shown above representsaximum cycle ratio problegMCRP) [Law66]
on the graphgs; andG,, where the time and cost of each edge E is given by the
weightsw,(e) andw;(e), respectively. One method of obtainipgwvas proposed by
Lawlerin [Law66]. The idea s to iteratively apply the Betim-Ford algorithm [CLR89]
to find the longest paths in the graph = (V, E, w;), where the edge weights; are

defined as:

wi(e) = wy(e) —p-w;e) Vee I/ (2.1)

If there is no cycle i, (C = 0), thenp is 1, i.e., inputs can be issued every clock
cycle in acyclic circuits. Otherwise, a binary search iS@aned to find the minimal
value of 5 for which there is no positive cycle if¥;. The presence of a positive cycle in
G, indicates that for some cyctein Gy, p - w;(c) < w,(c), i.e., the slowdown required
for c is greater tham. The complexity of Lawler's method i@ (|V'|| E|log(|V |wmaz)),
wherew,,,, = max.cpw;(e). Several other more efficient ways of solving the MCRP

have been proposed in the literature [DIG99].
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Figure 2.4: lllustration of the solution technique on thegit shown in Figure 2.1. The
numbers shown with the edges in the graphs correspond to eéfghts of the edges.
(a) The initial circuit ;) depictingckt,. (b) The wire pipelined circuit®,), depicting
ckt,. (c) The corresponding grapl;. The optimal slowdownp is 2. The number
shown above each vertex @ is thex value for that vertex. (d) A Solutiord;). The

weightsw; shown with the edges are obtained by using (2.5).

2.4.2 Obtaining a solution toG/;
A feasible solution

Let ¢ andq’ be any two distinct paths from the inputs of the circuits ty aeartex
v € V. Since the inputs are issued only everglock cycles in the circuity, to
compensate for the increased cycle latencies, if the difise of weights of andq’ in
G is k, then the corresponding differencedy must bep - k. For example, since the
difference of weights of the paths— y andb — 2z in the circuitG; shown in Figure
2.1(a) is 1, the corresponding difference must be 2 (sinee2 for the circuit) in the

circuit Gy shown in Figure 2.2. From this observation, we have

wy(q) —wp(d) = p-(wilg) — wilq))
= wi(q) — p-wile) = we(q) —p-wi(d) (2.2)
If Q, is the set of all paths from the inputs ¢an the graphs, then from (2.2), the

difference of the terms); andp - w; must be equa¥q € Q,. We introduce a variable

x(v) Yv € V such that
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r(v) = wi(q) —p-wilq) VgeQ, (2.3)

Let ¢, be any path starting from the inputs of the circuits, endingeatex«. For
u - v, we can form a path, ending at by addinge to ¢,. The weights of;, andg,

can be related as follows:

wp(qn) = wp(qu) +wpy(e)
wi(qy) = wi(qu) + wile)

and wy(q) = wy(g.)+uwy(e) (2.4)

From (2.3) and (2.4), we have

wi(g) = x(v) +p- wi(g)
= wiqu) +wyle) = x(v) +p- (wi(qu) +wile))
= wele) = (v) — (w(gu) = p-wilqu)) + p - wile)
= (2(v) = z(w)) + p-wile) (2.5)
In (2.5), the weightsu; are expressed in terms ofvalues and. We also have

wy(e) > wy(e) forall e € E. From this and (2.5), the following can be deduced:

IN

wy(e) (z(v) = 2(u)) + p - wile)
= a(v) = w(u)+ (wp(e) = p-wi(e)) (2.6)

From (2.6), it is evident that(v) is the weight of the longest path toin G,, de-
fined in the previous section, while discussing about Law/aethod of solving MCRP.
When there are no positive cyclesaf, longest paths are well defined and the Bellman-

Ford algorithm outputs the values of the vertices. Therefore, solving the MCRP by
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Lawler's method also finds thevalues, along withp. The weightsw, can then be de-
termined from ther values using (2.5). To summarize, the following steps arelwed

in obtaining a functionally correct wire-pipelined cirtui;.

1. Solve the MCRP to obtaifiand ther values.
2. From thep and thex values computed in step 1, determine the weight®f G,

using (2.5).

Lemmal Let(Gy = (V, E,wy), p > p) be a solution ta/G;, G,,). Then for any cycle

c in the circuit, we have

wp(e) = p-wi(c)

e €n—1

Proof: Suppose cycle ¢ is composed of vertices and edges™ v; —% ... ==

Up, Vg = Up. Then

wile) = Y wye)

= i (x(vig1) — z(v;) + p - wi(e;))
= Zp w(e; +Z 2(vig1) — 2(vs))
= p- w,(C)

Lemma 1 indicates that all cycle latencies are increasedfagtar ofp in G ;. This
shows that(/,; represents a pipelined version 6f, retaining its functionality if the

inputs are issued only evepyclock cycles. It computes outputs everglock cycles.
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We demonstrate the solution technique on the circuit showfigure 2.1. Figures
2.4(a) and (b) show the graph modélsandG,, for the circuitsckt; andckt,, shown
in Figures 2.1(a) and (b), respectively. The blodksand B;, and the inputs and
b are modeled as the verticeg, v, v,, vy, respectively. The graphs have one cycle
C = vy — v; — vg. We have seen at the beginning of this section that the optima
slowdown required for the circuit is 2, i.ep,= 2. Figure 2.4(c) shows the grayky
obtained by computing the edge weights using (2.1).4=er2, it can be observed that
the weight ofC in GG, is 0, which indicates that the longest paths are well defingd i
Thex values of the vertices are shown in Figure 2.4(c). The smiubbtained by using
thez values from Figure 2.4(c) is shown in Figure 2.4(d). It carsben that the graph

G of Figure 2.4(d) is identical to the circuikt, of Figure 2.2.

A minimum area solution

The solution technique presented in the previous sectity fords a feasible so-
lution, and does not consider minimization of the area iasee incurred due to the
possible insertion of extra flip-flops, while obtaining awdg@n. In this section, we will
extend the solution technique to incorporate area minitimzand formulate the prob-
lem as an Integer Linear Program (ILP) and then describe adaddb solve the ILP

efficiently. We will consider two flexibilities for area mmiization here.

Formulation as an ILP

One way of minimizing the number of extra flip-flops is to re¢isome or all of the
extra flip-flops out of the wires of the circuit, as illustrdia Figure 2.5. In section 2.4.2,
thex values are computed as the longest path weights .irHowever, the slacks in the
longest path constraints (henceforth referred to as Igtemastraints) (2.6) allow a range
of permissible values far. This flexibility enables the movement of flip-flops across

vertices, which is exploited for area minimization.
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(a) (b)

Figure 2.5: lllustration of area minimization on a portiohaocircuit by retiming the
extra flip-flops. (a) A solution to the problem requires on&a&xlip-flop each on the
outgoing edges oB3; and B, respectively. (b) The two flip-flops are moved over the

blocks B; and B, to the outgoing edge aB,, which reduces the flip-flop count by one.

I /(Rep\eater >
By 4>>—>I—>>—> By By 4"4'I—’>—' By

(@) (b)

Figure 2.6: lllustration of area minimization on a wire ofiecait by replacing a repeater
with the extra flip-flop. (a) A solution to the problem requir@ne extra flip-flop on the

wire betweenB, and B;. (b) A repeater is replaced with the extra flip-flop.

The second degree of freedom we will explore is as followghéevent of adding
extra flip-flops to the edge, some or all of the repeaters present aleng G, can be
replaced with flip-flops. We assume that each extra flip-flap regolace one repeater
from the edge, as demonstrated in Figure 2.6.

Insertion of an extra flip-flop can be thought as making onéefxisting repeaters
on the wire “clocked”. Inserting an extra flip-flop on a wiresea the timing constraints
on the wire, and therefore the wire actually requires lesaanber of repeaters. Hence

removing a repeater from the wire does not lead to any timiagtron. The available
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number of slots, i.e., repeaters along the edige’,, is given byr,(e) and the number of
extra flip-flops to be added along the edge G/ is given byextra(e) = we(e) —w,(e).

If extra(e) exceeds,(e), then all of ther,(e) repeaters alongin G, will be replaced
with flip-flops. In such a scenario, the number of repeatesagt in G, given by
rt(e), will be 0. Otherwiser(e) will be equal to the remaining number of repeaters on
e of G, after some of them were replaced by extra flip-flops. Theegig(e) can be

expressed as the following piecewise linear (PWL) function

ri(e) = maz{ry(e) = (wr(e) —wpy(e)), 0} 2.7)

We define the area of the edgén the circuitGy, as(e), as the area of the repeaters
and flip-flops along: in G. If area is the total area of the repeaters and flip-flops of

Gy, andw, andr, are the areas of a single flip-flop and repeater, respectiay for

anyp > p,

afle) = wyele) -w,+rp(e) -1, VeekFE
= (z(v) —z(u) + p-wi(e)) - wa +ry(e) 14
and area = Zaf(e) (2.8)

ecE
Integer Linear Program

The minimum area solution can be formulated as an IntegegdriProgram (ILP)
shown below, by expressing the PWL function (2.7) as twodineonstraints. The
constraint set of the ILP includes the latency constrai&)@nd the two linear repeater
constraints (2.9) and (2.10) deduced from (2.7). The ot to minimizearea given
by (2.8).
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Minimize

area = Z{(:c(v) —x(u) + p-wi(e)) - wg +re(e) -1y}

Subject to -
Vee E st. u->wv
ri(e) = mple) +wyle) = (x(v) = x(u) + p-wile)) (2.9)
ree) > 0 (2.10)
z(v) = w(u) +wpe) = p-wie)

Solving the ILP

Solving an ILP is generallilP—completeunless the problem exhibits integral poly-
tope structure [BJS90], which means that all of the extrepuahts of the polytope
formed by the constraint set of the ILP have purely integoahponents. Unfortunately,
the ILP of previous section in the described form does nog¢laanvintegral polytope, and
is therefore hard to solve. The hardness of the problem chroesthe repeater con-
straints (2.9) and (2.10). In this section, we will reforiatel the ILP as an instance of the
dual of the Minimum Cost Network Flow (MCF) problem [BJS9@jich exhibits in-
tegral polytope structure, and therefore can be efficiesdlyed. This is accomplished
by finding a closed form expression for the repeater counwhich can be used to
eliminate repeater constraints from the ILP.

@ —0 660
(@) (b)

Figure 2.7: Insertion of a dummy nodg on an edge € F.

We use the following transformation to achieve this. Forheatgee € E, where

u = v, a dummy vertex, is added to split the edge into two edgesande,, such that
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u = d, andd, = v, as shown in Figure 2.7. The edgemodels the case where the
extra flip-flops to be inserted anreplace the repeaters ef Inserting a flip-flop ore;
increases the area eby w, — r,. The edge:; models the case where more thg(e)
extra flip-flops are to be inserted en Inserting an extra flip-flop ol, increases the
area ofe by w,. To minimize area, the ILP fills, first before assigning any flip-flop to
es. The firstr,(e) extra flip-flops to be inserted anare assigned te, and the rest are
inserted ore,. Therefore, the number of flip-flops inserted@ngiven byw(ez), will

be strictly positive only when the number of extra flip-flopgeedsr,(e). From this,

We have,

wi(e) = wy(er) +wg(es)
wi(er) < rple) +wp(e) (2.11)
ri(e) = mple) = (wyler) —wy(e)) (2.12)

Equation (2.12) represents a closed form expression faetheater count; in G,
which can be used to eliminate thevariables from the ILP. In addition, the following

latency constraints oy ande, can be inferred from the above equations.

z(de) = x(u) + (wy(e) — p-wile)) (wy(e1) = wy(e))
z(v) > z(d.) (wy(e2) > 0)
z(de) < x(u) + (ry(e) +wy(e) — p-w;(e)) (from(2.11))

It can be observed that the first two inequalities above suta aptain the constraint
(2.6) one. The last constraint places an upper bound,0¢) on the number of extra
flip-flops that can be inserted en part of the edge. With all the above equations, we

obtain a new expression farea, as shown below:
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af(e) = wf(e) “Wq + (rp(e) + wp(e) - wf(el)) *Tq
= (z(v) = x(u)) - wy — (x(de) — x(w)) - 74 + p - const.
= z(v) w, — x(u) - (wy — re) — x(de) - T4 + p - cOnst.

area = Z (ky - z(v)) + p - const. (2.13)

veV U Va

whereV/ is the set of dummy vertices, andAfO(v) and F'I(v) are the number of

outputs and inputs af € V, respectively,

. FI(w) w, —FO(W) - (w,—1,) : veEV
° —re  vEV;

Equation (2.13) indicates thatea is a linear function of: variables and the slow-
down factorp. The reformulated ILP for the minimum area solutiondg is shown

below.

Minimize area = Z (ky - z(v)) + p - const
UGVUVd

Ve e E st US>
z(u) — z(de)
z(de) — (v)
x(de) — x(u)

IN

p - wile) — wp(e)

0

IA

IA

rp(e) +wyle) — p-wile)

For a constanp, the constraint set of the preceding ILP is a set of diffeeecan-
straints involvingr variables, and the objective is a linear functionrofariables. An
ILP of this structure represents an instance of the dualehtmimum cost flow prob-
lem, which can be efficiently solved by several methods suctih@ network simplex

method [BJS90]. As before, the weights can be computed using (2.5). In addition,
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" @ * (b > (© ° @

Figure 2.8: Optimap may not mean minimum area. It is assumed that the circuits do
not have repeaters. The number shown with each edge in thkegydanotes the flip-flop
count of the edge. (a) Initial circuit. (b) Wire-pipelinedauit. (c) A minimum area
solution forp = p = 2: number of flip-flops = 10. (d) A minimum area solution for

p = 4: number of flip-flops = 8.

there is a minimum area solution for each value ¢f 5. Moreover, the minimum area
solution for p may not be a global minimum solution, as demonstrated inrEigu8.
However, in most cases, maximizing throughput (or minimgzi) is the primary objec-
tive, rather than minimizing area. In such a scenario, theif_.solved fop = p, which
is determined by solving the MCRP, as detailed in section ZHe resultant solution

represents a maximal throughput minimum area solutia@ito

2.5 Experimental Results

251 Setup

The ideal application of the proposed technique is in tha afeSystem on Chip
design methodology, where several IP blocks are connecgtddny across-chip in-
terconnects. However, the lack of appropriate SoC bendksnamakes experimen-
tation a difficult task. The authors of the latency insemsitilesign methodologies
of [CMSVO01, CM04a] use a small MPEG circuit for their expeeimations. In con-
trast, the wire retiming approaches proposed in [LZ03, C93Dthe architectural re-
timing technique of [TTBNOO] that were described in Sectibh, a more recent work

on concurrent systems [JCK06] address this issue by phogettie gate level circuits,
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specifically those of the ISCAS benchmark suite [BBK89],aag¢ SoC circuits, where,
in most cases, each logic gate is treated as a large IP blodkyigh an input to output
latency of one in [CMSV01, CM04a].

We use ISCAS benchmarks for our experimentation, just asrie th [LZ03,CYTDO03,
TTBNOO, JCKO06], where each circuit is scaled into a large $wCuit consisting of IP
blocks. The results are presented in Section 2.5.2.

In addition, we also present another potential applicatibthe proposed solution
technique at the circuit- or logic- level for frequency coamed circuits. Specifically,
for designs that have a strict frequency constraint, ongisal is to pipeline the circuit,
i.e., increase the latencies of the paths that violate thekgderiod constraint. This pro-
cess may be different from the SoC problem discussed in thaequrs paragraphs, since
the wires of the circuit can have small delays and the ovkrgit must be considered
during pipelining, unlike individual wires in the SoC scenaWe use the same ISCAS

benchmark circuits for this purpose and demonstrate thdtsas Section 2.5.3.

2.5.2 Wire-pipelined SoC circuits

An operating frequency of 3GHz is chosen for the system aaddityet technology
chosen has a feature size of 65nm. After finding a placemeéng) @apo [CKM], the
area of the circuits was scaled to 4ctm mimic the layout of a realistic chip. For smaller
layouts, the wire lengths are not long enough to be pipelindte dimensions of the
circuits were scaled accordingly. Each gate in the origoaluit is assumed to be a
combinational functional block. The block propagationaysl are randomly generated
using a quantitative scale of 1-10, where 10 correspondset@ystem clock period,
which turns out to be 0.33ns (corresponding to a frequenc$Gifiz). In addition,
the output signal of each block is assumed to be latched inatedg after it leaves
the block, and these flip-flops are the only memory elementhen(initial) circuit,

indicating that each wire has a latency of 1, similar to therapch used in [CMSVO01],
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Circuit | |V| |E| Gy Gy p | Time
Rptrs | Flops | Rptrs | Flops (sec)
s27 15 18 21 19 18 22 1| 0.1
s344 | 110 | 210 | 265 | 229 | 198 | 333 |2| 0.1
s349 | 114 | 215 238 227 174 329 | 2| 0.1
s1196 | 360 | 836 | 1864 | 1111 | 1606 | 1446 1| 1
s1238 | 389 | 925 | 1519 | 963 | 1267 | 1277 | 1 1
s1423 | 449 | 913 | 1134 | 1028 | 752 | 1540 | 2 1
s1494 | 364 | 1104 | 3083 | 1592 | 2572 | 2231 | 2 1
s13207| 2014 | 3759 | 4843 | 4094 | 3354 | 5976 | 2 1
s15850| 3504 | 7215 | 9166 | 7787 | 6231 | 11382 2 2
s38417| 8029 | 17646| 29717| 0947 | 3131 | 29837 2| 14
s38584| 9616 | 22515| 35777| 6093 | 6628 | 37446| 2| 24

Table 2.1: Experimental results for ISCAS benchmarks.

where each IP block has a latency of one. In this way, each afoag with the delay

of the block that it feeds data to, can be considered for pipe independently without

addressing the other parts of the circuit.

For the wire delays, the projections for a 2cm global wire enad[Con01] were
used, where the delay of an optimized 2cm wire in 70nm teagyois projected to be
0.67ns. The delays of the wires of the test circuits wererdeted by assuming a linear
relationship between the delay of a wire and its length, wisaeasonable for buffered
interconnects. It is also assumed that a 2cm wire has 10tepeand accordingly the

repeater counts of the wires of the circuit were determif@uhlly, the area of a flip-flop

was assumed to be twice that of a repeater.

First, the optimal slowdowr, was obtained for each circuit by solving the MCRP, as

explained in section 2.4.1. Later, the ILP, which is an instaof the dual of minimum
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Circuit | MaxFreq | S, | p SGf
(GHz)
s27 2.48 12111121
s344 1.86 1.61| 2| 0.80
s349 2.13 1421 2]0.71
s1196 1.42 21111211
s1238 1.35 22011220
s1423 1.24 24212121
s1494 1.49 2012101
s13207 1.10 27312 |1.36
s15850 1.57 192 2] 0.96
s38417 1.03 2892|145
s38584 1.19 25112 |1.26

Table 2.2: Performance issues with wire-pipelining.

cost network flow problem, was solved using the network sxjpinplementation of
[Loe] to obtain a minimum area solution subject to the slowdof p obtained for each
circuit. The experiments were performed on a 2.4GHz Pendumachine with 1GB
RAM. The results obtained for different benchmarks are shmafable 2.1. The labels
Rptrs andFlops denote the number of repeaters and flip-flops, respectistgd for
both circuitsGG,, andG/. It can be observed from the table that the number of repeater
Rptrs, decreases ifi;, since some of the repeatersafy are replaced by flip-flops in
GY. In addition, for circuits such as s1238 and s1196, a slowdofrl indicates that
none of the wires forming cycles in those circuits were longugh to be pipelined. The
run times are in the order of a few seconds, as shown in the.tabl

Table 2.2 captures the speedup obtained by wire-pipelinmg@articular, we com-

pare the results with those obtained by utilizing converdlaetiming that also consid-
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ers wire delays. Our (wire) retiming implementation is lthse the algorithm proposed
in [LZ03]. Column 2 of Table 2.2 lists the upper bound on themping frequency,
achieved by retiming, of; for each benchmark. The column labelegl, Shows the
frequency speedup obtained by performing wire-pipeliing-; for a clock frequency
of 3GHz. However, the frequency speedup of the wire-pigeligircuit, G, (which
may be functionally incorrect) may not entirely translat®ithe throughput speedup
obtained for the corrected wire-pipelined circuit;, since the possibility of increased
cycle latencies irG, will enforce a slowdown of in the input issue rate i6/;. The
column &;, shows the actual throughput speedup achieved pywhere S, = S, /p.

