
Overcoming Physical Design Challenges in Nanometer-Scale
Integrated Circuits

A DISSERTATION
SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA
BY

Yaoguang Wei

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

Doctor of Philosophy

Sachin S. Sapatnekar

February, 2013

c© Yaoguang Wei 2013
ALL RIGHTS RESERVED

Acknowledgements

First of all, I would like to express my sincere and deep gratitude to my advisor, Professor Sachin

S. Sapatnekar, for his consistent guidance and support in my PhD studies. His strictness in doing

research and attitude of cherishing the time to work hard have affected me significantly. He has

taught me how to think logically, how to use my mind wisely, and how to plan realistically. I

will treasure all these for my whole lifetime.

I am also grateful to Professors Kia Bazargan, Chris H. Kim, and Antonia Zhai, for serving

on my PhD degree committee, reviewing my thesis and providing valuable feedback.

In the research process, I have had cooperations with the following people and owe many

thanks to all of them: Charles J. Alpert, Andrew D. Huber, Jiang Hu, Shiyan Hu, Douglas Keller,

Zhuo Li, Frank Liu, Lakshmi Reddy, Cliff Sze, Gustavo E. Tellez, and Natarajan Viswanathan.

They have helped me in many ways, including polishing the writing of my papers, providing

constructive suggestions, and/or helping to integrate some algorithms proposed in this thesis to

the IBM design flow.

Furthermore, I want to thank many other people who helped me in various ways, such as

conducting useful research-related discussions and providing helpful suggestions for coding:

Kanak B. Agarwal, Glenn R. Bee, Laleh Behjat, Baktash Boghrati, Jianxin Fang, Song Guo,

Saket Gupta, Wen-hao Liu, Dirk Müller, Gi-Joon Nam, Sani Nassif, Weikang Qian, Gregory M.

Schaeffer, Meng Wang, Pingqiang Zhou, Ying Zhou, and many others.

A great amount of thanks are also due to Semiconductor Research Corporation for funding

my research, as well as to the IBM Austin Research Laboratory (ARL) for providing me the

opportunity to work as an intern. In particular, the Design Productivity Group led by Charles J.

Alpert in ARL has provided great support for the research projects that I have worked on, and

these projects have contributed to my thesis significantly.

i

Finally, my warm thanks go to my family. They have encouraged and supported me in

overcoming the difficulties in my journey to obtain the PhD degree. I would like to especially

thank my wife Na, who has accompanied me and greatly helped me in many aspects throughout

these years.

ii

Dedication

To my parents, my wife, and my daughter.

iii

Abstract

Through aggressive technology scaling over the past five decades, integrated circuit design

has entered the nanometer-scale era. While scaling enables the design of more powerful chips,

circuit designers must face numerous challenges that accompany these miniscule feature sizes.

Many of these issues are expressed in the step of physical design, an important back-end stage

in the integrated circuit design flow. First, the routability of a design becomes an increasingly

important and difficult problem, and must be addressed across the entire physical synthesis

tool stack. This in turn requires effective routability evaluation methods to be used in the early

stages for congestion mitigation. Second, wire delays do not scale down well with process

technology, and have exceeded the gate delay in importance, becoming the dominating factor

that determines the circuit delay. Wire delays can be reduced by inserting large numbers of

buffers, but these can significantly increase the chip area, cost, and power, so that improved

methods that control these costs are essential. Third, with shrinking feature sizes, the impact of

process variations has become more serious than before. Several important process variation

effects show strong dependencies on the underlying patterns on the die, and these challenges can

be addressed effectively through appropriate physical design. This thesis presents solutions to

these challenges.

To achieve effective routability evaluation, we first analyze the problems associated with

mainstream global-routing-based congestion analysis tools. Two major deficiencies of existing

approaches are: (i) they do not adequately model local routing resources, which can cause

incorrect routability predictions that are only detected late, during detailed routing, (ii) the metrics

used to represent congestion may yield numbers that do not provide sufficient intuition to the

designer; moreover, they may often fail to predict the routability accurately. We propose solutions

for both problems. First, we develop an efficient, accurate and scalable local routing resource

model. Experiments demonstrate that our model improves the accuracy of a congestion analyzer

and enables designers to use a coarser grid to speed up congestion analysis and achieve similar

accuracy as the baseline case. Second, we develop a new metric that represents the congestion

map for the chip with high fidelity. Experiments show that compared with conventional metrics,

the new metric can predict the routability more accurately and can drive a placer to obtain a

design that has better routability characteristics.

iv

To reduce the buffer usage, we make full use of the timing benefits brought by the thick

metal layers. In advanced technologies, a larger number of metal layers with thick cross-sections

are available for routing. These metal layers have much smaller wire delays than thinner layers,

and assigning nets to these layers can improve timing and save buffer usage. However, existing

algorithms have various limitations in using thick metal layers. In this work, we propose a

novel algorithm to address the issue. Our algorithm tries to assign as many nets as possible

to thick metal layers to maximize the timing benefits while simultaneously using heuristics to

control the congestion at a manageable level. We also present a new physical synthesis flow

that adds our algorithm as a new component at an early stage of an existing industrial design

flow. Experimental results demonstrate the effectiveness of our algorithm and flow on a set of

industrial designs.

To overcome the challenges from process variations, this thesis presents physical design

solutions to two important types of variations induced in the processes of oxide chemical

mechanical polishing (CMP) and rapid thermal annealing (RTA). First, since the oxide CMP

variation highly depends on the metal pattern density, a common practice to reduce CMP

variation is to insert dummy fills. However, dummy fills have side effects on design performance

or complexity and should be minimized. Therefore, we propose a novel global routing algorithm

directly aiming to minimize the amount of dummy fills necessary to satisfy the requirements for

CMP. Since it is not computationally efficient to directly minimize the amount of dummy fills in

the routing process, we develop a surrogate optimization objective through theoretical analyses

and experiments. Then effective cost functions are elaborated and applied in the routing process

to optimize the surrogate metric. Our strategy and algorithm is validated by the experiments

on a standard set of benchmark circuits. Second, since RTA variation strongly depends on the

density of the STI regions, to minimize RTA variation, this thesis proposes a two-step approach

to maximize the uniformity of the STI density throughout the layout. We introduce a concept

of effective STI density and propose an efficient incremental method to compute it for the

whole circuit. Furthermore, we enhance a conventional floorplanner to handle the new objective

of minimizing the variations in effective STI density, using a two-stage simulated annealing

heuristic. As the second step of our efforts, we insert dummy polysilicon fills to further minimize

the variation in effective STI density. Experimental results demonstrate that our methods can

significantly reduce the RTA variations.

v

Contents

Acknowledgements i

Dedication iii

Abstract iv

Contents vi

List of Tables x

List of Figures xii

1 Introduction 1
1.1 Achieving effective routability evaluation . 2

1.2 Reducing buffer usage . 3

1.3 Process variation optimization . 5

1.3.1 Optimizing dummy fill for CMP-induced variations 5

1.3.2 Minimizing RTA-induced variations 7

2 Techniques for Scalable and Effective Routability Evaluation 9
2.1 Introduction . 9

2.1.1 Congestion analysis techniques . 9

2.1.2 Metrics to score or represent congestion 12

2.2 Preliminaries . 13

2.3 Local congestion modeling . 14

2.3.1 Limitations of existing global-routing-based methods 14

vi

2.3.2 Review of previous works for local congestion modeling 16

2.3.3 Method 1: Estimation of local resources based on Steiner tree wirelength 18

2.3.4 Method 2: Estimation of local resources based on pin density 21

2.3.5 Method 3: An enhanced method with better scalability 21

2.3.5.1 Limitations in Method 1 and Method 2 21

2.3.5.2 The enhanced method to model local resources: Method 3 . . 23

2.4 Filtering out the noise in routability evaluation 26

2.5 Metrics for design congestion . 29

2.5.1 Limitations of current metrics . 29

2.5.2 New metric (ACE metric) for design congestion 30

2.6 Validation and analysis . 31

2.6.1 Impact of local resource modeling on routability evaluation 31

2.6.1.1 Improving congestion analysis accuracy 32

2.6.1.2 Scalability of the proposed methods on increasing g-cell size 34

2.6.1.3 Runtime and acceleration by using a larger g-cell 35

2.6.1.4 Better prediction of detailed routing issues 37

2.6.2 Impact of the smoothing technique on routability evaluation 38

2.6.3 Impact of ACE metric on routability evaluation 39

2.6.3.1 Comparison of routability metrics 39

2.6.3.2 Further comparison between overflow metrics and ACE metrics 42

2.6.3.3 Guiding routability optimization 43

2.7 Conclusion . 45

3 CATALYST: Planning Layer Directives for Effective Design Closure 47
3.1 Introduction . 47

3.2 Preliminaries . 50

3.2.1 Layer directives and notations . 50

3.2.2 Global routing with layer directives 52

3.2.3 Timing metrics and model . 53

3.2.4 Layer directive assignment . 54

3.3 Overview of CATALYST . 54

3.4 Timing-driven directive assignment . 55

vii

3.5 Congestion- and timing-aware directive assignment 56

3.5.1 Overall algorithm for Subproblem 2 57

3.5.2 General layer assignment . 60

3.5.3 Directive assignment adjustment (DAA) 61

3.6 Experimental results . 62

3.6.1 The immediate impact of CATALYST 64

3.6.2 The impact of CATALYST in the flow 65

3.7 Conclusion . 66

4 Dummy Fill Optimization for Enhanced Manufacturability 68
4.1 Introduction . 68

4.2 Preliminaries . 71

4.3 Previous work . 73

4.4 The flow of the CMP-aware routing algorithm 74

4.5 Cost function . 76

4.5.1 Finding a surrogate for the dummy fill cost 76

4.5.2 Dummy fill cost function . 81

4.5.3 Cost function in different stages . 85

4.5.4 Why optimizing ρL is not important 86

4.6 Experimental results . 87

4.7 Conclusion . 93

5 Physical Design Techniques for Optimizing RTA-induced Variations 94
5.1 Introduction . 94

5.2 Background . 97

5.2.1 Rapid thermal annealing . 97

5.2.2 Dummy polysilicon filling for RTA 99

5.3 The effective STI density . 100

5.3.1 A formulation for the effective STI density 100

5.3.2 Efficient computation techniques . 102

5.3.3 Finding the discretized local STI density 103

5.4 RTA-driven floorplanning . 105

5.4.1 Cost function . 105

viii

5.4.2 Heuristics . 106

5.5 Inserting dummy polysilicon fills . 107

5.6 Experimental results . 109

5.6.1 RTA-aware floorplanning . 109

5.6.2 Dummy polysilicon filling . 112

5.7 Conclusion . 114

6 Conclusion 115

References 117

ix

List of Tables

2.1 Comparison of accuracy in routability evaluation with and without local resource

modeling, with g-cell size 20 tracks. 33

2.2 Comparison of accuracy in routability evaluation using different methods of

local resource modeling and pre-tuned parameters from Table 2.1, with g-cell

size 80 tracks. 33

2.3 Runtime comparison for congestion analyzers with different g-cell sizes. 36

2.4 Smoothing reduces noise hot spots and improves the accuracy of routability

evaluation by a congestion analyzer. 39

2.5 Congestion metrics for two routing solutions on design ckt_s. 40

2.6 Routing metrics for two placements A and B on design ckt_y. 42

3.1 Information for benchmark circuits. The column “Thick layers” lists the distri-

bution of thick layers. 62

3.2 Comparison among baseline, CATALYST (CATA in short) and simpLDA. Tim-

ing metrics are computed with the linear delay model. rnet is the percentage of

nets promoted to thick layers, and rwl is the percentage of the routed wirelength

of these nets to the total wirelength. 63

3.3 Comparison among baseline, CATALYST (CATA in short) and NoDA physical

synthesis flows. 63

4.1 The cardinality of set Q1 for ISPD07 circuits 80

4.2 Benchmark information . 88

4.3 Comparison of routing results among NoCMP, YaCMP and MaxEPD. 89

4.4 Comparison of dummy fill results among NoCMP, YaCMP and MaxEPD. The

data in column 2 and 3 are normalized with the basis case (1.0) corresponding to

NoCMP. 91

x

4.5 Comparison of IPD gradient G among NoCMP, YaCMP and MaxEPD 91

5.1 Calculated reflectivity coefficients of different regions during RTA [1]. 98

5.2 Benchmark characteristics: here, S is area scaling factor, and AS is area of

blocks, after scaling, in mm2. 109

5.3 Comparison of Parquet and pRTA. 111

5.4 Dummy filling results for the floorplans obtained by Parquet and pRTA. The

column “Ratio” denotes the ratio of the total area of the dummy fills to the total

STI area in the layout. 113

xi

List of Figures

1.1 An example of possible metal layer stacks in an IBM technology [2]. 4

1.2 A typical CMP tool [3]. 6

1.3 Illustrations for a RTA process. 8

2.1 Without considering local resources, global-routing-based congestion analyzers

cannot predict the locations of opens/shorts well. 11

2.2 Congestion maps from an industrial routing tool in two modes. 12

2.3 Global routing graph (GRG). 14

2.4 Local nets ignored by traditional global routers. 15

2.5 Pin access consumes considerable local routing resources. In the legends, “V12”

denotes the vias from M1 to M2, and “V23” the vias from M2 to M3. 16

2.6 Maximal wire density model [4] does not work well for local congestion model-

ing in global routing. 17

2.7 Local routing resource estimation for two-pin nets. 19

2.8 Local routing resources consumed by two nets. 20

2.9 Artificially connecting pins to g-cell centers overestimates the routing resources

used by two-pin net (D,F). 22

2.10 When g-cell size doubles, blocked tracks double while the number of pins

becomes four times. 23

2.11 The pin-access resources in a g-cell on horizontal layer will be redistributed to

the left and right edges based on pin distribution. 25

2.12 The proposed smooth technique reduces the noise hot spots in the congestion map. 27

2.13 An example showing a net N traversing g-cells that are 90% blocked due to a

routing blockage. This leads to artificially high reported congestion for g-edge e. 30

2.14 Congestion maps for ckt_fb with five analyzers using a g-cell size of 20 tracks. 35

xii

2.15 Congestion maps for ckt_fb with five analyzers using a g-cell size of 80 tracks. 35

2.16 Open/short maps and congestion plots for ckt_fb. The GLARE-based congestion

Analyzer A3 could predict the problematic regions in detailed routing with higher

fidelity. 38

2.17 Congestion maps on design ckt_x. 39

2.18 Congestion plots for two routing solutions on design ckt_s. 40

2.19 Distribution of congestion for two routing solutions of ckt_s. 41

2.20 Congestion maps from running the same congestion analyzer on two different

placements on design ckt_y. 42

2.21 The new metrics provide a more accurate view of the congestion, enabling

CRISP to be more effective. 44

2.22 Post-CRISP congestion plots when using different metrics to check the stopping

criterion. 45

3.1 Assigning the same net to thicker layers improves timing and buffering. 48

3.2 Current and proposed physical synthesis flows. 49

3.3 A pictorial view of an IBM 65 nm technology. 51

3.4 Basic flow of congestion- and timing-aware directive assignment. 58

3.5 Congestion plots for cu45top1 (the color map used is the same as that in Fig. 2.1(a)). 65

4.1 IPD and EPD topographies for Layout I and II. Layout I has smaller IPD gradi-

ents, but larger EPD variation. 70

4.2 Depiction of the primary variables in the oxide CMP model [5]. 72

4.3 Routing through path P may increase the EPD of tile tk significantly. 83

4.4 Linear fitting results for cΓ vs. D. 92

5.1 The variation in the polysilicon sheet resistance Rs correlates well with the

exposed STI density averaged over 4 mm [1]. 95

5.2 Cross-section of a partial wafer, with dummy polysilicon fills inserted before ion

implantation and RTA. The dark grey regions are SiO2 and the dark regions are

polysilicon gates. 99

5.3 An example of incrementally computing e(i, j) according to e(i, j − 1). 102

5.4 Topographies of Rs in the layouts obtained by Parquet and pRTA for circuit

n300: (a) without RTA optimization (Parquet), and (b) with RTA optimization

(pRTA). 112

xiii

5.5 Topographies ofRs in the layouts obtained by Parquet and pRTA for circuit n300

after dummy polysilicon filling: (a) without RTA optimization (Parquet), and

(b) with RTA optimization (pRTA). Our dummy filling algorithm can produce

even profiles for both layouts, but as shown in Table 5.4, the overhead of (a) is

significantly larger than that of (b). 114

xiv

Chapter 1

Introduction

Since the integrated circuit (IC) was invented around 1958 [6], IC chips have roughly obeyed

Moore’s law and have maintained a trend of becoming cheaper, denser, and more complex and

powerful. Technology scaling, which has shrunk the dimensions of transistors by half every two

years or so, has improved the performance of the very large-scale integrated (VLSI) circuits

by five orders of magnitude in the past four decades [7]. However, increased circuit sizes and

nanoscale effects have caused circuit design to becoming more complex and difficult with time.

To counteract these effects, computer-aided design (CAD) tools are playing an increasingly

important role in circuit design. CAD tools can significantly improve the productivity of circuit

designers by helping to automate the design process and also decrease the cost of IC chips.

CAD tools typically work along a design flow, where the circuit design tasks are performed in a

succession of stages, with various CAD tools supporting each stage (readers are referred to [8]

for a detailed discussion).

Physical design is an important back-end stage in the circuit design flow, and determines

the physical locations of gates and the physical paths for interconnections on a die. Decisions

made at this stage can significantly affect circuit performance. An inferior physical design

solution could cause a circuit to have timing violations, have incorrect functionality (due to

incomplete electrical connections), or fail to satisfy the specifications after manufacturing. As

technology advances, a series of new challenges is emerging in the area of physical design.

Firstly, with shrinking feature sizes, the number of gates in a circuit increases exponentially with

technology generations. The typical VLSI circuit today may contain many millions of gates, and

such large sizes challenge the scalability of physical design tools. A related issue is that while

1

2

the die size is kept similar or even increased, the routing resources are becoming scarcer, and

routability has become a key issue in modern physical design. Secondly, in the nanometer era,

interconnect delays can exceed the gate delay and become the dominating factor that determines

circuit delay. This dramatically changes the entire physical design flow to weigh more heavily on

interconnection optimization than before [9]. Though this effect can be mitigated through buffer

insertion, an effective way to reduce wire delay, inserting large numbers of buffers also increases

the chip area, cost, and power. Thirdly, the reductions in transistor sizes make circuits more

sensitive to variations from the manufacturing process than before. Many such variations are

affected by physical design solutions, and can be mitigated by being considered in the physical

design flow. To help overcome these challenges, this thesis addresses several issues in this

domain and proposes physical design techniques for effective routability evaluation, buffer usage

reduction, and process variation optimization. In the remainder of this chapter, we will discuss

these issues in more detail and highlight the contributions of this thesis.

1.1 Achieving effective routability evaluation

The problem of achieving routability is becoming increasingly important with the explosion in

design rules and design for manufacturability requirements that multiply with each technology

node. An unroutable design is not useful even it closes all other design metrics, and fast design

closure can only be achieved by addressing the routability of a design at all stages in the design

cycle. However, traditional approaches have considered such issues only late in the physical

design flow, and there is a strong need for building effective routability evaluation methods,

which drive routability optimization, in early stages of physical design. Routability evaluation

has two key components: (a) the method used to analyze the congestion of a given placement,

and (b) the metric(s) used to score or represent the congestion. In recent years, with the advent

of fast, high-quality academic global routers [10–14], global-routing-based methods [15–17]

have become the mainstream technique for routability evaluation due to their efficiency and

reasonable accuracy. However, there are two major drawbacks in these methods:

• These approaches ignore the local routing resources used in detailed routing step due to

the higher abstraction level in global routing, and tend to underestimate the real congestion

seen in detailed routing.

3

• The metrics used to represent congestion may yield numbers that do not provide suffi-

cient intuition to the designer; furthermore, they may often fail to predict the routability

accurately.

These factors significantly affect the effectiveness of the routability evaluation and must be

addressed.

The first contribution of this thesis, described in Chapter 2, presents solutions to both issues.

First, we propose three new approaches to model local routing resources. Second, we develop

a new metric that represents the congestion map of a design with higher fidelity than past

approaches. The impacts of our proposed techniques are demonstrated on several industrial

circuits:

1. With our proposed local routing resource modeling, a congestion analyzer can significantly

improve the accuracy in routability evaluation, compared with an analyzer without local

resource modeling.

2. Our proposed methods also have good scalability, which enables the use of a coarser grid

in congestion analysis so that the runtime of congestion analysis can be improved by 66%

on average, compared with the case with a smaller grid size.

3. We demonstrate that our method can greatly improve the correlation between congestion

analysis and detail routing, compared with a method without local resource modeling.

4. Our proposed metric can predict the routability correctly on a design while the previously

proposed metric cannot.

5. When incorporated within a congestion mitigation tool, our new metric can perform much

better than other conventional metrics to improve the design routability.

Furthermore, the proposed techniques have been used in an industrial physical synthesis (another

name for modern physical design [9]) flow, which shows their practicality.

1.2 Reducing buffer usage

As process technologies shrink to finer geometries, the metal resistance on low metal layers

worsens. The resulting increase in the interconnect delay makes design closure much more

4

difficult. This can be mitigated partially through buffer insertion, but may result in a massive

increase in buffer resources and power. To counteract this trend, more and more higher metal

layers, with thicker cross-sections and lower resistances, have been introduced. Fig. 1.1 shows

an example for the evolution of the metal layer stacks in an IBM technology [2]. We can see

that both the number of metal layers and the thickness of upper layers tend to increase with each

technology.

Figure 1.1: An example of possible metal layer stacks in an IBM technology [2].

As stated above, thicker metal layers have smaller unit-length wire delay than thinner layers.

For example, on the 2× [4×] layer, signals can roughly go 1.7× [2.5×] faster, with 2× [4.4×]

reduction in buffer resources. Assigning nets to thick layers can potentially improve timing and

reduce buffer count. This reduction in wire delay in thicker layers provides another dimension

to timing optimization, beyond gate/wire sizing and buffering [18]: now interconnect nets may

vie for these low-resistance wires to meet timing, but under constraints dictated by the limited

availability of these resources. Existing physical synthesis tools typically do not exploit this

degree of freedom well and are usually not effective in handling these new thick layers for design

closure.

5

The second contribution of this thesis, described in Chapter 3, is to solve the problem by

adding a new component to an industrial physical synthesis flow. A new algorithm is embedded

to perform congestion- and timing-aware layer assignment. The algorithm aims to maximize the

timing benefits of thick metal layers and to minimize buffer usage by assigning as many nets as

possible to thick metal layers while controlling congestion well. Experiments demonstrate the

effectiveness of the proposed algorithm. In particular, our algorithm can save the buffer area by

10% on average and up to 18%, while maintaining the similar congestion, timing, and runtime.

These savings could help to improve the design power and cost, and help to achieve effective

design closure.

1.3 Process variation optimization

Variations in the IC manufacturing process, which include disparities in the processing tempera-

tures between different locations on the wafer, fluctuations in the resist thickness across the wafer,

and aberrations in the stepper lens, may cause the parameters of the fabricated circuit different

from their intended values [19]. Such variations, usually referred to as process variations,

may cause the circuit to be unable to satisfy the specifications, and even worse, cause circuit

failure [20].

An important category of process variations are within-die variations that are highly depen-

dent on distribution of underlying patterns (devices or metal wires) on the die. Two important

examples of such variations are those induced during chemical mechanical polishing (CMP)

and rapid thermal annealing (RTA), which largely depend on the metal wire density and shallow

trench isolation (STI) density, respectively. Since physical design determines the final distribution

of the devices (in floorplanning and placement steps) and the metal wires (in routing steps), it

can significantly impact the effects of these variations. In the rest of this thesis, we propose

physical design techniques to optimize the variations induced by CMP and RTA.

1.3.1 Optimizing dummy fill for CMP-induced variations

CMP is used in the manufacturing process to polish the wafer whenever a planar surface is

required. In a typical CMP tool illustrated in Fig. 1.2, the wafer is mounted to a rotating head

(i.e., wafer carrier), and then is pressed against the polishing pad mounted on a rotating table.

In addition, a slurry (composed of particles suspended in a chemical solution) is deposited on

6

the pad as the chemical abrasive. CMP uses both chemical and mechanical means to polish

wafer [3].

Figure 1.2: A typical CMP tool [3].

As a step in the manufacturing process, oxide CMP is used to polish the interlayer dielectric

(ILD) layer to ensure a near-planar surface before depositing and patterning a metal layer. Ideally,

it is desirable for the post-CMP ILD thickness across the chip to be uniform. However, due to

nonidealities in the CMP process, such as the bent CMP pad, the post-CMP ILD thickness may

have variations. This surface topography variation could result in defocusing during lithography,

which leads to the variations in wire width and thickness. Such interconnect variations can greatly

impact on circuit performance and yield. According to the work in [5], oxide CMP variation

is highly dependent on the underlying pattern density. Therefore, to reduce the oxide CMP

variation, dummy metal shapes (also called dummy fills) are inserted to improve the uniformity

of the pattern density. However, dummy fills also bring side effects such as increased coupling

capacitance or enlarged routing difficulty [3]. Therefore, dummy fills should be minimized.

The third contribution of this thesis, described in Chapter 4, is to propose a novel global

routing algorithm directly aiming to minimize the amount of dummy fill necessary to satisfy the

planarity requirements for CMP. Since it is not computationally efficient to directly minimize

the amount of dummy fill in the routing process, we develop a surrogate metric through a

set of theoretical analyses and experiments. Then effective cost functions are elaborated and

applied in the routing process to optimize the surrogate metric. The effectiveness of our strategy

and algorithm is validated by the experiments on a standard set of benchmark circuits. Our

CMP-aware router can reduce the required dummy fill by 22% on average, and up to 42%, as

compared to the CMP-unaware case. In comparison with another CMP-aware routing approach,

7

our algorithm is demonstrated to reduce the amount of dummy fill by 14% on average, and up to

24%, over the benchmarks.

1.3.2 Minimizing RTA-induced variations

RTA is an annealing process conducted after ion implantation to activate the dopants [21]. A

schematic diagram for a RTA process is shown in Fig. 1.3(a). In a RTA process, a energy

source, such as scanned laser or flash lamps, is applied on top of the wafer to rapidly heat the

wafer surface to achieve a high temperature around 1000◦C within a brief period, e.g., several

milliseconds. Next, the energy source is shut down and the wafer is quickly cooled down.

Usually, a preheating process is used to heat the wafer to a medium temperature around 500◦C

before annealing to reduce the thermal shock [22]. Fig. 1.3(b) shows the temperature profile at a

point of the silicon surface during the laser RTA process in [23].

In RTA, the annealing temperature greatly impacts the extent of dopant activation, which in

turn significantly affects several important circuit parameters, such as the threshold voltage and

source/drain extrinsic resistance. Therefore, uneven annealing temperatures in RTA across the

die will cause large variations in the circuit performance and power. It has been demonstrated

in [1] that RTA-induced variability strongly depends on circuit layout patterns, particularly the

distribution of the density of the STI regions. Therefore, a primary mechanism for reducing the

RTA-induced variations is to obtain an even distribution of STI density throughout the layout.

The fourth contribution of this thesis, described in Chapter 5, is to investigate a two-step

approach to reduce the impact of RTA-induced variations. We first solve a floorplanning problem

that aims to reduce the RTA variations by evening out the STI density distribution. Next, we

insert dummy polysilicon fills to further improve the uniformity of the STI density. Experimental

results show that our floorplanner can reduce the global RTA variations by 39% and the local

variations by 29% on average with low overhead compared to a traditional floorplanner, and

the proposed dummy fill algorithm can further reduce the RTA variations to negligible amounts.

Moreover, when inserting dummy fills, for the layouts obtained by our floorplanner, on average,

24% fewer dummy polysilicon fills are inserted, as compared to the results from a traditional

floorplanner.