It can be observed from Table 2.2 that for most circuits, tttea speedup achieved
is greater than one, as compared to retiming, which indsctitat wire-pipelining has
indeed improved the performance. However, some circuith a8 s344, the through-
put speedup achieved is less than one, suggesting thapipeéning has resulted in
throughput degradation for these circuits.

Table 2.3 depicts the area and power consumption issuesiat&sb with wire-
pipelining. The column labeledrea Incr lists the percentage increase in the area
of the repeaters and flip-flops @;. The area is calculated as the sum of the areas of
the flip-flops and repeaters, which are normalized to 2 andshectively. The last two
columns demonstrate the dynamic power consumfxiorepeaters and flip-flops, ob-
tained using SIS [SSt92], in circuitsG, andG/, respectively. It can be observed that
the repeater-FF dynamic power shows the same trends adtiaésmeedup;, of Table
2.2, as depicted by the final column, which shows the ratidgofandG; repeater-FF
dynamic power for each of the benchmarks. We are unable tergenresults for some

of the large benchmarks (as SIS was not able to handle lapgg sizes), and this is

“Normalized to that of the initial circuit;;. ForG;, the maximum frequency bounds
shown in Table 2.2 are assumed, while a frequency of 3GHzd ispower computa-
tions for G, andG;. The slowdown factor is taken care by scaling the node swtch
activity values by the corresponding amounpof
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Circuit | Area Incr Power S,
%) | G, | Gy |7
s27 5.1 1.27|1.41| 0.86
s344 19.5 0.86| 1.21| 0.66
s349 20.2 0.73|1.02| 0.70
s1196 10.1 2.61| 3.24| 0.65
s1238 10.9 2.67| 3.37| 0.66
s1423 20.1 1.30| 1.85| 0.65
s1494 12.2 1.34| 1.79| 0.56
s13207 17.5 1.45]| 2.04| 0.67
s$15850 17.2 1.01|1.42| 0.68
s38417 15.6 1.63| - -
s38584 154 - - -

Table 2.3: Repeater area and dynamic power.

indicated by the “-” entries in the table.

Although wire-pipelining causes a degradation in perfarogafor some circuits,
there could be several system-wide reasons for having a&hwbck frequency. Typ-
ically, decision on the frequency is made at the system lamdl is handed down to
the designer to implement, who tries to ensure best pospdfe@rmance under this
decision. The amount of slowdown required can be reducedsimgbetter objective
functions in placement, which will attempt to place blockseh form, in particular, the
critical cycle closer to each other. The authors of [CMO4¥}lis idea at the floorplan-

ning level by including the slowdown factor as part of the ffdanning objective.
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2.5.3 Frequency constrained logic circuits

The previous section assumes that each gate of the ISCASianks as a logic
block and projects the area to 4&nin this section, we directly use the gate-level de-
scription of the benchmarks to pipeline the circuits for eyéa frequency. For this
purpose, we use a SPICE generated library consisting of diyie lgates, namely, an
inverter, two- and three-input nand and nor gates, and ae-gdgyered flip-flop. The
gates along with the delays are shown in Table 2.4. After nmghe benchmarks using
SIS [SSLF92], we employ Capo to find a placement of the circuits.

The next step is to pipeline the circuits for the target clpekiod. We choose the
same frequency of 3GHz that is used in the previous sectiamaAntioned in Sec-
tion 2.5.1, the pipelining strategy must consider the wieoleuit rather than on individ-
ual wires separately as done for the SoC circuits in Sectibr22 For circuits that do
not not cycles, it is fairly straight forward to pipelinense a simple breadth first search
or a topological sort will suffice. Furthermore, the addiablatencies in this scenario
affect only the input (PI) to output (PO) latencies and doingdact the throughput of

the circuit.

Gate | Delay (ps)

NOT 29.0
NAND2 33.6
NAND3 36.0
NOR2 34.5
NOR3 374

DFF 67.2

Table 2.4: Gate library and delays.

In contrast, for circuits that have cycles, pipelining isahumore complicated, since
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a topological ordering of the gates cannot be defined. Oneapbp is to remove all the
back edge$rom the circuit and then pipeline the resultant acyclicait. The deleted
back edges are then added and any timing violations can ldthby inserting flip-
flops on the added edges. These back edges can be, for insédineges that have
flip-flops, i.e., edges with a positive weight,] in the initial circuit. However, adding
memory elements on cycles of a circuit reduces its througapd such a strategy can
resultinp suboptimal pipelining solutions, for it can insert addii@bflip-flops on cycles
even when not required.
ckt; ckty, ckty,

GO Gl GO Gl GO Gl

(300) (300) | p, (300) (300) | p, (300) (300) | p,

(33) |a—1 63 | 4 (33) 33) |4 (33) |la—1 63 |4

G2 <I—>G3 Gg <I—>G3 G2 <I—>G3
-1

(@) (b) ©)

Figure 2.9: A circuit with four gates, two inputsandb, an output/ and a cycles, — Gs.

The numbers shown in the parentheses are the delays, irepauds, of the blocks, and
suppose the clock period constraint is 333ps. (a) The tiblmfore pipelining wires
(ckt;), the minimum clock period = 366ps. (b) The pipelined citabtained ¢kt ),
when the back edgé, = G is removed and then added after pipelining the rest of
ckt;, the minimum clock period is 333ps. For this circuit, theotighput slowdown =

2. (c) A better solutiondkt;,) that has no reduction in the throughput. In addition, the

minimum clock period for this circuit is 300ps.

For instance, consider the circuttt; with four gates (depicted as large rectangles)

shown in Figure 2.9(a) that has a cycle involving the gatesand G with a latency
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of one. For simplicity, we ignore wire and flip-flop delaysrrahe calculations. It
can be seen that the minimum clock period for this circuitdé 8nits. Suppose there
is a maximum constraint of, say, 333 units (correspondin§@adiz if the units are
picoseconds) on the clock period. The approach detaildueiptevious paragraph can
be executed as follows. First, the back edge—= G5 is removed and the remainder of
the circuit is pipelined using a topological traversal. e process, a flip-flop needs to
be inserted on the wir&'; <, G,. Whene is added later, the flip-flop must be retained
as the patlt, — G; — G, has a delay of 366 units, and this exceeds the target clock
period. The resultant circuit with aof two, is shown askt;, in Figure 2.9(b). This
certainly is not an ideal solution, since it results in anralldoss of performance, and
ckty, of Figure 2.9(c) is a better solution that transfers therinse of additional flip-
flops to the non-cyclic wires of the circuit and ensures thate is no slowdown, i.e.,
p =1

Therefore a better strategy may to be to minimize the amadypipelining required
on cycles. To this purpose, we use an approach that remowesytic wires from the

delay calculations. The sequence of the steps is shown below

» The cyclic wires, i.e., all of the wires that are part of tlyeles of the circuit are
identified and this can be done using an all pairs path algorguch as Floyd-

Warshall [CLR89] or multiple iterations of depth first sdarc

« All of the remaining, i.e., noncyclic wires, along with tlogclic wires that have
flip-flops are removed from the circuit. These cyclic wirea ba treated as back

edges removed to break the cycles.
» The circuit is pipelined for the target clock period usingalogical ordering.

» The removed edges are then added, and are pipelined (flip-fice inserted) if

they result in any timing violations.
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Circuit | |V| |E| | MaxFreq | Sg, | p | Sg,
(GHz)
s13207| 2708 | 4648 0.86 3.47| 4 | 0.87
s15850| 4566 | 8289 0.75 [3.96| 5 |0.79
s38584| 13669| 25908| 0.79 |3.78| 4 | 0.95
bl4 9970 | 19100 1.26 237 5 10.48
bl5 | 10010| 18852 0.45 |6.60( 17| 0.39
b20 | 19979| 38484 0.89 |3.36| 8 |0.42

Table 2.5: Performance comparison of pipelining the ctecwith retiming.

Most of the ISCAS benchmarks that are used in Section 2.5/ Wery low gate
counts and do not offer much scope for pipelining. We appdyegpproach on a few large
benchmarks, namely, s13207, s15850 and s38584. In adtlitithrese, we use a few
circuits from the ITC benchmark suite [CRS00], b14, b15 aP@, lior experimentation.

Table 2.5 presents the results of the proposed correcibimitgue and a comparison
with the performance achieved with retiming. The labelsdhef¢olumns have the same
meaning as those of Tables 2.1 and 2.2. For instance, thenndkbeledMaxFreq
denotes the maximum frequencies obtained for the origurgjpelined, circuits with
retiming.

The last column, labelef,, indicates that pipelining the circuits does not result in
overall performance improvement. One reason for this i #dthough the pipelining
strategy explained earlier in the section eliminates thecydic wires from the delay
computations, it is still possible that the latencies of eaycles are increase even when
not required since the cycles may not be independent andargaic many common
wires. The problem is more pronounced in the ITC benchmavkere there are very
few noncyclic wires. There is need for a better, more optimpglelining strategy to

handle this issue.
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2.6 Related concepts

2.6.1 Gy and p-slowing

The notion ofslowdown used in our thesis can be related to the idea-sfowing
defined in [LRS83, LS83]to establish techniques to transform a synchronous circuit
into a functionally-equivalent systolic circuit, i.e., mauit where each of its functional
units have unit delay, there is at least one flip-flop alondneddts interconnections. If
a circuit, which consists of unit-delay functional unitesha maximum combinational
path delay op units, then a corresponding systolic circuit can be constaias follows.
First, each flip-flop of the circuit is replaced by a sequerice ftip-flops to produce a
p-slow functional equivalent circuit, i.e., it computes valid puts only everyp clock
cycles. Next, retiming is performed on theslowcircuit to reduce the clock period. This
process can be extended to a general circuit with unequetiéural unit delays. In such
a case, the objective may not necessarily be to obtain algysitecuit, but to decrease
the clock period by-slowingand retiming, at the expense of decreased throughput.

The circuitG; can be related t6/,; = (V, E, p - w;), ap-slowversion of the initial
circuit GG; obtained by replacing each flip-flop @&; with a sequence op flip-flops,
wherey is the optimal slowdown as calculated in section 2.4. A. lGkg (or any of its
retimed configurations), any feasible solutiondg is ap-slowversion ofG;. In either

circuits, Gy andG.;, the cycle latencies are scaled by a factopofWhile the same

pris
is valid for input-output path latencies as well,.;, this may not be true for input-
output path latencies i, since the path latencies (i, are dictated by the lower
bounds (weights, in G,,) on the number of flip-flops required to pipeline the wires of
the paths. For instance, a purely combinational inputatyppath, say;, in G; will also

be purely combinational id7;.;, and if there is a strictly positive lower bound on the

number of registers required to pipeline one of the wireg,es@n ¢, i.e.,w,(e) > 0,

5In [LRS83, LS83], this concept is actually calleeslowing
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then the latency of must be at least that much in any feasible solutiodto Even
for nonzero weighted paths {#;, the scaled weight id/;.; may be less than the lower
bound, i.e.p - w;(q) < wy(q). Such a situation can arise since the scaling fagtsr
solely determined by the cycles of the circuit, and incregsine latency of the patpin
G, by a factor ofp may not be sufficient to obtain a wire-pipelining solutiontioe wires
of ¢. On the other hand, for some paths, the lower bound may béhassts weight in
G, and in such cases, the redundant flip-flops can be removedtfre circuit, thus
reducing the area of the circuit.

Consider any output vertexand letg, be any input-output path endingatA close
look at the expression(v) = wy(g,) — p - wi(g,), defined in section 2.4, indicates that
x(v) represents the amount by which the latency,ofor any input-output path ending
atv) in G, is altered in the corresponding;, where the weights; are computed
using (2.5). A positiver(v) implies that the weight of, in G exceeds that of, in
Gp.i. Likewise, if z(v) < 0, the latency ofg, in G, is less than the corresponding
latency inG,.; by |z(v)|. In Gy, the edge and path latencies are constrained by the
inequalities (2.6), which represent lower bounds on théstegcount on the wires of
the circuitGy. From these observations, the solution approach discussadtion 2.4
can be thought of a way of altering the input-output latesiorehile retaining the cycle
latencies, of5/;.; such that the weight of each wire exceeds the given lowerdhaBuch
line of thinking is analogous to finding a feasible solutior®; by applying retiming

on G.; with the following framework.
« Variables: The retiming variable for each € V' is z(v).

» Constraints:The retiming constraint graph consists of the lower bounttraints
(2.6), which model both the nonnegativity and clock periatstraints of the
traditional retiming formulation. The inequalities (2d3n be treated as a special
case of nonnegativity constraints, where the lower boumdsome or all of the

edge weights in the retimed circuit are strictly positiver addition, they also
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represent the minimum number of flip-flops required on thesvof the retimed

circuit to meet the target clock period requirements.

* Input-output path latenciedn conventional retiming, a host vertex is introduced
into the circuit such that it has incoming edges from the otg@nd outgoing
edges from the inputs of the circuit. Therefore, each imuiput path forms
a cycle along with the host vertex, thus ensuring that thentat is retained in
the retimed circuit, since retiming preserves cycle lagsclIn order to permit
changes in input-output path latencies, the host vertelesymust be broken,
and this can be done by removing, from the circuit, the incrédges to the
host vertex from the outputs of the circuit. In such a scendhe change in the
latency of an input-output path endinguat V' is equal tar(v) — z(host) and, if

x(host) = 0, this evaluates te(v).

In theory, this approach appears to be a better strategyifetiping the logic of
a circuit, than the techniques presented in Sections 2r&dl2a.3. Furthermore, the
solution throughp-slowingis correct by construction and does not require any correc-
tion techniques addressed in this chapter. However, thmaoyi issue with retiming
based implementations is the assumption of a simple modéhéodelays, such as the
Elmore delay model. While such approaches may work well foogtimization prob-
lem, where relative accuracy will suffice, they cannot belusefinding a solution that
strictly adheres to a given frequency constraint. A vialiategy may be to insert flip-
flops wherever timing violations occur, which is where owpmsed solution technique
arrives into the picture, to correct the functionality. Hawer, as noted in Section 2.5.3,
the challenge is to find a throughput-optimal pipeliningusioin.

Another motivation behing-slowingin [LRS83], besides reducing the clock pe-
riod, was to simultaneously processnput streams by properly multiplexing and de-
multiplexing the 1/O ports of the-slow circuit. Since the circuit€y; and G.; are

functionally equivalent, this advantage can also be extdndG/, i.e., p input streams
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can be processed to hide the slowdown, which leads to anlbtrexaughput speedup

equal to the frequency speedup obtained by wire-pipelithegircuitG,.

2.6.2 Software implementation ofslowdown

For single input stream data, there is an alternative waynpfementing slowdown
if the circuit G; represents a microprocessor architecture, instead oftercamnection
of circuit blocks as assumed earlier. In microprocessbies,riput presented is in the
form of a sequence of assembly instructions, and in the sishglase, the micropro-
cessor accepts and executes a single instruction everk clate. In this context, a
slowdown ofp can be thought as a pausegotlock cycles between successive instruc-
tion executions, and this can be realized by inserfilNDPs, i.e., instructions which do

not implement any function, after every instruction in tissembly code.

2.7 Conclusion

This chapter has presented an approach to solve the proluesated by wire-
pipelining. The proposed method also finds the optimal vafuaput issue rate slow-
down required for a circuit, since it directly affects theahghput of the circuit. The
problem is formulated as an instance of the dual of minimust dow problem, to
incorporate the minimization of area increase, incurregltdithe insertion of extra flip-
flops in the process of obtaining a solution. Though wiregpipng improves overall
throughput of most circuits, it may degrade the throughpusbme circuits. However,
this is still a useful solution since clock frequencies gpdally decided by system-wide
considerations, and the task of the designer is to obtaibhékeachievable performance
under such system-level constraints. In addition, theutdiinput can be improved by
choosing better objective functions. Finally, there ischése further research on mini-
mizing the overhead in the repeater area and power consumpgtie to wire-pipelining,

an important concern which must not be ignored.
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Chapter 3
Microarchitecture-aware floorplanning

preliminaries

This chapter presents some background information abgerscalar processors
and techniques that are used for the floorplanning methgasaealt in the subsequent

chapters.

3.1 Superscalar microprocessors

The hardware of microprocessors typically consists of #tehf and decode logic,
execution core, memory, and writeback/retire logic. Ingliped processors, the logic is
distributed into multiple stages, where each stage imptesree particular functionality,
to ensure high performance by keeping the clock period siAosuperscalar processor
[HP96] implements a pipelined architecture that can exeoumtltiple operations per
cycle. Instructions are pre-fetched and stored, and a@ié@ when the corresponding
resources or functional units become available.

The main attributes of a superscalar processor are braedrcpgon and instruction
scheduling. Branch prediction allows the processor tdfatad execute instructions that
follow a branch operation, before the result of the branckn@wn. If the prediction
turns out to be correct, then the execution continues, wikerall of the instructions
fetched and executed in the incorrect path are squashedthermrocessor pipeline.
Instruction scheduling, on the other hand, relates to thenigues employed in dis-
patching multiple instructions per clock cycle to the exemuunits. Such schemes can
be broadly classified into two categories: dynamic andcstaiost architectures such

as the Pentium processor [HP96] employ dynamic schedulihgye instructions can
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be issued and executed “out of order”. Specifically, an urtston can be dispatched to
the execution unit when all control and data dependenaies, as a Read After Write
(RAW) hazard, associated with the instruction are resqlaed not necessarily in pro-
gram order. This capability can significantly increaserungion level parallelism (ILP)
through efficient resource utilization, which reduces tid 6f the processor, thereby
decreasing the execution tirfig,.. of (1.1). Although the instructions can execute and
complete out of order, architecture state must be updatgutagram order, i.e., the
instructions must be retired in the order they are fetchechfmemory.

In contrast, static scheduling handles instruction isaygogram order. The advan-
tage is that this technique requires less hardware thamugrnecheduling. However,
such a scheme can only be effective when combined with tqaksisuch as Very Long
Instruction Word [HP96], where the optimization is handladstly at the compiler
level. The Itanium processor [MLHDO], which uses the VLIW format, is an example
of an architecture that employs static instruction schadulAlthough the instructions
are scheduled in program order, operations can completzigar out of order. The

retire logic must be able to handle such a scenario.

3.2 Superscalar architecture simulation

Software modeling of microarchitectures provides an ¢éffeavay of validating ar-
chitecture changes and performance/CPI estimation. Bsocsimulation has been a
major area of research and several techniques have beewvsprbpnd implemented in
the past decade. Examples include those developed in thie domain, such as Sim-
pleScalar [BA97] and industry simulators such as Asim [EARB] by Intel and Turan-
dot [EAB*02] by IBM. The primary components of these simulators aegtithhing and
functional models. The timing model implements an eventadriengine that simulates
each clock cycle of programs executed on the architectudetad by the simulator. In

contrast, the functional model maintains the microarciite state, such as the contents
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of the register file, and actually executes the simulatetlingons on the host machine
where the simulator is installed.

We use SimpleScalar, which simulates the DLX superscataitacture [HP97], for
most of the work presented in this thesis, specifically fer shmulation strategies pre-
sented in Chapters 4 and 6. The simulator is widely used foraarchitecture research,
partly due to availability of the source code, since it isaleped in the public domain.
Furthermore, it models all the important features of supses architectures such as
out-of-order execution. Another feature that is usefulvaleate different microarchi-
tectures is that the architecture configuration, such akBecaize and fetch width, is
parameterized. In addition, for the simulation methodglof Chapter 5, we utilize

Asim, an industry simulator that models the Pentium archite (P6) [Int98].

3.3 Benchmarks

An important aspect of performance estimation is the seteoichmark programs
that need to be used for the simulations. The programs mpsttdeal life work load
scenarios seen for the simulated architecture, in orddtamaan effective performance
characterization. Several work loads have been develoybd iast few years for differ-
ent applications. The most widely used are the programsso$®#EC 2000 benchmark
suite [Hen00], which consists of work loads based on prograrecuted on general
purpose microprocessors, such as gcc and gzip. The berkhofathe MediaBench
suite [LPMS97] mostly depict multimedia applications, ighthose of TPC-C [Tra97]
involve programs at transaction level. In this thesis, we SBEC benchmarks for the

purpose of validating the proposed floorplanning methagiekn
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3.4 Architecture power estimation

3.4.1 Sources of power dissipation

There are three major components in the power dissipatedM®Ecircuits:

» Dynamic power: Also known as active power, this component correspondsto th
power consumed during the charging and discharging ofiticapacitances. The
magnitude of the dynamic power is proportional to the switghrequencies of

the devices.

» Leakage power: This component is due to the presence of subthreshold ¢srren
and, more recently, gate oxide tunneling currents. Leakageer are inversely
proportional to transistor threshold voltages, and haa lgaeing importance due
to the scaling of the threshold voltages and increasing temyperatures, because

of the exponential dependence of subthreshold current eratipg temperature.

» Short circuit power: This component is due to the presence of a short circuit
between the supply voltage and the ground during the timemftiswitching. In
general, short circuit power tends to have a small magniifudhe input switch-
ing times are controlled, and we do not consider this compbfer the work
addressed in this thesis, specifically the thermally-avlaplanning approach

of Chapter 6.

3.4.2 Architectural power estimation

Microarchitecture optimizations typically focus on powestimation at the block-
level. The event-driven/cycle-accurate model of micrbdecture simulations men-
tioned in Section 3.2 provides an effective framework faedaining the block switch-

ing activities required to estimate, particularly, the dgmic component of the power.
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The leakage power is generally independent of the actieigls. Such a scheme re-
quires a block-level power characterization that can besttaoted using circuit-level
simulations.

A number of frameworks have been proposed for architechoaler estimation in
the public domain. Most of them incorporate power models existing cycle-accurate
simulators, as described in the previous paragraph. Ftarios, Wattch [BTMO0O],
which we use in this thesis for simulations, and SimplePdw#KI00] extend Sim-

pleScalar to add the capability of power estimation.

3.5 Experimental design

Experimental design involves of determining a set of expernits, which is a subset
of a generally large solution space, that characterizesegponse or output of a system
in terms of changes in the factors (inputs) of the system.tyfjpieal objective is to build
a prediction model for the output, through for instanceresgion, where the variables
are the inputs of the system. In such a process, the inputsgesl over a set of finite,
usually small number of, values in order to observe the effex changes have on the
response. The set of values and experiments can be chosanimiser of ways, and it

is important to identify the best choices to achieve an atewharacterization.

3.5.1 One-factor-at-a-time design

The one-factor-at-a-time is a simple approach to experiatatesign, where the
inputs are varied one at a time over a specified range of aaduleptalues, instead of
all simultaneously. The advantage of this approach is tremhtimber of experiments is
linear in the number of factors. The major disadvantage gvew is that it is not easy to
estimate interactions between the factors [Czi99]. Funtioee, the impact of the factors

can be more effectively estimated when they are varied samebusly.
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3.5.2 Statistical design of experiments

Design of Experiments is a systematic approach that prewadeappropriate sam-
pling of search space for response characterization. Erhke one-factor-at-a-time
technique of the previous section, this approach consfsssnwltaneously changing
the factors, and the subsequent analysis of the resultipgremental data will identify
the critical factors, the presence of interactions betwberfactors, etc. The influence
of the individual factors is expressed @sin effectswhile interaction effectslescribe
the influence of interactions. For a system affected\bfactors, there ar&V main ef-
fects, (gv ) two-factor interaction effects, and so on. In all, there&Ye- 1 effects that

must be estimated.

Multifactorial designs and resolution

The size of the design, i.e., the number of experiments inséimapling, depends
on and typically increases with the number of effects tha&dn® be estimated. The
simplest design, commonly referred tofal factorial design permits estimation of all
of the main and interaction effects. However, such a designives experimenting over
all possible number of factor combinations and the size goegntial in the number of
factors.

On the other handractional factorial designswhich require relatively less number
of experiments, assume that some of the interaction efegetsegligible and all other
effects can be estimated. Specifically, each of the effeetgmuped orliasedwith
some other effects, and it is only possible to estimate tine stithe effects of each
group. In such a scenario, if all but one of the effects of aigrare found to be negligi-
ble, then the sum can be solely attributed to that one noigilelgl effect. The grouping
pattern can be determined from the structure of the design.

Fractional factorial designs are categorized using theepnofdesign resolution

For a design with resolutioR, all of the main effects are grouped with interaction ef-
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fects involvingR-1 and higher number of factors. In general, any effect thassociated
with i factors is aliased with effects éif-i and higher factor interactions, and the small-
est possible resolution is Ill. A resolution Ill design, whihas a minimum size that
is linear in the number of factors like the one-factor-dirae design of Section 3.5.1,
works under the assumption that all of the interactions agigible, and this can be

used to build a linear model for the response that includgstbe main effects.

Components of effects

Each of the effects contain a linear component and compsradrtigher degree
such as quadratic. The number of estimable componentséotarfis determined by the
number of distinct values, also called factor levels, zeidl for the factor in the design.
In ak-level design, where each factor is varied acrog#ferent values, components of
up to a degree of-1 can be estimated. For instance, a three-level design caseukto
compute both the linear and quadratic components of eadieahtin and interaction
effects. However, the size of a design rapidly increaseb@stimber of factor levels
increases.

In this thesis, we utilize a two-level resolution 11l desifgm the floorplanning of the
DLX architecture in Chapters 4 and 6. However, for the Pemtamchitecture, owing to
the associated nonlinearities that will be explained let€hapter 5, we use a two-step
approach, where the first step is a screening two-levelugsallV design that is used
to separate factors that have insignificant impact on theorese. In the second step, a
three-level resolution V design is applied for the remagnsignificant, factors to build

a quadratic response surface model.

3.5.3 Significance testing

Significance testing is an important part of experimentalgteto identify whether

an effect can substantially affect the response. A typipplieation is hypothesis test-
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ing, where anull hypothesiss set up to test aalternative hypothesjsvhich has more
effects/terms in the model. If the null hypothesis matclesresults of the alterna-
tive hypothesis, then the additional terms (of the altevedtypothesis) are statistically
insignificant and can be easily discarded.

The F-test, that we employ in this thesis, is the widely usgeme for significance
testing. The test involves matching the residual sum of iguaf an effect (interaction
or main) to the sum of squares of the error. If both are conipparshen the effect can
be termed unimportant and can be safely removed from the InBdethe purpose of
comparison, the ratio of the two sum of squares (for the effed error/noise) is used to
index the F-distribution [Mon00]. The result isdevel which corresponds to the like-
lihood of the effect being significant. The higher théevel, the lower is the likelihood,
and ap-level of 0.05 is typically used as the threshold of statisticahgigance, i.e., if

the value is greater than 0.05, the effect can be ignored fin@model.

3.6 Floorplanning

Floorplanning involves finding an optimal placement of thecks of a circuit on
the layout of the circuit hat minimizes a cost function thatitally includes topolog-
ical attributes such as the layout area, total wire lengthaspect ratio. The problem
is an instance of combinatorial optimization that belormshie class of NP [Ger99],
several heuristics have been proposed in the past. Mostywided algorithms employ
a Simulated Annealing (SA) framework [Ger99]. This teclu@gnvolves iterating over
several candidate floorplans before arriving at a neartsolution. At each step,
the algorithm makes a move and constructs a new solutiondpytlsi changing current
solution. If the new solution has a lower cost than the cursetution, it is accepted. If
it has a higher cost, it is accepted with a probability thguedels on the difference in the
costs and on a parameter called the annealing temperaaires thradually decreased

during the process. If the new solution is accepted, it kgddhe current solution. The
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probability of acceptance (of new solutions that have higiost than the current solu-
tions) is high initially and is gradually decreased. Thisqass ensures that the method

does not get stuck in a “local minimum”.
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Chapter 4
Throughput-aware microarchitecture

floorplanning
4.1 Introduction

As noted in section 1.3.2, employing wire-pipelining to gap high frequencies can
result in a reduction in the throughput of the circuit (irase in the CPI of (1.1)) due
to the increase in the number of clock cycles per computafibirs penalty depends on
the locations at which these extra latencies are addeckasrg the latencies on some
buses can impact the throughput more than on others.

In particular, the number of flip-flops that must be insertacadus is proportional
to the length of the bus, which in turn depends on the locatajrthe connecting func-
tional units (end points) of the bus in the layout. These tlea@re determined during
the physical desigrstep of the microprocessor circuit design cycle, whichdfarms a
functional net-list into a circuit layout, through proceds that include floorplanning,
placement, and routing.

For improved performance, physical design must attempetpkhe CPI-critical
buses as short as possible to minimize the amount of pipglmgquired by those buses.
Such a microarchitecture/CPI-aware strategy [SchO02]risqodarly useful at floorplan-
ning or block-level placement, which being an early stagehykical design, has a major
role in determining the system/global bus delays. For aqaar combination of bus
latencies, the CPI can be computed using cycle-accuratdations on simulators such
as SimpleScalar [BA97], on widely-used benchmark progrsineh as SPEC [Hen00].

The clear bottleneck in such a design flow is the microarchite simulation time.

Firstly, cycle-accurate simulations are inherently slang this, coupled with the large
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search space considered during physical design optiraiigtmakes it virtually impos-
sible to use simulations for each layout that is to be evathiaBpecifically, if each of
wires on a layout can havepossible latencies, then the cycle-accurate simulator may
have to perform up té" simulations to fully explore the search space.

The exponentially large search space prompts us to conaidiesign of experi-
ments (DOE) [MonO0OQ] strategy, a well-established apprdhahis particularly efficient
at extracting the basic characteristics of a large desigoesthrough a small number of
samples, as described in Section 3.5.2. Specifically, wpgs®a strategy [NCLS05],
based on a multifactorial resolution Ill design, to acceiaidentify the CPI-critical
wires to be optimized in physical design, and then appliesitbthodology to floorplan-
ning. The advantage of this approach is that the total numif&mulations required to
sample the space is proportionaktpcompared to thé (k") possible combinations of
bus latencies. The CPI-critical wires are explicitly idéad and regression models are
constructed to estimate CPI, and these are used in the casioi of floorplanning.

Even withn simulations, the simulation time of each run is still an esstihe SPEC
benchmark suite [Hen0O0], along with thef er ence input sets has become the
facto standard for microarchitecture research. However, reterénput sets comprise
huge instruction counts and therefore have long run tinyeg;dlly in the range of a few
days to run to completion. To maintain the run times with iagtical limits, it is essen-
tial to employ alternative techniques that speed up thelsitions, such as reducing the
size of the input sets and statistical sampling. This redndh the simulation times,
however, comes at the cost of loss of accuracy associatédsimitulating only a frac-
tion of ther ef er ence input sets. Such inaccuracies can potentially lead to necor
conclusions and performance bottlenecks, and, therefareundermine a microarchi-
tecture optimization process such as CPIl-aware floorptani

Due to the inaccuracies, it is necessary to understand tineenaf the simulation
speedup techniques, and, importantly, how these techmigfiect the results of the

optimization, i.e., whether different approaches leaditier@nt conclusions and opti-
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mizations. We compare [NCLS06] two simulation techniquesnely, reduced input
sets and sampling, for the proposed CPl-aware floorplanaimgstudy their impact on
the overall performance speedup obtained.

The remainder of the chapter is organized as follows. Seei@ describes some
related work. Section 4.3 presents the design flow of thequeg CPI-aware floorplan-
ning methodology, along with the baseline architectureldodk configuration used in
this work, while section 4.4 outlines the simulation spgetechniques compared for
CPl-aware floorplanning. Section 4.5 demonstrates therempatation process and the

results. We conclude the chapter in section 4.6.

4.2 Related work

CPl-aware floorplanningThere have been some recent attempts [LSLHO04, ENa¥Y
JYK*05] towards microarchitecture-aware design at the floorglay level. In [LSLHO04],
a CPI look-up table (LUT), indexed by the set of bus latenciesonstructed using
cycle-accurate simulations. For a given layout (and theesponding bus latencies),
the CPI is evaluated from the LUT using some distance metiiccontrast, the ap-
proach in [EMW!04] assigns weights to each of the system buses that arerfiorab
to the amount of traffic seen on the buses, operating undetien that the more often
a bus is accessed, the more critical it is. The objective effiiorplanner then is to
minimize a weighted sum of bus latencies, where the weigiped on the amount of
traffic. The work of [JYK"05] uses a one-factor-at-a-time (refer to Section 3.5.1) ap
proach to build CPI sensitivity models for a few selectetaal paths, and these models
guide the floorplanner to maximize the system throughputnjoimize CPI).

While these approaches indicate welcome progress in the fjuenicroarchitecture-
aware design, the accuracy of the strategies used to optthrezCPI-critical wires shows
room for improvement. For instance, the LUT has to be recoosd if a different fre-

guency is chosen. On the other hand, bus access frequenajesanexactly capture
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the quantitative impact of the bus latencies on the CPI. i8pakty, the effect of extra
latencies on the execution path of a particular operatigmimarily determined by the
dependencies the following instructions have on the datargged by that operation.

In a way, all of these approaches focus on assigning a weigmipmrtance for each
wire of the circuit, and propose strategies to reduce thebaurof simulations required
for tapping the large solution space. While [EMWA] uses a latency-independent and
traffic-oriented approach, [LSLHO04, JYH5] vary the latencies in the simulations. In
this respect, our DOE based methodology, although has the ehjective, provides a
structured approach for conducting simulations. Such gmcaeh, where the inputs,
i.e., bus latencies, are varied simultaneously, can cajha solution space in a much
better way than the one-factor-at-a-time approaches BJ,z&ich as the one proposed
in [JYK*05].

Furthermore, the DOE method also provides a framework fimasing the interac-
tions between the inputs. While [LSLHO04] consists of siranéously changing the bus
latencies, it does not model any interactions between bésewill be seen later in Sec-
tions 4.3.2 and 4.5, there are instances where the intengotian be significant. In ad-
dition, it may be a better idea to focus on specific buses th#msms done in [JYK05],
since some paths can have common buses, which complicatiedéehcy modeling. For
instance, the instruction commit path, which handles wgxittt the register file, and the
decode path, which dispatches the decoded instructiong alith any available data
through the register file to the reorder buffer, can have ancom(bidirectional) bus,
between the reorder buffer and the register file. The approafJYK*05] focuses on
buses that have no buses in common, and does not addressahsi@x to cases where
paths can have common buses. Nevertheless, the idea of tRecBx®be extended for
the paths addressed in [JYR5], for a more effective-modeling than the one-at-a-time
approach considered.

Another recent work [CJRRO03] explores the frequency-C&depoff in floorplan-

ning. A set of implementations varying in area and latenspicified for some or all of
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the blocks of the processor. The objective of the floorplarsi® find a configuration of
blocks with a placement to reduce the product of clock pesiod the CPI. The lengths
of the global wires, combined with given arrival times at theminals, determine the
clock period.

Comparing simulation technique¥®Vith respect to reducing simulation times of the
r ef er ence input sets of the SPEC benchmarks, which can speed up our &b
approach, a recent work [YK®5] evaluates the accuracies of a number of simula-
tion techniques, including reduced input sets and samplifige comparison is based
on three different characterizations, one each at the taml{processor bottleneck),
software (execution profile), and architecture levels. dditon, the work attempts to
guantify the effect of the inaccuracies on the executioresiraf the benchmarks, for a
couple of microarchitecture enhancements [YL02, Jou90E fesults of the compari-
son indicate that, in general, sampling techniques are medieble than reduced input
sets in tracking the actual performance speedups obtainedp the enhancements, on
ther ef er ence sets.

However, while these results hold for the enhancementsidenresl, it is possible
that the impact of the inaccuracies can vary across diftengtimizations. Specifically,
for the hardware enhancements handled in [YRS)], the decision making is directly
based on the results obtained from the simulations, an@ftrera high reliability is
required. CPl-aware floorplanning, on the other hand, iserdie optimization problem
where the variables are bus latencies. The purpose of thdations is to describe
the CPI of a program as a function of the bus latencies, anfldbeplanner uses this
description to determine a block-level placement thatesgnts an CPl-optimal bus
latency configuration.

For such optimization problems, a reasonably accurateacteization that does
not significantly alter the relative ordering of the perfamae-criticality of the param-
eters is sufficient; “absolute” accuracy may not be necgssae focus on this issue

in this thesis and the objective is to determine if there ig @rrelation between per-
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Figure 4.1: CPIl-aware floorplanning: design flow.

ceived inaccuracy of the reduced input sets and the comelapg optimization results
for the CPl-aware floorplanning problem. Although our stgg@gcifically concentrates
on floorplanning, the results are likely to be applicabledny microarchitecture opti-
mization in the physical design context, or, in fact, anwated discrete (microarchitec-

ture) optimization problem.

4.3 CPl-aware floorplanning flow

The amount of pipelining required by each bus of a micropgsceis proportional to
its length, which is typically true for buffered intercorate [She95], and therefore, for
every block-level placement, where the blocks representuthctional units of the pro-
cessor, there is a corresponding bus-latency configutaioneach of these configura-
tions, the CPI for a given program can be determined usingla-@ccurate simulation.
The objective of floorplanning is to obtain a bus-latencyfgamration that minimizes
the CPI for each benchmark program.

To incorporate wire-pipelining issues into floorplannimgs develop a design flow
for microarchitecture-awareness, as depicted in Figute Zhe first step is to quan-
tify the impact of each system bus on the system performamoaigh a CPI regres-
sion model for each of the chosen benchmark programs. Thiessgn models (and

coefficients) may differ across the benchmarks, dependdog the instruction mix ex-
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ecuted. The concept of using these models is similar to thesaefrequencies based
weights of [EMW"04], but the precise manner in which we obtain the weightyrés
sion coefficients) is different. A comparison between the approaches is shown in
Section 4.5.3.

The CPI regression models are then fed to the floorplanrargakith a target fre-
guency. The objective of the floorplanner is to determinepbsitions of the blocks,
therefore the set of bus latencies, such that the CPI, irtiaddo traditional objectives
such as area and aspect ratio, is minimized. The performainite resultant layout
is then estimated from cycle-accurate simulations. If desgpy is a design variable,
then the floorplanning may be repeated for several freqaenantil an optimum de-
sign point or performance objective is achieved. In addijtibe entire design flow of
Figure 4.1 may be repeated for several microarchitectdogkixonfigurations to iden-
tify the optimal configuration [CJRRO03]. For a general cdbe,CPI model to be used
in floorplanning may be obtained by combining the regressimdlels obtained from
optimizing the processor performance on a set of benchmarks

The succeeding sections illustrate this approach, andevia¢i description to the
processor microarchitecture employed in this work. The Dhiroarchitecture, which
is essentially a five-stage pipeline defined in the Simple$camulator [BA97], and
the corresponding functional blocks are shown in Table AdlFagure 4.2, respectively.

The instruction fetch and decode blocks are showrf@sand dec, respectively,
while il1 and di1 are the level-1 instruction and data caches, respectivéhe in-
struction and data translation look-aside buffers (TLB) eudicated astib and dtlb,
respectively, whild2 represents the unified level-2 cache. The blogk is the register
update unit, which contains the reservation stations asuiuation issue logic, while
the blockisq represents the load store queue. The system register figplissented
by reg, whereashpred consists of the branch predictor and the target buffer (BTB)
which predict the direction and target address for a bramstntction, respectively. The

blocksiaddl, iadd2, iadd3, imult, fadd and fmult are the functional units that exe-
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Parameter

Value

Fetch width 8 instrs/cycle

Issue width 8 instrs/cycle
Commit width 8 instrs/cycle

RUU entries 128

LSQ entries 64

IFQ entries 16

Branch pred

comb, 4K table
2-lev 2K table, 11-bit

2K BHT

BTB 512 sets, 4-way
IL1 64K, 64B, 2-way
LRU, latency: 1
DL1 32K, 32B, 2-way
LRU, latency: 1
L2 2M, 128B, 4-way

latency: 12

ITLB, DTLB 128 entries

Miss latency: 200

Table 4.1: Configuration of the microarchitecture used is Work.
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’fet }—{ dec}—{ lsq ‘

bpred

| atlb | il |

Figure 4.2: The functional blocks and buses of the micratecture of Table 4.1. The
blocks are shown as rectangles, while the lines betweerthangles (blocks) represent

the buses connecting them.

cute arithmetic and logic instructions. The figure also shtlve 22 system buses that
can impact the throughput/performance (IPC or the numbigrstfuctions executed per

cycle, which is the reciprocal of CPI) of the processor, whigrelined.

4.3.1 Wire pipelining models

The first step of the floorplanning flow is introducing wire @iiping models into
the chosen simulator, which in this work is based on sim-olato a detailed simulator
provided in the SimpleScalar package. The simulator is fremtlto include extra la-
tencies on these buses as additional delays. To achieyevihisse 19 factors to model
the 22 buses, as shown in Table 4.2, where 17 of the 19 fadterglg model the buses
with the same name. The modeling of extra latencies is de=stielow, for each stage

of the DLX processor pipeline.