8

p-substrate

p-epitaxial layer
p-well n-well p-well n-well

Energy source

(a) A schematic diagram for a RTA process.

(b) The temperature profile at a point of the silicon surface during the

laser RTA process in [23].

Figure 1.3: Illustrations for a RTA process.

Chapter 2

Techniques for Scalable and Effective
Routability Evaluation

2.1 Introduction

Routability has become an increasingly important and difficult issue in nanometer-scale VLSI

designs, and must be addressed across the entire physical synthesis tool stack. This in turn

requires fast, yet reasonably accurate, techniques to identify routing-challenged regions (hot

spots) for routability optimization. This chapter focuses on the two key components of routability

evaluation: (a) the method used to analyze the congestion of a given placement, and (b) the

metric(s) used to score or represent the congestion.

2.1.1 Congestion analysis techniques

Congestion analysis is related to, but different from, routing. The basic purpose of routing is to

find the paths to connect all the nets to achieve the correct electrical connection of the circuit,

while the goal of congestion analysis is to predict the routability, identify routing hot spots, and

provide designers or optimization tools fast feedback on the congestion to improve the routability.

A thorough discussion about the differences between congestion analysis and routing can be

found in [2].

Routing is traditionally divided to two stages due to its complexity: global routing and then

detailed routing. In the global routing stage, the routing region is divided to global routing cells

9

10

(g-cells), and only the g-cell-to-g-cell paths are computed for all the nets (see Section 2.2 for

more details). Next, detailed routing computes the pin-to-pin connection for all nets, guided by

the coarse paths from global routing. Further, detailed routing is constrained by complex design

rules, which are usually ignored by global routing, in order to ensure manufacturability.

Typical approaches for congestion analysis can be categorized as follows:

1. Taking a design through detailed routing to determine whether it is routable or not.

2. Using a probabilistic congestion estimation procedure, without performing any routing [24,

25].

3. Performing fast global routing and using its solution to perform congestion analysis [15–

17].

In principle, an approach based on detailed routing estimates is the most accurate, but is very

time-consuming and impractical during the early stages of design closure. Probabilistic methods

are highly inaccurate and fail to capture the behavior of global routing, especially in modern

designs with numerous IP blockages, and a large number of metal layers with varying width and

spacing. Lately, the third method has become more attractive and mainstream due to the advent

of fast, high-quality global routers [10–14].

Although global-routing-based congestion analysis provides a happy medium between

probabilistic analysis and detailed routing, it suffers from two key drawbacks.

The first drawback in global-routing-based congestion analysis is that global routing solutions

cannot effectively predict the problematic regions shown in detailed routing, since they do not

effectively model local routing congestion. Here, local routing congestion, or simply, local

congestion refers to the congestion that does not appear in global routing but shows up in detailed

routing. This mismatch appears mainly because the local routing resources, or simply, local

resources, used for local routing in detailed routing are not modeled in global routing (see

Section 2.3.1 for detailed discussions).

Roughly speaking, local routing, refers to the routing performed in one g-cell. Local routing

clearly consume varying amounts of routing resources depending on factors such as design

rules, the size of the g-cell, and pin density. Fig. 2.1 demonstrates a concrete instance where

ignoring local resources in global routing can significantly mispredict design routability. Without

considering local resources, the congestion analyzer only sees very few congestion hot spots in

11

(a) Combined congestion map from

a global-routing-based congestion an-

alyzer.

(b) Open/short map from a de-

tailed router.

Figure 2.1: Without considering local resources, global-routing-based congestion analyzers

cannot predict the locations of opens/shorts well.

the “combined” congestion map1 (Fig. 2.1(a)), and cannot predict the locations of opens/shots in

detailed routing (the red dots in Fig. 2.1(b)), where detailed routing cannot complete. Hence, to

achieve more accurate routability evaluation, local resources must be modeled in global routing.

Further, any such method should be flexible enough to enable it to be adjusted in a straightforward

manner from one technology to the next (as design rules are different for each technology). It is

also desirable that the local resource model has good scalability on g-cell size so that it can be

applied with different g-cell sizes.

The other drawback in global-routing-based congestion analysis is that the routing solutions

from the congestion analyzers tend to have hot spots surrounded by noncongested spots, called

“noise” hot spots (further discussed in Section 2.4), that could usually be diluted by further

routing efforts, and such noise hot spots brings inaccuracy to the congestion analysis. The noise

hot spots appear mainly because of the following factor. Due to a large number of invocations in

the design flow, congestion analysis tools tend to run very fast by limiting the routing efforts,

e.g., by limiting the extent to which each net can detour [2]. Then it is likely that the noise hot

spots can be diluted by further routing efforts. For example, Fig. 2.2 shows the congestion maps

on the design ckt_i from an industrial routing tool in two modes: congestion analysis mode and
1The “combined” congestion map combines all the layers by showing the maximal congestion among all the

layers. All the congestion plots in this thesis without a qualifier show the combined maps. Moreover, the color map

shown in Fig. 2.1(a) applies to all the subsequent congestion plots skipping a color bar.

12

global routing mode. We observe that in Fig. 2.2(a), there are quite a few noise hot spots and they

are dissolved by further routing efforts in global routing mode (Fig. 2.2(b)). These hot spots are

“noise” that prevents us obtaining more accurate routability evaluation, and should be addressed

properly.

0.2

0.4

0.6

0.8

1

(a) Congestion analysis mode

0.2

0.4

0.6

0.8

1

(b) Global routing mode

Figure 2.2: Congestion maps from an industrial routing tool in two modes.

2.1.2 Metrics to score or represent congestion

Visual inspections of congestion plots, or congestion maps, often serve as a first-order method to

compare the routability of different design points. However, optimization tools and designers also

require a single metric that can accurately score or represent the design congestion. Commonly-

used metrics in academia and industry can be categorized as follows:

Overflow-based metrics include total overflow and maximal overflow that measure the excess

of the routing usage over routing capacity on the global routing edges in a global routing graph

(defined in Section 2.2). These metrics do not provide sufficient intuition (e.g., how good/bad is

an overflow of 14, 253?), which makes it difficult to quantify how much better one design point

is versus another. Further, they may even fail to predict the routability correctly in some cases, as

will be demonstrated in Section 2.6.3.

Net-congestion-based metrics [2] include2: (a) ACN(x), the average net congestion, defined

as the average congestion of the top x% congested nets, where the congestion of a net is the

maximum congestion among all the global routing edges traversed by the net. (b) WCI(y), the

worst congestion index, defined as the number of nets with congestion greater than or equal to
2We name the metrics differently from [2] to facilitate later references.

13

y%. In practice, ACN(20), WCI(90) and WCI(100) have been used to evaluate routability.

The main issue with these metrics is that they fail to differentiate between a net spanning a single

congested global routing edge and one that spans multiple congested edges.

In this work, we propose techniques to enhance the accuracy and effectiveness of routability

evaluation. Our key contributions include:

• A study of the inaccuracies in existing global-routing-based congestion analyzers, specif-

ically due to the lack of local routing resource modeling and the existence of noise hot

spots in the congestion maps.

• An analysis of the weaknesses in existing metrics to score or represent design congestion.

• Methods to model and incorporate the effects of local routing resource usage during

global routing. Compared with approaches without modeling local routing resources, our

methods improve congestion analysis in three aspects: (a) significant improvement in the

accuracy of congestion analysis, (b) better prediction of detailed routing issues such as

opens and shorts, and (c) accelerated congestion analysis with a larger g-cell size.

• A smoothing technique that could reduce the noise in congestion maps and further improve

the accuracy of routability evaluation.

• A new congestion metric that provides better intuition and represents the design congestion

with high fidelity. This metric has been used in DAC 2012 placement contest [26].

• Detailed empirical validation of our proposed techniques on advanced industrial designs.

The rest of this chapter is organized as follows. We begin by presenting background and

definitions in Section 2.2. Next, we present our methods for modeling local routing congestion

in Section 2.3, and discuss the smoothing technique proposed to filter out the noise in routability

evaluation in Section 2.4, followed by a description of our new metric for routability evaluation

in Section 2.5. Empirical validation and concluding remarks are provided in Sections 2.6 and

2.7, respectively.

2.2 Preliminaries

Typically, during global routing, the chip is tessellated into nr × nc grids (or g-cells), and the

global routing graph (GRG), Gr = (Vr, Er), is constructed. A node in Vr represents a g-cell

14

in the layout, and an edge (called a g-edge) in Er denotes the boundary between two adjacent

g-cells. An example of the GRG is shown in Fig. 2.3.

g-cells g-edges

Figure 2.3: Global routing graph (GRG).

We now introduce some notations and terms that will be used in the remainder of this thesis.

For each edge e in the GRG, we define ce as edge capacity — the total or maximal capacity of

the edge, be as blockage usage, and we as the routing demand on the edge. In global routing, ce,

be and we are generally expressed in the number of routing tracks, where a routing track is the

routing resource taken by a single wire passing through an edge in the GRG. We further define

total routing usage ue as sum of be and we. Then the overflow of an edge e can be defined as:

oe = max(ue − ce, 0). (2.1)

The total overflow (TOF) of the layout can be given by
∑

e∈Er oe, and the maximal overflow

(MOF) is given by maxe∈Er oe. The congestion of edge e, denoted as ge, is given by ge = ue/ce.

2.3 Local congestion modeling

In this section, we will analyze the problems associated with existing congestion analysis

methods, discuss the sources of local resources, review the previous works related to local

resource modeling, and finally propose our methods for local resource modeling. Note that,

for convenience, in this chapter we will use the terms “local resource modeling” and “local

congestion modeling” interchangeably.

2.3.1 Limitations of existing global-routing-based methods

As mentioned in Section 2.1, global-routing-based congestion analysis is now mainstream.

Examples include, FastRoute [27] and NTHU-Route 2.0 [11], used as congestion analyzers within

15

routability-driven placers IPR [15] and CRISP [16], respectively. However, the major problem

in these academic global routers or congestion analyzers is in their inability to model local

resource usage, which could lead to the inaccurate prediction of routing hot spots (opens/shorts)

in detailed routing.

Figure 2.4: Local nets ignored by traditional global routers.

There are two major consumers of local resources. The first of these are the wires used to

connect the local (sub-) nets, whose pins are all inside a single g-cell. As illustrated in Fig. 2.4,

the two-pin net (S, T) is a local net in the g-cell centered at b, and the local wire connecting S

to T is not modeled in global routing. For convenience, we denote these kinds of resources as

local-net resources. Traditional global routers generally abstract the routing problem and only

focus on g-cell-to-g-cell routing, while the resources used by local nets are ignored.

The second set of consumers, which we refer to as pin-access resources, are the resources

used for pin access in detailed routing, which are also ignored in traditional global routing.

Fig. 2.5(a) shows a standard cell with five signal pins, shown as blue shapes on metal layer 1

(M1). If we ignore these pins, nine horizontal tracks (marked with numbers 1–9), on metal layer

2 (M2), are available for global routing in this region. However, from detailed routing results

shown in Fig. 2.5(a), we can see that horizontal track 5–7 will be mostly blocked in the region

for pin access and are no longer available for global routing. Note that only counting the area

of wires on layer M2 connecting to pins as local resources used by pins is not enough, since

pin access causes many track fragments between the short wires connecting to pins (Fig. 2.5(a)

shows two examples), which are hard to use for routing and should also be amortized to the

pin-access resources. In addition, pin-access resources also depend on the pin distribution. The

closer pins are packed together, the more difficult the detailed router tends to access all the pins,

since the wires connecting to some pins could block the pin access to other pins and detour may

become necessary in such a case. Therefore, more resources could be consumed than the case

where the pins are packed more loosely. As an example, Fig. 2.5(b) shows the pin access for

three standard cells with larger pin density than the cell shown in Fig. 2.5(a). Due to denser pin

distribution, pin access becomes more difficult in Fig. 2.5(b), and therefore, zigzag wires and

16

U-shaped wires have to be used to access the pins, which take more resources than flat wires or

L-shaped wires used for pin access shown in Fig. 2.5(a). Even worse, a short is caused as shown

in Fig. 2.5(b).

(a) Pin access blocks track 5–7. (b) Pins with large density consumes many routing

tracks and a short even occurs.

Figure 2.5: Pin access consumes considerable local routing resources. In the legends, “V12”

denotes the vias from M1 to M2, and “V23” the vias from M2 to M3.

In summary, ignoring these local routing resources caused by local nets and pin access

will incorrectly make global routing see more tracks than are available, resulting in inaccurate

routability evaluation. This motivates the problem of modeling local resources, or local conges-

tion, in global routing. Next, we will first review the previous works for local resource/congestion

modeling, and then present our algorithms to address this problem.

2.3.2 Review of previous works for local congestion modeling

Since the fundamental task of routing is to connect the pins of the same net, pin density is

closely related to routing congestion, and high pin density is usually correlated with high

routing congestion [28]. Therefore, pin density has become a key factor to optimize in many

placers [16, 29, 30]. The general idea involved in those works is to spread the cells so that the

pin density is not high in a region. In the routing stage, pin density is also used as a metric to

drive routers to achieve more uniform wire distribution to reduce the variations in the chemical

mechanical polishing process [31, 32]. Though these works have used pin density as a tool to

drive placers or routers in optimization, none of them explicitly study the relation between pin

density and the local congestion, i.e., how the local congestion can be modeled by pin density in

global routing stage to achieve a more accurate routability evaluation.

17

x
a

x

x

x
x

x

x x

x

x
b

Maximal wire density: 4

x

x

Figure 2.6: Maximal wire density model [4] does not work well for local congestion modeling in

global routing.

In [4], an algorithm is proposed to estimate the routing congestion of a circuit considering

the local-net resources. It first uses a Steiner tree algorithm to “route” all the nets (including

local nets) in the circuit, and then based on the Steiner solution, computes the maximal track

usage within a g-cell using a scan-line algorithm. Though the consideration of local connections

in a g-cell improves the accuracy of routability evaluation, it has the following problems. Firstly,

using Steiner solution for all the nets, including global nets, to estimate the routability can have

large errors, since in real routers, significant detours are used for the nets around the congested

regions. Secondly, while this method acts more like a congestion estimator (similar to [24, 25])

for a whole circuit, it does not work well in our scenario where the local congestion is to be

modeled at the global routing stage. This problem is illustrated in Fig. 2.6. We show two g-cells

and assume that the g-edge (a, b) has a capacity of 4 global routing tracks. Using the algorithm

in [4], the maximal wire density in the g-cell centered at b would be 4 due to four local nets.

However, for global routing, if we reduce the capacity of g-edge (a, b) by 4, then this may be too

pessimistic, since there may still be some global nets which can be routed through the g-edge, as

shown in Fig. 2.6.

In [33], an interleaved global routing and detailed routing framework, GDRouter, is proposed

to improve the detailed routing routability. To improve the consistency in routability evaluation

between global routing and detailed routing, three techniques are proposed. First, the cost for

each g-cell is calculated to consider pin distribution based on a Voronoi diagram method. Second,

the capacity of each g-edge is adjusted based on local routing usage estimated by spine routing

which uses a single trunk tree for routing. Third, the capacity of each g-edge is further adjusted

by the number of global segments that cannot be assigned to a detailed routing track, which

are estimated by performing virtual routing, i.e., fast implementations of FastRoute [10] and

RegularRoute [34]. The first technique only uses pin distribution to adjust the cost of g-cells, but

18

does not adjust the capacity of g-edges to consider the pin-access resources, and thus ignores the

fact that pin-access resources would also affect the capacity of g-edges. The second technique

could overestimate the local-net resource usage, since the spine routing tree could have more

wirelength than a Steiner tree that is used in advanced industrial detailed routers such as [35, 36].

The third technique involves running of fast version of global and detailed routers, which in

practice could be computational expensive when applied to a congestion analyzer invoked tens of

times in a physical synthesis flow. In summary, these techniques have various limitations when

they are used for local resource modeling in congestion analysis.

Some industrial global routers or congestion analyzers also include some methods to model

local resources, e.g., some global routers include some form of detailed routing to consider

the resources consumed by local net connections and stacked vias [35, 36]. However, these

approaches tend to be complex and computationally expensive when such a router acts as a

congestion analyzer and is repeatedly invoked during physical synthesis. This is shown in

Section 2.6, where we provide runtime data for such an industrial congestion analyzer (different

from [35]). The aforementioned problems motivate our work to develop more effective and

efficient methods to model local resources when using a global router for congestion analysis.

Next we will present and discuss three methods of local resource modeling: Method 1 based

on Steiner tree wirelength estimation, Method 2 based on pin-density estimation, and Method 3

combining techniques from Method 1 and Method 2 and including further enhancements. Before

we proceed further to discuss the details of each method, it will be helpful to briefly introduce

how we will evaluate the effects of our methods on the accuracy of routability evaluation. Given

a design, we first run an industrial congestion analyzer with complex and accurate local resource

modeling to get the reference congestion maps. Next, we run another global-routing-based fast

congestion analyzer with one of our methods to model local resources on the same design, to

obtain another set of congestion maps. Then we use the correlation between the two set of maps

to evaluate the effects of our proposed method. Further details will be presented in Section 2.6.1

where we discuss the experimental validation for the proposed methods.

2.3.3 Method 1: Estimation of local resources based on Steiner tree wirelength

In this section, we discuss how to estimate the local resources based on Steiner tree wirelength.

We first discuss the method for local-net resource modeling. We observe that the longer the

local wires are, the more likely they are to block global routing tracks. This observation can be

19

formulated by the following equation:

tb = lr/se, (2.2)

where tb is the number of routing tracks blocked by a local wire, lr is the length of the local wire,

and se is the length of a g-edge.

Equation (2.2) is adopted to calculate blocked tracks on a g-edge and can be easily extended

to the more complex cases. Consider the case of a multi-pin local net. To estimate local routing,

we first build a Rectlinear Steiner Minimum Tree (RSMT) for the pins3; in our experiments, we

use Flute [37] for this purpose. We then break each horizontal tree segment into two based on the

x-coordinate of the g-cell center and apply Eq. (2.2) to calculate blocked global routing tracks on

the left and right g-edges associated with the g-cell. Similarly each vertical Steiner tree segment

can be broken using the y-coordinate of the g-cell center.

An example is shown in Fig. 2.7, where net (A,B) is a two-pin net while (A, J) and (B, J)

are the two segments of a Steiner tree. The global routing tracks blocked by net (A,B) in the

horizontal direction can be calculated based on segment (A, J). Since the g-cell center b is

between A and J , segment (A, J) blocks global routing tracks on g-edges (a, b) and (b, c). The

blocked tracks on g-edge (a, b) can be calculated as (xb − xA)/(xb − xa), where xb denotes the

x-coordinate of g-cell center b, and other notations are similarly defined. Similarly, the blocked

global routing tracks on g-edge (b, c) is (xJ − xb)/(xc − xb). The vertical tracks blocked by

net (A,B) can be calculated similarly, based on segment (J,B). As another example, when a

segment is completely on the left of (above) or right of (below) the g-cell center, such as the

net (C,D) in Fig. 2.7, the blocked tracks can all be attributed, respectively, to the left (top) or

right (bottom) g-edge. The blocked tracks on g-edge (b, c), in this case, can be calculated as

(xD − xC)/(xc − xb). The proposed method can be easily applied to more complex Steiner

trees, for example A,B,C in Fig. 2.8.

Figure 2.7: Local routing resource estimation for two-pin nets.
3We use RSMT since it provides a solution with minimum wirelength for a net, and most modern routers use

RSMT as the initial solution for a net.

20

Next we discuss how we model the pin-access resources. Since most traditional global-

routing-based congestion analyzers only produce the g-cell-center-to-gcell-center connections

for nets, we must consider the synergy between global and local routing, i.e., how to connect to

real pins. As an approximation, the following method is used. We include the g-cell center as a

dummy pin when constructing the Steiner tree to model the local resources4. For example, for a

net (D,E, F,G) shown in Fig. 2.8, the Steiner tree connecting b, E, F,G is used to calculate

the blocked global routing tracks on the four boundaries of g-cell with center b. Similarly, the

Steiner tree connecting a,D is used to calculate the blocked tracks corresponding to g-cell with

center a.

To further consider the track fragments blocked by the local wires connecting to pins as

shown in Fig. 2.5(a), we introduce a parameter p (p > 1) to scale the estimated local resources

using the method discussed above, where p will be tuned empirically for each technology.

Figure 2.8: Local routing resources consumed by two nets.

In summary, to model local resources in global routing, we add a pre-processing step.

Specifically, we iterate through each net in the design, identify the pins inside each g-cell,

estimate the local resources using the method presented in this section, and block the global

routing tracks from the related g-edges. Local wires inside a g-cell are usually short and for pin

accessibility they are typically routed in the second (M2) and third (M3) metal layers during

detail routing. Hence, we only block the global routing tracks on g-edges in the M2 and M3

layers during congestion evaluation.
4Note that g-cell centers are added as dummy pins only for the nets with global wires. For a local net with all the

pins inside a g-cell, the g-cell center is not considered for Steiner tree construction since there is no global wires for

this net.

21

2.3.4 Method 2: Estimation of local resources based on pin density

In this section, we present the second method for local resource modeling, which is even simpler

and faster than Method 1, yet is seen to provide similar (or even better) effectiveness. This

method is based on pin density, and does not involve constructing Steiner trees to estimate the

local resources. It is based on the following observations:

• Each pin is associated with a set of local wires connected to it.

• The number of pins in a g-cell is a good indicator of the number of local wires, and is a

first-order estimate for routing tracks blocked by local wires within the g-cell.

Based on the above observations, we model the local resources Rl in a g-cell by

Rl = kn, (2.3)

where k is a technology-dependent parameter, and n is the number of pins from both local and

global nets in the g-cell.

As in Method 1, we use a pre-processing step with Method 2 in a global-routing-based

congestion evaluation tool. Specifically, we traverse all the g-cells and nets, and count the

number of pins (n), inside each g-cell. Following this, we block kn global routing tracks, due to

the local wires in each g-cell, on the four g-edges related to the g-cell. Similar to Method 1, we

only block the global routing tracks on g-edges in the M2 and M3 layers.

2.3.5 Method 3: An enhanced method with better scalability

Method 1 and Method 2 provide simple first-order models for local resources, and there is some

scope for further improvement. Next, we will first discuss the limitations associated with the two

methods, and then present our enhanced method.

2.3.5.1 Limitations in Method 1 and Method 2

As will be shown in Section 2.6.1.2, both Method 1 and Method 2 work well for small g-cell

size, but do not scale well to large g-cell sizes. We will analyze the reasons next.

In Method 1, to consider pin access resources, the local resource estimation counts the

connection from the real pins to the corresponding g-cell centers, which act as dummy pins. This

is based on the assumption that all global wires are connected to g-cell centers. While this seems

22

x F

x
 D

b

a

Figure 2.9: Artificially connecting pins to g-cell centers overestimates the routing resources used

by two-pin net (D,F).

true in global routing stage, the real situation in detailed routing can be quite different. Fig. 2.9

shows an example, where a two-pin net (D,F) in detailed routing may only consume the routing

resources shown as solid blue segments, while by artificially connecting pins to g-cell centers

in Method 1, the net will consume resources shown as dashed red segments that significantly

overestimate the routing resources required. From the example, we can see that adding g-cell

centers as dummy pins to consider pin-access resources can bring errors, which will be even

amplified when g-cell size is increased since the wires from pin to g-cell center tend to be longer

when g-cell size becomes larger.

There are two major reasons why Method 2 does not scale well with g-cell size. Firstly,

Equation (2.3) does not consider the potential relationship between k and g-cell size, and then the

k-factor must be tuned for each g-cell size. The dependence of k on the g-cell size is illustrated

as follows. Fig. 2.10 shows four g-cells, a, b, c, d, with the size of 10 tracks, and in each there

are 10 pins. Assume 10 pins block 5 tracks (showed as red segments) on each edge, and then k

for g-cell size 10 is 0.5. Now assume g-cell size increases to 20 tracks, and look at the g-cell

F that contains g-cell a, b, c, d and 40 pins. Since the 40 pins now blocked 10 tracks on each

edge, k-factor for g-cell size 20 can be calculated as 0.25. This example clearly shows the

dependency of k on g-cell size. Secondly, the estimation of local-net resources by pin-density

in Method 2 ignores the real wirelength of local nets, and can become inaccurate when g-cell

size increases. For example, in Fig. 2.7, two two-pin nets (A,B) and (C,D) have quite different

Steiner wirelengths and likely consume different amount of local resources, while Method 2

assumes they consume the same amount of local resources since they both have 2 pins, which

may bring error in local resource estimation. This error may be negligible when g-cell size is

23

small, but could become significant while a large g-cell size is used and the lengths of wires

connecting local nets with same pin count can vary in a large range.

x

x

x

x
x

x

x

x

x

x

x

x

x

x
x

x

x

x

x

x

x

x

x

x
x

x

x

x

x

x

x

x

x

x
x

x

x

x

x

x

a b

cd

F

Figure 2.10: When g-cell size doubles, blocked tracks double while the number of pins becomes

four times.

In addition to the scalability problem, Method 2 also has other limitations, and can be

improved in the following two aspects. Firstly, in Method 2, when adjusting the capacity of

four g-edges associated with one g-cell, the amount of blockage added to each g-edge is the

same, i.e., kn. This can be further improved by considering the distribution of pins in the g-cell,

i.e., if pins are closer to one g-edge, more blockage should be added to that g-edge. Secondly,

Method 2 assumes n pins always consume the same local routing resources, kn, but this can also

be improved by considering the pin distribution. If the pins are packed with a region smaller than

a threshold distance, dth, it will become difficult to access those pins, and more local resources

tend to be used for pin access, as illustrated in Fig. 2.5(b). Therefore, an extra weight could be

added to scale the local resources used by those pins.

2.3.5.2 The enhanced method to model local resources: Method 3

Motivated by solving the problems in Method 1 and Method 2, we develop an enhanced method

to model local resources, Method 3. In Method 3, we use the following strategy to estimate

the local routing resources: we spit the estimation of local resources to local-net resources and

pin-access resources, and use the suitable techniques to estimate each category. Specifically,

we use a modified Steiner tree method to estimate the local-net resources, and an enhanced

pin-density method to estimate the pin-access resources with consideration of pin distribution.

Finally, we combine the estimation from the two methods as the final estimation. In this way, we

make use of the advantages from each method, and avoid the disadvantages.

Firstly, the modified Steiner tree method is used to estimate the local-net resources. Since

we do not consider pin-access resources in this step, we do not add g-cell center as dummy pins

24

when constructing Steiner trees for local nets, and do not scale up the local-net resources. In this

way, only the local-net resources are estimated.

Secondly, the enhanced pin-density method is used to estimate the pin-access resources and

there are three major improvements. The first improvement is that we change our formulation

to make the estimation of the pin-access resources aware of g-cell size. We assume each pin

will consume the same amount of routing resources ar. Different from Method 2, the unit of the

routing resources ar is assumed to be area unit instead of routing tracks, based on the following

observation: the routing area consumed by a pin does not depend on g-cell size, while the number

of routing tracks consumed by it does. Based on these assumptions, n pins will consume a total

of arn units of resources. To model these local resources in global routing, we will adjust the

capacity of each g-edge in unit of routing track instead of routing area unit. Therefore, we have

to do a unit conversion by calculating the equivalent global routing tracks blocked by these local

routing resources arn. Let us assume the resources consumed by each pin ar to be equal to q

unit area au, where au = P 2, where P is the minimum wire pitch in layer M2 (layer M3 usually

has the same wire pitch as layer M2). Then we have arn = qP 2n. Converting this to the number

of global routing tracks by simply dividing the routing area by the area of a routing track, we

have:

bp =
qP 2n

PS
=
qP

S
n, (2.4)

where S is g-cell size in absolute units. The g-cell size C, in unit of tracks (more commonly

used in practice), can be calculated by C = S/P . Now combining (2.4), we could calculate the

local resources blocked by n pins in unit of global routing track as follows:

bp =
q

C
n. (2.5)

Note that bp is inversely proportional toC. Equation (2.5) verifies the observations from Fig. 2.10

that the scaling factor associated with pin density n is a function of g-cell size.