» Fetch: The typical path followed by an instruction, on d hit, from the initia-
tion of its fetch to its insertion into the fetch queuefig—il1-bpred—fet. The ad-
dition of latencies on any of the buses of this path is eqaiveb inserting dummy

pipeline stages on the fetch path. This path is modeled byjattter extra_fet,
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Bus Factor ID
dec_reg dec_reg S
ruu_reg ruu_reg fo
dec_ruu
dec_lsq max_lsqruu | f3

ruu_taddl ruu_addl fa
ruu_add? | ruu_iadd2 fs
ruu_tadd3 | ruu_iadd3 fe
ruu_smult | ruu_imult fr
ruu_fadd ruu_fadd fs
il1.12 il1.12 fo
dl1.2 dl1.2 fio
fet_ill
ill_bpred extra_fet | fi1
fet_bpred
fet_dec fet_dec fi2
fet_itlb fet_itlb fis
itlb 12 itlb 12 fia
ruu_lsq ruu_lsq f1s
ruu_fmult | ruu_fmult | fig
Isq_dll Isq_dll fir
dtlb_2 dtlb_l2 fis
lsq_dtlb lsq_dtlb f19

Table 4.2: The set of buses of the microarchitecture of Eigu2, and the factors, with
the corresponding IDs, that model the impact of pipelining Ibuses in the simulator.
There are 22 buses, which are grouped into 19 factors, wheseahthe factors have a

one-to-one relation with the buses, exceptra_fet andmaz_lsq_ruu.
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whose latency is the sum of the latencies of buses along tine péhen ani/1
miss occurs, theétlb/il1 miss penalty is added, which, in turn, might have been
increased due to extra latencies on the bygestib/itlb_[2/il1_[2. Each of these

is represented as a separate factor with the same name vasishtable 4.2.

Decode: This stage performs register renaming and dispatchesugttns to
ruu andlsq (for memory operations). In addition, if the input data esponding
to the instruction is available ineg, it is forwarded to the-uu. For functional
correctness, therefore, the latencies of the bdses-uu, dec_lsq, and the path
dec—reg—ruu must be equal. The number of extra decode stages can then be
determined as the maximum of the latencies of these busesiedwith that of

fet_dec, as shown in (4.1).

dec_lsq
ex_dec = fet_dec + max dec_ruu (4.1)

dec_reg + ruu_reg
However, the pathuu—reg also appears in the instruction commit stage, when
data from anuu entry is written to the register file. Due to this, unlike tie¢ch
stage, the extra decode stages cannot be modeled by a sanglagierx_dec,
althoughdec_ruu anddec_lsq can be combined into a single factor, which we

namemax_lsq_ruu, indicated in Table 4.2, and defined as shown below:

max_lsqruu = max{dec_lsq,dec_ruu} (4.2)

The number of extra decode stages is then internally cordpntthe simulator

using (4.1) and (4.2).

Issue: This stage issues ready-to-execute instructions to thregmonding execu-

tion unit upon availability, and schedules writeback eseiithe changes required
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in this stage are adjustments to the functional unit and #te cached/1 andi2)
access latencies. In addition, we have incorporated fomatiunit scheduling in
the simulator. For instance, the number of latencies iadesh the three buses
ruu_iaddl, ruu_iadd2 andruu_iadd3 can be different, and while issuing an in-
teger add instruction, of all the available units, the onthwhe least latency is

chosen.

» Writeback: This stage is accounted by altering the branch mispreditai@ncy,

which is modeled by the factors related to the extra fetchdsmwbde latencies.

» Commit: The instruction commit latency is adjusted, and this is niediby the

factor/busruu_reg.

Each of the factors is made completely configurable by mawifthe SimpleScalar

configuration file.

4.3.2 Simulation methodology

The next step of the proposed flow is to use the wire-pipajiaware simulator
constructed as described in the previous section, to dudahé performance impact of
the factor/bus latencies in the form of CPI regression nedeb reduce the number of
simulations required for this purpose, we use a strateggdas the theory of statistical
design of experiments

As noted in Section 3.5.2, the simplest design, commonsrredl to asull factorial
design permits estimation of all of the main and interaction effedHowever, such a
design involves experimenting over all combinations of besible values subscribed
by the factors. As mentioned earlier in Section 4.1, the nremolb possible bus latency
configurations in floorplanning is an exponential functibthe number of factors. Even
though the number of factors is relatively small (Vv = 19) for this microarchitecture,

given the high simulation times, it is impractical to useleyaccurate simulations for
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each of the allowable configurations to determine the respomhich in this case is the
CPI of a program, that needs to be minimized (to maximize ltheughput or IPC, its
reciprocal).

We address the problem of reducing the number of simulatietisa few assump-
tions. Each of the factors is restricted to have two levéle nhiinimum and the maximum
possible values for the factor, thereby permitting us to lesnp two-level factorial de-
sign. The idea is that, by stimulating the system with in@atfheir extreme values, we
provoke the greatest response for each input. The assumiptiwat the system response
is a monotone function of changes in the inputs (factor Bvalvhile this assumption
cannot be guaranteed in these types of systems, it workes\galt in practicé. Besides,
higher level designs, which permit the estimation of quadend higher degree compo-
nents of the effects as described in Section 3.5.2, exhitmhaplex effect structure and
require more simulations, which make them unreasonablettalies like ours. As is
shown in [YLHO3], the two-level approach can be effectivebed to design simulation
strategies for microarchitectural optimizations.

Since the factor levels represent bus latencies, the egt(digh and low) values
can be obtained by assuming worst-case and best-caseissdbathe corresponding
wire lengths. The high/low value for a bus latency may be rietged by placing the
connecting blocks as far/close as possible. A valid assegrtrmay, for example, be 0
for the low value, and the latency corresponding to a cotor@arner connection across

the chip for the high value.

Interactions

In general, it is not easy to identify potential significamteiractions before hand in
a complex system such as a microprocessor. However, in rassscthe interactions in

a microarchitecture tend to be negligible. For instands, uinlikely that, say, the level-

1Although this is not a proof, it seems intuitively acceptatal believe that increasing
the latency of a bus will decrease the system throughput.
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2 cache [2) interacts with the instruction decoder, given the variedctionalities of

the two units. We have identified a few potential significame¢ractions, which resulted

from the nature of wire-pipelining models integrated irfite simulator, as shown below:
We have identified a few potential significant interactiomkjch resulted from the

nature of wire-pipelining models integrated into the siatai.

» As we have incorporated functional unit scheduling in tiegator, the impact of
adding additional latencies on each of the buses betweeamdgfster update unit
and the three integer adders, i.e., those modeled by thw$aat. iaddl (ID: f,),
ruu_iadd2 (ID: f5) andruu_iadd3 (ID: fg) of Table 4.2, is also determined by the
latencies of the other two buses. This indicates possigtefgiant (two and three

factor) interactions.

* As shown in (4.1) and (4.2), the number of extra pipelingasao be inserted in
the decode stage is modeled as a maximum function of three$alec_ruu (ID:
f1), maz_lsq_ruu (ID: f5) andruu_reg (ID: f3). Such a nonlinear function can

result in significant interactions among these three factor

We use the notatioff - f; to denote the interaction between factgrand f;, where
‘" represents the interaction operator. According to thisiteology, the eight interac-

tions defined in the previous paragraph can be written agvist

two—factor:  fi - fo: fi- fa; fo- f3
Ja-fsifa- fei fs - fo
three-factor:  f,- fo- f3

fa- 15+ fo (4.3)
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Table 4.3: Resolution Il design matrix/ for 19 factors. Each of the 32 rows corre-

sponds to a simulation run, while the columns representattifs: each entry/(j, i)

contains the value to be used for facrn run j. The two levels of each factor are

coded ast1, and the labe} is the response, CPI, of the system (microarchitecture).
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Resolution 11l design

Using our knowledge of the behavior of the process, it isarable assume that all
of the other interactions are negligible, allowing us tdizgia resolution Il fractional
factorial design [Mon00], which provides the logically rmimum number of experiments
to determine the main effects of the factors. Pofactors, the number of experiments
required is equal to the nearest highest power of 2, whiahstout to be 32 for our
work, sinceN = 19. The design is captured by a simulation matlixof size32 x N,
as shown in Table 4.3. Each of the 32 rows\éfcorresponds to a simulation run, and
y; represents the response (CPI) obtained dufihgimulation. The two levels of each
factor are encoded gs+1, —1}, and the idea is to estimate the effect of changing the
level of the factor from 41" to “—1”. The columns, labeled,—c9, correspond to the
19 factorsf,—f19 described in Table 4.2. Each levetl) is contained in exactly half
of the simulation runs, indicating that every column (whathresponds to a factor) of
M has 16 “+1"s and 16 “—1"s. Furthermore, no two columns aratidal, i.e., each
column has a distinct mix of-£1s”.

Each of the columns o/ results in a distinctontrastor effect, from which the
main and interaction effects of the factors can be determhiriéghe contrast/effect for
columng;, e;, is computed as the difference of the responses where the @nt; is
“+1” (maximum value of factorf;) and those where the level is “—1” (minimum value
of f;), as shown below:

j=32
ei= Y M(ji) -y (4.4)
j=1

The matrix)M is constructed as follows. First, a two-level full-factdris generated
for five factorsf,—fs (refer to Table 4.2) involving all possiblé{ = 32) combinations,
as shown by columns labelegc; of M in Table 4.3. The values to be used for the
remaining 14 factorsft—f19), listed in columngg—c;9 Of Table 4.3, are obtained through
component-wise multiplication of several combinationgheffive full-factorial columns

c1—cs, as defined by the followinmcidence relation
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fi (dec_reg) = ¢

fo (ruu_reg) = ¢

fs (max_lsqruu) = c3

fi (ruuziaddl) = ¢

fs  (ruusiadd2) = ¢

fo  (ruusadd3d) = ¢ XcyXey

fr (ruugmult) = c¢3 X cs

fs  (ruu_fadd) = ¢ Xc3Xey

fo (i11_12) = ¢ X3 Xy

fio (di1.12) = ¢ Xy Xcs

fir (extra_fet) = cyXcgXey

J12 (fet_dec) = ¢y X3 X

fi3 (fet_itlb) = Xy Xy

f14 (1tlb_12) = (c3Xey Xy

f1s (ruu-lsq) = ¢ XCyXC3Xey
fie  (ruu_fmult) = ¢ X cy X c3 X ¢35
fir (Isqdll) = ¢ X3 Xy XCs
fis (dtlb_12) = ¢y X3 Xy XCy
J19 (Isq_dtib) = ] X Cy X C3 X Cy X0 (4.5)

For instance, the entries of colunap in M, es, which contains the values to be
used for factorfs (ruu_iadd3) of Table 4.2, is obtained by the multiplication of the
corresponding entries of columng c; andcy, i.e., the values that are used for factors
fi (dec_reg), fa (ruu_reg) and fy (max_lsqruu). Such a set-up indicates that the

effect of factorfs is aliased with that of the interaction of the three factgysf, and f;,
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i.e., f1 - fo - f4. In other words, the contras¢, computed using (4.4), is the sum of both
the main effect off; and the interaction effect of; - f> - f42. Assuming that the effect
of the interactionf; - f> - f, is negligible, thereg can be solely attributed the main effect
of factor f;.

In reality, a resolution Il design of size 32 can be used fprtoa 31 factors, in
which case, it is called a saturated design, and these cgnbenuised where all of
the interactions are insignificant. However, since we ordyeh19 factors, some of
the combinations, 12 of them, of the columnscs of M are left unused. The unused
combinations can be treated as dummy factors, which haJwitedg (zero) effects, and
these can be used to estimate a few selected interactiomgy e resolution Il design
prescribed byl and the associated incidence relation of (4.5), it is pdssiestimate
all of the interaction effects described earlier in secddh 2, in addition to the 19 main
effects. For instance, the combinations, sgy= c¢; X ¢, andcy; = ¢ X ¢ X ¢z, are
not used in (4.5), indicating the contrastg ande,; solely represent the effects of the
two-factor interaction betweefi andf,, fi - f2, and the three-factor interaction among
1,2 and 3/ f2- f3, respectively, wher¢,, and f; are dummy factors with zero (main)
effects.

In addition, it can be noted that the two-factor interactédfects of {ruu_iaddl,
ruu_iadd2, ruuiadd3}, i.e.,{f4, fs5, f¢}, must be equal due to symmetry. Therefore,
estimating one of them will suffice, and this is true for theresponding main effects
as well.

The advantage of fractional factorial resolution Il desgver other screening de-
signs such as Plackett and Burman (PB) [PB56], which is eyeplan [YLHO3], is the
well defined aliasing structure. This attribute can be useéstimate a few required

interactions, as is done in this project, at the expense eaaflditional simulatiorfs

°The contrast includes many other higher order interactftaces, as defined by a
complete incidence relation. We refer the reader to [Mo@further details about the
aliasing structure of fractional factorial designs.

3For N factors, the number of experiments required in a PB desigqjisl to the
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Finally, if more interactions need to be considered in thgiglte and the number of
dummy factors is inadequate, then one option is to perforpnaiate additional or-
thogonal runs [WHOQ]. If this is not sufficient, then a highmesolution (IV or more)

design can be utilized, if the associated simulation‘ocest be tolerated.

CPI regression models

From the 32 simulations performed using the resolution égign of Table 4.3 for
each benchmark, we construct a regression model for CRédbas least-squares ap-
proximation, where the variables are the bus latencies eMpecifically, for fractional
factorial designs, the contrasts obtained from the dessgmgu4.4) directly correspond
to the regression coefficients determined through leastt®s minimization. Equation
(4.6) shows one such a model, wheks represent the regression coefficients computed
from the 32 CPI values of the resolution 11l design. Eackariable in (4.6), say;, rep-
resents an encoding of the latency of facfgt;, where the minimum and the maximum
latencies are coded as -1 and +1, respectively,Zaisdhe set of interactions described
in section 4.3.2 and (4.3).

2.1
i = —1 .
! i (mm(ﬁ-) T max(f)
19
CPI = ﬁo—i‘Zﬁz"xH- Z Bij-xi-x;+
-1 (fi-Fy)ET

Yo B wit (4.6)
(fa-fi-fr)ET

), 1<i<19

next highest multiple of four (20 for 19 factors in this workiplike the nearest highest
power of two in a resolution Il fractional factorial desigsed in this work.

“4A resolution IV fractional factorial design for the micrahitecture of this work
has a minimum size of 64.
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4.3.3 Floorplanning cost function

Our floorplanner procedure is based on simulated anne&iAy énd uses the CPI
regression models built out of the simulation methodologgatibed in section 4.3.2 in
the cost function. We use PARQUET [AMO01], a floorplanner kalae in the public
domain for this purpose.

The cost function of the floorplanner is a weighted sum of logical objectives
such as the chip areal(ea) and the aspect ratioA(R), and the CPI estimated using the

regression model, as shown below:

Cost =W, - Area + Wy - AR+ W3 - CPI 4.7)

where thdlV's represent the relative weights of the optimization terms.

4.4 Reducing simulation times

Itis widely accepted that the SPEC benchmark suite [Herz0@hg with ther ef er ence
input sets, represents a realistic work-load that is execon microprocessors, and
therefore has become an accepted standard in microatcingeesearch such as the
optimization problem addressed in this chapter. Howevercating ther ef er ence
input sets to completion, in most cases, is prohibitive, Wuthe inherent slow nature
of the cycle-accurate simulations; simulating one cycléheftarget microarchitecture
consumes about 3000-5000 cycles of the host machine. Foretason, although the
resolution Il design described in section 4.3.2 considigreeduces the number of sim-
ulations (from exponential to linear in the number of bulsesors), the run time of each
simulation is still an issue.

Several techniques have been proposed in the past to refngktson times to
practical levels, while attempting to reproduce the betrawf ther ef er ence input

sets. These techniques can be broadly categorized indhoaps: (i) Reducing the in-
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put sets, (ii) Truncated execution, and (iii) Sampling. Wwek of [YKST05] compares
the accuracies of six such techniques, and the results @fdheindicate that sampling
techniques have much higher accuracies in tracking michitacture  ef er ence)
performance than the other two categories. However, asieqa in section 4.1, the
findings are specific to the two enhancements consideredit @aot clear whether
the inaccuracies can be generalized for all microarchitatbptimizations. In discrete
optimization problems such as CPl-aware floorplanning, derete perturbation in the
weight (regression coefficient) of a factor (or an inte@afimay not be sufficient to
shift the optimal value of that factor by an integer aboveeaoty.

Specifically, changing the latency of a bus in a particulacement involves a signif-
icant change in the locations of the connecting blocks ifdieut, to increase/decrease
the bus length by appropriate amount, and this can potbnald to a massive realign-
ment of the positions of other blocks, resulting in a dradlycdifferent placement with
a significant change in the value of the cost function, whiatiudes the weighted sum
of factor/interaction latencies. It is unlikely that smatlmoderate perturbations in fac-
tor regression coefficients can result in such a scenarimhndhanges the cost function
by a significant amount, during optimization. Thereforey aimulation technique with
a reasonable accuracy (or moderate inaccuracy) may beisuffic problems such as
CPl-aware floorplanning.

In this chapter, we compare a few approaches that can beaspded up the simu-
lation methodology described in section 4.3.2 for the GRdw& floorplanning problem.
Due to the high number of simulations (32 per benchmark)ireddor each technique,
we limit our comparison to two techniques, namely, sampdind reduced input sets, as

shown below:

* Reduced Input set§he idea behind the reduced input sets is to alter #feer ence
input sets so that the simulation times are reduced wheqg tisgse reduced input

sets, while endeavoring to retaining the characterisfittssounaltered ef er ence
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input sets. The est andt r ai n input sets from SPEC, and the MinneSPEC
[KLO2] reduced input sets are a few examples. For this wogk¢hoose MinneSPEC

reduced input sets for evaluation.

Sampling: In statistical sampling, only selected portions of the ninstion se-
guence of a benchmark are measured. The program segmemehéehe selected
portions are fast-forwarded using functional simulatidimese samples must be
chosen carefully such that they accurately reflect the beha¥ the population
i.e, the whole program. The sampling technique proposedWFHO03], called
SMARTS, simulates periodically selected subsets of thetinson sequence. The
sampling frequency and the length of each sample are useshtmtthe simula-
tion time. The statistics measured for the simulated sasrge generalized for
the whole program. In addition, SMARTS uses statisticalgarg theory to esti-
mate the CPI error of the sampled simulation results, as eosato the complete
simulation. On the other hand, the approach of SimPoint [SB2] selects a few
representative simulation points beforehand and then staéstical based clus-
tering to select a set that is representative of the wholgraro. At the end of the
simulation, the results from each simulation point are Wwe@yto compute the fi-
nal statistics. The number of simulation points, and thgtleof each determines

the simulation time.

We choose SMARTS as a representative of sampling techniquear compar-
isons, since, as noted in [YK®5], there is little difference in the accuracies of
SMARTS and SimPoint.

In addition to the above mentioned techniques, we considleird case, a hybrid
approach that is obtained by combining the two techniqueeci8cally, in this
case, we apply SMARTS on the MinneSPEC reduced input sdis;ther reduce

the simulation times. Hence, we actually compare threenigales in this thesis.
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Besides, statistical simulation [NS01, EBNOO, OCFO00], ahhis not addressed in
this thesis, is another way of reducing the simulation tirttesreby allowing an efficient
exploration of the design search space. For a benchmarkgmmogsing a single detailed
simulation, statistical tables are constructed for vagiptogram characteristics such as
cache miss rates and register dependencies. This synttaesigienerated, essentially a
statistical imageof the benchmark, can be used to speed up the subsequerdtsimsi|

of the benchmark.

4.5 Experimentation

45.1 Benchmarks

We choose a set of eight SPEC 2000 benchmarks for evaluatidhis work. The
benchmarks, along with the correspondiref er ence and MinneSPEC input instruc-
tion counts are shown in Table 4.4. The total simulation tlimated the number of
benchmarks that we could use. The benchmarks are chosemskeaufaheir distinct in-
struction mixes. For instance, mesa has a high percentagamditional branches, while
the benchmark gcc has a very large number of memory opesathdhbenchmarks are

compiled at optimization level O3 using the SimpleScalasim of the gcc compiler.