The second improvement over Method 2 is that the pin-access resources will be scaled by a

weight wpa to be further aware of pin distribution, if the pins are packed within a region smaller

than a threshold distance, dth. Given a g-cell c with n pins, when calculating wpa, we only want

to consider the pin pair whose distance is smaller than dth, i.e., we assume that the pin pairs with

distance larger than dth do not require extra resources. Therefore, we loop through all pin pairs,

count the number of pin pairs with distance smaller than dth, denoted as ncpp, and calculate the

25

mean distance over these pin pairs, denoted as µdp. Then we calculate wpa as:

wpa =

1 if ncpp = 0,

1 + (1− µdp/dth) otherwise.
(2.6)

By (2.6), when there is no pair of pins with distance smaller than dth, wpa equals to 1; otherwise,

wpa is a monotonic decreasing function of µdp. In our implementation, we set dth to the expected

distance of the pins in a design, calculated as: dth =
√

(1− rmp)Atot/ntotp, where Atot is the

chip area, ntotp is the total number of pins, and rmp is the ratio of area of the macro blocks to the

chip area. Here, the area of macro blocks is subtracted from the calculation, since it is usually

impermissible to place pins in such regions.

The third improvement over Method 2 is that the blockage added to each one of the four

g-edges associated with a g-cell will be redistributed by considering pin distribution, instead

of equal distribution as in Method 2. We will present our method for the horizontal edges,

and the case for vertical edges is analogous. For a given g-cell centered at b, as illustrated in

Fig. 2.11, denote the two associated horizontal edges as el and er, and the routing tracks blocked

on them as bl and br, respectively. Then we calculate the mean of the x-coordinates of all the

pins, denoted as µx. Let xl and xr be the x-coordinate of the left and right boundary of g-cell b,

respectively, and let S = xr − xl be the g-cell size. Then we distribute the total local resources

bpwpa (calculated by (2.5) and (2.6)) from n pins in g-cell b by the following formulae:

bl = bpwpa
xr − µx

S
and br = bpwpa

µx − xl
S

. (2.7)

The intuition behind these formulae is that if µx is closer to the left horizontal edge, which means

more pins are closer to left boundary of the g-cell, we should block more capacity of the left

horizontal edge; vice visa.

x

x

b

er

x

x

el

a c

xl xr

Figure 2.11: The pin-access resources in a g-cell on horizontal layer will be redistributed to the

left and right edges based on pin distribution.

26

Together with all the three improvements, our enhanced pin-access resources algorithm will

work in the following steps:

• Count the number of pins in each g-cell, and calculate the pin-access resources bp by (2.5).

• Calculate the weight wpa for each g-cell by (2.6), and then scale bp by wpa.

• Distribute the calculated pin-access resources to the four associated g-edges on layer

M2/M3 by (2.7).

After pin-access resources are computed, the local-net resources will be computed by the

improved Steiner method discussed earlier, and finally the blockages from two kinds of local

resources will be added to the g-edges in layer M2 and M3. The whole process still works as a

pre-processing step, just as in the case of Method 1 or Method 2.

2.4 Filtering out the noise in routability evaluation

As mentioned in Section 2.1.1, the noise hot spots in the congestion maps prevent us obtaining

accurate routability evaluation, and should be addressed properly. In this section, we will first

present quantitative analysis on this problem, and then propose a smoothing technique to deal

with it.

To quantitatively study this problem, we introduce a metric called noise ratio to measure

the ratio of noise hot spots to the total number of hot spots in a map. If gth is the congestion

threshold, then a g-edge e with routing demand we > 0, and congestion ge ≥ gth will be treated

as a hot spot. In this chapter, gth is set to 80% according to the properties of the industrial routing

tool set we used. Quantitatively, a hot spot is treated as a noise hot spot when the difference

between its congestion and its two parallel adjacent g-edges in the same routing direction is

larger than θgth, where θ is a user-defined parameter. With θ = 0.25 (which is the setting used in

this chapter), when routing with a typical g-cell size, e.g., 40 tracks, the difference in the routing

usage between a noise hot spot and its parallel adjacent g-edges will be larger than 40 · θgth = 8

tracks, which is large enough so that it is likely that more routing efforts could more evenly

redistribute the routing usage among these edges. Based on these discussions, the noise ratio can

be easily calculated given the congestion data for all the layers. Continuing our analysis on the

example shown in Fig. 2.2 (for better readability, we copy the figures to Fig. 2.12), we calculate

27

the noise ratios for the routing solutions from congestion analysis mode (Fig. 2.12(a)) and global

routing mode (Fig. 2.12(b)) of an industrial router. For the congestion analysis mode, the noise

ratio is 17.08%, while for the global routing mode, the noise ratio is reduced to 9.98%, which

means that the insufficient routing efforts in congestion analysis result in much more noise hot

spots than those in global routing.

0.2

0.4

0.6

0.8

1

(a) Map from congestion analy-

sis

0.2

0.4

0.6

0.8

1

(b) Map from global routing

0.2

0.4

0.6

0.8

1

(c) Smoothed map using Gaus-

sian function

Figure 2.12: The proposed smooth technique reduces the noise hot spots in the congestion map.

To reduce the number of the noise hot spots in the congestion maps and achieve more

accurate routability evaluation, a smoothing technique can be applied to the congestion maps

obtained by a congestion analyzer. Smoothing is a common technique widely used in many

fields, such as signal processing, image processing, and CAD. In CAD, smoothing techniques

have been widely used in placement algorithms, which use a bell-shaped function [30, 38–42] or

the inverse Laplace transform [43] to smooth the unsmooth functions such as density function,

so that optimization can proceed more effectively. Additionally, in [42], a Gaussian function

was used to further smooth the cell density (or potential) map of the circuit. Smoothing is also

used in works related to manufacturability [5, 44–46], where Gaussian function is one of the

commonly used smoothing functions to smooth the pattern density.

However, to the best of our knowledge, no application of smoothing techniques directly to the

congestion map has been proposed in the literature. In this work, we propose to use a smoothing

technique to filter out the noise hot spots in the congestion maps obtained by a congestion

analyzer. Unlike [42], we apply a one-dimensional Gaussian function to smooth the congestion

map for each layer in the direction perpendicular to the preferred routing direction of that layer.

28

The reason to use a one-dimensional function is that in routing, to mitigate the congestion,

spreading the overflowed wires to neighboring g-edges is directional, i.e., vertical/horizontal

spreading on the horizontal/vertical layer. The Gaussian function used is given by

f(x) =
1

σ
√

2π
e−

x2

2σ2 , (2.8)

where σ is the standard deviation. Since the Gaussian function will be applied on a discrete

congestion map, the Gaussian function will be discretized to the GRG using a method similar

to those in [44, 45]. We first define the smoothing window size as (2l + 1) g-edges, and the

smoothing function will be truncated beyond the smoothing window, which means that when

we calculate the smoothed congestion value at one g-edge, other g-edges with distance farther

than l will not be counted. Typical values for l can be σ, 2σ and 3σ. After discretization, we

should normalize the function values to make sure they sum to 1. Given a congestion map for a

layer, if we denote the congestion of g-edge with coordinate (x, y) on the map as g(x, y), then

the smoothed congestion, ḡ(x, y), can be calculated by

ḡ(x, y) =


j=y+l∑
j=y−l

g(x, j)f(j − y) for horizontal layers,

i=x+l∑
i=x−l

g(i, y)f(i− x) for vertical layers.
(2.9)

Note that when calculating ḡ(x, y) by (2.9), whenever the coordinates go over the boundary of

the congestion map, e.g., become smaller than 0, the original congestion g(x, y) will be used to

fill in the missing g(x, j) or g(i, y). In practice, the smoothing technique can be used multiple

times until the map reaches the desired extent of smoothness, specifically, until the noise ratio is

reduced below a threshold, e.g., 5.00%.

We now test the smoothing technique on the routing solutions shown in Fig. 2.12(a), assuming

l = σ = 1, i.e., the smoothing window size would be three g-edges. The discretized function

will have three values: f(0) = 0.3989 and f(1) = f(−1) = 0.2420. After normalization,

f(0) = 0.4519 and f(1) = f(−1) = 0.2741. Then applying this smoothing function to the

congestion maps of all the layers from congestion analysis mode, we obtain the smoothed

combined congestion map shown in Fig. 2.12(c). We can see that as expected, the map in

Fig. 2.12(c) is smoother than the original map in Fig. 2.12(a). The noise ratio for the smoothed

routing solution is calculated as 1.15%, much smaller than 17.08% for the original solution.

Moreover, the difference between smoothed map and global routing map becomes smaller than

29

that between congestion analysis map and global routing map. This shows that our proposed

smoothing technique can indeed filter out the noise hot spots, and improve the accuracy of the

routability evaluation.

2.5 Metrics for design congestion

In this section, we will first discuss the limitations of existing routability metrics, and then

present our new metric.

2.5.1 Limitations of current metrics

TOF and MOF: Naïve implementations of the TOF and MOF metrics treat the overflow in each

layer as identical; however, this is inaccurate as each layer has a different capacity. Normalizing

the overflow to the layer capacity can overcome this issue, but other problems remain. The TOF

metric does not capture the hot spots in the congestion map, i.e., the severity of congestion in the

worst regions of the chip. MOF fares only slightly better, capturing only the maximum overflow

value among all the g-edges in the routing graph. This presents a fairly incomplete picture of

the congested regions in the design. Moreover, as pointed out in [2], overflow metrics fluctuate

greatly, depending on design size, number of g-edges, number of routing layers, etc.

ACN(20), WCI(100) and WCI(90): These metrics fail to differentiate between a net

spanning a single congested g-edge and one that spans multiple congested g-edges.

Example 2.1. Consider two nets in the GRG: net A traverses g-edges with congestion 0.50,

0.70, 0.80, 0.90 and 1.10, while net B traverses g-edges with congestion 0.60, 0.80, 0.95, 1.05

and 1.10. When calculating ACN(20), WCI(100) and WCI(90), both nets will be counted

with the same congestion. However, their routability is different: clearly, net B is harder to route

compared to net A, as it traverses more number of g-edges with higher congestion. This fact is

not captured by these net-congestion-based metrics.

Additionally, minor design changes can cause large fluctuations in the WCI(100) and

WCI(90) metrics.

Example 2.2. Assume a design has a g-edge e, with ce = 40, be = 0 and we = 39. Assume, that

we reroute a net to pass through this g-edge (say, to improve timing). Then the congestion of e

becomes 100%, implying that all 40 nets crossing e now have a congestion of 100%. As a result,

30

WCI(100) will now report 40 additional congested nets, when in reality we only rerouted a

single net. A similar example applies to the WCI(90) metric. Such instability renders these

metrics unsuitable for guiding routability optimization.

Although, ACN(20) avoids large swings due to minor design changes, it suffers from the

limitation of not accurately capturing design congestion (demonstrated in Section 2.6.3.1).

In addition, existing metrics improperly model the congestion along macro boundaries [2,47],

leading to an artificially high reported congestion. Referring to Fig. 2.13, net N routes to a pin

on macro block B. Due to the blockage, the congestion of edge e would be rated as being above

90%, but in practice, we find that such nets are easily routable. Including these g-edges with

artificially high congestion when calculating the metric introduces unnecessary noise leading

to improper estimation of the routability. Note that we only suggest to exclude the edges along

macro boundaries when calculating the metric after global routing to evaluate the routability, but

the high congestion of these edges should not be ignored during the global routing process.

Figure 2.13: An example showing a net N traversing g-cells that are 90% blocked due to a

routing blockage. This leads to artificially high reported congestion for g-edge e.

2.5.2 New metric (ACE metric) for design congestion

To address the issues with existing metrics, we propose a new metric that is based on the

histogram of g-edge congestion. Our metric has two features:

• It downplays the effects of g-edges with artificially high congestion due to the presence of

routing blockages.

• It presents congestion as a histogram, instead of a single number.

To accurately capture the congestion, our metric, denoted as ACE(x, y), computes the

average congestion of the top x% congested g-edges, while ignoring g-edges that are ≥ y%

31

blocked. The role of the parameter y is to void counting the effects of g-edges with artificially

high congestion. A typical value for y is 50, implying that all g-edges with ≥ 50% routing

blockage are ignored when computing the metric. For convenience, we use ACE(x) to denote

ACE(x, 50) in this thesis. For convenience, we also call the metric ACE metric.

In practice, the new metric is most useful when expressed as a vector, for different values of

x, e.g., for x ∈ {0.5, 1, 2, 5, 10, 20}. ACE(x), for a small value of x, (e.g., 0.5 and 1), provides

a highly local view, representing congestion in the regions with the highest contention for wiring

resources (hot spots). For larger values of x, (e.g., 10 and 20), it provides a broader picture of

the design congestion.

2.6 Validation and analysis

Our proposed techniques, hereafter GLARE, are implemented within a congestion analyzer

that performs global routing in the spirit of MaizeRouter [48]. This section provides a detailed

analysis of GLARE on advanced industrial designs. All experiments were run on a 64-bit Linux

server with 4 octa-core CPUs (Intel R© Xeon R© X7560 2.27 GHz).

We first demonstrate and analyze the impact of methods about local resource modeling on

routability evaluation in Section 2.6.1, and then present the results of the smoothing technique in

Section 2.6.2, followed by the analysis of the impact of the proposed ACE metric in Section 2.6.3.

2.6.1 Impact of local resource modeling on routability evaluation

For the analyses presented in this section, we use the following engines to evaluate the impact of

our proposed techniques for local resource modeling:

• Analyzer A0: A fast congestion analyzer that is based on MaizeRouter [48], with the

ability to perform global routing on millions of nets in less than 10 minutes5. It does not

include any local resource modeling.

• Analyzer A1: Modification of Analyzer A0, incorporating the Method 1 for local resource

modeling.

• Analyzer A2: Modification of Analyzer A0, incorporating the Method 2 for local resource

modeling.
5 This is achieved by running on our Linux server with a proper g-cell size on the designs.

32

• Analyzer A3: Modification of Analyzer A0, incorporating the Method 3 for local resource

modeling.

• Reference Analyzer: A full-blown industrial router that has a mode for performing

congestion analysis with complex modeling of local resources. The reference analyzer

is used to judge the quality of all results, and typically runs at least 10 times slower than

Analyzer A0–A3.

To quantitatively measure the correlation between Analyzer A0–A3 to the Reference Ana-

lyzer, the average relative error (AVRE) between the congestion maps of Analyzer Ai, 0 ≤ i ≤ 3,

and those from the Reference Analyzer, is computed for each design. For each g-edge e on the

congestion map, relative error is calculated as

ere =
|gye − gxe|

gxe
,

where gye is the congestion from Analyzer Ai, 0 ≤ i ≤ 3, and gxe is that from the Reference

Analyzer. Then the AVRE is the average of ere over all the g-edges considered. Since, in practice,

only the congestion values close to or over congestion threshold gth are of interest, we use a

threshold when calculating AVRE, counting only the g-edges whose congestion is larger than

70% in the Reference Analyzer. Correspondingly, in our color map, any congestion below 70%

is colored blue. When using AVRE, a smaller error means better correlation.

2.6.1.1 Improving congestion analysis accuracy

First we will present the impact of our methods about local resources modeling on the overall

accuracy of congestion analysis.

Nine designs from three technology nodes are tested, and their chief characteristics are listed

in the first three columns in Table 2.1. Since all three methods for modeling local resources

involve parameter tuning at a given technology node, the parameters for each method are first

tuned6 on the first design from each technology node shown in the table, and then the tuned

parameters are used to test the other two designs in the same technology node. In this set of

experiments, g-cell size equal to 20 tracks is used.
6In the tuning process, each of the analyzers A1–A3 is applied to the given design with a series of trial values for

the parameter to be tuned, and then for all the routing solutions with different parameters, we calculate the AVRE

between them and the routing solution from the Reference Analyzer. Finally, we pick the parameter which produces

the smallest AVRE value.

33

Table 2.1: Comparison of accuracy in routability evaluation with and without local resource

modeling, with g-cell size 20 tracks.

Technology Circuits #nets
AVRE Tuned parameters

A0 A1 A2 A3 A1 (p) A2(k) A3(q)

32 nm

ckt_fb 320,357 13.02% 7.17% 7.09% 7.12% 2.20 0.29 7.20

ckt_dl16 1,191,615 13.51% 7.30% 7.23% 7.43%

ckt_dl12 1,337,659 14.36% 9.34% 9.21% 9.29%

45 nm

ckt_i 354,771 11.21% 7.47% 7.42% 7.48% 1.13 0.15 3.20

ckt_y 324,102 12.03% 8.59% 8.58% 8.62%

ckt_m 118,911 10.95% 7.87% 7.86% 7.94%

65 nm

ckt_12 1,660,223 10.91% 6.96% 6.90% 6.94% 1.80 0.24 6.00

ckt_18 533,530 12.12% 8.97% 8.87% 9.06%

ckt_x 464,661 8.96% 6.92% 6.81% 6.91%

Average 11.90% 7.84% 7.77% 7.87%

Table 2.2: Comparison of accuracy in routability evaluation using different methods of local

resource modeling and pre-tuned parameters from Table 2.1, with g-cell size 80 tracks.

Circuits
AVRE

A0 A1 A2 A3

ckt_fb 8.83% 20.56% 21.05% 4.80%

ckt_dl16 13.08% 10.96% 13.27% 6.77%

ckt_dl12 10.50% 15.48% 19.11% 6.60%

ckt_i 7.73% 12.18% 21.47% 5.62%

ckt_y 9.50% 9.76% 17.66% 6.39%

ckt_m 8.74% 10.97% 20.37% 5.87%

ckt_12 9.55% 10.38% 16.28% 5.60%

ckt_18 9.98% 5.90% 10.98% 6.37%

ckt_x 6.23% 5.72% 9.40% 4.17%

Average 9.35% 11.32% 16.62% 5.80%

In Table 2.1, the column “tuned parameters” lists the parameters tuned for the three methods

of local resource modeling. The column “AVRE” presents the comparison of the errors between

Analyzers Ai, 0 ≤ i ≤ 3, and the Reference Analyzer, and the row “Average” shows the average

error over all the designs. From these data, we can see that analyzers with the three proposed

methods for local resource modeling can achieve more accurate routability evaluation than

Analyzer A0 without any local resource modeling, which is also true for the designs which the

parameters are not tuned for, demonstrating the effectiveness of the proposed local resource

34

modeling methods. Furthermore, the three methods produce very similar accuracy on average,

though Method 2 is a little better than the other two methods.

To visually see the impact of local resource modeling on accuracy of routability evaluation,

in Fig. 2.14, we show the results of running all the five analyzers on design ckt_fb. From

Fig. 2.14(b) we see that using a congestion analyzer with no modeling of local routing resources

significantly underestimates the actual congestion. Alternatively, the congestion maps from the

GLARE-based congestion analyzers (A1–A3) (Fig. 2.14(c)–2.14(e)) are much closer to the one

obtained from the Reference Analyzer7, both in terms of the congested regions and their intensity.

This result assumes significance in the context of using analyzers within congestion mitigation

tools such as CRISP [16], where the effectiveness of the tool is highly dependent on accurately

identifying the regions of high congestion as well as their relative intensity.

2.6.1.2 Scalability of the proposed methods on increasing g-cell size

We have just shown that the three proposed methods for local resource modeling all work

similarly well on the nine designs when the g-cell size is set to 20. Next, we will check their

scalability on increasing g-cell size.

We rerun the experiments on all the nine designs using the same tuned parameters but a

g-cell size of 80 tracks. In Table 2.2, the column “AVRE” presents the comparison of the errors

between Analyzers Ai, 0 ≤ i ≤ 3, to the Reference Analyzer, and the row “Average” shows the

average error over all the designs. Comparing the error data in Table 2.2 with those in Table 2.1,

we can see that different analyzers show different scalability. When using the same parameters

tuned with g-cell size 20 tracks, Analyzer A2, integrating the simple pin-density-based method

(Method 2) for local resource modeling, has the largest error among all the analyzers, and

the error is even larger than Analyzer A0 without any local resource modeling. Analyzer A1,

integrating the Steiner-tree-based method (Method 1) for local resource modeling, has smaller

errors than Analyzer A2, but still on average larger than Analyzer A0. These results show the bad

scalability in Method 1 and Method 2, which is caused by the factors discussed in Section 2.3.5.1.

In contrast, Analyzer A3, integrating the enhanced method combining the Steiner tree technique

and the pin-density technique with pin distribution (Method 3), achieves the best scalability and
7 It is expected that the GLARE-based congestion analyzers do not exactly match the maps from Reference

Analyzer, since they run much faster, and do not work as hard as the Reference Analyzer. However, the GLARE-based

congestion analyzers can generally predict the hot spots well.

35

(a) Reference Ana-

lyzer

(b) Analyzer A0 (c) Analyzer A1 (d) Analyzer A2 (e) Analyzer A3

Figure 2.14: Congestion maps for ckt_fb with five analyzers using a g-cell size of 20 tracks.

(a) Reference Ana-

lyzer

(b) Analyzer A0 (c) Analyzer A1 (d) Analyzer A2 (e) Analyzer A3

Figure 2.15: Congestion maps for ckt_fb with five analyzers using a g-cell size of 80 tracks.

the smallest error on average among all the four congestion analyzers A0–A3. This shows the

effectiveness of the proposed techniques in Method 3.

Fig. 2.15 shows the congestion maps from all the analyzers on design ckt_fb with the

g-cell size set to 80 tracks. Analyzer A0 without local resource modeling still significantly

underestimates the actual congestion. Analyzer A1 and A2 both generate over-pessimistic

congestion maps as compared with the Reference Analyzer. The congestion map from Analyzer

A3 is closest to that from Reference Analyzer among all analyzers, demonstrating the good

scalability of the proposed enhanced method (Method 3).

2.6.1.3 Runtime and acceleration by using a larger g-cell

Now we will present the analysis on the runtime of different methods for local congestion

modeling and different analyzers, with g-cell sizes of 20 and 80 tracks. We will show that

the proposed local resource modeling methods only take a small portion of the runtime of the

36

whole congestion analysis, and with good local resource modeling, congestion analysis can be

accelerated by using a larger g-cell size.

In Table 2.3, the column “LRM (size 20)” lists the CPU time of the pre-processing step for

local resource modeling (LRM) in A1–A3 with a g-cell size of 20 tracks, “Total runtime” shows

the CPU time for Analyzer A0–A3 (“size 20”: g-cell size 20 tracks, “size 80”: 80 tracks), and

“RA20” presents the CPU time of Reference Analyzer with a g-cell size of 20 tracks. In the row

“ratio”, the numbers in the column “LRM (size 20)” list the ratio of LRM CPU time to the total

runtime of the corresponding analyzer, and the other numbers show the CPU time normalized by

that of Analyzer A3 (g-cell size 20), averaged over all the designs.

Table 2.3: Runtime comparison for congestion analyzers with different g-cell sizes.

Circuits
LRM (size 20) (s) Total runtime (size 20) (s)

RA20 (s)
Total runtime (size 80) (s)

A1 A2 A3 A0 A1 A2 A3 A0 A1 A2 A3

ckt_fb 3.7 2.7 6.3 41.6 74.3 81.5 61.0 1499.1 18.4 28.0 25.7 31.2

ckt_dl16 14.7 9.4 22.9 801.3 1384.4 1251.6 1376.4 129927.5 125.7 206.4 188.7 227.6

ckt_dl12 17.2 12.2 26.6 610.7 1036.5 889.8 994.8 29614.2 110.1 176.9 175.6 193.5

ckt_i 3.4 2.2 4.4 45.2 51.0 68.4 70.6 1564.1 21.1 31.1 29.0 33.3

ckt_y 3.5 2.1 5.4 55.8 73.4 70.2 75.9 2790.4 18.7 28.6 29.4 33.9

ckt_m 1.3 0.9 1.8 13.6 22.7 19.1 24.9 503.8 7.0 8.9 8.9 10.1

ckt_12 18.7 15.5 32.5 428.8 653.2 612.9 645.7 41425.5 135.0 216.4 200.7 229.8

ckt_18 6.6 4.4 10.0 281.7 459.7 418.6 456.7 8354.4 53.3 88.9 80.3 90.4

ckt_x 5.5 4.3 8.5 135.4 230.9 209.1 222.2 4984.0 33.4 58.4 57.6 59.1

Ratio 3.5% 2.5% 5.1% 0.63 0.99 0.96 1.00 36.98 0.20 0.31 0.29 0.34

Let us first look at the runtime of different LRM methods. From column “LRM (size 20)”,

we can see that LRM with Method 2 (sub-column “A2”), the pin-density method, runs fastest

among all the three methods, due to it simplicity. Method 3 (sub-column “A3”), the enhanced

method, is the slowest, but we find it is still fast enough in practice, taking up only 5% of the

total routing time.

Now look at the runtime of different analyzers with g-cell size 20. Among Analyzers A0–A3,

Analyzer A0 runs fastest since it does not have any local resource modeling, and sees least

congestion, translating to fewest routing efforts. The runtime of Analyzer A1–A3 with LRM is

quite similar and a little longer than that of Analyzer A0, but much shorter than the Reference

Analyzer8.
8Note that Reference Analyzer is using multi-threads routing, and the numbers listed for Reference Analyzer are

total CPU time of all the threads, while the wall time can be various depending on the number of threads used.

37

Considering accuracy, scalability and runtime, Method 3 is the winner among all the three

methods of local resource modeling, and we use Method 3 within GLARE for all subsequent

analyses in this chapter.

Since our method can accurately incorporate the effects of local routing within a g-cell, it

provides the freedom to increase the size of the g-cell, thereby accelerating congestion analysis.

As shown in Table 2.3, with Method 3, when increasing g-cell size from 20 to 80, runtime is

reduced by 66% on average.

2.6.1.4 Better prediction of detailed routing issues

Often a design that seems routable after global routing can end up with multiple opens/shorts

at the end of detailed routing. Early prediction of such issues without performing the time-

consuming step of detailed routing is highly beneficial as it enables designers to take appropriate

measures, thereby improving overall turn-around time for design closure. As mentioned in

Section 2.1, ignoring local resources in global routing can significantly mispredict design

routability and cannot predict the opens/shorts locations, as illustrated in Fig. 2.1. These

opens/shorts indicate the problematic locations in detailed routing, which, in our experience,

are usually due to high local congestion at these locations. Next, we will demonstrate that our

proposed local resource modeling method can enable the congestion analyzer to predict detailed

routing opens/shorts with high fidelity. Fig. 2.16 shows the comparison of the opens/shorts plots

(during an intermediate stage of an industrial strength detailed router) and the congestion maps

from Analyzer A0 and Analyzer A3 on design ckt_fb9. Comparing these plots, we see that

the GLARE-based Analyzer A3 clearly indicates congestion hot spots, which translate to the

problematic regions for detailed routing — a fact not captured by Analyzer A0.

To quantitatively measure the predictability of the analyzers, we compute the ratio of the

number of opens/shorts present in g-cells with congestion greater than 85% to the total number

of opens/shorts in the design. We call this ratio as match ratio, and it measures the extent of

matching between opens/shorts and the highly congested regions of the design. Here, using

85% as the threshold to consider g-cells in the computation is based on our prior experience that

regions with such high global congestion are usually problematic for detailed routing. By this

method, the match ratios for Analyzer A0 and the GLARE-based Analyzer A3 are computed
9For this experiment, a g-cell size of 40 tracks is used, and Fig. 2.16(a) and Fig. 2.16(b) are copied from Fig. 2.1

for convenience of comparison.

38

(a) Congestion map from

Analyzer A0

(b) Open/short map from de-

tailed routing.