45.2 Setup

The areas of the blocks shown in Figure 4.2 are estimated) SKLP"01], and
are shown in Table 4.5. The total area of the chip is about*Zar®0nm technology,
with the level-2 cachel?) consuming about 70% of the area, as shown in the table.
Only the chip core that also includes the L1 caches is coredéuring floorplanning,
and the L2 cache is wrapped around the core floorplan, just@sne in [SSH03] and
Alpha 21362 [Ban98]. For the bus latency ranges that are tsbd in the resolution Il

design, the minimum value is chosen to be 0, depicting thedase placement of the
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Benchmark | Type Instr. count (Billions)
MinneSPEC | r ef er ence

gzip Int 1.065 63
vpr Int 0.217 110
gce Int 0.175 34
mesa FP 1.297 305

art FP 7.700 54
equake FP 0.716 175
parser Int 0.914 301
bzip2 Int 3.800 94

Table 4.4: Benchmarks from the SPEC suite, along withrthieer ence and reduced

instruction counts.

connecting blocks. The maximum value chosen is equal togh®c-to-corner latency
of the chip core, which is found to be 9 clock cycles at 6GHzgokon the projections
of [SSH'05]. We present results for three clock frequencies, rapfiiom 4GHz to
6GHz. The regression model constructed for each benchnmatkexhnique can be
used for all of these frequencies, since the bus latencyesaage valid for all of the
frequencies less than or equal to 6GHz.

We assume that the operating frequency of the chip is consttanly by the bus
delays, and the maximum of the delays of the buses is the mmipossible clock pe-
riod when wire-pipelining is not employed. The correspoigdmaximum frequency,
obtained by minimizing the maximum of wire lengths of thelgdbwires in the floor-
planner, is determined to be about 2.4GHz, and this forms#seline unpipelined
design.

The comparison metric is the execution tirfig,.., which, as shown in (4.8), is the
product of the number of instruction&’(,;) in the benchmark, the CPC(PI), and the
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Block | Area (cm?) || Block | Area (cm?)

il 0.097 dec 0.019
dll 0.101 bpred 0.038
ialul 0.006 fet 0.017

ialu2 0.006 fadd 0.016
talud 0.006 fmult 0.023

imult 0.012 itlb 0.003
ruu 0.125 dtlb 0.003
lsq 0.035 2 1.471
reg 0.022

Table 4.5: Areas of the microarchitecture blocks shown guFé 4.2 for the configura-

tion of Table 4.1. The total area of the processor is 2.03cm

corresponding clock cycle time evaluated as the reciprotctie clock frequencyjl‘().
It can be noted that this is the same equation as (1.1), watkltdtk periodl.[k written
as the reciprocal of the frequency.

Ninst : CPI

exec — T 5 .8
T 7 (4.8)

In addition, for all of the simulations using the SMARTS tagjue, both irr ef er ence
and MinneSPEC input sets, we use the default values thaissed in [WWFHO03] for
the sampling parameters (a sampling interval of 1000, a Easipe of 1000 and a

warmup size of 2000 instructions).

45.3 Results

We present the results in two parts in this section. The fiast gemonstrates the

efficacy of our proposed CPI-aware floorplanning methodplagginst a naive and an
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Coefficient Factor Value
Bo mean 100.00
B1 dec_reg 0.86
B2 ruu-reg 7.77
B3 maz_lsqruu | 0.47
Ba ruu-iaddl 11.24
Bs ruuiadd2 11.24
Be ruu_iadd3 11.24
Br ruu_tmult 0.16
Bs ruu_fadd 3.83
Bo il1.12 0.64
B10 di1.12 1.48
B extra_fet 2.05
B12 fet_dec 2.12
B13 fet_itlb 0.59
B14 itlb_12 0.16
Bis ruu_lsq 5.64
Bie ruu_fmult 1.40
Bz lsg-dil 8.66
B1g dtlb_12 121
B9 lsq_dtlb 3.67
Br.2 fi-fe -0.63
B1.3 fi-f3 -0.53
B2.3 f2- f3 -0.55

B1.2.3 fi-fa-fs 0.54
Ba.s fa-fs 451
Ba.6 fa- fo 451
Bs.6 f5 - fo 451

Ba.s.6 Ja-f5- fe 3.75

Table 4.6: Normalized regression coefficients, averagest all of the eight bench-

marks. The final eight rows correspond to the interactiomseshown in (4.3).
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existing approach. For the purpose of this demonstratienyse SMARTS to speed up
ther ef er ence simulations, both in the resolution Ill design strategy eétson 4.3.2,
and in validating the floorplanning results. Next we preseatesults of the comparison
of the three techniques, SMARTS included, that can be usspded up the resolution
lIl design strategy.

Validation of the proposed floorplanning strategy

For each of the eight SPEC benchmarks of Table 4.4, 32 cyderate simulations
are performed on theef er ence input sets using SMARTS, as prescribed by the
resolution Il design described in section 4.3.2. Althotiglfloorplan can be optimized
for each of the individual benchmarks, in practice, a precesnust be optimized so
that it performs well over a range of benchmarks. In otherdspone must generate a
single floorplan for the processor that is, on average, @gtower all benchmarks. For
this purpose, the CPI regression coefficients are averagedtioe eight benchmarks
to generate a new set of regression models that are used aptin@&zation process to
generate a single floorplan.

Table 4.6 shows the coefficients of the average case regnessidel. These are
normalized such that theean, 5, is 100. It can be seen that the buses from the regis-
ter update uniti{uu) to the integer addersdddl, iadd2, iadd3) have the highest impact
on CPI when pipelined The main reason for this is that programs typically have a
high number of integer instructions such as branch operafibat involve significant
dependencies. The memory biyg_di1 has the next highest magnitude, followed by
ruu_reg. In addition, some of the factors/buses suclitéis/2 have negligible (coeffi-
cient) magnitudes, and therefore can be freely pipelinedout any significant impact
on CPI.

SHowever, it can also be seen in Table 4.6 that these factees $ignificant inter-
actions, and these tend to further magnify the impact oflpipey the corresponding
buses.

79



gzip 7 vpr

o
©

UE’ Hl MinWL]| g Hl MinWL||
¥ 0.851 [ acc = o.8sf I acc
S os Hl SFP S sl Hl SFP
x x
O 0.75¢ D 0.75
© =l
Q 0.7 L 0.7
N N
© 0.65F © 0.65
g 0.6 g 0.6
o o
z 0.551 = 0.55
0.5r 0.5
0.45} 0.45
0.4 0.4
Frequency (GHz) Frequency (GHz)
gcc mesa
g o° B mnwL £ °° El MinWL]|
¥ 0.851 [ acc = o.8s) I acc
S os Bl SFP S oal Hl SFP
x x
O 0.75¢ D 0.75
© =l
L 0.7 L 0.7
N N
© 0.65F T 0.65
g 0.6 g 0.6
o o
z 0.551 = 0.55
0.5r 0.5
0.45 0.45
0.4 0.4
Frequency (GHz) Frequency (GHz)
art equake
uEa 0.9 T g 0.9F Hl MinWL]|
S o.85f =
g os 3
x x
@ o0.75} (]
© =}
O 0.7 (]
N N
TE\s 0.651 g
B 0.6 6
P 0.55F z
0.51
0.451
04 4. 5. 6. i 4. 5. 6.
Frequency (GHz) Frequency (GHz)
parser bzip2
g o B mnwL| £ °° El minWL]|
¥ 0.851 [ acc = o.8sf I acc
S os Hl SFP S s Hl SFP
x x
O 0.75¢ D 0.75
° =l
Q 0.7 L 0.7
N N
© 0.65F © 0.65
g 0.6 g 0.6
o ) o )
z 0.55F = 0.55
0.5r 0.5
0.45 0.45

0.4

Frequency (GHz) Frequency (GHz)

Figure 4.3: Floorplanning results for eight benchmarkstfioee different frequencies.
The execution times are normalized to the baseline casaewtee-pipelining is em-

ployed and the frequency cannot exceed 2.4GHz.
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Figure 4.4: The floorplanning results of Figure 4.3, plofdeach frequency. The hor-
izontal line in each graph represents the reduction in thekgberiod, over the baseline
0.42ns (corresponding to a frequency of 2.4GHz), obtainigd wire-pipelining, and
this represents the lower bound on the achievable exectiti@s. However, this lower
bound is not be achievable, since operating at frequenaigehthan 2.4GHz makes
it necessary to pipeline some of the buses, which incre&igeadsociated CPIs, thus

affecting the execution times, determined using (4.8).
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The regression model thus obtained is used to guide oursttati FloorPlanner
(SFP). We compare the results of SFP with those of traditiboarplanning, where
the cost function shown in (4.7) includes the total wire kengistead of CPI or any mi-
croarchitecture related issue, and we refer to this floargaasninWL In addition, we
also compare our results with the access frequency-baseglfioning of [EMW 04],
which will be referred to aacc henceforth. Based on [Ekp04], we have implemented
the algorithm in [EMW 04] that gathers the bus access information by incorpayaiin
cess counters for each bus in SimpleScalar. These accgasifi@es are used to weight
the buses in floorplanning, and we replace the CPI term ir) (ith the weighted sum
of bus latencies.

Figure 4.3 presents the results obtained from floorplanfuintdpe eight benchmarks.
The graphs plot the execution times of the programs for thlierent frequencies
ranging from 4GHz to 6GHz. As mentioned earlier, the baseprocessor with no
wire-pipelining operates at 2.4GHz. All execution times aormalized to those of this
baseline processor. The bars SFP and acc represent thereapestively, for our pro-
posed floorplanner and the access-ratios based floorpoh{EMW*04], where the
floorplan is optimized for the general case by averaging ¢lgeesssion coefficients (or
access-frequencies in acc) across the eight benchmarks.

Firstly, since all of the bars in the graphs are well below thé execution times are
less than those obtained on the baseline processor, whiltatas that wire-pipelining
does increase the performance of a microarchitecture. ditiad, our proposed floor-
planner, SFP, as well as acc outperform minWL by a large mdagieach benchmark
over all frequencies. Next, SFP performs better than acalfoost all frequencies, and
the execution time reductions tend to be more at higher éeges where the amount
of pipelining required is typically higher. For instance,aafrequency of 6GHz, im-
provements of about 16% and 11% over acc are obtained forathehimarks gzip and
equake, respectively, while these are about 11% and 6% arz4@H an average, as

compared to acc, SFP reduces the execution time by 6% folighekenchmarks. In
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addition, it can be observed that the execution times dserasthe frequency increases
for all benchmarks for both acc and SFP. However, this ismetfor minWL, where in
some instances, an increase in the frequency raises thetiexettme, such as gzip as
the frequency is increased from 5 to 6GHz.

The graphs of Figure 4.4 plot the results for each frequeaypposed to Figure
4.3 where the results are shown for each benchmark sepatatdemonstrate the sen-
sitivity of the execution times of the eight benchmarks toeapipelining. Similar to
Figure 4.3, the y-axes of the graphs show the normalizedsectimes. For each fre-
guency, the horizontal line depicts the frequency speedb@eed by employing wire-
pipelining, essentially the ratio of the corresponding baseline (2.4GHz) frequencies
of 2.4GHz. This line represents the theoretical bestcastéoexecution times, assum-
ing that the circuit can still be operated at the high clo@qtrency without pipelining
the buses, i.e., the frequency speedup translates to ava@ntireduction in the execu-
tion time. In reality, however, the bestcase may not be aeabie since at least a few
buses may need to be pipelined in order to operate at the hagh frequency, which
increases the associated CPI. From the figure, it may beadukstrat all of the bars are
over the corresponding horizontal lines, indicating amease in the CPIs due to wire-
pipelining. In addition, the ratios of the best and obsemeecution times gets higher
as the frequency increases. However, there is considerab#tion in the sensitivity to
wire-pipelining across various benchmarks. For instaftzdgenchmarks such as mesa,
SFP results in about 7%, 17% and 28% higher execution tinagsttie (unachievable)
bestcases, for the frequencies of 4, 5 and 6GHz, respeacti@al the other hand, for

gcc, the corresponding increases are lower, about 5%, 6% 2¥drespectively.

Comparison of simulation techniques

In addition to the SMARTS technique that is used to genetaerésults of the

previous section, we perform 32 simulations, accordingheoresolution Il design of
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Run time comparison
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Figure 4.5: Run time comparison of a single simulation ferttiree techniques. The y-
axis plots the run time of a single run for each technique amtbmark on a logarithmic

scale.

section 4.3.2, for each of the other two techniques deatribeection 4.4 for every
benchmark. Furthermore, the floorplan is optimized for eaehchmark separately,
unlike the average case that is used in the previous setticgiudy the impact of the
techniques on individual optimizations.

The three floorplanning scenarios that are compared arkethbe shown below:

* Minne: MinneSPEC reduced input sets are simulated to completion.
* SMARTS-R: SMARTS is applied on theef er ence input sets.

* SMARTS-M: SMARTS is applied on the MinneSPEC input sets.

In addition, we use a common platform to compare the threescdbe evaluations
are performed on theef er ence input sets, with SMARTS speeding the simulations.

In doing so, we are biasing the evaluations towards the SM&\RTtechnique. We
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note that our objective is to examine how the reduced inpgstgEmpare with the sam-
pling techniques, not exactly to measure the accuracy séttexhniques in tracking the
r ef er ence performance. The reason behind choosing “samplingeher ence”

as the common framework is that sampling techniques rdpliteer ef er ence be-
havior with very high accuracies, as indicated in [YK&], and the speedups evaluated
on this platform are likely to represent those observed whenef er ence input sets
are run to completion.

Figure 4.5 plots the run times of a single simulation for threé techniques in loga-
rithmic scale. It can be seen from the figure that SMARTS-Rthasongest simulation
times among the three techniques. However, the SMARTS-M lsas simulation times
that are more than two orders less than the other two appesaspecifically SMARTS-
R, while the simulation times in Minne are somewhere betvwthese of the other two
techniques. As an example, for the benchmark gzip, the siiounl times associated
with SMARTS-M, Minne, and SMARTS-R are 125, 3100, and 700€os€s, respec-
tively.

Figure 4.6 presents the results obtained from floorplanfantihe four scenarios de-
scribed earlier in this section, for each of the eight beratks, and for four frequencies,
3-6GHz. For each benchmark, all execution times plottetiéngraphs are normalized
to that of the corresponding baseline case, where the fregus 2.4GHz.

The graphs of the figure show that, for most benchmarks, tisenet much dif-
ference in the execution times obtained for the three cddeme, SMARTS-R and
SMARTS-M, and the differences in execution times are witll%. This indicates
that the reduced input sets compare well with the sampliciyigue for the CPl-aware
floorplanning problem. In fact, by employing sampling (SMPE) on the reduced input
sets (MinneSPEC), we can drastically reduce the simulaitioes without much loss in
the performance. For instance, for the benchmark vpr, orvarage, each simulation
run for SMARTS-R takes about 5 hours. However, almost theespenformance im-

provements (as seen in SMARTS-R) can be obtained when MRiE€Seduced inputs
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Figure 4.6: The floorplanning results of the comparison efttiree simulation tech-
niques, for eight benchmarks for three different frequesicidust as is done in Figure
4.3, the execution times are normalized to the baseling vdssre no wire-pipelining

is employed and the frequency cannot exceed 2.4GHz.
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Figure 4.7: Run time vs Execution time comparison for thedhtechniques, at each
of the three frequencies. For each benchmark, the exectitres obtained using
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zontal line in the graphs. Similarly the run times are noipeal those of SMARTS-R

(on a logarithmic scale) as shown on the x-axes.
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are used to generate the factor/interaction weights, atidsrcase (Minne), the time re-
quired for each simulation is about 30 minutes, a netily speedup over SMARTS-R.
The simulation times can further be decreased with a néjgigeduction in the perfor-
mance by sampling the reduced input sets, i.e, SMARTS-Mr&vbach simulation runs
for about 30 seconds, approximatélj) x faster than SMARTS-R.

The graphs of Figure 4.7 provide a better picture to exantirgradeoffs between
the run times and the execution times associated with tlee flechniques, and the re-
sults are plotted for each of the three frequencies sepgratst as is done in Figure
4.4. The graphs show the run time of a single run (refer toféigu5) using the three
techniques for each of the eight benchmarks on the x-axesseTare normalized on
the logarithmic scale to those of the SMARTS-R techniquesioh benchmark, where
a (normalized) run time of one for a benchmark correspondfidb of SMARTS-R
for that benchmark. The y-axes of the graphs plot the exacuiines obtained using
Minne and SMARTS-M, and once again, these are normalizdtetof the SMARTS-
R technique for each benchmark. The horizontal line in algetpone represents the
(normalized) execution time of the SMARTS-R technique facte benchmark at the
associated frequency. In addition, the 16 entries in eagplgcorrespond to the execu-
tion times obtained using Minne and SMARTS-M for various dfenarks: one square
(SMARTS-M) and one plus (Minne) for each benchmark.

It can be observed from the figure that, as expected and sel@r @aFigure 4.6,
almost all of the entries (both squares and pluses) are tdoee horizontal line. In
addition, a fraction of the small differences seen may héated to random variations
due to the nondeterministic nature of the floorplanner. Théy also be the reason
behind the fact that for some cases, Minne and SMARTS-M ofdpa the SMARTS-
R technique, as indicated by the presence of some of theesratbiove the horizontal
line in the graphs.

Table 4.7 shows pairwise comparisons of the three techsinuirms of the mag-

nitudes of the regression coefficients obtained from theluéisn Il design of sec-
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tion 4.3.2 for the three techniques, SMARTS-R, SMARTS-Md &inne. For each
pairwise combination of these three, the value shown foh dmmchmark is the av-
erage Euclidean distance between the corresponding mdimngeraction regression
coefficient vectors, similar to the metric used in [YLHO3]. X = (zy,---,x,) and

Y = (y1,---,y,) are two regression (coefficient) vectors, i.e., set§ofescribed in

(4.6), then the average Euclidean distance betweamdY is determined as follows:

E,, = \/(931 —y)*+ (@ — yn)? (4.9)
n

We only include the main and interaction coefficients, andtdhe meang,, in
the distance estimation. Each weight vector is normalipetlQ0, i.e., maximum of
the coefficients (other thafi)) in each vector is 100. In such a case, the maximum
bound on the average Euclidean distance is 100, with thenmuimi being 0. The idea of
this distance metric is to observe how the regression caifi (or factor/interaction
weights) generated in the three cases compare with each Bieh value in Table 4.7
indicates how much the magnitude of a coefficient obtainaten approach differs, on
an average, from the corresponding value obtained usingaimpared technique. For
instance, for the benchmark vpr, a value of 6.73 shown inmaliabeledSMARTS-R
Vs Minne indicates that, on an average, any regression coeffici¢atnsa using Minne
differs by about seven from that of the corresponding caefiicdetermined through

SMARTS on ther ef er ence input sets (SMARTS-R).

* Minne Vs SMARTS-M: The distance is negligible for most of the benchmarks,
as shown in the table, which suggests that sampling with SIVE\éh the reduced
input sets tracks the behavior of the whole input sets wigih lsiccuracy. This is
an interesting observation, since, it shows that, for gpgitbns which employ re-

duced input sets, the simulations can further be speedey apgdlying sampling.

* Minne Vs SMARTS-R: The distances are relatively higher than those seen in

the Minne Vs SMARTS-M comparison, presumably because of change in the
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Benchmark | SMARTS-R Vs Minne | SMARTS-R Vs SMARTS-M | Minne Vs SMARTS-M

gzip 4.30 4.22 0.45
vpr 6.73 6.58 2.38
mesa 26.36 27.29 2.92
art 23.81 22.87 4.79
mesa 12.78 11.35 1.65
equake 12.73 12.89 0.81
parser 9.23 9.30 0.67
bzip2 0.86 0.83 0.56

Table 4.7: Pairwise distance comparison of the three tgctesi For each pair of tech-
niques, the values shown represent the average differbetesen the regression coef-
ficients of the model shown in (4.6), computed using (4.9 Wtaximum coefficient in

each technique is normalized to 100, i.e., the maximum plesdistance is 100.

input sets, in tune with the conclusions of [YK@5]. However, other than mesa
and gcc, the distances are still moderate, and it is unlikedy such moderate
changes in the factor and interaction regression coeftigmft the optimal op-
erating points by significant amounts, given the discretereaf the cost function
that is minimized in floorplanning. For mesa, the reasonrixtkhe large differ-
ences is the contrasting instruction mixes of the corredpgnMinneSPEC and
ref er ence input sets: MinneSPEC input set for mesa has negligibleifigat
point instruction count, while theef er ence input set has about 9% floating

point instructions.