(c) Congestion map from

Analyzer A3

Figure 2.16: Open/short maps and congestion plots for ckt_fb. The GLARE-based congestion

Analyzer A3 could predict the problematic regions in detailed routing with higher fidelity.

as 0 and 0.97, respectively. In other words, Analyzer A3 was able to point to the congested

regions which capture 97% of all opens/shorts, while A0 did not capture any. This further

demonstrates the effectiveness of the GLARE-based congestion analyzer in predicting detailed

routing opens/shorts.

2.6.2 Impact of the smoothing technique on routability evaluation

As for the proposed smoothing technique, we have showed some results in Section 2.4 on a

motivating example, and now we present more results on several industrial circuits in this section.

In our experiments, we use l = σ = 1.

Table 2.4 shows the effects of applying the smoothing technique once to the solutions from

a congestion analyzer on several designs. In the table, column “C.A.” lists the results of an

industrial congestion analyzer, column “G.R.” the results of an industrial global router and

column “Smooth” the results after applying the proposed smoothing technique to “C.A.” results.

It can be seen that applying the proposed smoothing technique once would reduce the noise ratio

from more than 6% down to below 1%, and the ACE metrics after smoothing become more

accurate than those from the congestion analyzer’s maps, when compared with those from the

global router, which demonstrates the effectiveness of the smoothing technique.

Fig. 2.17 shows the congestion maps for congestion analysis solution, smoothed solution,

global routing solution on design ckt_x. It can be seen that the congestion map from the

congestion analyzer has many more hot spots than that from the global router, and there are

39

Table 2.4: Smoothing reduces noise hot spots and improves the accuracy of routability evaluation

by a congestion analyzer.

Circuits
Noise ratio (%) ACE metrics (0.5, 1, 2, 5) (%)

C.A. Smooth G.R. C.A. Smooth G.R.

ckt_fb 16.39 0.62 8.64 (92.9, 91.5, 89.5, 86.6) (89.9, 88.5, 87.0, 84.7) (88.9, 88.0, 86.9, 84.4)

ckt_y 13.99 0.38 6.24 (100.0, 97.7, 95.7, 92.9) (97.8, 96.1, 94.3, 92.0) (94.4, 92.1, 90.0, 87.0)

ckt_x 6.34 0.19 2.86 (94.1, 92.5, 91.2, 88.5) (93.2, 91.8, 90.2, 87.7) (88.7, 87.2, 86.0, 84.0)

obvious noise hot spots on the map. After smoothing, the map becomes smoother with fewer

noise hot spots than the original map, and the intensity of congestion is reduced by some extent,

which makes the calculated ACE metrics closer to those for global routing solutions. Note that

the congestion map after smoothing do not match well with that from the global router, because

routing efforts in the congestion analyzer is much fewer than those in the global router, which

cannot be compensated by only using the smoothing technique.

(a) Congestion analysis.

(b) After smoothing. (c) Global routing.

Figure 2.17: Congestion maps on design ckt_x.

2.6.3 Impact of ACE metric on routability evaluation

2.6.3.1 Comparison of routability metrics

Visual inspection of a congestion plot is widely used to quickly evaluate the routability of a design

point. We now demonstrate that our new metric can capture a congestion plot with higher fidelity

compared to prior metrics for routability evaluation. Consider Fig. 2.18 displaying the congestion

plots from two global routing solutions on an identical placement for the design ckt_s, which is a

45 nm design with 1,006,029 nets. The corresponding values of the different congestion metrics

for the routing solutions are given in Table 2.5. For ACE metric, the congestion is expressed as

an ordered pair representing (Horizontal, Vertical) layer congestion.

40

(a) Solution 1 (b) Solution 2

Figure 2.18: Congestion plots for two routing solutions on design ckt_s.

Table 2.5: Congestion metrics for two routing solutions on design ckt_s.
Metrics Solution 1 Solution 2

Overflow based TOF 194373 217499

metrics MOF 10 11

ACN(20) 84.41 77.97
Net congestion WCI(90) 39494 40548
based metrics WCI(100) 274 276

ACE(0.5) (90.47, 90.54) (90.27, 90.46)

ACE(1) (89.23, 89.12) (89.13, 89.10)

New metric ACE(5) (85.93, 85.45) (86.14, 85.49)

ACE(10) (84.16, 83.39) (84.59, 83.51)

ACE(20) (82.48, 81.58) (82.57, 81.53)

41

From Table 2.5, the overflow-based metrics10 indicate that Solution 1 has better conges-

tion, while the net-congestion-based metrics indicate that Solution 2 is better, as ACN(20) of

Solution 2 is much better than that of Solution 1, even though WCI(90) and WCI(100) are

worse. However, a visual examination of the congestion plots indicates that they are quite similar,

demonstrating the deficiencies in the existing metrics. Alternatively, our new metric correctly

identifies the congestion of these two routing solutions to be similar.

(a) Distribution of net congestion. (b) Distribution of g-edge congestion.

Figure 2.19: Distribution of congestion for two routing solutions of ckt_s.

The significant difference in the ACN(20) values for the two comparable routing solutions

can be explained by Fig. 2.19(a) which plots the distribution of the worst congestion on the nets.

From Fig. 2.19(a), Solution 1 has a considerably higher number of nets in the [77.97%, 84.41%]

congestion range compared to Solution 2, leading to the difference in the ACN(20) values.

In practice, our experience on industry designs is that nets with congestion less than 85%

are often not difficult to route, and considering them within the congestion metric introduces

unnecessary noise during routability evaluation. In contrast, looking at Fig. 2.19(b) which plots

the distribution of congestion on the g-edges, we observe the distributions for the two routing

solutions to be quite similar above 85.00% (even similar above 80.00%). This explains why the

new metric (correctly) rates the two solutions to have similar congestion.
10To counteract the drawbacks of overflow metrics discussed earlier, when we calculate overflow in this chapter,

the capacity is scaled down to 80% of the original, and the overflow is in unit of number of minimum-width tracks,

e.g., one overflowed track on a layer with 4× width tracks would be counted as four in the overflow number.

42

2.6.3.2 Further comparison between overflow metrics and ACE metrics

Next we will use the ultimate routability metric obtained from running an industrial detailed

router as the judge to further compare the overflow metrics and ACE metrics.

(a) Placement A. (b) Placement B.

Figure 2.20: Congestion maps from running the same congestion analyzer on two different

placements on design ckt_y.

Table 2.6: Routing metrics for two placements A and B on design ckt_y.

Metrics
Detailed routing Overflow ACE metric (%)

#errors Time (h) TOF MOF ACE(0.5) ACE(1) ACE(2) ACE(5) ACE(10) ACE(20)

A 2,424 49.5 829,164 18 96.4 95.3 93.6 91.0 87.0 79.5

B 816 29.0 829,261 18 94.7 93.5 92.2 90.3 87.2 80.9

Fig. 2.20 shows the congestion maps obtained by running the same congestion analyzer on

two different placements for the same design ckt_y. From the congestion plots, we can see the

congestion hot spots in placement B is more spread than placement A, and placement B is very

likely to have better routability than placement A. Next, we run detailed routing on the two

placements using an industrial detailed router, and report the results in Table 2.6. We find that

although neither of the two placements are routable, placement B is better than placement A

since both the number of routing errors and runtime (wall-clock time reported) on placement B

are much better than those on placement A. This verifies our visual observation.

We will now examine the metrics calculated on the routing solutions for the two placements

from an industrial congestion analyzer, as shown in Table 2.6. The overflow metrics for the two

placements are almost the same, and cannot effectively differentiate which placement is better,

again demonstrating the previously pointed out drawbacks of overflow metrics. From the data for

ACE metrics (only the maximum between horizontal and vertical layers is reported), we can see

that ACE(0.5) and ACE(1) for placement A are higher than that for placement B, implying

43

that the hot spots in congestion map for placement A have higher congestion than those in

congestion map for placement B. Metrics ACE(2) and ACE(5) for placement A are also worse

than placement B. These ACE metrics correctly indicate that placement B has better routability

than A, which is consistent with the results of detailed routing. However, the ACE(10) and

ACE(20) metrics for placement A is even slightly better than B, and this does not match the

fact that placement B has better routability. This can be explained by observing that when we go

too deep in the histogram of g-edge congestion while calculating the ACE metrics, the g-edges

with smaller congestion are also counted in, which brings noise to the routability evaluation.

Therefore, a conclusion drawn from this experiment is that we should not use too many values of

x in ACE(x) when using ACE metrics to evaluate routability, i.e., the values x = 0.5, 1, 2, 5

are suggested.

2.6.3.3 Guiding routability optimization

We will now discuss the performance of different metrics in guiding routability optimization,

and demonstrate that a good congestion metric is essential to effectively guide routability

optimization.

In our experiments, we employ CRISP [16], an incremental placer that iteratively spreads

logic cells in congested regions to improve the routability of a design. To track its progress,

CRISP relies on a congestion metric to compare the routability of placements over successive

iterations. It terminates if the metric does not improve for two consecutive iterations. In other

words, it returns the placement solution from iteration i if the congestion metrics for both

iterations i+ 1 and i+ 2 are worse than iteration i.

We first employ the ACN(20) congestion metric to guide CRISP and check the stopping

criterion as outlined above. A plot of the progression of the ACN(20) metric across CRISP

iterations is shown in Fig. 2.21(a). We see that CRISP terminates after just five iterations and

returns the placement solution from the third iteration. The reason for the early termination of

CRISP is as follows: CRISP spreads cells in the most congested regions of the design. This

may reduce the number of nets in regions with 100% congestion (WCI(100)), but increase the

number of nets in regions with over 90% congestion (WCI(90)). As a result, the ACN(20)

metric may not change, or in fact degrade (Fig. 2.21(a), iterations four and five). Such a scenario

can cause CRISP to exit prematurely without resolving all the congestion issues.

44

1 2 3 4 5
84.2

84.4

84.6

84.8

85

85.2

85.4

85.6

85.8

#Iteration

M
e

tr
ic

s

ACN(20)

(a) CRISP terminates after five iterations when using

the ACN(20) metric.

0 5 10 15 20 25 30
85

90

95

100

105

110

115

#Iteration

M
e

tr
ic

s

ACE(0.5)

ACE(1)

ACE(2)

ACE(5)

(b) CRISP iterates longer when using the new metrics

for congestion evaluation.

Figure 2.21: The new metrics provide a more accurate view of the congestion, enabling CRISP

to be more effective.

Next, we replace the ACN(20) metric with a set of values obtained from our new metric

(ACE). As mentioned before, ACE metric expresses congestion as an order pair of (Horizontal,

Vertical) layer congestion values. We use the maximum of these two values to check the stopping

criterion for CRISP. In this experiment, we use ACE(0.5), ACE(1), ACE(2) and ACE(5)

and adopt the following strategy: during every iteration, we determine the four metric values,

and consider it as an improvement in congestion if there is a reduction in any one of the metric

values. Same as before, CRISP terminates if the congestion evaluated by ACE metric does not

improve for two consecutive iterations. The effect of using a set of metric values derived from

our new congestion metric is shown in Fig. 2.21(b), wherein CRISP runs for up to 26 iterations.

The intuition behind using a set of edge-congestion-based metric values is as follows: since

CRISP spreads cells from the topmost congested g-cells, it should reduce the congestion on the

topmost congested g-edges. This is captured by the ACE(0.5) metric value. In doing so it may

increase the congestion on other g-edges, but this is still acceptable as it is reducing the peak of

the congestion histogram. Over successive CRISP iterations, the ACE(0.5) metric value may

saturate, but a reduction in any of the other metric values implies that CRISP is still improving

congestion, except that it is now targeting g-edges that are deeper in the congestion histogram.

45

(a) Post-CRISP conges-

tion plot when using the

ACN(20) metric (hori-

zontal direction).

(b) Post-CRISP conges-

tion plot when using the

ACE metric (horizontal

direction).

(c) Post-CRISP conges-

tion plot when using the

ACN(20) metric (verti-

cal direction).

(d) Post-CRISP conges-

tion plot when using the

ACE metric (vertical di-

rection).

Figure 2.22: Post-CRISP congestion plots when using different metrics to check the stopping

criterion.

Finally, Fig. 2.22 shows the post-CRISP congestion plots11 when employing the two con-

gestion metrics. There is a significant improvement in the design routability (Fig. 2.22(b) and

Fig. 2.22(d)) by running CRISP for more iterations, as enabled by the ACE metric.

2.7 Conclusion

Fast and accurate routability evaluation techniques are critical to address the increasingly im-

portant and difficult issue of routing closure in nanometer-scale physical synthesis. In this

chapter, we have addressed two important aspects of routability evaluation: the accuracy of

congestion estimation and a metric for evaluating the routability of a design. We have shown

that ignoring the effects of local congestion can result in large errors during congestion analysis.

This observation motivates our models for local resources based on:

1. Method 1: the Steiner tree wirelength of the local nets;

2. Method 2: the pin density in each g-cell;

3. Method 3: an enhanced method combining the good techniques in Method 1 and Method 2,

and further considering the scalability on increasing g-cell size and pin distribution.

Experimental results show that the proposed modeling can improve the accuracy and fidelity

of congestion analysis, and better predict detailed routing issues such as opens and shorts.
11Note that congestion plots in horizontal direction show the maximal congestion among all the horizontal layers.

Vertical direction plots are similar.

46

Especially, the enhanced method has best scalability on g-cell size among the three methods,

which enables designers to use large g-cells to accelerate the process of congestion analysis,

thereby speeding design closure.

Furthermore, we have discussed the effects of noise hot spots in the congestion maps on

routability evaluation, and proposed a smoothing technique, which could be used to obtain more

accurate routability evaluation, as demonstrated in our experiments on several industrial circuits.

In addition, we have analyzed the limitations of existing congestion metrics including

overflow, etc., and proposed a new metric, ACE metric, based on g-edge congestion. We have

demonstrated that ACE metric can represent a congestion plot with higher fidelity. In particular,

we use detailed routing data to demonstrate that ACE metric can predict the routability accurately

while overflow metrics do not work for the test case used. Finally, we have showed that with

ACE metric, a routability-driven placer can perform better and can improve the routability of a

design significantly.

Chapter 3

CATALYST: Planning Layer
Directives for Effective Design Closure

3.1 Introduction

Physical synthesis is a critical component of modern design methodologies, enabling timing

closure at the physical design stage. Technology scaling brings new challenges and opportunities

to physical synthesis. Wire resistance per unit length increases quadratically with technology

scaling and results in significant increases in wire delay. However, the work [18, 47] shows

that the availability of thicker wires in higher metal layers (shown in Fig. 1.1) could potentially

relieve this problem, which has also been mentioned in Chapter 1. At 65 nm technology, there

are four 1× layers, three 2× layers and two 4× layers (Fig. 3.3). On a 2× layer, the single-width

wires are 2× thicker and 2× wider than those on 1× layer, and therefore the per-unit wire

resistance is reduced by roughly 4× (the per-unit capacitance is roughly similar across all layers,

which is ensured by design rules including wire spacing and process specifications such as

inter-layer dielectric thickness), greatly compensating for technology scaling effects. On the

2× [4×] layer, signals can roughly go 1.7× [2.4×] faster, with 2.2× [4.5×] reduction in buffer

resources. Therefore, the difference in wire delays in different layers provides another dimension

to timing optimization, beyond gate/wire sizing and buffering. Assigning timing-critical nets

to thick layers can reduce area/power and improve timing closure by reducing delays and the

buffer count. As illustrated in Fig. 3.1, the slack for a two-pin net A on a 4× layers is improved

from −10 ps to 10 ps as compared to the corresponding route on the 1× layer, and the number

47

48

of buffers is reduced from 7 to 1. Moreover, by using thick layers wisely, it could be shown

that a 31% reduction on buffer area averaged over several industrial circuits can be achieved

(Sec. 3.6.2). On the other hand, there are limited resources on thicker layers, and if too many

nets are assigned to thicker layers, the design may not be routable or have large post-routing

timing degradation.

Figure 3.1: Assigning the same net to thicker layers improves timing and buffering.

This extra dimension in timing optimization affects the traditionally predicted trend for

interconnect synthesis and buffering, and presents a new problem to the physical synthesis: how

to use these thick metal layers wisely. This problem is pervasive in all steps of the design flow,

from the early stages to the late stages and relates to the classical tradeoff between flexibility

and accuracy: as one progresses deeper into the design flow, timing estimation becomes more

accurate but the level of flexibility in changing layer assignments diminishes.

Existing works on layer assignment have focused only on late stages of design, mainly during

the routing and buffering stages. Most of the previous related works are from the global and

detailed routing literature, but do not address the problem of early planning for layer assignment.

Conventional routers perform layer assignment purely for routing congestion minimization and

many works focus on how to perform layer assignment with via minimization [10–13, 48, 49].

In these works, the timing benefit of thick layers is not leveraged at all. Subsequent work on

timing-driven layer assignment [50–53] has used timing information to drive layer assignment.

While it is certainly necessary to consider layer assignment during routing, the timing gain in

these works is limited since routing is performed after all optimizations are completed, or at least

after a majority of buffers are placed. Recent papers [54–56] focus on how to obey the given

layer assignment constraints from the prior synthesis stage in the routing algorithm, but do not

discuss the process of generating these constraints.

The work in [18] performs layer assignment during the timing optimization stage and is

combined with buffering. It presents two algorithms to perform simultaneous layer assignment

49

and buffer insertion on a single net given the Steiner topology, and shows significant timing

benefits and buffer area savings. However, it has three major limitations. First, it is not aware of

the routing congestion. The approach attempts to control the number of nets promoted to thick

layers, but its guess and trial approach could still easily cause over-promotion (assigning too

many nets to thick layers) in the design, which causes the design to be unroutable [47]. Second,

it does not explicitly minimize the buffer usage: it may underuse the thicker layers if the timing

can be closed by buffer insertion on thinner layers, with excessive buffers inserted. Third, since

the approach is a net-based algorithm, it does not discuss the wrapper around it to be used in a

design flow, especially which nets to choose and in what order.

Placement

Global buffering

Routing

Timing

optimization

Post-routing

optimization

(a) Current flow.

CATALYST

Placement

Global buffering

Routing

Timing

optimization

Post-routing

optimization

(b) Proposed flow.

Figure 3.2: Current and proposed physical synthesis flows.

In this chapter, we propose a novel algorithm, CATALYST: Congestion And Timing Aware

LaYer aSsignmenT, to perform layer assignment to maximize the timing benefits of thick metal

layers with congestion control at early stages. CATALYST alters a traditional physical synthesis

flow [57, 58] (a simplified version is depicted in Fig. 3.2(a)), and is inserted just before global

buffering, as shown in Fig. 3.2(b). We believe it is a catalyst to enable faster and better design

closure if thick metal layers are wisely used earlier. Unlike [18], our algorithm tries to assign a

large number of nets to thick layers with the goal to minimize the buffer usage. Moreover, since

our method has a global routing engine embedded inside, it has good control of the congestion

when performing layer assignment.

Our work has several significant contributions. It presents

• a novel problem formulation for layer assignment at early stages;

50

• techniques to control congestion during layer assignment;

• techniques to maximize the timing benefits of layer assignment guided by a delay model

(to be discussed in Sec. 3.2.3);

• techniques to minimize buffer usage by assigning as many nets as possible to thick metal

layers while controlling congestion.

Our algorithm has been tested on several industrial designs across 65 nm, 45 nm, and 32 nm

technologies. Compared with another aggressive layer assignment algorithm, CATALYST can

achieve similar timing improvements (improving the worst slack by 0.8 ns on average) but avoid

high congestion. Moreover, CATALYST has been embedded and tested in an industrial physical

synthesis flow (Fig. 3.2(b)). Experimental results demonstrate that CATALYST can save the

buffer area by 10% on average and up to 18%, while maintaining the similar congestion, timing,

and runtime. These savings could also help to improve the design power and cost, and help to

achieve effective design closure.

The remainder of this chapter is organized as follows. We introduce some concepts and

notations, routing and timing models, and the problem formulation of layer assignment in

Section 3.2. Next, an overview of the CATALYST algorithm is given in Section 3.3, and

the detailed discussions of the CATALYST algorithm are presented in Sections 3.4 and 3.5.

Experimental results are then reported and analyzed in Section 3.6, followed by a conclusion in

Section 3.7.

3.2 Preliminaries

In this section, we discuss the routing and timing models used in CATALYST, the notations used

and the problem formulation.

3.2.1 Layer directives and notations

An important concept involved in this chapter is that of the layer directive (simply, directive):

a directive is a constraint on a net which specifies the valid layers the net can be routed on, and is

typically given by a pair of layer names. For example, a net n with directive [M5,M9] means

that net n can only be routed between layer M5 and M9. Here, Mi denotes the ith metal layer.

51

CATALYST differs from the traditional layer assignment step in global routing [10–13,48,49],

which assigns the wires to different layers as a last step to complete the routing of a net. In

contrast, CATALYST generates layer directive constraints for timing-critical nets, and these

directives are propagated throughout the physical synthesis flow. We will use the term layer
directive assignment (LDA), or simply directive assignment, to refer to our layer assignment

process.

Figure 3.3: A pictorial view of an IBM 65 nm technology.

We now elaborate on the way layer directives are provided, using an example of an IBM

65 nm technology, as illustrated in Fig. 3.3. Let a plane be a set of layers with the same

thickness. Then this technology consists of three planes: {Mi|1 ≤ i ≤ 4}, {Mi|5 ≤ i ≤ 7},
and {Mi|8 ≤ i ≤ 9}. Correspondingly, three layer directives can be derived: [M1,M9] as D1,

[M5,M9] as D2 and [M8,M9] as D3. From the example, we can see that for jth directive Dj ,

the bottom layer will be the bottom layer in jth plane, and the top layer will be always the top

metal layer. Note that D1 imposes no constraint, and is not used in practice.

It is useful to assign the most timing-critical nets to D3, so that these nets can obtain

best delay gains from the thickest layers. If assigning a timing-critical net n to D3 results in

congestion bottlenecks, we could give it greater flexibility by assigning it to D2, allowing n to be

routed between M5 and M9. In such a case, we use the parasitics in 2× plane when computing

the wire delay and gate delay associated with net n, since industrial routers tend to route nets in

the lowest allowable metal layers, which is consistent with the objective of via minimization. If

52

there are no resources in the lowest layers, a wire may be routed in a higher layer, and the timing

computation based on the parasitics of the 2× plane1 is guaranteed to be pessimistic.

We further introduce some notations. Let M be the number of planes in a design. Corre-

spondingly, there will be M layer directives Dj , 1 ≤ j ≤ M . For simplicity, we overload the

notation to also use directive Dj to denote the set of layers specified by Dj . We refer to D1 as

the bottom directive, and DM the top directive. The promotion of a net will refer to the case

where we assign a net from Dj to a directive with a higher index (corresponding to higher metal

layers); similarly, the demotion of a net will refer to the opposite. Since the parasitics of the

lowest metal layer in a directive will be used to evaluate the delay of the nets in that directive,

promoting (demoting) a net will improve (worsen) its estimated delay.

3.2.2 Global routing with layer directives

As discussed in Section 2.2, in global routing, a GRG with g-cells and g-edges is constructed, as

shown in Fig. 2.3. In the presence of multiple layers, the 2D GRG becomes a 3D GRG, with a

2D GRG representing each layer, and the z-direction g-edges representing vias that connect the

2D GRG’s.

Most of traditional global routers adopt a three-stage routing scheme: plane projection, 2D

routing and layer assignment. However, routing with layer directives is quite different. Several

methods have been proposed to address layer directives in global routing [54–56]. We use the

progressive projection method in [56] due to the flexibility it affords. In this method, the nets

are first partitioned to several sets according to their directives. Let Pk be the set of nets with

directive Dk, where 1 ≤ k ≤ M . A set of routing subproblems Ik are constructed with a set

of nets Pk and a set of layers in Dk. Next, the subproblems are solved one by one. Since the

nets in higher directive have stronger limitations (with fewer available layers), subproblem Ik

with larger k will be solved first. In solving Ik, the 2D GRG is constructed in the following

way: the capacity is aggregated by only using the layers in Dk, and the routing solution from

the previous subproblem Ik+1 (if available) will be treated as existing wires in the 2D GRG.

In summary, the whole routing process will have M passes: in each pass, 2D-routing and then

layer assignment will be performed on the 2D GRG constructed using the method discussed, and

finally an accumulated 3D solution will be output.
1The parasitics of lowest layer and highest layer specified by the layer directive may be used as a [min,max]

range in timing analysis to get more information if necessary.

53

The traditional goals of global routing are to minimize the wirelength, congestion and via

count. Congestion can be evaluated by different metrics such as overflow defined in (2.1) or the

new ACE metric which was proposed in Chapter 2, and has been shown to be more effective

than conventional overflow-based metrics. Recall that the ACE metric computes the average

congestion of the top x% congested g-edges, denoted as ACE(x). Furthermore, a derived

metric, peak weighted congestion (PWC), was adopted in DAC 2012 contest [26], given by

(ACE(0.5)+ACE(1)+ACE(2)+ACE(5))/4, which will be used to evaluate the congestion

in the work presented in this chapter.

3.2.3 Timing metrics and model

In this chapter, we use the following timing metrics: the worst slack (WSLK), the figure of merit

(FOM) which is sum of the gap in slack to a target (star) for all timing endpoints with slack

below star, and the number of timing endpoints with negative slack, nneg. Here, we set star to

0 ps, so that FOM is effectively the total negative slack.

As pointed out in [57], for appropriate tradeoffs between runtime and optimization accuracy,

timing models with different levels of accuracy are used at different stages in a typical physical

synthesis flow (Fig. 3.2(a)). Before placement, an optimistic zero-wire-load model is typically

used during logic synthesis. Subsequent to placement, one could switch to a traditional RICE

model [59]. However, such a timing analysis will result in huge numbers of critical paths because

buffering has not yet been performed, and it becomes impossible to distinguish real critical

paths from paths that simply lack buffers. Long wires without buffers will have quadratic delays

and make the timing appear much worse than it potentially will be after timing optimization.

Hence, to avoid this problem, a linear delay model [60–62] can be used for wires, where the

interconnect delay is estimated to be linear with the wirelength assuming optimal buffering. It

allows a reasonable estimate of post-placement timing, and allows the buffering to be deferred

until layer assignment has been performed.

In this work, CATALYST is performed before buffering (Fig 3.2(b)), and therefore, we use a

linear delay model similar to that used in [62]2.
2Our enhanced implementation also considers the effects of vias on the wire delay.

54

3.2.4 Layer directive assignment

The LDA problem can be stated as follows: given a design, assign directives to nets with the

goal of satisfying the timing and congestion constraints, and minimizing the number of buffers

required.

To evaluate the effects of assigned layer directives on routing congestion, a global router

with ability to obey the layer directives, such as [54–56], can be used to evaluate the congestion.

We should try to keep the congestion with newly generated directives similar to that without

any directives. Precisely, the congestion constraint to the LDA problem can be gLDA ≤ βgorg,
where gLDA and gorg are calculated by a congestion metric of the routing solutions with and

without assigned directives, respectively, and β is a user-defined parameter.

3.3 Overview of CATALYST

In this section, we discuss how we solve LDA problem and overview the CATALYST algorithm.

We solve the LDA problem by decomposing it into two subproblems:

Subproblem 1: Timing-driven directive assignment.

Subproblem 2: Congestion- and timing-aware directive assignment.

The goal of the Subproblem 1 is to generate initial layer directive assignment solution to meet

the timing constraints, while minimizing the number of nets with directive assigned. Subproblem

2 has two goals. First, it tries to keep the initial directive assignment from the solution of

Subproblem 1 within the allowable congestion range. Second, it tries to assign as many nets as

possible to higher directives to further improve timing and reduce potential buffer usage.

To solve Subproblem 1, we propose a simple but effective timing-driven directive assignment

heuristic by promoting the timing-critical nets to higher directives one by one with incremental

timing updates. To solve Subproblem 2, our tool embeds a global routing engine inside to control

the congestion. First it will examine the directives obtained from the first step, and relax the

constraints/directives if they cause congestion. Next, it will try to perform directive assignment

on the rest of nets to further improve timing and reduce potential buffer usage. It then calls the

timer to update the timing at the end to capture the effects of the nets touched during this step.