This is also the reason behind the relatively higher difiees in the execution
times obtained for mesa for the three techniques shown imr&ig.6. Although
the differences in the distances are also higher for gcs |@ss sensitive to wire-
pipelining, as shown in Figure 4.4, where the execution sifioe gcc exceed the
theoretical limits (horizontal lines in the graphs) only siyall amounts. We be-
lieve this is a reason for the lack of impact of such diffee=nan the floorplanning

results.
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* SMARTS-R Vs SMARTS-M: The distances follow the same trend as seen in
the SMARTS-R Vs Minne comparison above, since both Minne and SMARTS-
M use reduced input sets. The distances are slightly lonaar those observed
in SMARTS-R Vs SMARTS, however. This may be because both SMARTS-
R and SMARTS-M employ SMARTS, the inaccuracies, howeverlistihvay are,
associated with the SMARTS technique creep into both of thewing identical

effects.

Therefore, due to the similarities in the results obtairtbdre are no accuracy-run
time tradeoffs that can be explored. From Figure 4.7, itearcthat, SMARTS-M, while
achieving the same performance speedups as the other timdaes, represents the
best approach with least simulation times, in the order adva iundreds of seconds.
Given the small run times of SMARTS-M, it may also be posstblemploy a more
accurate or a higher resolution design than that it is desdrin section 4.3.2. However,
as will be demonstrated in the next section, it is unliketté higher resolution design

can result in a better floorplanning solution.

4.5.4 Validation of the resolution Il design

As pointed out in Section 4.3.2, the underlying assumptiounsing the resolution
lll design of Table 4.3 to generate the results in Sectiom34ibthat all of the interac-
tions except those shown in (4.3) are negligible. To tesv#tielity of this assumption,
we utilize a two-level resolution V design, where all of thaimand two-factor inter-
actions can be estimated, and compare the resultant regressdels with those of
(4.6). However, such a design requires a minimum of 512 sitiaris, which makes the
implementation impractical if the simulations have long times, even with speed up
techniques such &MARTS-R andMinne described in the previous section.

We therefore utilize th6&EMARTS-M technique, which has short simulation times

and is shown to be a good substitute foritled er ence input sets for CPI-aware floor-
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Benchmark | Res. Ill Vs Res. V
gzip 1.60
vpr 2.32
gcc 4.61
mesa 9.14
art 4.82
equake 5.31
parser 2.35
bzip2 2.66

Table 4.8: Distance comparison of the Resolution 11l and $igies for theSMARTS-M
technique. The values shown represent the average difiesdretween the regression
coefficients of the model shown in (4.6), computed using)(4l9st as done in Table 4.7,
the maximum coefficient in each technique is normalized 10, 1@., the maximum

possible distance is 100.

planning in the Section 4.5.3, for the comparison. Tabldigt8, for each benchmark,
the distance between the corresponding regression ceetfcof (4.6) obtained using
the resolution Il and V designs, computed using the metimas in (4.9). We note
that only the terms of (4.6), i.e., the main effects and tlghteinteraction effects of
(4.3), are compared in generating the distance, althougbdehwith many more in-
teraction terms than in (4.6) can be constructed using duteso V design. Since the
coefficients, particularly of the main effects, obtainedvthe resolution Il design are
aliased with interactions that are assumed to be negliggdbt®mmparison with the cor-
responding coefficients determined using the resolutiore$igh will be sufficient to
check if the assumption is valid.

Specifically, if the coefficients are equal (or almost equbBn the interactions must

be negligible. It can be seen from the table that the dist&aace small, indicating that
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Res. Ill design Res. V design

Benchmark | Avg. err. | Max. err. | Avg. err. | Max. err.

(%) (%) (%) (%)
gzip 1.434 6.553 0.621 3.130
vpr 2.678 -9.911 1.628 -11.171
gcc 2.514 18.134 3.063 -20.959
mesa 5.492 24.444 2.896 -0.352
art 4.024 14.187 0.941 5.679

equake 3.309 -21.762 0.811 3.867
parser 1.591 7.397 0.863 3.034
bzip2 1.787 8.438 0.869 4.029

Table 4.9: Error in the estimated CPIs as compared to thelaietunumbers over a
set of 512 combinations of the minimum and the maximum vaioethe bus latencies.
The absolute values of the individual errors are used in #heutations of the average

errors.

the coefficients compare well, and this validates the assompf negligible interac-
tion effects. Furthermore, the numbers are much smaller tthase seen in Table 4.7,
which presents a pairwise comparison of the three simuatgohniques described in
Section 4.4. It is unlikely that the small increase in theusacies, when the resolution
V design is used, can significantly impact the floorplannipginization process.

In addition, we compare the estimated CPI values with theulsitad nhumbers for
the set of 512 latency combinations that are part of the uésol V design. Table 4.9
shows the maximum and the absolute average of the errorimat&in for both res-
olution Il and V designs, for each benchmark. On the whdie, models do well in
predicting the CPIs, except for a few outliers. For instafaebzip2, resolution Il and

V designs result in errors of about 1.7% and 0.9%, respdygtiga an average. It can
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also be observed that the resolution V design does betterésalution Il in estima-
tion, the differences are not significant however. This catlypbe explained by the fact
that the combinations for which the CPls are estimated taionlhe errors actually cor-
respond to the 512 simulations prescribed by the resolMidasign, i.e., the same set
of combinations are used in the resolution V case to gen#rateegression functions.
Since the 512 simulations are actually part of a two-leveiglg the combinations
only have the extreme (minimum and maximum) values for treldiencies. As stated
in Section 4.3.2, the assumption is that the response (@B hnear dependence on the
bus latencies. To check if there are significant nonlinesitve generate a set of 1000
random combinations and perform simulations for each bmack. The combinations
contain any values between the range of bus latencied)esveen the two levels of the
resolution Il and V designs addressed in the previous papdg. Table 4.10 shows the
average and maximum of the estimated errors for both thduteswo Il and V cases.
It can be seen that the errors have higher magnitudes thae tifoTable 4.9, which
suggests the presence of nonlinearities. However, thectietun the accuracy is not
significant. For instance, the average error increasesdimut 1% in Table 4.9 to about
4%, which is not big enough to have a significant impact. It mlap be noticed that the
two cases, resolution 11l and V, result in almost identiaabes, unlike the comparison

presented in Table 4.9.

4.6 Conclusion

This chapter proposed a methodology based on a statisesair of experiments
approach to identify the CPI critical buses in a microamsttiire. Using this approach,
the essence of the large exponential search space is ahpisirg a small number of
simulations, linear in the number of buses. In addition,approach also considers the
impact of interactions of the bus latencies. The perforreampact of bus latencies is

guantified by constructing a CPI regression model, and tipeoagh is applied at the
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Res. Ill design Res. V design

Benchmark | Avg. err. | Max. err. | Avg. err. | Max. err.

(%) (%) (%) (%)
gzip 6.343 -20.962 6.425 -21.940
vpr 6.314 -20.889 5.312 -21.077
gcc 3.011 20.958 3.696 -14.930
mesa 6.108 19.854 5.548 -20.173
art 8.287 -23.583 8.004 -22.581

equake 6.182 -21.801 6.291 -21.945
parser 2.467 -9.193 2.468 10.258
bzip2 4.387 -18.392 4.467 -18.371

Table 4.10: Error in the estimated CPIs as compared to thelaied numbers over a
set of 1000 different combinations of random values for the lhtencies. The absolute

values of the individual errors are used in the calculatmfrthe average errors.

floorplanning level. A comparison of the results with an 8Rrig approach, which uses
bus access frequencies to weight the criticality of the btenicies, indicates that our
proposed methodology produces better performance for deauaf frequencies.

In addition, we compared three techniques, namely, SMARIiBneSPEC reduced
input sets, and a hybrid of both, that can speed up the sirontabf ther ef er ence
inputs of the SPEC benchmarks for the CPIl-aware floorplanpnoblem. We use a
distance metric to compare the regression models genearateg the three techniques
in the simulation methodology. This comparison suggesis MinneSPEC sets and
SMARTS generate significantly different sets of regressiogfficients. However, this
variation in the magnitudes did not affect that subsequetitrozation, and the per-
formance improvements seen in both cases are almost idenTicerefore, there is no

correlation between the contrasting regression modeksrgesd and the actual delivered
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performance. The best technique for this optimizationéstybrid version of both, i.e.,
SMARTS on the MinneSPEC reduced input sets, and this castaiily quickens the

simulation process by several orders, besides generatihgjhality designs.
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Chapter 5
Floorplanning of a Pentium architecture

In Chapter 4, the proposed strategy for throughput-awacedlanning is experi-
mented on the DLX architecture using the SimpleScalar stoul In this chapter, we
extend the technique for the widely used Intel Pentium &echire (P6) [HP96]. For
this purpose, we use Asim [EAB?2], a cycle-accurate simulation framework devel-
oped at Intel Corporation. The objective of this study is &tidate the efficacy of our
proposed floorplanning methodology in an industry simataframework.

The rest of the chapter is organized as follows. Section Betviews the Pen-
tium architecture and the simulator Asim, while Section fr@sents the floorplanning
methodology. The results of the simulation methodology féoatplanning are demon-

strated in Section 5.3 and we conclude the chapter in Sestbn

5.1 Preliminaries

5.1.1 Pentium architecture

Pentium architecture (P6) models an out—of—order suplarseechine that imple-
ments a Complex Instruction Set Computing (CISC) instarcet. However, during
execution, programmer visible instructions are split iatpal sized operations called
pnops, which gives the appearance of a RISC machine at this leves. Word arrange-
ment is little—endian and like the DLX architecture empldye Chapter 4, there are
separate Level 1 caches for instructions and data and asingfied cache at Level 2.
The P6 architecture has been utilized for several procestweloped by Intel Corpo-

ration such as Pentium Ill and Pentium M.
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M1 M2

M, _M,

Figure 5.1: A busM_M,, from module)/; to moduleM;. The bandwidth of the bus

is two and the latency is one, as indicated by the single dartangle on the bus.

5.1.2 Overview of Asim

Asim provides a cycle-accurate simulation framework focnoprocessor perfor-
mance modeling. The basic components of the simulator aula® and feeders,
where the modules represent the functional blocks of a gemreand the feeders provide
the instructions for simulations. The framework also pded a template for multiple
implementations of the modules, thereby allowing the caipabf simulating different
architectures. In addition, Asim includes a port netwoikt timodels the buses connect-
ing the blocks of a processor. Such a representation enaigldsling of a microarchi-
tecture system much closer to the actual hardware, thanl&soalar, where there is no
explicit way of communication between the functional blecand thus making it easier
to account for the additional bus latencies in the simulator

For instance, consider any two modules (blocks) of a prareds, and M-, and
suppose there is a bus of width two fravy to M, say,M;_Ms, with a latency of one,
as shown in Figure 5.1. The bus can be declared as a writenpthit module definition
of M; while it becomes a read port i/;. Both declarations use the same identifier
“M;_M," and this binds the read and write ports. The bandwidtd&fM; is set in
the input block, i.e. )M, and the destination modul&/,, sets the latency, which in the
example of Figure 5.1 is one. In such a scenario, changintatbecy of a bus can be
easily done just by modifying the latency of the correspogdead port in the simulator

code.
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5.2 Simulation methodology

5.2.1 Microarchitecture blocks and buses

Due to the complexity and the high number of blocks and busesciated with
the Pentium architecture, we decided to approach the flaonghg problem in phases,
first applying the methodology on subsystems of the procds=ore a comprehensive
implementation for the entire microarchitecture. In thiiah phase reported in this
thesis, we consider the backend execution and memory doogssn Figure 5.2. The
blocksrs, rob,int and fp represent the backend, andb, stb, dcu anddtib form the
memory unit of the architecture. Comparing with the blockiBloX processor shown in
Figure 4.2, we have the load store queue,of DLX split into separate queues for loads
and stores, shown &b andstb, respectively, in Figure 5.2. Similarly, there are separat
gueuing systems for the reorder buffer, which maintainsriteguction pool dispatched
from the frontend, and reservation stations, where insbms are scheduled and issued
to execution and memory units, and these are labeledieandrs in Figure 5.2. It can
be noted that theob andrs are combined to form the register update unity, in the
DLX architecture of Figure 4.2. The blockst and fp correspond to the integer and
floating point execution clusters comprising adders andiplidrs. Finally, dcu and
dtlb are the data cache and TLB of the microprocessor.

There are 16 buses (ports) in this subsystem, as shown imeFiga. The buses
include the instruction issue ports from, the cache access and the data forwarding

paths.

5.2.2 Bus latency modeling

As noted in Section 5.1.2, the buses (of Figure 5.2) are nedded ports in Asim, and
the latencies can be varied by calling appropriate memlyetions of the port objects.

However, arbitrarily increasing the latencies can posetional correctness issues, as
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Figure 5.2: The backend execution and memory functionakslof the P6 architecture.
The blocks's, rob, int and f p represent the backend, ahid, stb, dcu anddtlb form the
memory units of the architecture. The arrows represent tines gbuses), 16 of them,

connecting the blocks.

observed in Chapter 2, which addresses the correctneskempm®lat circuit-level, and
Chapter 4, where the latency modeling issues for the DLXitacture are dealt. There

are several dependencies associated with bus latenciesetba to be considered for

correct execution, such as:

» The load buffer/db, monitors and retains a few previous store instructionsaids
by the reservations as part of the wake-up logic that unblocks load instructions
that are previously stopped for possible Read after Writg/IRhazards. It turns
out that the number of the previous stores retained is degpgngbon the latency

of the port betweens andidb.

* When the load bufferdb, dispatches a load instruction to the data cache and tlb
for memory access, a warning signal is sent to the schedinerto speculatively
issue any dependent instructions of the load operation.céche hit occurs for
the load operation, then the execution continues. Howdverspeculatively dis-
patched dependent instructions must be squashed if the meancess for the

load instruction results in a cache miss or a page fault.dfatency of the signal
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is less than the cache hit latency, the dependent instnsctian be issued before
the data is available, even when a cache hit occurs. In sugdraso, the instruc-
tions are always squashed irrespective of a hit of miss icélthe. The existing
mechanism works for a miss but not for a hit. For correct ettenuthe latency

of the warning signal fronidb to rs must be greater than the cache hit latency,

which indicates a dependency between the two paths.

The dependencies are modeled and the additional bus lesesra parameterized in
the simulator. Each of the 16 buses represents a factordhanhfluence the throughput,

IPC, of the microarchitecture.

5.2.3 Design of experiments strategy

Although the resolution IIl design of Table 4.3 is accurat®wgh for the DLX
architecture, as explained in Section 4.5.4, preliminagyeeimentation indicated that
there may be several significant, particularly two-factoigractions. Estimation of all
of the two-factor interaction effects requires a desigrhvathigher resolution, such
as V, as noted in Section 4.5.4. However, such a design iesadvhigh number of
experiments: for 16 factors, a typical two-level resolnté design has a size of 512
[DM70], like the design used in Section 4.5.4.

We instead employ a two-step approach, shown in Figure ba®,can reduce the
number of simulations to a reasonable level. The ration&lihie approach is that,
in general, not all factors may significantly impact the mse of a system. It has
been a common practice to use a simple, screening, desigtetcoofit the factors that
have negligible impact and construct a better and detailedeiin the second phase
for the significant ones. For instance, the work of [FPOOkubés two-step technique
for optimizing electromagnetic devices. The efficacy oftsao approach lies in the
concept offactor sparsityi.e., the fewer the number of significant factors, the loiser

the number of experiments required.
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The objective of our proposed two-step approach is to coastt performance
model that includes all of the two-factor interaction terah@ng with the main effects,
for the identified few significant factors. We use the statdtsoftware JMP [SLCO1]
for this purpose. The software can be used to generate ayafistatistical designs,
perform statistical significance tests, and constructaggjon models using techniques
such as Analysis of Variance (ANOVA) [LilOO].

Screening Design
(Resolution V)

Statistically significant
factors (using JMP)

Response Surface
Design (RSD)

Figure 5.3: The outline of the two-step Design of Experirsaiproach. The statistical

significance tests are performed using the software JMP.

The first step of the approach involves a screening desigietttify the significant
and insignificant factors. For this purpose, we use a twetlesolution IV design,
where the main effects are completely separated from thddetor interaction effects,
as described in Section 3.5.2. A resolution Il design, saglthat of Table 4.3, may
not be effective since the magnitude of a main effect can bskathby potentially
significant two-factor interaction terms that are aliasathwhe main effect. For 16
factors, a standard resolution 1V has a size of @two-level resolution IV design can
be obtained by simply folding over the entries of a resolutibdesign such as that of
Table 4.3. For instance, complementing all the entries dleld.3 gives a set of 32
additional distinct simulations, which when combined wtile original 32 rows of the

table gives a resolution IV design (of size 64).

IAlternatively, a Plackett and Burman (PB) design of resohutV, which has a size
of 40, can be used.
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The screening design is applied on the set of benchmarkshan@sults obtained
from the simulations are used to find important factors. Deaiification of significant
factors is done using a systematic procedure that employ@\W\and the F-test, a test
for determining statistical significance, as describeddnti®n 3.5.3. The test involves
indexing the appropriate F-distribution with the F-ratiot@ned for each factor, using
the simulation results. The result of the look up is a p-valugch is an indicator of the
importance of the factor: the lower the value, the highenésgignificance. As noted in
Section 3.5.3, the general rule of thumb followed is to ¢fasdl factors with a p-value
higher than 0.05 (5%) as statistically insignificant, anddeehis in our work.

The factors that are found to be statistically insignificaetignored and a Response
Surface Design (RSD) is applied for the retained signifidaators. The design is of
resolution V, therefore all of the two-factor interactiansolving the (retained) factors
can be estimated. In addition, it also permits the estimaifahe quadratic components
of the main effects, there by enabling the modeling of nadnities in the impact of
the factors on the throughput. In other words, the througlopiuhe microprocessor
is captured as a response surface involving the identifigubitant factors. Since, a
three-level design is required to estimate the quadratmpoments as mentioned in
Section 3.5.2, the design includes a third level for eackofa@nd this corresponds
to the mean of the minimum and maximum values of the latenegeaf the factors.
We use JMP to generate the design and perform simulationsafcht benchmark as

prescribed by the generated RSD.

5.2.4 Regression model

The result of the simulation methodology outlined in thevpryas section is a re-
gression function for CPI, where the variables are the Baamit factors obtained using
the screening design. If, say,out of the original 16 factors are found to be important,
then the following regression function can be constructeP1 from the results of the

simulations obtained using the RSD generated using JMP.
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=1 i=1

Vi<j<n
Where ther;s represent the encodings of the latencies ofitlheises, computed along
the same lines of those in (4.6). The tefinrepresents the mean or intercept of the
function, eachs; andg; ; correspond to the coefficients of the linear and quadratit-co
ponents, respectively, of the main effect of factpwhile eachg; ; is the magnitude
of interaction between factoisandj. Overall, there ar@n main effect terms an@lg)

two-factor interaction terms in the model.

5.3 Results

5.3.1 Experimental Setup

We use a set of 24 SPEC 2000 benchmarks for the experiment&iw the floor-
planning step, we use an Intel internal floorplanning toalk tils also a simulated an-
nealing based implementation similar to Parquet emplogedhapter 4 for DLX, and
we choose a frequency of 4GHz for the experimentation. Owartge slow simulation
speed of Asim, we only simulate each benchmark for one milligtructions. The idea
is to first validate the efficacy of the simulation methodgled Section 5.2 for a small
portion of the benchmarks before graduating to utilizinghptete simulations. Each
simulation, of size one million instructions, takes abc@#2D minutes to complete. For
the latency range for each factor, we choose zero and twé clades as the minimum
and maximum values, and therefore one for the mean latergg wdich is used in the
RSD of Section 5.2.3, besides the minimum and the maximupesttmate the quadratic
components of the main effects. It is unlikely that the latea exceed more than two
clock cycles since the methodology is applied on a relatissdaller portion of the pro-
cessor, i.e., the backend and memory cores, as comparee Whtile area of the DLX

processor in Chapter 4.
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5.3.2 Results of the two-step methodology

First, 64 simulations are performed for each of the 24 berchs) as part of the
two-level resolution 1V screening design generated usiM.JThe results of the F-
test indicate that 10 of the 16 factors can be ignored in mglthe regression model.
Figure 5.4 shows the six significant factors (buses), wheealbtted line indicates the
factor which has the highest impact on the throughput. Intewaid it turns out that
almost all of the benchmarks have the same set of criticadfaclt can also be observed
that most of the buses are related to the instruction issddaawarding paths, and the

data forwarding bus betweeént andstb is the most critical of these buses.

it o
rs f]?u
\ 4
" lab T dtlb
stb 3 - dcu
rob

Figure 5.4: The six statistically significant buses of theh&ecture. The dotted line

betweenint andstb represents the most important of the six buses.