Simply speaking, the first step focuses on timing improvement, and the second step focuses on

congestion control and buffer usage improvement.

55

The CATALYST algorithm is an iterative process. After every solution of Subproblem 2,

we rerun timing analysis based on the new directive assignments, which change the timing, and

then start a new iteration. The iterations continue until the stopping criterion is satisfied: either

WSLK or FOM becomes worse, or the improvement on both of them is smaller than a threshold

θ, or the user-defined maximal number of iterations nitr is reached.

3.4 Timing-driven directive assignment

Subproblem 1 can be formulated as follows. Given a circuit, to compute a directive assignment

solution to maximize the timing improvement and to minimize the total cost. Depending on the

purpose, one can model this cost as congestion, to avoid unroutable regions, or a directive cost

by assigning a higher cost to a higher directive to minimize the usage of higher layers. Our work

uses a directive cost to minimize the directives assigned in solving Subproblem 1, as will be

explained later in this section.

In this subproblem, the circuit can be modeled by a directed acyclic graph (DAG) [63],

Gm = (Vm, Em). The nodes in Vm are the logic gates in the circuit and the primary inputs

and outputs of the circuit. Each node corresponding to a gate in the DAG has a weight equal

to the gate delay. Each edge in Em denotes the interconnect from one node to the other. Each

edge has a wire delay under a given layer directive. Here, each edge will have M choices,

each with different delay values, and also different associated costs. As shown in [53], even a

simplified form of this problem, where only a single routing tree topology of a net is considered,

is NP-complete.

In this section, we propose a simple yet efficient heuristic. The main idea is to use as few

higher directives as possible by only promoting the currently most timing-critical nets. We

will explain our algorithm assuming we have just started the kth iteration of CATALYST, and

there are some nets with directives from last iteration. A demotion stage is first performed to

check whether a net can be demoted from its original directive to lower directive with no timing

violations created. This helps create a small set of layer directives for the congestion-aware

directive assignment step. Note that in the first iteration of CATALYST, all the nets are in D1

and no demotion is required. Next, the timing-driven promotion stage starts. This stage assigns

timing-critical nets to higher directives gradually, by looping through each directive from D2

to DM . In each step with target directive Dj , we will first put all the timing-critical nets to a

56

list A, and then sort them by their slacks3 in an increasing order. Then, in this order, we loop

through each net ni in listA, and promote ni toDj if its current directiveD(ni) is lower thanDj

(note that ni may have already been assigned to a higher directive from a previous CATALYST

iteration). If ni is promoted, then the timing graph is updated with incremental static timing

analysis. Since the timing of other nets may change due to the promotion of ni, the subsequent

nets in A may be skipped in later processing if they become non-critical. This heuristic promotes

only “necessary nets" to higher directives to avoid potential congestion problems.

3.5 Congestion- and timing-aware directive assignment

There are two major goals of Subproblem 2: first, to maintain the initial directive assignment

to the extent permitted by congestion, while demoting some of the directives that may cause

congestion problems, and second, to assign as many nets as possible to higher directives/layers in

order to reduce buffer usage without degrading congestion. This is different from the method for

Subproblem 1 which tries to promote as few nets as possible to higher layers. Besides promoting

timing-critical nets, this step also promotes non-timing-critical nets for potential buffer savings.

The positive slack of a net under the linear delay model is obtained assuming optimal buffering

with the current directive, and if it is promoted to higher directives, fewer buffers will be required

to keep the positive slack.

Subproblem 2 can be formulated as follows. Given a circuit, a congestion constraint and a

group of nets with initial directives, try to maintain as many of the initial directives as possible,

and further promote as many nets as possible to higher directives to maximize the sum of

scores of the promoted nets. Here, the score of a net is used to quantify the benefits in timing

improvement and buffer savings by promoting it to a higher layer. In this work, as a first attempt,

we simply use the following score function for net ni:

w(ni) = exp(−s(ni)/Tc), (3.1)

where s(ni) is the worst slack of all the sinks of ni, and Tc is the clock period used for

normalization.
3The slack of a net is the worst slack of all the sinks of the net.

57

Next, we will first present the overall algorithm to solve Subproblem 2 in Section 3.5.1,

and then discuss two important procedures used in our algorithm in Section 3.5.2 and 3.5.3,

respectively.

3.5.1 Overall algorithm for Subproblem 2

In this section, we will introduce the algorithm for Subproblem 2. For convenience of later refer-

ence, we refer to our algorithm as CADA (Congestion and timing Aware Directive Assignment).

A key function of CADA is to control congestion, which is achieved by performing 2D directive-

aware routing and directive assignment. In this work, a 2D-routing engine adapted from MaizeR-

outer [48] is used but the maze routing in MaizeRouter is replaced by extreme edge shifting (refer

to [48] for details about this technique) to improve the speed; however, it should be pointed out

that our flow can work with any other 2D routing engine. To deal with directives in 2D routing,

we use the progressive projection method in [56] as discussed in Sec. 3.2.2. In the LDA problem

formulation, the constraint on congestion requires gLDA ≤ βgorg. To consider this directly

inside CADA, it is necessary to invoke global routers before and after LDA. However, this may

be inefficient. Instead, for simplicity, we use a conservative method to control congestion: a

net can be promoted to directive Dj only if routing a net in this directive causes zero overflow;

otherwise, the net will stay in the lowest directive D1. Note that in the solution of Subproblem 1,

this strategy is not used since the congestion of a net at that step cannot be efficiently obtained.

The basic flow of CADA is shown in Fig. 3.4. CADA has three stages: initial directive

adjustment, greedy directive assignment and directive assignment refinement. First, the initial

directive assignment from the timing-driven directive assignment step (Sec. 3.4) is re-evaluated

in terms of congestion. At the allowable congestion level, we will try to maintain as many initial

directives as possible, and demote the nets to lower directives if the initial assignment causes

congestion. The purpose of the second stage is to assign/promote as many nets as possible to the

higher directives to further improve timing and reduce potential buffer usage. The goal of the

third stage is to verify the effects of directive assignment on congestion and to fine-tune the layer

directives by performing a trial routing process with the directive assignment.

As stated earlier, at the first stage, only the nets with initial directives from the timing-driven

directive assignment step are processed. With the progressive projection method, the nets with

top directive DM will be routed first. After 2D-routing, we will first sort these nets by their

scores as defined in (3.1), and then process the nets one by one. We first attempt to assign a

58

DAA

For each directive Dj in DL

Progressive projection on Dj

2D-routing

Prepare directive list

DL={D1, D2, …, Dm-1, Dm, Dm-1, …, D2}

Dj==D1?
NoYes

General layer

assignment

Directive

assignment

refinement

Greedy

directive

assignment
DAA

Plane projection

2D-routing

Initial

directive

adjustment Directive assignment adjustment (DAA)

Progressive projection

2D-routing

Figure 3.4: Basic flow of congestion- and timing-aware directive assignment.

59

net to its initial directive, and then check the congestion. If no congestion violation is found,

this net will be marked to be assigned to that directive; otherwise, an attempt to assign it to

lower directives will be made until a directive without causing congestion is found, or the lowest

directive D1 is reached. This procedure to find the best directive with an initial target directive

is called Directive Assignment Adjustment (DAA), and will be discussed in more details in

Sec. 3.5.3. After the nets with DM are all routed, we repeat a similar process for nets with

directiveDM−1. This process iterates until all the nets with initial directives are processed. Since

the nets with initial directives are the most timing-critical nets, and their number is typically

relatively small as compared to the total number of nets, the wiring resources consumed by these

nets are locked down after this step, which means that their routing paths will be kept in the 3D

GRG and not be changed in later stages.

The second stage works on the nets without initial directives, with the goal to maximizing

the sum of timing scores of nets promoted to directives higher than D1. First, all of the layers

are projected to a 2D GRG and 2D-routing is performed. Next, we perform directive assignment.

Here we use a greedy method. First, all the nets without directives are sorted by their timing

scores in a decreasing order, and then in this order, each net is tried to be promoted to higher

directives. For each net, directives are tried one by one from DM to D1. This trial repeats until a

directive without causing congestion is found, or the lowest directive D1 is reached. This process

is performed by calling DAA procedure on each net with DM as the initial target directive. The

intuition is that we first assume all the nets can be greedily assigned to the highest directive DM

and then call the DAA procedure to find the best directive for each net under the congestion

constraints.

The third stage fine-tunes the layer directives obtained from the second stage. After the

second stage, a large number of nets could have been promoted to directives higher than D1.

Note that at the second stage, when performing 2D routing on these nets, no directives are

assumed and the routing resources from all the layers can be used to route them. In the third

stage, these nets are constrained by their directives, and then the previous unconstrained 2D

routing results become inaccurate. Therefore, we must reroute some nets, and we do so using

the progressive projection method. As suggested by [56], we should route the nets in the order:

DM →DM−1· · · →D1. However, we find this order is not appropriate for the purposes of

directive refinement. This can be illustrated by the following example, which shows the impact

of net ordering. Consider a net A that has a small timing score and is left with directive D1. It

60

sits on top of a routing blockage and the only possible route for this net is to route on layers in

D3 passing a g-edge e with only one available track. Another net B, which was not assigned

with a layer directive from the timing driven directive assignment step but has a higher score than

net A, may have two possible routes to choose: one passing through the same g-edge e using D3,

and another taking a path in directive D2 without creating overflow. When B is processed during

greedy directive assignment step, the information of net A is not seen since net B has a higher

score than net A, and B is assigned to D3. In this scenario, if we route the nets with directive

D3 including B first, B will take the pass through e in D3. Then later when net A with directive

D1 is routed, an overflow is created. In contrast, if we route A with directive D1 first, A will

take resource on g-edge e, and then B would be re-assigned to D2 and no overflow is created.

Therefore, we proceed in the order D1→D2· · · →DM−1→DM→DM−1· · ·→D2 at the

stage of directive assignment refinement. We explain this using an example with three directives.

We will first route the nets with directive D1 and then perform general layer assignment (to

be discussed in Section 3.5.2) without promotion and demotion. Next, we will route the nets

with directive D2 with the solution from previous step treated as existing wires. Then we will

perform DAA for nets with directive D2 to adjust the existing directive D2, i.e., demote a net

to D1 if congestion occurs. Since the nets with directive D1 have been routed and their routing

solutions can be seen now, the directive adjustment for the nets with directive D2 will be more

realistic than that in the D3→D2→D1 flow. After demotion for the nets with directive D2

finishes, we start the same process for the nets with directive D3, with all the previous routing

solutions treated as existing wires. After routing pass D3 completes, we need to rip-up-reroute

all the nets with directive D2 and call DAA for them again including some nets just demoted

from D3, with existing wires from the nets with directives D1 and D3. Since our purpose is to

generate layer directives and not to perform routing, we do not need another pass D1 to reroute

the nets in that directive.

3.5.2 General layer assignment

In the third stage, general layer assignment will be performed for the nets with directive D1

without layer directives. Our goal is to minimize the number of vias and keep the overflow

for the 3D GRG the same as that for the 2D GRG. Several layer assignment algorithms have

been proposed in the literature [10, 12, 64]. For ease of implementation, we use a greedy layer

61

assignment algorithm, but note that any of the existing layer assignment can be used in our

framework.

We first sort all the nets by the total wirelength in the nonincreasing order, and then perform

layer assignment for each net in the order. The reason for this ordering is that generally, the nets

with larger wirelength will take more routing resources, which implies less flexibility in layer

assignment, and then should be processed earlier. For each net ni, we will loop through each

segment s on the routing path of ni. For each segment s, we will first try to find a layer which

can hold it without overflow. If such a layer cannot be found, we cut the segment and find the

best layer for each edge on the segment. The best layer here is the lowest layer on which there

is no overflow, or on which congestion is smallest among all the layers if all the layers have

overflows. Here, we will try to assign these nets to lower layers first, since no layer directives

will be assigned to them and assignment to higher layers is a wasteful use of resources there.

Moreover, trying to use lower layers tends to help reduce the via count.

3.5.3 Directive assignment adjustment (DAA)

This procedure is an important procedure in our algorithm, and is used in all the three stages to

adjust the given directive of a net. The inputs are a net ni and its initial target directive Dj , and

the output is the adjusted directive Dk. Given a net ni with its initial target directive Dj , DAA

will first attempt to assign the net to the layers specified by Dj using the general layer assignment

procedure, with two differences. First, this method uses a constrained layer range, rather than

allowing assignment to any layer. Second, the purpose of this attempt is just to quickly check

whether this assignment will cause overflow, and therefore, this attempt assignment will stop at

once if overflow is found on a g-edge, instead of continuing to complete the assignment of the

whole net. If the attempt of assigning ni to Dj finally succeeds without overflow, the routing

resources consumed by the net will be added to 3D GRG, and directive Dj will be returned

as the adjusted directive for ni. Otherwise, Dj−1 will be tried with the same procedure. This

process repeats until ni can be assigned to a directive Dk without overflow, or the directive D1

is reached.

62

3.6 Experimental results

CATALYST has been implemented using C++ and Tcl (tool command language) in an industrial

physical synthesis tool. This section presents the experimental analysis on a set of advanced

industrial designs described in Table 3.1. The first four letters of the circuit name explains

its technology node. The circuits with “top” in the names are top-level designs (designs at

the first level hierarchy where a majority of gates are buffers), while the rest of circuits are

random-logic macros. All the experiments run on 64-bit Linux servers with 4 octa-core CPUs

(Intel R© Xeon R© X7560 2.27 GHz). In our experiments, the parameters used in the stopping

criterion of CATALYST are: θ = 10% and nitr = 2.

Table 3.1: Information for benchmark circuits. The column “Thick layers” lists the distribution

of thick layers.
Circuits #gates #nets Thick layers

cu32top1 329,082 467,889
[M6, M7]: 2X; [M8, M9]: 4X;

[M10, M11]: 16X

cu32rlm2 1,392,744 1,505,994 [M6, M7]: 2X; [M8, M9]: 4X;

cu32rlm3 892,452 935,582 [M6, M7]: 2X; [M8, M9]: 4X;

cu45top1 45,655 76,062 [M6, M8]: 2X; [M9, M10]: 10X

cu45rlm2 2,464,339 2,555,753 [M6, M8]: 2X; [M9, M10]: 10X

cu45rlm3 1,282,736 1,405,029 [M6, M8]: 2X;

cu65rlm1 895,334 916,865 [M5, M7]: 2X; [M8, M9]: 4X

We first demonstrate the immediate impact of CATALYST on timing and congestion by

comparing different LDA algorithms in Section 3.6.1, and then present the impact of CATALYST

in the physical synthesis flow in Section 3.6.2. A full-blown industrial global router using a

different routing algorithm than that used in CATALYST, is used to evaluate the congestion using

the PWC metric. Note that in all of our experiments, some routing resources are reserved for

the power grid and for clock routing. In addition, all timing numbers are generated using an

industrial static timing analyzer.

63
Table 3.2: Comparison among baseline, CATALYST (CATA in short) and simpLDA. Timing metrics are computed with the linear

delay model. rnet is the percentage of nets promoted to thick layers, and rwl is the percentage of the routed wirelength of these nets

to the total wirelength.

Circuit
WSLK (ns) FOM (ns) nneg PWC (%) rnet (%) rwl (%)

Base CATA simpLDA Base CATA simpLDA Base CATA simpLDA Base CATA simpLDA CATA CATA

cu32top1 -14.46 -11.56 -2.95 -44794.2 -16870.0 -2118.6 87739 36270 22339 96.83 94.97 127.56 30.52 52.39

cu32rlm2 -1.93 -1.76 -1.78 -8861.6 -1031.6 -617.4 17547 7414 4093 88.49 89.87 295.58 5.67 24.41

cu32rlm3 -1.51 -0.41 -0.37 -5125.0 -264.1 -183.1 19175 2763 1626 87.42 88.36 198.39 8.63 36.11

cu45top1 -2.41 -2.39 -2.17 -2513.0 -2074.1 -1985.5 3026 967 960 87.44 86.95 121.62 46.49 73.76

cu45rlm2 -1.48 -0.74 -0.30 -2464.1 -134.1 -38.0 10359 1055 398 87.13 87.51 N/A 12.01 30.20

cu45rlm3 -0.33 -0.05 -0.05 -583.6 -4.7 -4.7 7600 258 258 87.58 87.26 N/A 19.41 24.05

cu65rlm1 -1.00 -0.37 -0.37 -726.8 -94.4 -113.5 7521 1323 1368 89.92 89.85 661.32 17.34 43.92

Average 0 0.84 2.16 0 6370.8 8572.5 1 0.23 0.16 1 1.00 3.13 20.01 40.69

Table 3.3: Comparison among baseline, CATALYST (CATA in short) and NoDA physical synthesis flows.

Circuit
WSLK (ns) FOM (ns) nneg PWC (%) Buffer area (×106) CPU time (h)

Base CATA NoDA Base CATA NoDA Base CATA NoDA Base CATA NoDA Base CATA NoDA Base CATA NoDA

cu32top1 -2.94 -2.96 -9.90 -2488.75 -2564.09 -23497.00 21982 21251 73652 90.13 90.05 72.61 9.54 7.78 14.43 59.7 44.7 60.2

cu32rlm2 -0.16 -0.14 -0.52 -18.87 -7.93 -1333.68 783 442 7001 88.02 87.70 88.51 0.82 0.78 1.17 34.1 42.4 53.0

cu32rlm3 -0.04 -0.02 -0.78 -0.15 -0.03 -408.34 6 2 2004 87.53 87.66 93.37 1.03 0.93 1.58 17.3 19.2 22.0

cu45top1 -2.42 -2.42 -2.60 -2139.97 -2130.29 -3187.95 963 963 4720 80.70 81.07 73.73 2.46 2.09 2.91 10.6 11.9 10.2

cu45rlm2 -0.34 -0.38 -1.45 -23.03 -17.03 -5258.76 336 109 21037 87.39 86.78 87.13 4.00 3.55 4.67 63.8 67.1 76.7

cu45rlm3 -0.05 -0.05 -0.35 -12.01 -3.37 -512.86 521 163 6924 87.96 87.85 89.15 3.99 3.85 4.75 37.5 41.5 54.6

cu65rlm1 -0.24 -0.24 -0.75 -4.30 -4.21 -68.38 153 154 749 89.79 89.57 91.94 1.21 1.15 1.53 15.3 17.1 19.3

Average 0 0.00 -1.45 0 -5.69 -4225.70 1 0.64 61.71 1 1.00 0.98 1 0.90 1.32 1 1.07 1.24

64

3.6.1 The immediate impact of CATALYST

We compare three cases here, just before the global buffering phase: first, the traditional flow

with no LDA (baseline); second, the results of CATALYST (denoted as “CATA”); and third, the

results of an alternative LDA method (simpLDA). For the third set of results, since no public

tools to generate layer directives are available, we create a simple layer directive assignment

algorithm, simpLDA, which promotes nets only based on their worst slacks. We first sort all the

nets based on their worst slacks in increasing order, and then promote the first nM nets to the top

directive DM , the next nM−1 nets to the directive DM−1, and so on. For a fair comparison, we

ensure the number of nets promoted to each directive is the same for simpLDA and CATALYST.

In this set of experiments, given the same placements, we run simpLDA and CATALYST and

then evaluate the timing and congestion. Since this is done before global buffering, the linear

delay model is used in computing all the timing metrics in this set of results.

Table 3.2 presents the comparison of timing and congestion results among the three cases,

which shows the state just prior to global buffering. The row “Average” lists the average on

differences from baseline (for WSLK and FOM), or the ratios to baseline (for nneg and PWC),

or real values (for rnet and rwl) over all the circuits. The congestion entries shown as “N/A”

(“not available”) correspond to cases where global routing cannot finish after running 6 hours

due to high congestion and is terminated manually. On average, CATALYST improves WSLK

by 0.8 ns, improves FOM by 6370.8 ns, and reduces nneg by 77%, while maintaining similar

congestion to the baseline. On the other hand, although simpLDA improves the timing more

than CATALYST, it degrades the congestion significantly. Fig. 3.5 shows the congestion plots for

baseline, CATALYST and simpLDA on cu45top1. From the pictures, we can see that even after

promoting 46% nets to higher directives, the congestion of CATALYST is still similar to that of

baseline, while that of simpLDA is much worse. The analysis demonstrates the effectiveness

of CATALYST in improving timing and controlling congestion. Though simpLDA promotes

the same number of nets as CATALYST, the congestion is quite different, which shows that

assigning which nets to higher directives/layers is important, and improper choices can choke

the router.

65

(a) Baseline. (b) CATALYST. (c) simpLDA.

Figure 3.5: Congestion plots for cu45top1 (the color map used is the same as that in Fig. 2.1(a)).

3.6.2 The impact of CATALYST in the flow

This section discusses the impact of CATALYST when embedded in the physical synthesis flow.

We compare three flows: baseline flow (Fig. 3.2(a)) that integrates the directive assignment

algorithms from [18] in the global buffering stage, CATALYST flow (Fig. 3.2(b)) that adds

CATALYST to the baseline flow after placement stage, and an altered flow that removes the two

sets of directive assignment algorithms, denoted as “NoDA” flow. Note that the baseline flow is

the state of the art, corresponding to a relatively recent paper [18]. Prior to this, a NoDA-like flow

was widely used and possibly is still in use. The comparison with NoDA highlights the impacts

of directive assignment and reveals some data not found in the previous papers including [18],

such as the overall impact of directive assignment through the design flow. Here simpLDA is not

tested in the whole flow since it has already been seen to provide unacceptably high congestion.

For runtime consideration, we stop the flows after global routing, and then evaluate the timing

and congestion of the designs. At this stage, the accurate RICE model is used in timing analysis.

Table 3.3 presents the comparison of timing, congestion, buffer area, and CPU time at the

end of different flows. The row “Average” lists the average on differences from baseline (for

WSLK and FOM) or the ratios to baseline (for all other metrics) over all the circuits.

We first compare the CATALYST flow with baseline. Though WSLK and FOM are quite

similar for two flows, the CATALYST flow reduces the nneg by 36% on average, which indicates

fewer further efforts are required to finally close timing. Moreover, the CATALYST flow can

66

reduce the buffer area by 10% on average and up to 18%4. This indicates that the timing

optimization techniques later in the baseline flow, other than CATALYST, can also achieve

similar WSLK and FOM to the CATALYST flow, but with an expense of inserting more buffers,

and a series of other consequences such as higher cost, larger power, etc. We also observe

that the buffer saving tends to be larger for the top-level designs than macros (17% vs. 7% on

average), since in top level designs, a larger portion of nets are very long nets, and without

layer directive assignment, more buffers have to be inserted to close the timing. Furthermore,

the CATALYST flow achieves similar congestion to baseline, which demonstrates again that

CATALYST has good control on the congestion. Finally, the runtime of CATALYST flow is

7% more than baseline on average, and even for the absolute values, the runtime of CATALYST

flow is still acceptable in practice. Note that for cu32top1, CATALYST runs 15 hours faster than

baseline. This indicates that for some designs, a better initial solution obtained by CATALYST

can speed up the later optimization stages significantly.

Next we further compare NoDA flow with the other two. The timing, buffer area and runtime

of NoDA flow are significantly worse than those of the other two flows. Compared with the

CATALYST flow, NoDA requires 47% more buffers (or CATALYST flow could save 31% than

NoDA) on average.

The analyses above clearly show the impact of CATALYST: it can improve the timing and

greatly reduce the buffer area. Since buffers could account for more than 20% of the gates in a

modern design [58], the reduction of buffer usage can significantly decrease the design power

and cost, and improve the design closure.

3.7 Conclusion

The availability of multiple thick metal layers provides a new dimension in timing optimization

besides gate/wire sizing and buffer insertion, but the thick layers are underused due to the lack of

effective CAD tools. To solve this problem, we have formulated the LDA problem and solved it

using a two-step algorithm. First, a greedy heuristic is used to promote only the timing-critical

nets to thick layers regardless of congestion. Second, the layer directives from first step are

adjusted considering real congestion, and the algorithm further promotes as many nets as possible

to the thick layers according to their timing scores. The congestion control in the algorithm is
4There are some buffers that are fixed in the designs and cannot be changed.

67

implemented based on a trial layer assignment process along with the embedded routing engine.

Moreover, based on our algorithm, we have proposed a new physical synthesis flow by adding a

CATALYST stage to the old flow before global buffering. Experiments have been conducted

to test our algorithm and flow on a set of industrial designs from different technology nodes

including top level designs and random logic macros. The results have demonstrated that our

algorithm could promote 20% of the nets to thick layers without worsening the congestion and

the flow with CATALYST could improve the nneg by 36% and reduce the buffer area by 10% on

average.

Chapter 4

Dummy Fill Optimization for
Enhanced Manufacturability

4.1 Introduction

As mentioned in Section 1, CMP is used to achieve the planarization on the wafer. In nanometer-

scale IC technologies, variations in the CMP process represent a significant potential source of

yield loss. For example, oxide CMP is used to polish the ILD layer to ensure a near-planar surface

before depositing and patterning a metal layer. If significant surface topography variations are

seen after this process, then the depth of focus in lithography is affected, which in turn leads to

variations in the critical dimension [3], resulting in performance degradation and yield loss. In

order to improve the quality of CMP, in addition to the metalized interconnects that serve an

electrical function, dummy features are typically added to the layout to control the variation in

the post-CMP topology [65]. A dummy feature, also referred to as dummy fill, may either be

connected to power/ground (tied fill) or left floating (floating fill), and lead to increased parasitic

capacitance in the layout. Floating fill increases the coupling capacitance uncertainty and can

lead to signal-integrity issues, while tied fill reduces this problem, but results in high routing

costs, increasing the likelihood of requiring engineering change orders [3]. Therefore, it is

desirable to reduce the volume of dummy fill inserted into a layout.

It is known that the post-CMP ILD thickness is linearly determined by the effective pattern

density (EPD) of the layout [5]. The EPD is formally defined in Section 4.2, but coarsely speaking,

the EPD at a given location is a weighted average of the wire density in its neighborhood. If

68

69

the EPD can be made more even throughout the layout, the variation of the ILD thickness after

CMP can be reduced, leading to a reduction in the amount of dummy fill. Since routing plays a

very major role in deciding the spatial distribution of wires in the layout, a good way to achieve

greater uniformity in the EPD is to leverage the router in ensuring that the density after routing is

as uniform as possible, while meeting other traditional routing objectives.

Several routing algorithms considering wire distribution have been proposed in the literature.

The algorithm in [66] is among the first to incorporate CMP variation into a routing algorithm,

and it proceeds by attempting to balance the initial pattern density (IPD) to decrease CMP

variation. The IPD is formally defined in Section 4.2, and is essentially the wire density. A

global routing algorithm considering Cu CMP variation is proposed in [31], using an empirically

developed predictive CMP density model from industry. As pointed out in [67], the algorithms

in [31, 66] attempt to optimize CMP variation by only considering the IPD inside a routing

tile/grid, which is not a right metric for CMP control, since the topographic variation is a long

range effect that is affected by the IPD in neighboring tiles. In [67] a multilevel routing algorithm

for oxide CMP variation is presented, using the IPD gradient as an optimization objective.

However, this objective also suffers from significant limitations, as demonstrated by an example

in Fig. 4.1, which shows two different layouts of an illustrative circuit. Layout II shows larger

IPD gradients, but due to averaging effects (the size of weighting window, defined in Section 4.2,

is 5 tiles for each layout), the EPD/CMP variation is smaller. This indicates that the gradient

of the IPD may not be a good metric in the optimization of CMP variation. This claim will be

demonstrated experimentally in Section 4.6. In essence, the methods in [31, 66, 67] attempt to

decrease the variation of CMP only according to the IPD in a tile and its immediate neighbors.

However, metrics such as the IPD and the IPD gradient are only indirect measures of the EPD,

and their ability to optimize CMP variation is likely to be inferior to an approach that addresses

the EPD variation more directly.

In addition, two routing algorithms considering EPD optimization directly have been pre-

sented [68, 69]. In [68, 69], the EPD is taken as part of the cost of a routing tile directly. While

this is better than using the IPD in the cost function, the approach only considers the EPD inside

a tile ti as a route passes through ti, but the impact of this route on the EPD of neighboring

tiles is not considered in the cost function. Moreover, the amount of dummy fill is not directly

optimized as an objective of routing. These factors limit the effectiveness of the optimization.

70

(a) Layout I: IPD gradient ≤ 0.05. EPD variation
= 0.209.

(b) Layout II: IPD gradient ≥ 0.10. EPD varia-
tion = 0.089.

Figure 4.1: IPD and EPD topographies for Layout I and II. Layout I has smaller IPD gradients,

but larger EPD variation.

This chapter proposes a global routing algorithm that incorporates the optimization of oxide

CMP variation, in addition to the usual routing objectives. Our goal is to minimize the required

dummy fill under an accurate oxide CMP model [5], and we demonstrate, both theoretically

and through experiments, that a good surrogate for this objective is to minimize the maximum

EPD during routing. We elaborate cost functions to achieve this goal, and build a router that

attempts to minimize the maximal EPD in routing. Our router is based on NTHU-Route 2.0 [11],

which will be introduced in Section 4.3. Experimental results demonstrate that our algorithm can

reduce the dummy fill substantially.

The remainder of this chapter is organized as follows. We introduce the global routing model,

CMP model, and CMP dummy fill methods in Section 4.2. Next, the algorithm of NTHU-Route

2.0 is reviewed in Section 4.3, and the flow of the proposed routing algorithm, considering

minimization of dummy fill, is described in Section 4.4. The cost function that guides the routing

process is presented in Section 4.5. Experimental results are then reported and analyzed in

Section 4.6. Finally, a conclusion is provided in Section 4.7.

71

4.2 Preliminaries

The goal of our global router is to optimize the overflow1, wirelength, and the amount of dummy

fill, D, inserted for CMP planarization. Like most global routing approaches, our approach

tessellates the chip into nr × nc grids, and constructs the GRG as illustrated in Fig. 2.3. In this

chapter, we will continue using the definition of overflow and related symbols in Section 2.2.

In relation with the dummy fill metric, D, we define the initial pattern density (IPD) in a

region as the ratio of the area of metal in the region to its total area. In our routing model, we

assume reserved horizontal/vertical routing layers, and separately consider routing edges in the

horizontal and vertical directions. In practice, since our algorithm will associate the increase in

the EPD with edges of the GRG, we use a shifted grid for CMP computations. On the horizontal

layer, each CMP grid/tile around an edge e has the same size as a GRG grid, but is centered

about the edge instead of the vertex (i.e., it is offset to the right by half a grid relative to the GRG

grid centered at the left endpoint of e). A CMP tile on the vertical layer is similarly defined.

Next, we introduce the oxide CMP model in [5]. Fig. 4.2 shows a schematic that describes

the primary variables used in this model, which defines the ILD thickness z at location (x, y) in

the layout. This can be calculated using the following formula:

z =

z0 − [Kτ/ρ(x, y)] τ ≤ (ρz1/K),

z0 − z1 −Kτ + ρ(x, y)z1 τ ≥ (ρz1/K),
(4.1)

where K is the blanket oxide polishing rate, z0 is the thickness of oxide deposition, z1 is the

initial step height, τ is the total polish time, and ρ(x, y) is the EPD in location (x, y) before oxide

CMP. The variables K, z0, z1 and τ are assumed to be constants for a specific CMP process.

Generally, the total polish time τ is larger than (ρz1/K), and therefore, the final oxide

thickness z is between 0 and (z0 − z1). As a consequence, the final ILD thickness in different

locations has an affine relationship with the EPD in that location. The effective pattern density

(EPD) can be calculated by convolving the IPD with the weighting function [5]:

f(x, y) =
1

2πσ2
exp

(
−x

2 + y2

2σ2

)
. (4.2)

1In the work presented in this chapter, we use overflow metrics instead of the ACE metric proposed in Chapter 2,

since this work was done before we proposed ACE metric and we have not had a chance to reevaluate the congestion

using ACE metric.

72

Figure 4.2: Depiction of the primary variables in the oxide CMP model [5].

Here, f(x, y) is a Gaussian function with standard deviation σ. This function can be discretized

to the tile grid, and truncated beyond a weighting window of size L×L distance units, equivalent

to (2l+ 1)× (2l+ 1) tiles. For this Gaussian function, σ = L/2, equivalent to b(2l+ 1)/2c tiles,

and the value of f(x, y) will be truncated to 0 beyond the weighting window. If we discretize

the value of the weight function in tile tij to f(i, j), and denote the IPD of tij as dij , then the

EPD of tij , ρij , can be calculated by a circular convolution as [44]:

ρij =

l∑
n1=−l

l∑
n2=−l

di+n1,j+n2 × f(n1, n2). (4.3)

Thus, the EPD of a tile is calculated as a weighted sum of IPDs.

Dummy fill optimization inserts the minimum fill, D, to ensure a spatially even EPD, i.e.,

ran(ρ) = ρH − ρL ≤ ε, (4.4)

where ε is a user-specified parameter, and ran(.) is an operator that finds the range of a function,

i.e., the difference between its maximum and minimum. Here, ρH (ρL) is the maximum

(minimum) value of the EPD, ρ, over the layout.

Methods for dummy fill insertion can be classified into two categories: rule-based and

model-based. Rule-based methods reduce the CMP variation by inserting dummy fill to ensure

that the IPD in each region meets a certain threshold. While these methods are simple to execute,

they are heuristic in nature and do not guarantee optimality. Model-based methods use CMP

models such as the one introduced above, and directly optimize the variation of the EPD globally

based on the model. These methods are more computational, but can use a significantly lower

amount of dummy fill [44]. The work in [44] presents a linear programming based algorithm to

73

optimize the total amount of dummy fill, D, with constraints on ran(ρ). In this chapter, we use

D as the metric to evaluate the different global routing solutions, and for convenience, we use

the density of dummy fill, i.e., the ratio of the area of dummy fill to the total area of the layout,

instead of the area of dummy fill, to measure D.

4.3 Previous work

Our routing algorithm is based on NTHU-Route 2.0 (NTHR) [11], which is briefly reviewed in

this section. There are four stages in the NTHR algorithm: the initial stage, the main stage, the

refinement stage, and the layer assignment stage.

The purpose of the initial stage is to generate an initial global routing solution. First, a

multi-layer design is projected to a 2D plane, and then FLUTE [70] is used to decompose each

multi-pin net into a set of two-pin nets. Next, NTHR sets up the probabilistic congestion map

by adding half a unit of demand to each edge on the two probabilistic L-shape routes, or a full

demand to each edge on a straight route. Then the topology of every multi-pin net is modified

using the edge-shifting technique [27]. Finally, every two-pin net is routed by L-shaped pattern

routing. During this stage, the cost function in [27] is used to calculate the cost of an edge:

C′e = 1 +
p3

1 + e−p4(ue−ce)
, (4.5)

where p3 and p4 are user-defined parameters. In NTHR, p3 = 0.8, p4 = 2.

In the main stage, the initial solution is improved by iteratively ripping up and rerouting

(RRR) every congested two-pin net. A two-pin net is considered to be congested if there are

one or more overflowing edges on its path. NTHR uses a technique of identifying congested

regions to choose the ordering for RRR. In the RRR process, each ripped-up two-pin net is

first rerouted by monotonic routing [27], and then by the adaptive multi-source multi-sink maze

routing method, if an overflow-free path cannot be found by monotonic routing. The RRR

process is repeated until the total overflow is no more than a predefined threshold or the number

of iterations reaches a predefined value. A history-based cost function is used in this stage, and

the basic form is as follows:

C′′e = Xe ×Be +He ×Ge + Ve ×Be, (4.6)

where C′′e is the cost of edge e; Xe is the wirelength cost, which is set to 1 since the wirelength

will increase by 1 when a net is routed through e; He ×Ge is congestion cost, He is the historic

74

overflow term and Ge is the penalty cost (refer to [11] for details); Ve is via cost; Be is a factor

defined as follows:

Be = 1− e−αe−βi , (4.7)

where α and β are user-defined parameters, and i is the current iteration count. In NTHR, α = 5,

and β = 0.1. Thus, Be will be bounded between 1 and 0, and will decrease as i increases. By

incorporating Be into the wirelength cost and via cost, the congestion cost will gradually take

the dominant role in the total cost as the iteration number increases, which is helpful for NTHR

to obtain paths without overflow.

The main purpose of the refinement stage is to search an overflow-free path for every

congested two-pin net, which is adapted from the main stage with the following two major

differences. First, while in the main stage, the congested region identification technique is used

to determine the RRR order, in the refinement stage, NTHR rips up and reroutes every congested

two-pin net in the nonincreasing order of the number of overflowed edges on the path of the net.

Second, the cost of an edge e is defined as follows:

C′′′e =

1 if edge e has overflow,

0 otherwise.
(4.8)

For multi-layer designs, the layer assignment stage is performed to map the routing solution

from the projected 2D plane to the original multiple layers with the algorithm in [64].

4.4 The flow of the CMP-aware routing algorithm

There are two major differences between the proposed routing algorithm and the original NTHR.

Firstly, we augment NTHR so that the router becomes CMP-aware. We study several possible

metrics related to dummy fill and their correlations with the amount of inserted dummy fill, D,

and then through a set of theoretical analyses and experiments, we develop a surrogate metric

ρH for minimizing D. Based on the surrogate metric, we elaborate effective cost functions to

be integrated into NTHR to perform dummy fill optimization by minimizing ρH . A detailed

presentation of the surrogate metric and the cost functions used to guide dummy fill optimization

is provided in Section 4.5.

75

Secondly, we add another stage after the refinement stage in order to reduce ρH and thus

reduce D further by ripping up and rerouting the nets passing through the tiles related to ρH2.

This stage, which we call the EPD postprocessing stage, has the following steps. We initially

identify the tile tk that has the maximum EPD in the layout, and then find all the two-pin nets

whose paths pass through the edges in the weighting window of tk. Note that the maximal EPD

is attributed not only to wires in tk but also to wires in other tiles within the weighting window

of tk. Next, we sort all of these two-pin nets in nonincreasing order of the minimal distance of

the two pins to tk. The motivation is that for the two-pin nets further from tk, it should be easier

to find an alternative path that does not pass through the weighting window of tk. In case of

ties, we employ other sorting criteria, such as the number of edges that are both in the weighting

window of tk and on the path of a two-pin net, and the total overflow along the path of a two-pin

net.

After this step, we rip up and reroute the nets one by one using a method adapted from the

refinement stage of NTHR. The goal is to find a path to decrease ρH , and at the same time ensure

that the overflow is not increased. The cost function used here will be introduced in Section 4.5.3.

In the RRR process, once ρH is decreased sufficiently, and the tile with new maximum EPD is

different from tk, a new iteration will start; otherwise, if ρH can not be decreased after trying all

the two-pin nets identified in an iteration, this stage stops. In practice, to control the runtime,

we monitor the improvement in ρH , and if its percentage reduction over the past Nstop RRR

iterations is smaller than εstop, we stop this stage. We calibrate reasonable values of these

parameters as Nstop = 100 and εstop = 1%. In an iteration, after rerouting a net, if ρH or total

overflow becomes larger than that before ripping up the net, its original routing path is restored.

In rare instances, there may be more than one tiles with EPD equal to ρH . In this case, we

just first process the tile found first in the algorithm. Then after a couple of RRR operations, it is

likely that the EPD of this tile becomes smaller than ρH , and next we process another tile with

EPD equal to ρH . In other words, the tie is broken arbitrarily, and then the other tile(s) with the

same EPD will be considered soon in a subsequent iteration.
2In other stages, we do not adopt this measure to reduce ρH , but integrate the dummy fill cost function into the

router to minimize ρH , because routability has the highest priority at those stages.

76

4.5 Cost function

The success of the routing framework is critically dependent on the choice of a cost function. It

is vitally important for the cost function to be computationally easy to evaluate, and yet hold

enough fidelity to capture a more complex underlying objective that it represents. Therefore, we

elaborate efficient and effective cost functions to achieve our goal.

To address the new objective of minimizing D, we define Φe as the dummy fill cost of edge

e, which will be integrated to the original cost function used in NTHR. The remainder of this

section will first discuss the computation of Φe, and then describe how it is used at various stages

of the routing process.

4.5.1 Finding a surrogate for the dummy fill cost

Our cost function requires the computation of Φe, which is related to the dummy fill metric, D.

The direct calculation of D is highly computational [44], and therefore, we have to find a metric

which correlates well with D and is easy to use in the routing process.

As a first step, we present a metric Γ that is linearly related to D:

Γ =
∑
tij∈Q1

(ρU − ρij), (4.9)

where ρU = ρH − ε, which is the lower bound on the EPD after a dummy fill procedure achieves

the constraint described in (4.4), and Q1 is the set of tiles for which ρij < ρU before inserting

dummy fill. For these tiles, ρij must be increased by inserting dummy fill. Note that unlike

ran(ρ), which merely captures the difference between the maximum and the minimum values of

ρ, but is insensitive to the distribution of ρ within this range, the metric Γ captures the distribution

of ρ over all the related tiles.

We will now present results that link Γ to D.

Lemma 4.1. Given a weighting function f(i, j) whose value is truncated to 0 outside the

weighting window,

∑
all tij

ρij = b
∑

all tij

dij ,where b =

l∑
i=−l

l∑
j=−l

f(i, j).

77

Proof. From (4.3), we have

∑
all tij

ρij =
∑

all tij

 l∑
n1=−l

l∑
n2=−l

(
di+n1,j+n2f(n1, n2)

)
= f(−l,−l)

∑
all tij

di−l,j−l + · · ·+ f(l, l)
∑

all tij

di+l,j+l.

For circular convolution,
∑

all tij

di+p,j+q =
∑

all tij

dij , ∀p, q ∈ Z. Therefore,
∑

all tij

ρij =

f(−l,−l)
∑

all tij

dij + f(−l,−l + 1)
∑

all tij

dij + · · ·+ f(l, l)
∑

all tij

dij = b
∑

all tij

dij .

The above lemma may be used next to show a key result that drives our approach.

Theorem 4.1. Let Q0 be the set of the tiles with EPD no less than ρU before dummy filling, and

Q1 be the complement of Q0. Let d′ij (ρ′ij) be the IPD (EPD) of tij after dummy filling, and let

µ =
∑
tij∈Q0

(ρ′ij − ρij),

ν =
∑
tij∈Q1

(ρ′ij − ρU).

Then

D = c (Γ + µ+ ν) , (4.10)

where c = 1/b > 0, and b is defined in Lemma 4.1.

Proof. By definition, D =
∑
tij∈Q

(d′ij − dij), where Q = Q0 ∪Q1. By Lemma 4.1 and consider-

ing Q0 ∩Q1 = φ,

D =
1

b

∑
tij∈Q

(ρ′ij − ρij)

=
1

b

 ∑
tij∈Q1

(ρ′ij − ρij) +
∑
tij∈Q0

(ρ′ij − ρij)


=

1

b

 ∑
tij∈Q1

(ρU − ρij) +
∑
tij∈Q1

(ρ′ij − ρU) + µ


= c (Γ + µ+ ν) .

78

Note that only the tiles in set Q1 require the insertion of dummy fill. In practice, since the

minimal amount of dummy fill is inserted, it can be expected that after dummy fill insertion, ρ′ij
of tij ∈ Q0 including the tile with ρH will remain unchanged or, at worst, increase by a very

small amount. Therefore, µ is a small number compared to Γ. Moreover, ρ′ij for tij ∈ Q1 will

be approximately equal to or just a little larger than ρU , and therefore ν is also a small number

compared to Γ. In the following analysis, we will always assume that µ and ν are negligible

compared to Γ. These dummy fill assumptions imply that

D ≈ cΓ. (4.11)

This relationship will be demonstrated experimentally in Section 4.6. Since c = 1/b, and is a

positive constant for a given weighting function, to minimize D, we should minimize Γ.

Though Γ is much easier to compute than D, it is still too complex to be used directly

in routing process, since it requires an enumeration over all tiles in Q1; as we will see, the

cardinality of this set can be very large. In order to find another simpler metric which can be

used in routing, next we will analyze the impact of our routing procedure on Γ, and then D.

In the routing process, every two-pin net passing through overflowing edges or passing

through the weighting windows of the tile(s) with ρH is ripped up and then rerouted one by one

in some ordering. Next we will present two theorems to reveal the impact on Γ of ripping up and

rerouting a single two-pin net: the first theorem is for rerouting a two-pin net, and the second

one for ripping up a two-pin net.

Theorem 4.2. Consider a partial routing solution S , and the solution S̄ after routing one more

net, and consider the contribution of each edge e of this net. Let ∆Γ and ∆ρH be, respectively,

the change in Γ and ρH from S to S̄ due to edge e.

(a) The following inequality holds:

∆Γ ≥ |Q1| ·∆ρH − b ·∆M
d , (4.12)

where ∆M
d is the increase in the IPD of a tile when routing through one edge in the tile, and is

equal to the ratio of the area occupied by a wire track to that of a tile.

(b) If ∆ρH = 0, Q̄1 = Q1 and We ⊆ Q1, then

∆Γ = −b ·∆M
d , (4.13)

where Q̄1 is the new Q1 after routing through e, and We is the weighting window of the tile

associated with e.

79

Proof. We first prove part (a). Suppose that the changes from S to S̄ due to routing through e

are: ρij changes to ρ̄ij , ρH changes to ρ̄H , ρU changes to ρ̄U , Q1 changes to Q̄1, Q0 changes to

Q̄0, and Γ changes to Γ̄. Then ∆ρH = ρ̄H − ρH . Assume ε for the two routing solutions is the

same. Then ρ̄U = ρU + ∆ρH , Γ̄ =
∑

tij∈Q̄1
(ρ̄U − ρ̄ij). Then ∆Γ = Γ̄− Γ.

Let Q+
1 = {tij |tij /∈ Q1 and tij ∈ Q̄1}, Q−1 = {tij |tij ∈ Q1 and tij /∈ Q̄1}. Then

Q̄1 = Q1 +Q+
1 −Q

−
1 . Then

Γ̄ =
∑
tij∈Q̄1

(ρ̄U − ρ̄ij)

=
∑
tij∈Q1

(ρ̄U − ρ̄ij) +
∑

tij∈Q+
1

(ρ̄U − ρ̄ij)−
∑

tij∈Q−1

(ρ̄U − ρ̄ij).

By the definition of Q−1 , we can know that ρ̄ij ≥ ρ̄U , ∀ tij ∈ Q−1 , and then∑
tij∈Q−1

(ρ̄U − ρ̄ij) ≤ 0.

Similarly, by the definition of Q+
1 ,
∑

tij∈Q+
1

(ρ̄U − ρ̄ij) ≥ 0. Note that Q+
1 can be empty if ρij

of tile tij , ∀ tij ∈ Q0, is no less than ρ̄U . Then

Γ̄ ≥
∑
tij∈Q1

(ρ̄U − ρ̄ij),

∆Γ = Γ̄− Γ ≥
∑
tij∈Q1

(ρ̄U − ρ̄ij)−
∑
tij∈Q1

(ρU − ρij)

=
∑
tij∈Q1

∆ρH −
∑
tij∈Q1

(ρ̄ij − ρij).

Let te be the tile associated with edge e and We be the weighting window of te. Note that only

ρij of tile tij ∈ We can increase after routing through edge e. Let W1 = Q1 ∩We. Since

W1 ⊆We and ρ̄ij ≥ ρij , we have

∆Γ ≥
∑
tij∈Q1

∆ρH −
∑

tij∈W1

(ρ̄ij − ρij)

≥
∑
tij∈Q1

∆ρH −
∑

tij∈We

(ρ̄ij − ρij). (4.14)

Since the increase of ρij of tij ∈We is due to the increase in the IPD of te by ∆M
d , we have

∑
tij∈We

(ρ̄ij − ρij) = ∆M
d

l∑
i=−l

l∑
j=−l

f(i, j) = b∆M
d . (4.15)

80

By (4.14) and (4.15), we have ∆Γ ≥ |Q1|∆ρH − b∆M
d .

Note that the conclusion holds when ∆ρH ≥ 0, which is easy to see from the proof itself.

For part (b), we use the same symbols defined above. Using the conditions ∆ρH = 0,

Q̄1 = Q1 and We ⊆ Q1, similar to the proof above, we have:

∆Γ = −
∑
tij∈Q1

(ρ̄ij − ρij) = −
∑

tij∈We

(ρ̄ij − ρij) = −b∆M
d .

It is important to point out that Equation (4.12) holds regardless of whether ∆ρH > 0 or

∆ρH = 0.

Corollary 4.1. Consider a partial routing solution S̄, and the solution S after ripping up

one more net, and consider the contribution of each edge e of this net. Let ∆Γ and ∆ρH be,

respectively, the change in Γ and ρH from S̄ to S due to edge e. Then

∆Γ ≤ |Q1| ·∆ρH + b ·∆M
d , (4.16)

where ∆M
d has the same meaning as in Theorem 4.2.

The proof is simple. Ripping up a net N from S̄ is a symmetric process of starting from S

and routing net N with the same routing path. In this case, the change in Γ (ρH) from S to S̄
is −∆Γ (−∆ρH), using the terminology defined in the statement of Theorem 4.2. Therefore,

−∆Γ ≥ |Q1| · (−∆ρH)− b ·∆M
d . This corollary holds when ∆ρH ≤ 0. �

Table 4.1: The cardinality of set Q1 for ISPD07 circuits

Circuits
Horizontal layer Vertical layer

#tiles |Q1| #tiles |Q1|
adaptec1 6561 4566 6561 4542

adaptec2 11236 10557 11236 10435

adaptec3 24180 21356 24180 20874

adaptec4 24180 22925 24180 22469

adaptec5 24180 18119 24180 19181

newblue1 6400 5531 6400 5766

newblue2 28830 24619 28830 23964

Average 1.00 0.85 1.00 0.85

81

In practice, |Q1|, the cardinality of set Q1, is seen to be very large. Table 4.1 shows the

values of |Q1| for the routing solutions obtained by NTHR for the 2D ISPD07 benchmarks3.

We can see that on average 85% of the tiles are in Q1. The above theorems imply that if the

cardinality of set Q1 is large, then ∆Γ will be significant even for a small change in ρH , which

implies a nontrivial change in D. In other words, D is sensitive to the change in ρH due to the

large cardinality of set Q1.

Example: For the benchmark newblue2, b = 0.532 and ∆M
d = 7.41 × 10−4. We use |Q1| =

23964, the value for the vertical layer. Now suppose that we are routing a single wire through an

edge associated with a tile with EPD equal to ρH , and this causes a small increase4 in ρH : here,

∆ρH = 2.36 × 10−6 for newblue2. By computing the lower bound for ∆Γ using (4.12), and

using this to predict a lower bound on ∆D using (4.11), it can be shown that the increase in D is

equivalent to at least 142 tracks. By Corollary 4.1, if ∆ρH is reduced by the same amount in

the above example, D will reduce by at least 142 tracks. This example shows clearly that even

though ρH changes by a very small amount, D will change greatly due to the large cardinality of

Q1. �

The analysis above shows that D is highly sensitive to the change in ρH . In other words,

minimizing ρH is a good surrogate for minimizing D. Therefore, our routing objective is

to minimize the ρH after routing finishes. We do this by trying to leave ρH unchanged, or

minimizing the increase in its value, when routing each net, and by trying to reduce ρH when

ripping up a net in the EPD postprocessing stage. Intuitively, this objective tries to ensure that all

ρ values are low and as well-balanced as possible.

4.5.2 Dummy fill cost function

In NTHR, monotonic routing and maze routing are used in the RRR process. When rerouting a

net, the costs of edges in the searching region are used to guide the router to find a new path for

the net. In order to optimize D in the RRR process, we compute the dummy fill cost for every

edge e, denoted as Φe, and then integrate Φe to the router.

Based on the results in Section 4.5.1, we now show how we compute the dummy fill cost,

Φe. Our approach is based on the previous analysis, which shows that minimizing ρH in routing
3The characteristics of benchmarks used are listed in Table 4.2.
4As a reference, the values of ρH for the circuits in our benchmarks are between 0.10 and 0.20 for both the

horizontal and the vertical layers.

82

process is a good surrogate for minimizing D. To capture this objective well, the following three

aspects should be considered in the dummy fill cost function.

One possible component of the cost function could be to capture the effect of routing through

an edge e on the increase in ρH . In the case that routing through an edge e will cause an increase

in ρH , a large cost should be assigned to e as a penalty. To achieve this, the following term could

be used:

Ωe =

exp
(

∆ρH
∆M
ρ

)
if ∆ρH > 0,

0 otherwise,
(4.17)

where ∆ρH is the change in ρH after routing through edge e, and ∆M
ρ is the possible maximal

increase in the EPD of any tile and equal to the increase in the EPD of the tile associated with

edge e, when a wire is routed through edge e. Here the role of ∆M
ρ is to normalize the numerator

to a value between 0 and 1. Since Ωe captures the direct increase of ρH , the exponential function

is used to magnify the penalty.

However, as we will soon see, such a function is not general enough since it only considers

the contribution of a single edge, rather than that of a path. In particular, it is possible that the

cost of each single edge ei on path P is 0 by (4.17), since no single edge increases the value of

ρH ; however, routing through path P may still increase ρH due to the cumulative effects of all

edges on the path, due to which the dummy fill cost of path P should not be 0.

For example, consider a tile tk with large EPD which is near a path P , and let Wk be the

weighting window of tile tk, as shown in Fig. 4.3. In this example, due to congestion, the net

S → T is detoured and path P shown in the figure is chosen as a candidate. The edges of P that

lie along wire segments AB and CD are within Wk, and together, these may increase ρk by a

significant amount. Before routing this net, if ρk was smaller than ρH −∆M
ρ but still close to

ρH , then after routing through P , it is likely that ρk may exceed ρH . However, Equation (4.17)

may not capture this effect, since each edge individually may have zero cost according to this

function, and therefore we have to build a new cost component to address this problem.

Let SP denote the set of all paths that may be used to route the net that is currently under

consideration. Let JP be the increase in the EPD of a tile tk, if route P is chosen, and JM =

maxSP JP . Then for tile tk, if ρk < ρH − JM , then ρk cannot exceed ρH after routing through

any path; otherwise, ρk may become larger than ρH , depending on which path P is chosen. To

deter the router from choosing a path that creates this violation, we assign a large penalty to

the edges within Wk to deter the router from choosing a path that contains edges in Wk. From

83
S

T

tk

Wk

P

A B

CD

Figure 4.3: Routing through path P may increase the EPD of tile tk significantly.

the point of view of the cost associated with an edge e, if there is a tile tk within We with

ρk ≥ ρH − JM , a large penalty should be assigned to e and the penalty should increase for

higher ρk, where We is the weighting window of the tile associated with e. We define

∆ρ′H = max
tk∈We

(ρk + JM − ρH) , (4.18)

where the role of the max function is to determine the largest possible increase in ρH . Then we

use the following as the first component of the dummy fill cost for e:

Θe =

exp
(

∆ρk
∆M
ρ

)
· exp

(
p0 ·

∆ρ′H
∆M
ρ

)
if ∆ρ′H > 0,

0 otherwise,
(4.19)

where ∆ρk is the increase of ρk after routing through edge e, and ∆ρ′H is the adapted version of

∆ρH , and p0 is a user-defined parameter to control Θe in a proper range. In our experiments, p0

is tuned on circuit newblue2 to make max(Θe) = 16.3. Here, the first exponential term is used

to capture the fact that the larger ∆ρk is, the larger is the possibility that ρk will exceed ρH . The

term ∆M
ρ is used to normalize the numerators.