The next step involves the implementation of the Responsia&@uDesign (RSD)
for the six factors of Figure 5.4. This design is generatéadgudMP, and requires 45 sim-
ulations per benchmark. Therefore, the two-step approafection 5.2.3 prescribes a
total of 109 (64 for the screening design and 45 for RSD) sitmhs per benchmark.
It can be noted that this is significantly less than the 5121kitrons per benchmark
required in a potential one-step approach that utilizesaluéion V design for all of the
16 factors.

The results of the simulations are then used to generatesgign models, one for
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each benchmark, and a single regression function is cansttiy averaging over the
24 benchmarks: Each regression coefficient of (5.1) is nbthby averaging the corre-
sponding coefficients of the 24 regression models.

Two of the coefficients of the regression function, corregjiog to the main effects
of the buses betwees andi/db, andrs andstb have negative magnitudes. This is an un-
expected result since it indicates that inserting addtidiip-flops on the two buses can
actually increase the throughput, i.e., reduce the numbelook cycles of execution.
To understand such an anomalous behavior, we analyze arghcetie block activity
traces and instruction issue patterns across severahrglbus latency configurations.
The analysis suggests that the complex scheduling and thef-@uder issuing schemes
employed in the P6 architecture proved to be significanthgiiwe to the bus latencies.
Increasing the latencies sometimes can change the issaengah a beneficial way that
will reduce the number of clock cycles required for exeautiélthough SimpleScalar
models an out-of-order execution core, such an unexpertad s not observed, and
the system behavior is much more linear, i.e., the througtezluces with insertion of
latencies on any of the buses, compared to the out-of-osaEuéion core of the Pen-

tium processor.
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Figure 5.5: The eight statistically significant buses ofitlverder execution version of
the P6 architecture. The dotted line betweerandidb represents the most important

of the eight buses.
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For an even better understanding of the Pentium system loehae implement an
in-order version of the execution core of the P6 architectuith in the Asim frame-
work. The goal is to identify if the observed nonlinearitage due to the out-of-order
nature of the execution. In general, an in-order machinahatsless unpredictability in
instruction scheduling as compared to an out-of-ordergssar. In particular, changing
bus latencies tends to impact the scheduling algorithms @f-®rder core with a lesser
magnitude than those of an out-of-order system due to th&wvely lower flexibility in
issuing instructions: Even if an instruction is ready to$®ied, it can only be scheduled
after all of the previously queued instructions are dispadic

We implement the same two-step simulation methodologyzatil for the out-of-
order core, for the in-order execution version. The resflthe screening design indi-
cate that there are eight statistically significant factansl these are shown in Figure 5.5.
It can be observed that most of the buses are related to tharpaths, similar to those
seen for the out-of-order case in Figure 5.4. The most inapbfactor for the in-order
machine is the bus between the reservation statiand the load buffeldb.

For eight buses, the response surface design has a minimemfs80, compared to
45 for six buses in the out-of-order scenario. Therefore fdfal number of simulations
increases to 144 per benchmark for the in-order processbof e regression coeffi-
cients obtained through the application of the RSD haveipesnagnitudes, indicating
a normally expected behavior. The results therefore sugiggtthe scheduling schemes
are less sensitive to bus latency variations in the in-ovdesion of the P6 architecture,

compared to the original out-of-order core.

5.3.3 Validation of the simulation methodology

We validate the regression models obtained using the tejp-approach of Fig-
ure 5.3 for the in-order and out-of-order versions over @oam set of 256 bus latency

configurations. For this purpose, 256 simulations are per¢d and the results are com-
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Estimated vs Simulated CPI (out—of-order)
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Figure 5.6: Comparison of the estimated and simulatedtsefula randomly generated

set of 256 simulations for the benchmark ammp, for the owdrdér P6 machine. The

CPIs are sorted with respect to the simulated results.

pared with those estimated from the models, and we do thisrferbenchmark in this
work. It is, however, a good idea to validate the models feahdzenchmark, as is done
for the DLX architecture in Section 4.5.4, although the hegenputation cost, 256
simulations per benchmark, introduces feasibility conser

Figures 5.6 and 5.7 show the validation results for the SP&@Htmark “ammp”
for the out-of-order and in-order scenarios, respectivEhe graphs plot the estimated
and simulated CPlIs of the 256 simulations, sorted with retdpehe simulated numbers.
The figures indicate that the percentage differences betthesestimated and simulated
results is lower in the in-order scenario than the out-afeoccase. The average absolute
errors are about 6% and 12% for the in-order and out-of-ardses, respectively, while
the corresponding maximum errors are 28% and 86%, respicti®verall, the graphs
do not exhibit any particular trends, the estimated valueged and fall behind the
simulated values arbitrarily. In addition, it can be obserthat, as expected, the in-

order CPIs are much higher than those of the out-of-ordex. cas
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Estimated vs Simulated CPI (in—order)
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Figure 5.7: Comparison of the estimated and simulatedtsefula randomly generated
set of 256 simulations for the benchmark ammp, for the ireoRbE machine. The CPIs

are sorted with respect to the simulated results.

5.3.4 Floorplanning results

The floorplanner uses the CPI regression models constriroradhe two-step sim-
ulation methodology of Section 5.2.3 in the cost functiortted simulated annealing
based engine. The cost function is similar to that of (4.}l we compare our Design
Of Experiments (DOE) based floorplanning approach with ggular floorplanning
methodology, where total wire length minimization is calesed instead of CPI. Fig-

ures 5.8 and 5.9 compare the floorplanning results obtaised) the proposed DOE

approach and the regular approach, for the out-of-ordeirandder scenarios, respec
tively. Each plot has 24 points, one each for a benchmark.

The graphs show that our proposed approach results in loREy, @herefore better
throughputs, than the regular floorplanner, in both theadtgrder and in-order cases.
However, the improvements are much higher in the in-ordee c¢aan out-of-order,

which is not surprising given better validation resultsrsé® the in-order scenario in
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Floorplanning results (out—of-order)
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Figure 5.8: Floorplanning results for the out-of-ordereca¥he CPIs obtained using
our proposed approach are compared to those computed thregigiar, minimum wire

length, floorplanning.

Section 5.3.3. On an average, a reduction of about 11% in BHes®bserved for the

in-order case, while it is about 5% for the out-of-order niaeh

5.4 Conclusion

This chapter extends the Design of Experiments (DOE) baserpfanning method-
ology of Chapter 4 to the Pentium architecture (P6) that @m@nts an out-of-order ma-
chine. For this purpose, we use Asim, a simulation framewdiktel corporation. In
this thesis, we focus only on the backend and memory busdi@®m the performance
modeling. We use a two-step approach for simulation metloggiopwhere insignificant
factors are filtered out in the first step using a screeningydexf resolution IV. A de-
tailed Response Surface Design (RSD) is applied on the renggsignificant factors to
construct a quadratic model that includes all of the twdefiaimteractions and quadratic

components of the main effects. Simulation results indicaiexpected behavior where
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Floorplanning results (in—order)
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Figure 5.9: Floorplanning results for the in-order casee TPIs obtained using our
proposed approach are compared to those computed throgglameminimum wire

length, floorplanning.

throughput increases (or CPI reduces) when some bus latemirease. Our analy-
sis suggests that that the reason for this is that the conggleduling schemes of the
out-of-order execution core are highly sensitive to changdus latencies.

For a better understanding, we implemented an in-ordetiorexs the execution
core and applied the two-step methodology on this new psacesThe results indi-
cate predictable behavior, unlike the out-of-order cages floorplanning results show
that the proposed floorplanning approach outperforms daeguinimum wire length,
methodology, and the approach works better for the in-osdenario than the out-of-

order version.
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Chapter 6
Thermally-aware floorplanning

The microarchitecture-aware floorplanning problem adsrdsn Chapters 4 and 5
specifically focuses on throughput/performance optinorat As pointed out in sec-
tion 1.3.2, floorplanning can also impact the operating teragure of a chip, through the
vertical and horizontal heat transfer mechanisms betwesndmponents, the spreader
and the heat sink of the chip. In this chapter, we extend théhadelogy to include
temperature in the objectives of floorplanning.

The chapter is arranged as follows. Section 6.1 introddeeprtoblem and presents
some previous work. The importance of modeling the powsatighput interaction
is addressed in Section 6.2, while 6.3 explains the condefgngperature estimation.
Section 6.4 lists the thermal metrics considered in thiskwand the overall flow of
the floorplanning methodology is outlined in Section 6.5. &daclude the chapter in

Section 6.7 after presenting some experimental resultedtic 6.6.

6.1 Introduction

Due to rapid increases in on-chip power and integration ileasoperating tem-
peratures have become an important concern in high perfarenetegrated circuits
in nanometer technologies. A high temperature can affectrehability of a circuit,
thus reducing its lifetime [SABRO04], through phenomenahsas electromigration and
Negative Temperature Bias Instability (NBTI). With evemopess generation, circuit
performance becomes more sensitive to thermal effectsaltieetdecreasing limits on
the maximum junction temperature [SemO01]. In addition,tdmaperature dependence
of the leakage power results in an undesirable positivebi@eld commonly referred

to asthermal runawaywhich could even lead to catastrophic chip failures. While
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vanced [GBCHO1] packaging solutions can result in enhaheatiremoval capabilities,
the costs associated with these solutions are typicallyipitive. Therefore, it is impor-
tant to develop temperature-conscious design technitna¢stieviate on-chip thermal
problems.

As noted in Section 1.3.2, on-chip temperature distrimgidepend not only on the
total power dissipation, but also on the spatial distrinutof the power sources and the
material properties of the medium that permit vertical andZontal heat transfer in a
chip. Physical design methods, such as floorplanning angeplant, can impact the
thermal profile of a chip by altering the spatial distributiof power sources, indicat-
ing a scope for improvement through better heat spreadiigetrens the temperature
distribution on the chip. In addition, physical design ap#ations can complement
other thermal- and power-aware design [B@B] techniques implemented at a higher,
architecture level such as Dynamic Thermal Management (P[BMIO1].

The topic of thermally-aware floorplanning/placement haimeted some attention
in the last few years, both at the circuit and microarchitextevels. The primary dif-
ference between circuit and architecture level treatmerke level of knowledge about
the spatial distribution of power. At the architecturaldgwthe circuit is defined only in
terms of large functional blocks and coarse estimates ofepane available, while at
the circuit level [HXV"05,CWZ05,GS03], the power consumptions of individual rmacr
cells or blocks are all well known, and more accurate estonatare possible. However,
there are many more flexibilities at the architectural I¢kat permit significant design
changes that reduce the overall power and temperaturédisin.

This thesis focuses on the interactions between micrdaathre design and phys-
ical design, in particular, floorplanning, to explore peni@ance-temperature tradeoffs.
As seen in Chapter 4, the choice of a floorplan can signifigaaftect the through-
put/performance of a processor due to the presence of witbsmulticycle delays.
Such fluctuations in the CPI can change the activity pattefrise blocks, resulting in

variations in the power densities. In other words, floorplag can affect the temper-
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ature profile not only through heat spreading but also bec#us spatial and tempo-
ral distributions of power densities vary due to wire-pipglg. A good floorplanning
strategy must therefore consider such interaction betw#@nand power (and hence
temperature) and jointly optimize both the performancetentperature objectives.

A few recent works [HKMO5, WYYCO05, SSHO5, EHB"04] propose techniques
for thermally-aware microarchitecture floorplanning. VEthhese indicate a welcome

progress, they suffer from two drawbacks:

» They do not model the CPI-power interaction in the floorplag step and as-
sume that the block power consumptions are layout indepegn8eecifically, the
power densities that are obtained for a zero-bus-latermyas®, which typically
represents the worst case for dynamic power (and the bestaathe through-
put, IPC), are assumed to be valid for all floorplans irrespeaf the amount
of pipelining required by the buses, and this can result ierestimation of the

temperature.

» They attempt to minimize the steady-state temperaturebia However, steady-
state can only occur when the power dissipation is constdmth may not be true
in general since programs tend to exhibit phases of varyetgites [IMO3]. In
such a case, a transient modeling [WCO02] provides a bettéurgi of the ther-
mal behavior of the chip: the execution times of the stanbarcchmarks that are
used in simulations, such as SPEC [Hen00] utilized in thesih) are typically
in the range of seconds, which are significantly larger tlyaical thermal time
constants, making it imperative to model transients. Intamg transient model-
ing also captures an accurate depiction of the dependerieakage current on

temperature.

A better strategy may be to focus on minimizing the peak tesmigempera-

ture over the entire execution time of a program. Furtheenbesides the peak
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temperature, it is useful to capture the temporal averagfeestiemperature distri-

bution, since many reliability mechanisms depend on this.

Although some of the previous approaches do consider thpdaeature tran-
sients, the emphasis is on modeling the impact of temperatuteakage power,
only a small portion of the execution time is considered faalgsis, and the goal

of floorplanning is to minimize the steady-state tempematur

We propose a methodology for multiobjective microarchitefloorplanning, where
the objectives are minimizing the temperature (both aveeagl peak), based on tran-
sient analysis, and maximizing the performance (or minimgizhe CPI). Our approach
models the impact of wire-pipelining (i.e., changes in thel,Gon power densities
in the floorplanning step) and temperature-leakage powgertiencies. For the pur-
poses of a complete transient analysis that considers tire erecution times of the
programs, we use a larger timestep than those employed ilntited-time analyses
of [HKMO05, WYYCO05, SSH 05, EHB'04]. Since the floorplanning that we address
involves big microarchitecture blocks, which have largeret constants than ordinary
cells, the temperatures change at a slow rate, in which eakege timestep, which
reduces the analysis time by a tremendous amount, can bercthvithout much loss in

accuracy.

6.2 Dependence between power and throughput

Figure 6.1 plots the instantaneous dynamic power consomgptf a block, aver-
aged over every 10000 clock cycles, for two different layecenfigurations, “c1” and
“c2”, that result in CPIs of 0.91 and 1.11, respectively,tfee SPEC benchmark, “gcc”.
The two instances represent two distinct floorplans of theX@kchitecture shown in
Figure 4.2 and Table 4.1. It can be observed from the figurethiese is considerable

variation in the dissipated power between the two configemat The case “c2”, which
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has a higher CPI, takes more clock cycles than “c1”, a prograent is likely to occur
in “c2” at a time later than in “c1”. Moreover, the magnitudesach a “time shift” may
vary across different events, it is even possible that aquéat instruction of a program
is executed in “c2” at an earlier time than in “c1”. Such vadas in the block activi-
ties can significantly impact the power consumption profflehe processor, as seen in
Figure 6.1. Itis therefore important to consider this dejgste between the throughput

and dynamic power in the floorplanning optimization.
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Figure 6.1: The instantaneous dynamic power consumptidheofegister update unit
(ruu) block for two different bus latency configurations, eaclhresponding to a differ-

ent floorplan of the same microarchitecture.

6.3 Thermal estimation

A key component of a thermally-aware design methodologyfraimework to es-
timate the temperature distribution of a chip. In the thdraralysis context, a chip
can be viewed as a multi-layered grid network, essentiatlysaretization of the chip

geometry, where the nodes of the network correspond to titerseof the grids, and the
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connections between the nodes represent the heat flow pathes chip. In such a set-
up, the power source? are located at the nodes of the network and based on theydualit
of electricity and heat transfer, the temperature distidlouof the network is governed

by the following differential equation:

g T=P 1
C- = +G (6.1)

whereG is the thermal conductance matrix of the netwdFkis the temperature distri-
bution of the nodes of the network. The first term on the LHS6o1) represents the
transient behavior of the temperature, V\d_frmodeling the thermal capacitances. Sev-
eral techniques for thermal analysis have been proposéx ipast, some of which can

be found in [ZGS06].
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Figure 6.2: The results of two transient analyses of a ditcuder two different imple-

mentations.

6.4 Average temperature

Figure 6.2 shows two possible transient scenarios for aitiwhere the maximum
transient temperature of the circuit is plotted againsetatapsed. Although the curve

of Figure 6.2(a) has a lower peak than that of Figure 6.2(lgyre 6.2(b) offers a better
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average, where the curve is below that of Figure 6.2(a) folagrty of the time. As

noted in [SABRO4], the reliability or mean time to failure TMIF) decreases exponen-
tially with temperature. Therefore, Figure 6.2(b) may es@nt a higher reliable case
than Figure 6.2(a). In such a scenario, attempting to mierthe peak temperature can
result in suboptimal thermal profiles. Nevertheless, adrigieak, seen in Figure 6.2(b),
is not desirable due to the constraints it places on the g&ckardware. Therefore, a
better approach may be to consider both the peak and thegavesmperatures in the

optimization objectives, and we do this in our floorplannmgthodology.

6.5 Floorplanning flow

Figure 6.3 shows the flow of the proposed temperature-awaceoanchitecture
floorplanning methodology. It can be observed that the flowrisextension of the
methodology depicted by Figure 4.1 in Chapter 4 to includepterature in the floor-
planning objectives. The approach accepts a microar¢hreeblock configuration, a
set of buses, benchmarks and a target frequency as inputgeaedates a floorplan of

the blocks that is both optimal in both CPI and temperature.

p-arch r
bﬁ; Simulation
enchmarks
Methodology
regression models (CPI, power)
y floorplan
requence | Floorplanningle__ " | Thermal Estimation
9 y ] Thermal metrics
latencies
y
T
b—>enchmarks Validation

Figure 6.3: Thermal-aware floorplanning: design flow.
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Unlike [SSH 05, EHB"04] and also in the throughput-aware floorplanning problem
addressed in Chapter 4, where the purpose of the simulasiémgharacterize the vari-
ations in the CPI in terms of changes in the bus latenciegtifextive of the simulation
strategy of Figure 6.3 is to model the variations in both tireaghput and the power
densities, and thus capture the CPI-power dependence.aftaions are encapsulated
in the form of regression functions, similar to those of J4wgith the bus latencies as
variables, both for CPI and power.

The floorplanner, based on a simulated annealing (SA) fraimlewses the regres-
sion models to optimize a cost function that is similar ta tfeSection 4.3.3. However,
besides the CPI, it also includes the thermal terms, botpé¢h& and average tempera-
tures, as described in section 6.4.

After every SA move, the floorplanner estimates the blockgradensities from the
regression models and passes them along with the corrasgdimbrplan to the thermal
simulator, which in turn returns the thermal metrics that part of the cost function.
The performance and thermal profile of the resultant layeut then be determined
from cycle-accurate simulations. In addition, the entiesign flow of Figure 6.3 may
be repeated for several microarchitectural block configoma to identify the optimal
configuration.

For the purpose of simulations, we use SimpleScalar thatigsnented with the
Wattch [BTMO0OQ] technique for power estimation. In additieve utilize the same two-
level resolution Il design of Table 4.3 that is used in Cleagt for the simulation strat-
egy . Furthermore, as both power and CPI depend on the sarokveetables, i.e., bus
latencies, a single design can be used to characterize éggibmses.

The thermally-aware floorplanning approaches of [S85 EHB04], although do
not model the dependence of power on bus latencies, propwsgaton strategies
to capture the throughput impact of bus latencies. The ndetdfo{SSH"05] con-
structs linear regression models using simulations byirngrgach latency indepen-

dently, whereas [EHBO04], which is an extension of the CPIl-aware floorplanningkvor

119



of [EMW™04] that is compared in Section 4.5.3, uses latency-inddgr@nmodels to
capture the CPI/IPC variations. While these may work well@®I since a reasonably
accurate relative ordering of variables is sufficient assshim Section 4.5.5 such one-
at-a-time approaches may not effectively track absolut@tians, required in the case
of power, as compared to the DOE approach [Czi99] used imtbik.

The reason for the requirement of “absoluteness” is thaptiweer and temperature
may not have a perfect correlation [SSB8], and power-criticality does not necessarily
imply temperature-criticality. This lack of fidelity coupled with the dependence of
leakage current on temperature, indicates that any ernpower estimation can result

in significant inaccuracies in the temperature computation

Reducing simulation times

To speed up the simulations, we utilize SMARTS, one of tharnees compared
in Chapter 4, which works well both for throughput and poweergy, particularly for
the SPEC benchmarks. In this way, we reuse the CPI regressidels obtained using
the SMARTS-R technique of Section 4.5.3.