The computation of JM discussed above requires the determination of a realistic upper

bound of the increase in the EPD of tile tk over all routes for the net being considered. The most

pessimistic estimate assumes that when path P passes through all the edges in Wk, JP reaches

its maximum. However, this case is excessively pessimistic and extremely rare even in a very

congested design, since practical routes do not go through so many bends and detours within

a small region. A reasonable practical upper bound for JM corresponds to the case shown in

Fig. 4.3, where a “U”-shaped path is used to detour and passes through the weighting window of

84

tk twice. In this case, JM can be calculated as:

JM = ∆M
d

l∑
i=−l

1∑
j=0

f(i, j), (4.20)

where ∆M
d is the same as in Theorem 4.2, l the same as in (4.3), and f(i, j) is the weighting

function. To be safer still, our implementation uses twice the calculated value of JM in (4.20) as

the guardband.

A second component of the dummy fill cost function can be determined as follows. For the

tiles whose EPDs are close to ρH , routing through the edges in these tiles will increase their

EPDs further and it is likely that their EPDs will exceed the current ρH soon in the routing

process. To control this trend, we assign large cost penalties to the edges associated with such

tiles. On the other hand, we do not want the CMP optimization to affect the routing with normal

objectives such as wirelength and overflow too much, and therefore, for the tiles with EPD values

not large enough to cause the increase of ρH , their costs should be small. To achieve this goal,

we adapt the cost function (4.5) in [27] to use in our work, since it increases very slow when the

variable is not close to a limit. We remove the constant factor 1 in the cost function in [27] to

make its low bound to be 0, and normalize the EPD value of a tile by the current ρH . Then the

cost of an edge e is:

Ψe =
p1

1 + ep2(1−ρe/ρH)
, (4.21)

where ρe is the EPD of the tile associated with edge e, and p1 and p2 are user-defined parameters.

In this work, we choose p1 = 4.0 and p2 = 11.0, which makes Ψe = 1 (the cost equal to that

of wirelength) when ρe = 0.9 × ρH , and makes Ψe = 2 when ρe = ρH . Here, Ψe = 2 is the

maximum of Ψe, which is double of the cost of wirelength. On the other hand, when ρe is not so

close to ρH , Ψe will be a relatively small number compared with wirelength cost. For example,

when ρe = 0.7× ρH , Ψe = 0.14, which is rather small and will not affect the routing too much.

The total dummy fill cost of edge e is defined as follows:

Φe = Θe + Ψe. (4.22)

Here, Ωe is not used since it is covered by Θe. Furthermore, note that the parameter p0 in (4.19)

will modulate Θe to adjust the ratio of Θe to Ψe and to determine the maximal value of Φe.

Though our cost function is essentially heuristic, we expect it to work well due to the following

two factors. First, it considers not only the impact of routing through one tile/edge on its own

85

EPD (by Ψe), but also the impact on the neighboring tiles (by Θe), which captures the long range

effect of CMP variation. Second, our cost function is consistent with the previous theoretical

judgment: it always tries to control and avoid the increase of ρH , which is desirable for the

minimization of D.

4.5.3 Cost function in different stages

In this section, we will introduce how the proposed cost functions are integrated into the routing

framework.

First, we point out that we do not integrate the dummy fill cost functions to every stage of

NTHR. In NTHR, the main purpose of the initial stage is to obtain the initial congestion map and

the initial routing solution for later use, and the space for optimizing all the objectives together

is limited since L-pattern routing is used. Furthermore, from our empirical observation, the

addition of dummy fill optimization in the initial stage does not improve the final solution but

increases the runtime of later stages. The principle here is that the initial stage is very useful

in controlling conventional routing metrics, and dummy fill can be effectively optimized in the

later stages of NTHR. Therefore, we do not add a dummy fill optimization objective in the initial

stage. We also do not perform dummy fill optimization in the layer assignment stage in our

current work, since we use the single-layer CMP model in this work as a first step to dummy fill

optimization, and leave multi-layer dummy fill optimization as future works.

In the main stage, we consider the dummy fill optimization by integrating the proposed cost

function with traditional cost function of NTHR. In the main stage, the cost of edge e becomes

as follows:

Ce = C′′e + γ1 × Φe ×max(Be, 0.1), (4.23)

where C′′e is the original cost function (4.6) in NTHR, Φe is the dummy fill cost function (4.22),Be
is a scaling factor defined in (4.7) and γ1 is the user-defined weight for Φe. In our implementation,

γ1 is tuned on circuit newblue2 to be 2.5. The mechanism of using term max(Be, 0.1) is similar

to that of using Be in the original cost function (4.6) in NTHR: when the number of RRR

iterations increases, which means it is more and more difficult to route the current net, Be will

decrease from 1 gradually towards 0, and then dwarf all the cost function components but the

congestion cost, which helps the router to obtain a path without overflow. However, to prevent

ρH from increasing by a large amount when Be becomes too small, we use 0.1 as the lower

86

bound of dwarfing dummy fill cost. From our empirical observation, the value of 0.1 achieves a

good balance between routability and dummy fill optimization.

In the refinement stage, most nets have been routed without overflow in the previous stages,

and only a few nets must be ripped up and rerouted due to overflow. Since the primary goal is to

reduce the overflow with limited routing resources, high priority should be given to reduction of

overflow, and thus the following cost function is used:

Ce = γ2 × C
′′′
e + Φe, (4.24)

where C′′′e is the original cost (4.8) used in NTHR, Φe is the dummy fill cost, and γ2 is an

empirically chosen weight whose value should be large enough to make C′′′e dominant to give

a high priority to the reduction of overflow. We choose γ2 = MP · max(Φe), where MP is

an upper bound on the length of the longest possible path for a two-pin net in the layout. In

this way, a path with smallest overflow will always be chosen by the router. When there are

several candidate paths with zero overflow, the dummy fill cost will guide the router to choose

the best one out of them. In our implementation, we choose MP = Ng when determining γ2,

where Ng is the total number of grids in the layout: this is a realistic estimate of the upper

bound. In estimating max(Φe), we note that max(Ψe) = 2 (from (4.21)), and that the value of

max(Θe) = 16.3; this is based on empirical tuning on circuit newblue2, as will be explained in

Section 4.6. Therefore, we set max(Φe) = 18.3.

In the EPD postprocessing stage that we introduce, our goal is to reduce the maximal EPD

further but not to increase overflow, and therefore the cost function used is the same as (4.24).

4.5.4 Why optimizing ρL is not important

As seen in (4.4), the range of the EPD (and hence the range of CMP variation) can be reduced

by either reducing ρH or by increasing ρL. However, our arguments above primarily focus on

reducing ρH in order to reduce D. A natural question to ask is whether it would also be useful to

make efforts to increase the value of ρL in order to reduce D. Here, “make efforts” means taking

measures similar to what we have done for minimizing ρH , e.g., a bonus is given to an edge or a

path when routing through it will increase ρL.

Given a layout, let us consider the change of D after routing through an edge e. We consider

two cases for routing e:

87

• If ∆ρH > 0, then as shown by the argument and example after Theorem 4.2, D could

increase by a large amount due to the large cardinality of set Q1, so we elaborate cost

functions to avoid using edge e on the routing path.

• In contrast, if ∆ρH = 0, then as revealed by Theorem 4.2, ∆Γ ≥ −b∆M
d , i.e., the largest

possible reduction in Γ is b∆M
d . Furthermore, by Theorem 4.2, if the three conditions

∆ρH = 0, Q̄1 = Q1 and We ⊆ Q1 are satisfied, then ∆Γ = −b∆M
d . In other words,

routing through any edge which satisfies these three conditions will achieve the same

maximum reduction b∆M
d on Γ, no matter how ρL changes. Therefore, there is no reason

we should make extra efforts to route through a few special edges, that are in the weighting

window of the tile(s) with EPD equal to ρL, to increase ρL. By (4.11), the above analysis

also holds for D, so we do not need to care about how ρL changes in terms of minimizing

D.

The argument for routing through a path is similar to the analysis above: in order to obtain

the same change in D, we do not need to make extra efforts to let the path pass through a few

special edges to increase ρL, because there are many other choices of edges to pass through,

which have the same or similar effect on D. Based on the analysis above, in our algorithm, we

focus our efforts to minimize ρH but do not make efforts to increase ρL.

4.6 Experimental results

We have implemented the algorithm in C++, and have tested it on a 64-bit Linux machine with an

Intel R© CoreTM 2 Duo 3.00 GHz CPU and 8 GB memory. The routing algorithm is implemented

as a program with two options: MaxEPD optimizes the dummy fill based on minimizing the

maximum EPD, and NoCMP does not consider dummy fill.

We have tested our routing scheme on the 2D ISPD07 benchmarks [71, 72], whose charac-

teristics are listed in Table 4.2. In the table, the column “guardband” lists the percentage of the

given capacity to the actual capacity after the guardband adjustment. The unit for grid size is

the number of wire tracks. Since newblue3 is unroutable using current routers [73], it is not

considered in our experiments. We assume 0.13 um technology is used for the circuits, and the

wire width equal to 5 times of the minimal value, 0.65 um. We use a typical planarization length,

L = 1 mm. The size of a CMP tile (which is used to evaluate IPD and EPD) is set to about

88

100 um to obtain a good balance between accuracy and performance5. As a result, the weight

window size for CMP will be around 121 CMP tiles.

Table 4.2: Benchmark information

Circuits
Grid

dimension

Grid

size

Guard-

band

#Nets

(×103)

Grid HPWL

(×105)

adaptec1 324 × 324 35 90 176 30.00

adaptec2 424 × 424 35 100 208 28.82

adaptec3 774 × 779 30 90 368 86.20

adaptec4 774 × 779 30 90 401 81.75

adaptec5 465 × 468 50 100 548 88.97

newblue1 399 × 399 30 90 271 20.80

newblue2 557 × 463 50 100 374 41.91

To demonstrate the effectiveness of our cost functions, we compare MaxEPD with the method

proposed in [68], which attempts to minimize the CMP variation using maze routing under a

CMP-aware cost function, in which the cost of an edge is the EPD of the associated CMP tile.

Since the codes in [68] are not available for public access, in order to compare with this method,

we developed another router by replacing the cost function we propose in MaxEPD by the cost

function in [68]6. We denote this router as “Yet another CMP-aware router” (YaCMP).

For MaxEPD, we tune the weights p0 in (4.19) and γ1 in (4.23) with circuit newblue27, and

then use these weights for all the circuits. Specifically, we use γ1 = 2.5, and p0 is tuned so that

max(Θe) = 16.3. These weights determine the tradeoff between traditional routing and dummy

fill minimization, and therefore, they should be in an appropriate range. For completeness, we

will list newblue2 in our tables of results, but the gains on this circuit can be appropriately

discounted since the parameters were tuned on it. For YaCMP, we also tune the weights γ1

in (4.23) for the circuit newblue2 in the similar way. Specifically, we use γ1 = 5.5.
5In this case, a CMP tile used to compute IPD and EPD may contain more than one routing grids. This explains

why the number of tiles shown in Table 4.1 is much smaller than that of grids shown in Table 4.2.
6The cost function used in the global routing stage in [69] is in fact the same as that used in [68].
7Circuit newblue2 is chosen to tune the weights due to its medium size and least runtime among all the circuits.

Generally, tuning weights costs tens of times the runtime of a single run. Also, note that p1, p2 and γ2 take the

pre-defined values and are not required to be tuned.

89

Table 4.3: Comparison of routing results among NoCMP, YaCMP and MaxEPD.

Circuits
Total overflow Wirelength (×105) ran(z) (Å) Runtime (s)

NoCMP YaCMP MaxEPD NoCMP YaCMP MaxEPD NoCMP YaCMP MaxEPD NoCMP YaCMP MaxEPD

adaptec1 0 0 0 42.51 44.33 45.41 2145 2038 1817 285 998 2784

adaptec2 0 0 0 40.01 40.48 41.19 2622 2557 2390 61 113 265

adaptec3 0 0 0 108.95 112.97 114.08 2251 2169 1875 305 1080 1229

adaptec4 0 0 0 102.34 102.76 103.13 2138 1950 1806 71 132 195

adaptec5 0 0 0 121.13 122.25 127.15 2628 2582 2522 668 1215 3371

newblue1 3 16 6 32.42 32.65 32.87 2337 2262 2230 227 683 652

newblue2 0 0 0 57.13 57.59 57.89 1839 1717 1603 35 89 132

Summary 3 16 6 1.000 1.017 1.033 1.000 0.955 0.889 1.000 2.592 4.658

90

Table 4.3 compares the routing results from NoCMP, YaCMP and MaxEPD. The last line

“Summary” presents a synopsis of the comparison among the three methods. For each circuit,

we show the total overflow, wirelength, as well as the unevenness in the topography after

CMP. In the table, “ran(z)” stands for the range/variation of the ILD thickness. The value of

ran(z) = z1 · ran(ρ) is calculated according to (4.1), suppose z1 = 7000 Å [44]. Note that

each via is counted as 1 unit of wirelength in the calculation of the total wirelength, according

to the rule in ISPD 2008 global routing contest [73]. For all the circuits except newblue1, the

maximal overflow is 0. For newblue1, the maximal overflows for the routing solutions obtained

by NoCMP, YaCMP and MaxEPD are all equal to 1. Since the guardband factor for newblue1

is 90%, the one or two overflows on an edge can be eliminated in later stage with the reserved

capacity, and then these overflows will not cause any problems to the EPD computation and

dummy filling.

It can be seen that MaxEPD consistently provides significant improvements in the ILD

variations, at the cost of a small increase in the wirelength and overflow (only for the circuit

newblue1). Compared with NoCMP, MaxEPD improves the post-CMP ILD variations by 11.1%

on average and up to 16.7%; compared with YaCMP, the improvement is 7.0% on average and

up to 13.5%.

The runtime of MaxEPD is acceptable, even for the large circuit adaptec5. The ratio of

runtime of MaxEPD to that of NoCMP for circuit adaptec1 is the largest among all the circuits.

This is likely because the weights which are tuned for circuit newblue2 are not appropriate for

circuit adaptec1. Note that it is difficult to route circuit newblue1 without overflow [73], and

therefore there is small space to optimize CMP variation. As a result, the improvement in the

CMP variation, for both MaxEPD and YaCMP, is small on newblue1.

As a verification step, Table 4.4 shows an evaluation of the quality of our results, using the

ranged-variation linear programming (LP) formulation of the dummy fill algorithm in [44]. We

set ε = 0.02 in (4.4). A commercial LP solver, ILOG CPLEX [74], is used to solve the dummy

filling problem on a 64-bit Linux machine with a 2.6 GHz dual-core AMD OpteronTM 2218

processor and 2 GB memory. In the table, “fillWL/minWL” presents the ratio of the equivalent

wirelength of total dummy fill to the minimal total wirelength (minWL). The value of minWL is

the sum of the minimal wirelength without detours, ignoring congestion constraints. Compared

with NoCMP, the MaxEPD approach significantly reduces the total fill by 22.0% on average and

up to 41.5%; compared with YaCMP, MaxEPD reduces the fill amount by 14.1% on average and

91

Table 4.4: Comparison of dummy fill results among NoCMP, YaCMP and MaxEPD. The data in

column 2 and 3 are normalized with the basis case (1.0) corresponding to NoCMP.

Circuits
fillWL/minWL Fill time (s)

YaCMP MaxEPD MaxEPD

adaptec1 0.831 0.585 224

adaptec2 0.956 0.852 495

adaptec3 0.917 0.700 1849

adaptec4 0.849 0.736 2083

adaptec5 0.950 0.873 1848

newblue1 0.944 0.920 206

newblue2 0.890 0.794 2775

Summary 0.905 0.780

up to 23.6%. The data show the effectiveness of our routing algorithm, especially the proposed

cost functions and the strategy of minimizing the maximal EPD. The last column of the table

shows the runtime of the dummy fill algorithm of [44] for MaxEPD. The CPU time required by

the dummy filling step, applied to the results of NoCMP and YaCMP, is similar and on average

within 2% of that of MaxEPD.

Table 4.5: Comparison of IPD gradient G among NoCMP, YaCMP and MaxEPD

Circuits
G for horizontal layer G for vertical layer

NoCMP YaCMP MaxEPD NoCMP YaCMP MaxEPD

adaptec1 0.0216 0.0228 0.0236 0.0290 0.0281 0.0281

adaptec2 0.0218 0.0221 0.0215 0.0258 0.0264 0.0267

adaptec3 0.0182 0.0184 0.0184 0.0173 0.0179 0.0179

adaptec4 0.0201 0.0201 0.0202 0.0218 0.0219 0.0219

adaptec5 0.0239 0.0241 0.0234 0.0251 0.0251 0.0243

newblue1 0.0176 0.0183 0.0185 0.0199 0.0205 0.0205

newblue2 0.0147 0.0147 0.0147 0.0217 0.0223 0.0221

Summary 1.000 1.018 1.019 1.000 1.013 1.007

92

Next we experimentally support the claim in Section 4.1 that IPD gradient is not a good

metric for CMP variations. As suggested in [67], IPD gradient of a tile tij is defined as dij − d̄ij ,
where d̄ij is the average IPD of tiles adjacent to tij (including tij). Then we compute the

quadratic mean of IPD gradients of all tiles as the IPD gradient of a layout:

G =

√√√√ 1

|Q|
∑
tij∈Q

(dij − d̄ij)2,

where Q is the set of all the tiles in the layout. Table 4.5 shows the comparison of IPD gradient,

G, among NoCMP, YaCMP and MaxEPD. From the table, we can see that for most circuits, the

layouts with the smallest IPD gradients do not have the smallest ran(z) and D. On average, the

layouts obtained by NoCMP have the smallest IPD gradients but the largest ran(z) and D. In

sum, it is clear that the IPD gradient is not a good indicator for ran(z) and D.

Figure 4.4: Linear fitting results for cΓ vs. D.

Finally, we experimentally support the claim from Section 4.5.1 that (4.11) holds under the

dummy fill assumptions. For all the dummy filling experiments we perform, we find that µ and

ν are negligible compared to Γ. For example, for the dummy filling solution for the horizontal

layer for circuit newblue2 with MaxEPD algorithm, (µ+ ν) : Γ = 1 : 483. Fig. 4.4 shows the

fitting results for dataset (cΓ, D) obtained in all the dummy filling experiments, using a linear

regression model, “y = ax”, showing that D ≈ cΓ with R2 = 1.

93

4.7 Conclusion

In this chapter, we develop a global routing algorithm optimizing the amount of dummy fill to be

inserted. The accurate oxide CMP model in [5] is adopted to make our algorithm be aware of the

real EPD distribution and be able to optimize the CMP variation more directly and effectively

than previous ones. We propose a metric, Γ, that correlates well linearly with the amount of

dummy fill in the routed layout. Then by deduction we find that minimizing the maximal EPD

is a good surrogate for minimizing the total amount of dummy fill. Based on this, we set up

effective cost functions to optimize the amount of dummy fill. The experimental results show

that our algorithm can reduce the amount of dummy fill significantly. It is worth pointing out

that our method uses a limited amount of empirical calibration and is built on a foundation

of sound theoretical support. Therefore, it can easily be applied to other routers. Our work

addresses the problem at the level of global routing, and can be applied in a flow that includes a

CMP-conscious detailed router.

Chapter 5

Physical Design Techniques for
Optimizing RTA-induced Variations

5.1 Introduction

As introduced in Chapter 1, variations in the semiconductor manufacturing process can cause

significant yield loss and performance degradation, and tremendous effort is being expended in

addressing these issues. Several manufacturing steps, such as CMP, have received substantial

attention from the design community. A less well-studied, but increasingly important, issue is

related to the effects of thermal annealing, a major contributor to on-chip variability [1].

RTA is widely used during manufacturing [21], and a critical point at which it impacts chip

performance is when it is employed in contemporary ultra-shallow junction (USJ) technologies

to activate the dopants after implantation [22]. RTA commonly involves the application of high

temperature for a short period to perform dopant activation, while limiting unwanted dopant

diffusion. Annealing largely determines the concentration of dopant and the junction depth,

which in turn determines the threshold voltage, VT , and also the sheet resistance of the doped

regions such as the source, drain and the polysilicon gate. Since these parameters affect the

performance of the circuit significantly, it is critically important to ensure that the annealing

process occurs uniformly across the entire die.

The mechanism for RTA involves heating the top side of the wafer, where the active transistor

devices are located, by exposure to an energy source such as an array of lamps to rapidly transfer

radiative heat to the wafer surface (illustrated in Fig. 1.3(a)). One particular aspect of radiation

94

95

Figure 5.1: The variation in the polysilicon sheet resistance Rs correlates well with the exposed

STI density averaged over 4 mm [1].

is that the reflectivity of the surface plays an important role on the amount of heat transferred.

The principle is similar to the idea that on a sunny day, shiny or light-colored clothes reflect

more light than dark clothes that tend to absorb heat. Across a die, due to differences in the

reflectivities of materials and varying pattern densities, different locations will absorb different

amount of heat, causing variations in the annealing temperature. This results in within-die and

die-to-die variations in the circuit characteristics after RTA.

The resulting variability, often referred to as the pattern effect, has been studied in [1]. Their

work investigates the impact of RTA on intra-die variations in the performance, subthreshold

leakage, and other parameters, and demonstrates that most of the observed variations, including

inverter delay changes, can be accounted for through RTA-driven variations in the transistor

extrinsic resistance, REXT , and VT . Moreover, it shows that the variations correlate with the

calculated reflectivity for the lamp RTA spectrum, and hence depend on the millimeter-scale

pattern density of the exposed STI regions, i.e., the STI not covered by the gate polysilicon.

Fig. 5.1 illustrates how the variation in the polysilicon sheet resistance, Rs, correlates with the

exposed STI density. These observations have been qualitatively confirmed by other groups

(e.g., in [7]). The work in [75] performs thermal simulation and uses compact models to analyze

within-die variability due to pattern-dependent RTA process. Their simulation shows about 20%

variation in the leakage and 3% variation in the frequency due to the non-uniformity of the

96

pattern density in the layout. Therefore, it is necessary to optimize RTA-induced variations on a

die.

A primary mechanism for reducing the large RTA variations is to achieve an even distribution

of exposed STI throughout the layout. There are two ways to achieve this:

• By rearranging blocks in the layout: In system-on-chip designs, different circuit modules

may have different STI densities, and the differences are especially significant if there

are many memory and analog IP blocks. Variations in STI density can be inferred from

Fig. 15 in [7] and Fig. 5 in [76]. Physical design plays an important role in achieving STI

uniformity, and therefore, floorplanning or placement may be used to alter the STI density

distribution to achieve uniform reflectivity.

• By inserting dummy polysilicon fills: As demonstrated in [7, 76], RTA variations can

be mitigated if dummy fill structures are incorporated to improve the uniformity of the

exposed STI. In [76], the dummy fill structure consists of dummy active area and dummy

polysilicon gates, while in [7], the dummy fill structures are mainly dummy polysilicon.

We assume the latter in our work. In particular, we attempt to minimize the inserted fills to

minimize their side-effects, such as unwanted parasitics.

This work addresses both of these aspects. We first propose and formulate the RTA-variation-

driven floorplanning problem1, and present a floorplanner that optimizes the uniformity of the

STI density, in addition to optimizing conventional objectives such as wirelength and area.

A significant issue to be addressed is whether RTA optimization should be addressed at

the floorplanning level, or at more detailed levels. While methods at all levels of abstraction

are appropriate, the greatest amount of flexibility is available at the floorplanning stage, albeit

with the least detailed information. This is the classic early planning problem that is faced and

surmounted in other aspects of physical design, and our solution is based on several facts. First,

while the precise STI density of each block may not be known, most design houses perform

extensive design reuse, or use similar design styles for similar blocks. Therefore, estimates of

block STI densities are realistically available from historical data; in fact, past design data are

already often used to predict Rent’s parameters or interconnect density. Second, early stage

planning for STI density can be made effective throughout the design flow, by propagating the
1Although it is possible and desirable to extend this work to RTA-driven placement, we focus on floorplanning in

this work as a first step to RTA-driven physical design.

97

STI densities computed at this early planning stage as constraints at more detailed stages of

design. Third, the accuracy and fidelity of the STI model that we use here are appropriate to this

level of abstraction: more detailed analysis at finer levels of abstraction may require more detailed

heat conduction models. Our experimental results confirm that the amount of improvement

available at the floorplanning level is very large (on average, 39% in global variations and 29%

in local variations).

In addition to floorplanning optimizations, we present the problem formulation of inserting

dummy polysilicon fills that reduce the exposed STI area, thereby helping further improve the

RTA variations by ensuring the uniformity in the exposed STI density. We show that a LP

(linear programming) method, similar to that in [44], can be used to solve the dummy polysilicon

filling problem. Our experimental results demonstrate that the proposed dummy fill algorithm

can reduce the RTA variations to negligible amounts. We also demonstrate that our two-step

approach can significantly reduce RTA variations with very limited impact on the conventional

design objectives.

The rest of this chapter is organized as follows. We begin by presenting background and

definitions in Section 5.2. Next, we present a formulation for computing the STI density and our

efficient computation techniques in Section 5.3. Then we propose a formulation for the RTA-

variation-driven floorplanning problem and our algorithm to solve it in Section 5.4, followed by a

description of our LP method for inserting dummy polysilicon fills in Section 5.5. Experimental

results and concluding remarks are provided in Sections 5.6 and 5.7, respectively.

5.2 Background

5.2.1 Rapid thermal annealing

During ion implantation, nuclear collisions during high energy implantation cause substrate

atoms to be displaced, leading to materials defects. RTA is a subsequent annealing process,

carried out at high temperature for a short duration, which is used to solve this problem. During

RTA, the wafer is heated to around 1000◦C for a brief period and then cooled (see Fig. 1.3(b) for

an example). The RTA process thermally vibrates the atoms, re-forms the bonds among them,

and activates the dopants [77].

The basic mechanism of RTA is to use radiation to rapidly transfer a large heat flux to

the wafer surface; this heat then spreads around the silicon wafer by conduction. Therefore,

98

the surface temperature is due to both radiation and conduction. However, in today’s RTA

process, the time duration of heating is so short (less than 1 second [78]) that complete thermal

equilibrium between conduction and radiation cannot be achieved, and the surface temperature

is primarily determined by the ability of different regions of the wafer to absorb heat from the

energy source in RTA.

As pointed out in [1], the RTA temperature of a point in the layout is highly dependent on

the average exposed STI density in the neighborhood of the point. The exposed STI density

is averaged over an l × l region, where l is the heat diffusion length. The parameter, l, is a

descriptor of the region over which thermal equilibrium can be reached for the heat diffusion

interaction time t, and is given by [1, 23]:

l =

√
σ

cvρ
t (5.1)

where σ, cv and ρ are the thermal conductivity, specific heat, and density of silicon, respectively.

The value of l for the process used in [1] was found to be 4 mm.

The reason why the exposed STI density is the most important factor in determining the RTA

variability effects is that the reflectivity coefficients of all regions of the wafer are roughly similar,

but that of STI is substantially lower, as shown in Table 5.1 [1]. Therefore, STI regions absorb

significantly more heat, and transistors that lie in the neighborhood of large STI density regions

tend to have lower VT , because of higher local annealing temperature. Moreover, REXT in these

regions is decreased due to the combination of improved dopant activation and increased gate

overlap, both in the source and drain regions [78]. The impact of these effects on circuit-level

performance is that the delay and leakage of these regions will differ from other regions with

higher reflectivity.

Table 5.1: Calculated reflectivity coefficients of different regions during RTA [1].
Region Reflectivity coefficient

N+ source/drain 0.57

P+ source/drain 0.57

Gate over isolation 0.54

Gate over Transistor 0.45

STI 0.20

99

Before proceeding further, we will define several concepts related to the STI density in a

region. Essentially, the STI density is the ratio of the area of the exposed STI layer (that is not

covered by polysilicon) to the total area of the region.