Power/CPI regression models

As mentioned in Section 4.4, the SMARTS technique involastfbrwarding pro-
gram segments between successive samples chosen foedatailulation. However,
the transient modeling requires that the block power diessite collected periodically
for every timestep. For this, we extrapolate the power dallacted for each sample for
the succeeding fastforwarded portion. While we do not affproof, the concept of pe-

riodic sampling is inherently based on this assumption,taeck is empirical evidence

1Section 4.5.3 however shows that our proposed DOE basedagpoutperforms
the technique of [EMWO04]

2A well known case where the property of fidelity holds is Eledelay modeling: although
the estimated delays may be inaccurate, the metric actuteteks the variations in the delays.
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that it works well at least for average power/energy esiondWWWFHO03].

The total execution time obtained from a simulation is thegnsented into slots
of size equal to the transient analysis timestep. Theretbeedata collected from the
simulation can be arranged as an arFajndexed by the timestep and the block number,
i.e., the entryP(a,b) of the array corresponds to the power consumption of block
(one of the 17 blocks of Figure 4.2) during timestesince 32 simulations performed
(per benchmark), there are 32 such tables. For each éitryb) (per benchmark), a
regression model is constructed from the 32 values [MonB&3$ed on least-squares
approximation, where the variables are the bus latencigsation (4.6), essentially the
same equation listed in (4.6), shows one such a model, cmtetito estimate the power
dissipation at entry’(a, b), wheref;s represent the regression coefficients computed

from the 32 values obtained for the correspond efiry).

min(7) + max (i)

2.1 .
T = —1+< ) 1<i<22

22
P(a,b) = 50+Zﬁi'$i+ Z Bij - xi - xj +
i=1 (

ij)eT

Z Bijk * Ti - Tj - Tk (6.2)

(ijk)eT
A CPI regression model is similarly constructed for eachchemark from the statis-
tics gathered from the 32 simulations. In addition, altHouge construct separate re-
gression functions for CPIl and power, since the associaaedhles are the same, a
direct relation between the power and the CPI estimateseabtained by composition

of the regression functions.

6.5.1 Temperature estimation

We use HotSpot [SSHD3] in this work for thermal analysis. In this approach, the

nodes of the multi-layered thermal network described iige®.3 are the centers of
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the blocks of the microarchitecture. The tool also providdseamework for transient
modeling, and accepts a floorplan, the length of the timestaghthe block power dissi-
pations averaged over each timestep as inputs. The differequation (6.1) is solved
at each timestep to estimate the new set of temperaturdstfvatinitial conditions be-
ing those of the previous timestep). The leakage power coeoof the succeeding

timestep can then be updated using the new temperatures.

Choice of timestep

In general, the smaller the timestep, the higher is the acguwsf the transient anal-
ysis. Itis clearly impractical to perform the analysis foegy clock cycle of execution,
and the authors of HotSpot suggest a size of about 10000 clad&s at a frequency
of 3GHz, i.e., a timestep of aboB8t3us. Although this reduces the analysis time by a
significant factor, it still makes it prohibitive to incorpaie transient analysis into the
iterative scheme of the floorplanning step, where thousahfigorplans are evaluated.

To solve this issue, we choose an interval of one millionklnales, which amounts
to about a few hundreds of microseconds for gigahertz frecjas, and this can possibly
affect the accuracy of the computations. However, sincédbtes of the optimizations
involves relatively larger microarchitecture blocks fththe macro cells considered in
circuit level optimizations), the thermal RC constantdtémbe higher, typically in the
range of tens of milliseconds, and this indicates a minimss lof accuracy since each
time constant still involves a high number of timesteps. iRstanceuu, a medium
sized block of the microarchitecture of Figure 4.2, has &taonstant of about 120ms.
As noted in [SSH 03], the temperatures rise slowly, and it takes more than0DQ0
clock cycles to observe an increase of as small as 0.1°C itethperature. In addition,
we use a single iteration to solve the differential equatib(6.1) during each timestep

of the analysis.
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6.5.2 Floorplanning cost function

The floorplanner, PARQUET, uses the power and CPI regressantels built out of
the simulation methodology described in section 4.3.2 éncibst function.

The cost functionC' is a weighted sum of, besides the chip ardae@) and the
aspect ratio A R), the averagel(,,,), and the peakT(..;) transient temperatures, as

shown below:

C=W;-Area+Wy- AR+ W;3 - CPI+ Wy (Thng + Lpear) (6.3)

where thelV's represent the relative weights of the optimization terrisN; is
the number of timesteps in the transient analysis Bnd the maximum of the block
temperatures at timestepthe average and the peak temperatures are determined as

follows:

1
Tavg = Nt ZE andTpeak = mZaXE (’L = ]_727 e 7Nt)

6.6 EXxperimentation

6.6.1 Experimental set up

We use the same set of benchmarks that are utilized for waglthe throughput-
aware floorplanning strategy of Chapter 4, shown in Table 4 addition, just as
done in Chapter 4, only the chip core that also includes thedches is considered
during floorplanning, and the L2 cache is wrapped around ¢ine ffoorplan, just as is
done in [SSH05] and Alpha 21362 [Ban98]. We choose a frequency of 4GHbtor
experiments, and therefore, a timestep of 250

For each of the eight SPEC benchmarks of Table 4.4, 32 cyderate simulations

are performed, as prescribed by the resolution IIl desigrabfe 4.3. We also generate

123



a single floorplan for the processor that is, on averagen@tover all benchmarks.
For this purpose, the CPI and power regression coefficieata\geraged over the eight
benchmarks to generate a new set of regression models ¢hased in the optimization
process to generate a single floorplan.

We integrate HotSpot with Wattch to enable thermal analgisisng simulations.
Although we use SMARTS to speed up the simulation strateggctbn 6.5, detailed
cycle-accurate simulations, without fastforwarding amggram portions, for the en-
tire execution times of the benchmarks are performed fadatihg the floorplanning
solutions. In addition, we use a relatively smaller timestep of 100Qftklcycles, as
compared to that of 1000000 cycles used during optimizafientransient analysis,
i.e., the power data are averaged over every 10000 clocksweld are provided to the
HotSpot solver to determine the set of temperatures.

We compare our proposed thermal floorplanning techniguetwib other approaches.
The long run times of the simulations is the main obstaclelitmits the number of com-

parisons that can be made. The floorplanners compared & thislow:

» cpiFP: IPC/CPI only floorplanning, the cost function of the floomténg does

not consider any thermal issues.

* therFP: Our proposed temperature-aware floorplanning, where tsieicdudes
CPI and both the average and peak transient temperatuoes) aith the core

area and aspect ratio.

» skadFP: A temperature-aware floorplanning approach based on {8SH the
block power densities are assumed to be independent of théatencies. In
addition, the cost includes only the peak transient tentperaalong with the

CPI, area and aspect ratio

3We choose to include the peak transient temperature in quieimentation of [SSHO5] for
convenience. Moreover, although the original impleménmtaattempts to minimize the steady-
state temperature, the authors use peak transient temgesst a metric of their validation pro-
cess.
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For therFP andskadFP, we choose a weight of 0.4 for both CPI and temperature,
and 0.1 for area and aspect ratio, izey,,= wy = 0.1, w3 = ws = 0.4 in (6.3). For the
CPI-only floorplannecpiFP, we havew; = wy, = 0.1, w3 = 0.8, wy, = 0. The idea is
to provide a greater emphasis on the primary issues, ther@@Rha temperature, while

still attempting to limit the total area.

6.6.2 Impact of initial temperature

A key issue in transient modeling is the setting of the ihiteanperature, which
serves as the reference point of the analysis. It is postiatethe transients of a chip
converge to a steady-state irrespective of the initial amtbconditions. However, the
steady-state is likely to occur after a significantly lorgnsient phase, particularly for
microprocessors which have large time constants, and tlueenaf this phase can be
affected by the initial temperature. The impact is furthggravated by the mutual
dependence between the leakage power and the temperdttine: processor begins
execution at a high temperature, high leakage will be sedmchavmay drive up the
transients.

However, since floorplanning focuses on optimizing the heatsfer mechanisms
of the chip through appropriately spreading the “hot spatgdss the chip, it is likely
that the optimization is not significantly impacted by theick of initial setting. While
it may still be a good idea to optimize over a range of posditlkgal temperatures,
it requires multiple transient analysis evaluations, amredlach temperature, for each
choice considered and this blows up the simulated annealimtgne.

In this work, we perform the floorplanning optimization atiagde initial tempera-
ture of 40°C. We assume this choice reflects the commonlyreeéd@ambient conditions.

Although only one initial temperature is utilized in our flptanning strategy, we
analyze the impact of variations in the initial conditions the temperature profiles

of the floorplans obtained using the three optimization apphes. Specifically, we

125



Case | Core WS (%) | Core AR

CpiFP 5.33 1.15
skadFP 7.60 1.02
therFP 6.21 1.03

Table 6.1: Comparison of white space (WS) and aspect rafit) (r the three floor-

planners.

capture the transients of the three floorplans for a numbeit@f temperatures, ranging
from 40°, the setting used in the floorplanning step, to a heghperature of 120°.
To this purpose, for each floorplan, we collect the block dyicapower dissipations
averaged every timestep (10000 cycles) for all of the bereckgh Using these traces,
transient analysis is performed at a number of initial terapges, and we compare the

temperature metrics obtained at each of the temperatures.

6.6.3 Results
The cores of the floorplans obtained with the three appraactaenely, cpiFP, therFP,

and skadFP, are shown in Figure 6.4. The L2 ca¢henot shown in the figures, is
wrapped around the cores to complete the floorplans. Theewspdces (WS) and the
aspect ratios (AR) of the floorplans obtained using the tapgeoaches, shown in Table
6.1, imply that all of the three result only in a small increas the area. For instance,
a core WS of about 6% itherFP indicates an overall increase of 1.5% in the chip
area (equivalent to 2.03¢n Besides, botlskadFP andtherFP produce floorplans of
almost perfect AR.

Figures 6.5, 6.6 and 6.7 plot the instantaneous tempesatintained for the three
floorplanning scenariakerFP, skadFPandcpiFP, respectively, at four different initial
temperatures, 40, 60, 80 and 120°C.

“We remind that the dynamic power can vary across floorpléniseibus latencies
differ.
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three approaches.
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therFP, at four different initial conditions.
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It is apparent from the graphs that the transient curves temeach a steady-state
like pattern, i.e., the gaps between the curves reduce owet particularly towards
the end of the execution, and this is true for all of the beramfs Besides, in most
instances, the peak occurs quite early into the executiwhjrecreases with the initial
temperature. However, even with the increased leakageatdgegh temperatures, the
power dissipations are not enough to sustain the high teatyres after these early mo-
ments, and the temperatures gradually drop before evénhtimiverging. The steady-
state like patterns, however, occur after more than a fewrsks; and such long times
indicate that the differences in the average temperataressinitial temperatures can
be significant. Overall, the graphs show that steady-seatgérature is not an ideal
metric for measuring thermal performance, since it is gpdssible that two instances
that have different peaks (and averages) reach the sanuy stede.

It can also be observed that some benchmarks such as gccip@dekhibit uneven
activity levels with several low and high temperature pkasewhich case, the average
and peak of the temperatures may not have a perfect coomlate., a curve with a
higher peak than another can have a lower average. On thelahd, benchmarks
such as art maintain steady-states or monotonically deicig@éemperatures for a major
part of the execution time.

Figure 6.8 plots the peaks of the transient curves of Figbu®s6.6 and 6.7 for the
four initial temperatures. The graphs show that, for alldbenarks, our proposed floor-
plannertherFP obtains good reductions in the peak temperatures thandpa@® and
skadFP, particularly for those that exhibit high temperatureshsas gcc. For instance,
for the benchmark gcc, at 40°C, the floorplan generateithésFP reduces the peak by
about 14°C as compared tpiFP, while it is about 5°C forskadFP, and at the initial
temperature of 80°C, the reductions are about 16°C and eé¥pectively.

Moreover,therFP outperformsskadFP despite not explicitly attempting to mini-
mize the peak temperature as is donskadFP. This is true for all of the initial temper-

atures, even though the floorplanning is performed at aspagjht, i.e., 40°C, indicating
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Peak temperature comparison (Init = 40°C)
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Figure 6.8: Comparison of the peak temperatures for the tthoerplanning scenarios

at different initial temperatures.
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that the initial state has not significantly affected tharaation. A possible reason for
this is that the shape of the profile does not change much aditisrent initial set-
tings, as can be seen in Figures 6.5, 6.6 and 6.7; if a tecarkigeps the temperatures
low at some initial temperature, it is likely that the treisdmaintained for other initial
temperatures as well.

Figure 6.9 compares the average transient temperaturgsettusing the three ap-
proaches at the four initial temperatures of 40, 60, 80 af®d@2The plots indicate that
therFP outperforms botlepiFP andskadFP by significant amounts for all benchmarks.
Reductions of about 9°C and 6°C are obtained opéfP andskadFP, respectively, for
gcc, at 40°C. Similar trends are observed for the most panthadr initial temperatures.

In addition, since the floorplans are optimized for the agereases and not specif-
ically for each benchmark, the optimization potential faclke benchmark may not be
fully exploited. Furthermore, benchmarks that have low @oprofiles such as art and
vpr do not offer much scope for optimization, the resultanpiovements tend to be
small, and in factskadFP worsens the thermal profiles obtained for art and vpr, where
both the average and the peak temperatures are higher trsndfcpiFP, as shown in
Figures 6.8 and 6.9.

Table 6.2 lists the critical block, i.e., the block for whittte peak temperature oc-
curs, for a number of scenarios, for each benchmark. It cae®ethat the integer adder
blocks,iaddl, iadd2 andiadd3 are critical for a majority of the cases. In general, as was
also observed in Section 4.5.3, integer adders see a lotivitadue to the associated
instruction mix and tend to be active for a significant petaga of the total execution
time. In addition, blocks that implement random logic sushadders typically have
high power densities, since the percentage switchingistmms during active state is
much higher than arrayed structures such as caches.

However, for some benchmarks such as art, which is a flogtomgt benchmark, it
turns out that the register file=g is the critical block. It can also be observed that the

criticality shifts to the register file or the register upelahitruwu at high temperatures,
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Figure 6.9: Comparison of the average temperature metrithéothree floorplanning

scenarios at different initial temperatures.

134



Init. T | Case | gzip | vpr gcc | mesa| art | equake| parser | bzip2

CpiFP || tadd2 | iadd2 | iadd2 | iadd2 | reg tadd2 | iadd2 | iadd2
40°C | therFP| iaddl | iaddl | iaddl | iaddl | iaddl | iaddl | iaddl | iaddl

skadFP| ruu reg |iadd3 | ruu | reg | iadd3 ruu | iadd3

CpIFP || tadd2 | iadd2 | iadd2 | iadd2 | reg tadd2 | iadd2 | iadd2
60°C | therFP | iaddl | iaddl | iaddl | iaddl | reg taddl | iaddl | iaddl

skadFP| ruu reg |iadd3 | ruu | reg | iadd3 reg | iadd3

CpIFP || tadd2 | iadd2 | iadd2 | iadd2 | reg tadd2 | iadd2 | iadd2
80°C | therFP | iaddl | iaddl | iaddl | iaddl | reg taddl | iaddl | taddl

skadFP| reg reg | iadd3 | reg reg reg reg | iadd3

CpiFP || tadd2 | reg | iadd2 | iadd2 | reg tadd2 | iadd2 | iadd2
120°C | therFP || taddl | iaddl | iaddl | ruu reg taddl | iaddl | taddl

skadFP| reg reg | iadd3 | reg reg reg reg reg

Table 6.2: The critical block with the peak temperature fog eight benchmarks at
different initial settingslfit. T in the table).

such as 120°C. The reason for this is that the units andreg are arrayed structures
and dissipate more leakage than execution units such assadidsuch a scenario, due
to the exponential dependence of leakage on temperaterksakage becomes so high
in ruu andreg that they become hotter than adders.

Finally, Figure 6.10 depicts the performance degradatien,increase in the CPlIs,
obtained intherFP andskadFP due to the inclusion of thermal issues in the cost func-
tion, besides performance. On an average, lioehFP and skadFP result in almost
identical CPIs, about 6% more thapiFP, where no thermal metrics are considered in

the cost.
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Figure 6.10: Comparison of the CPI metric for the three fltarping scenarios.
6.7 Conclusion

Thermal issues have become an important concern in miarepsors designed in
nanometer technology nodes. This chapter presented agstrédr thermally-aware
floorplanning for microprocessors, where the optimizatdectives also include the
throughput (IPC) issues. The approach also models the t@ipinteraction, and uses
a complete transient analysis that captures a thermalguodfd chip in a better way than
the steady-state approach, during the floorplanning opétion. The results indicate
good improvements both in the average and peak temperatines compared to an

approach derived from a previous work.
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Chapter 7

Conclusion

7.1 Summary

This thesis has focused on two important issues of interectipipelining and oper-
ating temperature that are associated with the high gitfiequencies utilized in high-
performance integrated circuits, particularly micromssors, designed in the nanome-
ter technologies. Firstyire-pipelining when applied on a circuit to realize multicycle
communication, can change the path latencies in a nonumifiaxy and result in a func-
tionally different version of the circuit. An even more intggmt concern is the potential
reduction in the throughput due to the additional latensi@®duced into the circuit.
Next, the high frequencies, combined with high integratiensities, have resulted in
high chip temperatures and this poses a significant chalemthe circuit design com-
munity, due to the nonlinearly increasing cooling costs.

The problems that we have addressed can be categorized ttid-and microarchitecture-

level issues and our contributions for the problems can benvsarized as follows:

* At the circuit-level, we have proposed a solution to caritbee functionality of
a wire-pipelined circuit. The solution finds the minimal walof the throughput
slowdown and also includes a minimum area formulation tamice the increase
in the number of additional flip-flops that are required toreerted in arriving at
a solution. The technique is applied on the ISCAS and the l@i@bmark circuits
and the results indicate that wire-pipelining improvesqa@anance for most of the

circuits.

* At the microarchitecture-level, we have focused on therattions between ar-

chitecture design and physical design. Specifically, pfajsiesign plays a piv-
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otal role in determining the throughput, measured as theageenumber of in-
structions executed per cycle (IPC), and the thermal profike microprocessor,
through its influence on deciding the latencies of the busdslae heat transfer
mechanisms of the processor, respectively. Furthermuees is also dependence
between the throughput and temperature, as the power cgtsutevels of the

chip vary with program execution times.

We have presented floorplanning methodologies to optinhieéttroughput and
the thermal attributes of a microprocessor. The vital idgmet of the method-
ologies is a design of experiments based approach to limibhthmber of cycle-
accurate simulations required to characterize the thnouighnd the dynamic
power patterns of the architecture. The regression modslsftom the simula-
tions drive the floorplanner that optimizes for the througfgnd the temperature
objectives. In addition, our approach uses transient arsabnd minimizes the
peak and average of the transients as opposed to the stedelyesnperature, and
also analyze the impact of variations in the initial tempem@ on the floorplan-
ning optimization. We apply the methodologies on the DLXh#tecture and a
Pentium architecture, in which case only the throughpuecbje is considered,
and the results indicate good improvements in the througapd reductions in

temperatures when compared to existing approaches.

Additionally, we compare a few simulation speed up techegjumamely, sam-
pling and reduced input sets in the context of throughpwraviloorplanning for
the DLX architecture. Our results suggest that, althoughtéichniques exhibit
variations in the regression models, the differences dampéact the floorplan-

ning optimization.
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7.2 Future directions

The regime of wire-pipelining offers exciting opportuesiand challenges for fur-
ther research. Future extensions of the topics addresd@dithesis may include the

following:

 Buffer explosion: It is important to consider the number of repeaters inserted
on the wires in the wire-pipelining regime during optimipats. As shown in
[SMCKO04], the number of buffers and flip-flops required toiopte the wires of

a circuit increases exponentially as the technology adesanc

» Local interconnect: As the circuit complexity and clock frequencies increase,
at some point, the individual blocks become big enough, heddcal wire de-
lays can exceed a clock cycle. In such a scenario, it may be twiseduce the

granularity by splitting each block into sub-blocks.

» Applications of DOE: The idea of statistical design of experiments (DOE), which
is utilized in this thesis, is particularly useful for domaisuch as microarchi-
tecture research, where even though there are a small nwhlf&ctors, each
simulation runs for a long time. Several other problems taat use DOE for
optimization can be thought of. One such application is & dlomain of chip
multiprocessing (CMP). Multicore machines tend to havgdatie sizes and com-
municate through long multicycle buses. The theory of DO used to build
performance models for these multicycle buses, and incatpthem in the floor-
planning step. In addition, there is also scope for noverfiamning schemes for
multicore machines, such as hierarchical placementjnter- and intra- proces-

sor placement, and 3D arrangement of devices.
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