Definition 5.1 (Local STI density). The local STI density, d(x, y), at a point (x, y) in the layout

is the average exposed STI density defined in a small local square region centered at (x, y). The

size of this local region is typically smaller than or in the order of l/10 [23], where l is the heat

diffusion length, so that the difference of the local anneal temperature in this region is negligible.

Definition 5.2 (Effective STI density). The effective STI density, e(x, y), of a point (x, y) in the

layout is the average exposed STI density over a window of size l × l units, called the gating

window, centered at (x, y).

5.2.2 Dummy polysilicon filling for RTA

The effective STI density captures the effect of averaging the reflectivity over a region, and the

effect of heat transfer by conduction within the wafer, and can be used as a rough predictor

of local annealing temperature [78]. To make the annealing temperature uniform, dummy

polysilicon fills can be inserted over the STI region to even out the effective STI density, as

illustrated in Fig. 5.2, so that the exposed STI density and the reflectivity of different regions

become similar.

p-substrate

p-epitaxial layer
p-well n-well p-well n-well

Dummy polysilicon

Figure 5.2: Cross-section of a partial wafer, with dummy polysilicon fills inserted before ion

implantation and RTA. The dark grey regions are SiO2 and the dark regions are polysilicon gates.

Dummy polysilicon features are electrically inactive, but can couple capacitively with other

lines in neighboring layers. Since these polysilicon lines are left floating, such coupling could

cause unpredictable effects on performance, and therefore, it is important to minimize the amount

of inserted dummy fills.

There are two classes of methods that are used for dummy fill insertion: rule-based and

model-based. Analogous to dummy filling methods for oxide CMP, rule-based methods work

100

directly on the local STI density, and try to make the local STI density fall within a specified

limit after dummy filling. Therefore, in a region with very large STI density, dummy polysilicon

fills may be inserted to block off some part of the STI region, in order to bring the local STI

density within the desired limit. The problem with rule-based dummy filling is that the limit

for the allowable density is typically quite large, so that the prescribed fill density must go

through trial-and-error for every design; sometimes, no single value works [44]. Compared

to the rule-based approach, model-based dummy polysilicon filling is based on the effective

STI density, a more complex metric than the local STI density used in the rule-based method.

Model-based methods are analytical and typically more computationally intensive, but are widely

accepted to be more effective than rule-based methods.

5.3 The effective STI density

As mentioned before, the effective STI density correlates well with the variations in circuit

parameters such as Rs. A key step in our algorithm is the computation of the effective STI

density. We first create a formulation for computing the effective STI density, and then describe

efficient computational techniques for this purpose.

5.3.1 A formulation for the effective STI density

Given the local STI density of each point in the layout d(x, y), we proceed to calculate the

effective STI density. By Definition 5.2, the effective STI density, e(x, y), at a point is the

average density in a gating window of size l × l around the point. Therefore, it can be computed

as:

e(x, y) =
1

l × l

∫ y+l/2

y−l/2

∫ x+l/2

x−l/2
d(u, v) du dv. (5.2)

Let W and H be the width and height of the floorplan, respectively. Since the die is periodically

repeated across the wafer, the RTA environment experiences periodicity: in other words, d(x, y)

is periodic. Therefore, we have

d(x+ k1W, y + k2H) = d(x, y), (5.3)

where k1 and k2 are two integers such that (x+ k1W, y + k2H) is a valid point on the wafer.

101

We introduce a gate function g(x, y) defined below:

g(x, y) =


1
l×l −l/2 ≤ x, y ≤ l/2,

0 otherwise,
(5.4)

where l is the heat diffusion length for a RTA process.

From (5.2) and (5.4), it can easily be verified that e(x, y) can be calculated by convolving

d(x, y) with g(x, y):

e(x, y) = d(x, y)⊗ g(x, y), (5.5)

where ⊗ is the circular convolution operator.

Since the effective STI is a long-range effect, and since the calculation of circular convolution

in the continuous field involves computationally-intensive symbolic double integration, we

choose to compute it over a discrete field. We tessellate the layout into M rows and N columns

of tiles, each with side equal to s. The value of s can be chosen so that it is sufficiently small. As

mentioned in Definition 5.1, the difference of the local anneal temperature in a region with size

l/10× l/10 is negligible [23], so we use s = l/10 in this work. The heat diffusion length, l, in

the continuous space maps on to a length of L tiles in the discrete space.

Let tij be the tile in the ith row and the jth column of the partitioned layout, 0 ≤ i ≤
(M − 1), 0 ≤ j ≤ (N − 1). Since s is small enough, the local STI densities of all the points in

tij are assumed to equal that of the central point of tij , denoted as d(i, j). We refer to this as

the local STI density of the tile, and it is computed as the STI density averaged over the area of

the tile. Similarly, we discretize the gate function, g(i, j), as the discrete version of g(x, y), and

e(i, j) as the discrete counterpart of e(x, y).

We define the discrete gating window for a tile tij as a region of L× L tiles, where L is an

odd number, centered around tij . The discretized version of (5.4) is

g(i, j) =


1

L×L −λ ≤ i, j ≤ λ,

0 otherwise,
(5.6)

where λ = (L − 1)/2. The discretized effective STI function, e(i, j) is the discrete analog

of (5.5):

e(i, j) = d(i, j)⊗ g(i, j), (5.7)

where ⊗ now represents a discrete circular convolution.

102

5.3.2 Efficient computation techniques

We will now discuss three methods for computing e(i, j). The first method uses the definition of

circular convolution to calculate e(i, j) in the space domain:

e(i, j) =
∑∑
i′,j′∈G(i,j)

d(i+ i′, j + j′)× g(i′, j′)

=
1

L× L
∑∑
i′,j′∈G(i,j)

d(i+ i′, j + j′), (5.8)

where G(i, j) is the gating window of L× L tiles for (i, j). The runtime required to calculate

e(i, j) ∀ i, j is O(nL2), where n = M ×N is the total number of tiles in the layout.

The second method performs the computation in the frequency domain, using the Fast Fourier

Transformation (FFT). We first pad the 2-D sequence g(i, j) to the same size as d(i, j), and then

compute e(i, j) as:

e(i, j) = IFFT (FFT(d(i, j))× FFT(g(i, j))) . (5.9)

where FFT and IFFT are the FFT operator and inverse FFT operator, respectively. The time

complexity of this computation is O(n log n).

Finally, we introduce the third method, which is the procedure used in our algorithm.

Considering a special property of the gating function, we find that we can compute the effective

STI density of all the tiles in the layout by an incremental method. The basic idea of the method

is to reuse prior computations as much as possible.

Wij

ti,j –1 tij

bijai,j –1 Wi,j –1

L

L

Figure 5.3: An example of incrementally computing e(i, j) according to e(i, j − 1).

103

Let Wij be the set of tiles in the gating window for tij . We will assume that the origin,

(i, j) = (0, 0), is at the bottom left corner of the layout. As compared to Wi,j−1, the elements of

Wij are largely identical, except that the leftmost column of Wi,j−1 is removed, and the a new

column is added to the right. In other words, the computation of e(i, j) can largely reuse the

computation for e(i, j − 1), except that the contribution from one column must be removed, and

that of another one added. An example for this is shown in Fig. 5.3.

Let ai,j−1 be the leftmost column of Wi,j−1 and bij be the rightmost column of Wij . Let

Ma(i, j − 1) =
∑

tpq∈ai,j−1
d(p, q) and Mb(i, j) =

∑
tpq∈bij d(p, q). Then, it is easily seen that

e(i, j) = e(i, j − 1) + (Mb(i, j)−Ma(i, j − 1)) /L2.

The contents of Ma(i, j − 1) can be incrementally computed in a similar manner: note that

Ma(i− 1, j − 1) and Ma(i, j − 1) have most terms in common, except that the latter adds a new

row on top and removes the one at the bottom.

The pseudocode for this incremental method to compute e(i, j) is shown in Algorithm 1.

It can be shown that the computational complexity of this method is O(MN + (M + N)L).

If L < min(M,N), as is typically the case since the size of die is usually larger than L, the

runtime is O(n).

5.3.3 Finding the discretized local STI density

In this section, we will show how to compute the local STI density for every tile in the layout:

this is used in the computation of effective STI density.

It is well known that the STI density of a floorplan block can vary significantly over the area

of the block, unless the block is a very regular structure, such as a memory module. To address

the issue, we allow the specification of different STI densities to different subblocks of a block if

its size is larger than s× s, where s = l/10, since local annealing temperature variations in an

s× s window are negligible.

Then the discretized local STI density function, d(i, j), can be computed based on the

floorplan information, which provides the local STI densities of each subblock (as explained

in Section 5.1). For a tile, tij , that overlaps with one or more subblocks, each with (possibly)

different average STI densities, and/or with dead space, the value of d(i, j) should be the STI

density averaged over the area of tij . Dead space on the chip is assumed to have a user-specified

STI density of η; typically, η = 1.

104

Algorithm 1 The incremental method for computing the effective STI densities for all tiles in

the layout. In the algorithm, vr is a vector, λ = (L− 1)/2, Mc is a M ×N matrix, and ψ(i, j)

is a function to transform any (i, j) to (i′, j′), where i′ = i mod M, j′ = j mod N .
1: for i = 0 to M − 1 do
2: vr(i)←

∑λ
j=−λ d(ψ(i, j))

3: end for
4: for j = 0 to N − 1 do
5: Mc(0, j)←

∑λ
i=−λ d(ψ(i, j))

6: end for
7: for i = 1 to M − 1 do
8: for j = 0 to N − 1 do
9: Mc(i, j)←Mc(i− 1, j) + d(ψ(i+ λ, j))− d(ψ(i− λ− 1, j))

10: end for
11: end for
12: e(0, 0)←

∑j=λ
j=−λMc(ψ(0, j))

13: // Compute e(i, j) for the 0th column tiles

14: for i = 1 to M − 1 do
15: e(i, 0)← e(i− 1, 0) + vr(ψ(i+ λ))− vr(ψ(i− λ− 1))

16: end for
17: // Compute e(i, j) for the rest of the tiles

18: for i = 0 to M − 1 do
19: for j = 1 to N − 1 do
20: e(i, j)← e(i, j − 1) +Mc(ψ(i, j + λ))−Mc(ψ(i, j − λ− 1))

21: end for
22: end for
23: for each e(i, j), e(i, j)← e(i, j)/L2

105

5.4 RTA-driven floorplanning

The RTA-variation-driven floorplanning problem is stated as follows:

Given a set of circuit blocks, along with their widths, heights, pin positions, and local STI

densities of all the subblocks, and a netlist that captures the connections between the blocks, find

a legal floorplan such that a weighted cost function of area, wirelength, and the variations in the

effective STI density is minimized.

Our floorplanner is an adaptation of the Parquet package [79,80], which is based on simulated

annealing (SA) and the sequence pair representation [81]. The FAST-SP algorithm [82] is used to

evaluate a sequence pair within the algorithm. We suggest new objective functions to drive the SA

process, introduced in Section 5.4.1. Moreover, we use a heuristic to improve the performance

of the algorithm, as described in Section 5.4.2.

5.4.1 Cost function

Our goal is to optimize the uniformity of the distribution of the effective STI density. We use the

weighted sum

U = R+ γG (5.10)

as the metric to represent this uniformity, where R is the global variation, i.e., the difference

between the maximum and the minimum, of the effective STI density in the floorplan, G is the

sum of the absolute values of the gradients of effective STI density, and γ is a user-defined

parameter. This first component,R, is directed towards reducing global variations of the effective

STI density, while G serves to reduce local variations. The utility of the latter is, for example, in

reducing the variation in the clock skew between electrically adjacent registers which are also

(usually) spatially adjacent. However, minimizing G does not obviate the need for the metric

R, since even a small level of local variation can accumulate into a large undesirable global

variation.

To further define G, we define the horizontal gradient, hij , and vertical gradient, vij , of the

effective STI density of a tile tij as:

hij =

0 if j = N − 1,

e(i, j + 1)− e(i, j) otherwise,
(5.11)

106

vij =

0 if i = M − 1,

e(i+ 1, j)− e(i, j) otherwise.
(5.12)

We can then compute G as:

G =
∑
all tij

(|hij |+ |vij |). (5.13)

In practice, a larger weight should be assigned to G, which means that γ should be larger

than 1, because the local variation between two adjacent tiles tends to have a larger impact on

circuit design compared with the variation between two tiles far from each other.

In optimizing STI uniformity through floorplanning, it is important to also factor in conven-

tional floorplanning metrics. Therefore, the following cost function is used in the floorplanner:

C = A+ αW + β
(
R+ γG

)
, (5.14)

where C is the total cost; A is the normalized version for the area of the floorplan (A);W is the

normalized version for the total wirelength of the floorplan (W); R and G are the normalized

versions ofR and G from (5.10), respectively, and serve as metrics of the uniformity of effective

STI density in the floorplan; and α, β and γ are user-defined parameters. Note that during SA,

we compute the change in the cost, ∆, which is used in the Metropolis rule, using the relative

change of each component:

∆ =
∆A
Ablocks

+ α
∆W
Wold

+ β
∆R
Rold

+ βγ
∆G
Gold

. (5.15)

Here, ∆A, ∆W , ∆R and ∆G are the change in A,W ,R and G, respectively. This is consistent

with normalized objective function in (5.14), with the normalization carried out relative to

Ablocks, the total area of all the blocks, andWold,Rold, and Gold, the old values ofW ,R and G,

respectively. This is also the way used in Parquet.

5.4.2 Heuristics

Our implementation is based on the Parquet package [79, 80]. We make the following major

modifications: first, we add our proposed algorithms to make Parquet capable of optimizing RTA

variations; second, when optimizing RTA variations, we change the algorithm to use a two-stage

SA scheme.

In the first stage, a conventional SA is performed, and only the area and wirelength are

optimized. After the first stage ends, we start the second SA stage from a low temperature (100

107

in our algorithm), using the best solution obtained in the first stage as the initial solution. In this

stage, the cost function (5.14) is used to evaluate a floorplan solution. Since the start temperature

is low, the second stage serves more like a local search with certain hill-climbing ability.

In order to improve the performance of our algorithm, we introduce an effective heuristic in

the second SA stage to handle the effect of the U term in (5.10). A penalty function is introduced

for this term in the cost function to add barriers for accepting a floorplan candidate with better

STI uniformity but much worse area. We observe that for a given benchmark, a floorplan solution

with larger area contains more area of dead space, which is assumed to have a high STI density,

η, and tends to mitigate the variations in the effective STI density of different blocks in the layout.

Therefore, a floorplan solution with larger area tends to have a smaller U term (i.e., theR and G
terms) in (5.14). However, in practice, a circuit with large area of dead space is not desirable,

and therefore, we apply a penalty function θ = φc/φt for the U term, where φc is the dead space

ratio for the current floorplan solution and φt is the targeted dead space ratio that the designer

wishes to achieve after floorplanning. With this penalty function, when calculating ∆ in (5.15),

each term ofR,Rold, G and Gold is scaled by its own value of θ (for the current solution or the

old solution). Using this penalty function, when the current floorplan solution has a large area

and then a large φc, a large penalty factor will be assigned to U , which makes this solution less

likely to be accepted in SA. In our experiments, φt = 0.1.

5.5 Inserting dummy polysilicon fills

After the floorplan has been optimized, we then insert dummy polysilicon fills to further improve

the uniformity of effective STI density. Since the problem structure is somewhat similar to that

of oxide CMP fill, our method is based on an adaptation of the oxide CMP fill solution in [44].

The approach in [44] has two steps: global dummy fill assignment using LP, followed by local

dummy fill insertion where the details of the fills at the local level are determined. In this work,

we focus on the first step, since the methods for detailed local dummy fill insertion are very

similar to that in CMP dummy fill, and the reader is referred to [44] for details on issues such as

the determination of the shapes and locations of dummy fills.

Next, we present the LP formulation for the dummy polysilicon filling problem. Compared

to the method in [44], additional constraints to control the gradient of the effective STI density

are introduced.

108

As before, the layout is partitioned to M rows and N columns of tiles, so that the total

number of tiles is given by n = MN . In this chapter, the amount of dummy fill refers to the

ratio of the area of the dummy fills in a tile to the total area of the tile. We define xij to be the

amount of dummy fill inserted into tile tij , xaij to be the upper bound of dummy fill that can be

inserted into tij , and d0
ij to be the initial local STI density in tij . The local STI density of tij

after dummy filling can be calculated as:

d(i, j) = d0(i, j)− xij . (5.16)

Note that after inserting dummy polysilicon fills, the local STI density is reduced, and there-

fore d(i, j) will be no larger than d0(i, j). The effective STI density can be calculated using

Algorithm 1.

We formulate the problem to ensure that the global variation and the gradients of the effective

STI density are within a small range. Let ε1 be the required bound for the global variation of the

effective STI density, and ε2 be the required bound for the gradient of the effective STI density

of any two adjacent tiles. The cost of inserting dummy fills reflects the side-effects of dummy

fills, and may be different in different tiles. Therefore, a weight cij could be assigned to the

dummy fills inserted into tile tij , and this can be calculated using the cost zone method in [44].

The cost of the dummy fills inserted in tij can then be written as cij · xij .
To minimize the total cost of the dummy fills, the dummy polysilicon filling problem is

formulated as the following LP problem, with O(n) variables and O(n) constraints:

minimize
∑
all ij

cij · xij (5.17)

subject to:

0 ≤ xij ≤ xaij , ∀ i, j, (5.18)

eL ≤ e(i, j) ≤ eH , ∀ i, j, (5.19)

eH − eL ≤ ε1, (5.20)

|e(i+ 1, j)− e(i, j)| ≤ ε2, 0 ≤ i ≤M − 2, ∀ j, (5.21)

|e(i, j + 1)− e(i, j)| ≤ ε2, 0 ≤ j ≤ N − 2,∀ i, (5.22)

where eH and eL are auxiliary variables that determine the maximum and minimum STI density,

respectively. In this formulation, the RTA variations are controlled by constraints (5.19)–(5.22).

The inputs are d0
ij , x

a
ij , cij , ε1 and ε2; the output is xij .

109

5.6 Experimental results

5.6.1 RTA-aware floorplanning

We have implemented and tested our algorithm on a 64-bit Linux machine with a 2.6 GHz

dual-core AMD OpteronTM 2218 processor and 2 GB memory. We call our implementation

as pRTA, and we compare its results with those from the original Parquet, with only area and

wirelength optimized.

In our experiments, the RTA profile for 65 nm technology is used, and we take l = 4 mm,

in accordance with [1]. The side of a tile, s, equals l/10. Two groups of standard benchmarks

from the MCNC and GSRC suites are used to test the programs, and basic information about

the circuits is listed in Table 5.2. Since some of the benchmarks are much smaller than l × l,
we scale their size by a ratio, S, as listed in the table. The areas of the scaled circuits vary from

about 7 mm×7 mm to 15 mm×15 mm.

Table 5.2: Benchmark characteristics: here, S is area scaling factor, and AS is area of blocks,

after scaling, in mm2.
Circuit apte xerox hp ami33 ami49 n100 n200 n300

blocks 9 10 11 33 49 100 200 300

AS 47 77 79 116 142 173 191 230

S 1 2 3 10 2 31 33 29

As mentioned in Section 5.3.3, large blocks are likely to have different local STI densities in

different subblocks. Since data on STI densities are not readily available for these benchmarks,

we generate these data pseudorandomly in the following way2. First, we select the average STI

density, gi, of each block Bi to be a random number between 0.25 and 0.75. Next, we set a

variation range, vi, for the local STI densities of all of the subblocks within a block: in our

experiments, this value is set to 0.30. Then the local STI density of a subblock on Bi will be

chosen randomly between max(gi − vi, gmin) and min(gi + vi, gmax), where gmin = 0.15 and

gmax = 0.85 are, respectively, assumed as the possible minimal and maximal STI density for a

logic subblock3 in practice. Note that these steps are performed after scaling the benchmarks, so

that the distribution of STI remains realistic in spite of the artificial scaling operation. All the
2In real designs, the STI density information can be usually obtained, as explained in Section 5.1.
3Note that for a tile containing some dead space, its local STI density can be larger than 0.85.

110

random numbers generated here are based on a uniform distribution, using a function from the

standard Unix C/C++ library. Further, we set the local STI density of the dead space η to 1 in

our experiments, and also assume that the space between the dies on the wafer is negligible.

For a fair comparison, we use all of the default parameters of Parquet (which have been

tuned by the authors of the package): using the notation in (5.14), we choose

α = 1.00, β = 0, (5.23)

so that the optimization objectives are A andW . For pRTA, we tune the weights for the circuit

ami49, and then use these weights for all the circuits: specifically, we use

α = 1.43, β = 0.43, (5.24)

so that A,W , R, and G are all optimized. To place more importance on local RTA variations,

we use γ = 10.00. For completeness, we will list ami49 in our table of results, but the gains on

this circuit can be appropriately discounted since the parameters were tuned on it.

Since Parquet and pRTA are based on a stochastic algorithm, the results from different runs

can be different. We run each algorithm for 10 runs, and list the best result over the 10 runs in

Table 5.3.

To demonstrate the impact of our approach on the RTA variations directly, we determine the

relationship between the polysilicon sheet resistance Rs and the effective STI density in Fig. 5.1,

based on measured data from [1], as:

y = −0.9267x+ 1.5223, (5.25)

where y denotes Rs in relative units, and x is the effective STI density.

Using (5.25), from the variation in the effective STI density in a floorplan, we can calculate

and report the variations in Rs for the floorplan. Recall that in Section 5.4.1, we had defined

R and G as, respectively, the global and local variation in the effective STI density. We define

RRs , the global variation of Rs, as the difference between the maximum and minimum value

of Rs over the layout. The local variation, GRs , of Rs is defined analogously to (5.11), (5.12),

and (5.13), with e(., .) in each equation substituted by Rs(., .), and represents the sum of the

absolute values of the gradients of Rs over all tiles. We also report the maximum gradient, σRs ,

computed as the maximum, over all tiles, of the absolute values of hij or vij , corresponding to

the gradient of Rs.

111

Table 5.3: Comparison of Parquet and pRTA.

Circuit
Area usage(%) Wirelength (mm) RRs GRs σRs Total time(s)

Parquet pRTA Parquet pRTA Parquet pRTA Parquet pRTA Parquet pRTA Parquet pRTA

apte 96.09 97.90 518.07 519.34 0.15 0.08 6.08 4.32 0.044 0.032 1.2 13.1

xerox 94.11 94.11 749.85 778.20 0.21 0.21 10.69 10.34 0.035 0.044 3.0 26.2

hp 89.14 89.07 652.07 618.76 0.27 0.24 13.69 11.67 0.055 0.043 1.5 28.8

ami33 88.89 92.44 694.65 715.77 0.24 0.18 16.90 13.95 0.049 0.050 8.3 120.4

ami49 88.18 92.52 1409.23 1482.13 0.30 0.20 22.36 16.96 0.054 0.051 22.0 228.4

n100 90.64 90.29 9813.00 10109.40 0.18 0.08 19.69 10.87 0.044 0.039 90.4 682.2

n200 88.39 87.80 18790.10 20083.00 0.21 0.05 21.68 8.31 0.043 0.016 393.6 2312.8

n300 87.90 85.93 19884.80 20414.30 0.30 0.10 28.62 18.27 0.050 0.033 813.7 5120.8

Compare 1.00 1.01 1.00 1.02 1.00 0.61 1.00 0.71 1.00 0.83 1.0 10.4

A comparison of the results of pRTA and Parquet is shown in Table 5.3, for the benchmark

circuits listed in Table 5.2. We show comparisons of the percentage area usage, the total

wirelength, the global variation,RRs , the local variation, GRs , the maximum gradient, σRs , and

the total runtime for 10 runs. From the table, we can see that with tolerable overheads in area

and wirelength, the proposed algorithm is effective in reducing the variations in the values of

circuit parameters affected by RTA variations. Although our results are shown for variations

in Rs, variations in REXT and VT are similar in nature since they both have been shown to

have excellent linear correlations with Rs [1]. Compared with a floorplanner only optimizing

traditional objectives, on average, our algorithm can reduce global variation in Rs by 39%, local

variations by 29% and maximum gradient by 17%, with almost the same area and wirelength.

Note that in fact, our floorplanner obtains a little better area usage than Parquet on average (a

larger value for area usage is better), which is probably because our two-stage SA scheme is

more effective on area optimization than Parquet for some circuits.

The runtime of our algorithm is acceptable even for the largest circuit in the benchmarks,

which is about 1.4 hours for 10 runs. The major reason for the increase of runtime of our

algorithm is that the evaluation of the effective STI density for a floorplan solution incurs a

significant computational expense, about 8× longer than the evaluation of area and wirelength.

This is mainly due to the large number of tiles in a layout and subblocks in a block. For example,

circuit ami49 has 49 blocks and 408 nets, but about 1000 tiles and 1000 subblocks in total.

Therefore, though the proposed algorithm to compute the effective STI density has linear runtime

complexity, its runtime is still noticeably longer compared with the evaluation of area and

wirelength. In spite of this, the runtime is very reasonable in absolute terms.

112

(a) (b)

Figure 5.4: Topographies of Rs in the layouts obtained by Parquet and pRTA for circuit n300:

(a) without RTA optimization (Parquet), and (b) with RTA optimization (pRTA).

To present the improvement of our algorithm in the RTA variations more intuitively, the

topographies of Rs in the layouts obtained by Parquet and pRTA for circuit n300 are shown in

Fig. 5.4. The x and y axes represent the physical coordinates with one unit equal to 0.4 mm,

and the z axis shows the Rs value at each location in relative units. From the plots, we can

clearly see that our algorithm reduces both the global and local variations in Rs induced by RTA

significantly.

One phenomenon shown in Fig. 5.4(a) is that the corners of the layout tend to have noticeably

smaller Rs values than other locations in the layout. This is probably because that dead space,

whose STI density η equals 1, tends to form around the corners of the layout in traditional

floorplanners such as Parquet, causing the effective STI density around corners to be larger than

other locations in the layout, and thus smaller Rs around corners, since Rs is a monotonically

decreasing function of the effective STI density by (5.25).

5.6.2 Dummy polysilicon filling

In the second step of our optimization framework, we test whether the variations in circuit

parameters such as Rs are still larger than the required bounds after floorplanning. If so,

we insert dummy polysilicon fills into the layout to further reduce the variations, using the

formulation presented in Section 5.5.

The settings for the dummy fill procedure are as follows. In a tile tij , we assume that the

lower bound of d(i, j) after dummy filling is 0.15, which is reserved to consider the requirements

of design rules, e.g., minimal space between dummy fills and polysilicon gates, and to ensure

113

the manufacturability. Therefore xaij = max(d0(i, j)− 0.15, 0), where max operation is used to

ensure xaij not negative. For simplicity, the weight cij for the cost of the dummy fills in each tile

is set to 1 in our experiments. The parameters of (5.20)–(5.22) are chosen as ε1 = 0.0108 and

ε2 = 0.0022. Based on (5.25), these values correspond to a global variation of 1% in Rs, and

a maximum gradient for Rs of 0.2%. A commercial LP solver ILOG CPLEX [74] is used to

solve the dummy polysilicon filling problem. The hardware used is the same as that used to test

floorplanners in Section 5.6.1.

Table 5.4: Dummy filling results for the floorplans obtained by Parquet and pRTA. The column

“Ratio” denotes the ratio of the total area of the dummy fills to the total STI area in the layout.

Circuit
Area of fill (mm2) Ratio (%) Fill time (s)

Parquet pRTA Parquet pRTA Parquet pRTA

apte 7.29 5.60 24.95 20.40 0.8 0.9

xerox 14.71 12.02 30.05 24.56 2.2 2.2

hp 14.83 12.91 28.80 27.09 1.9 2.4

ami33 21.15 17.89 28.55 24.79 5.6 4.9

ami49 30.66 24.00 33.28 29.08 7.3 4.7

n100 25.18 16.30 23.90 15.35 8.9 9.1

n200 24.52 15.93 19.39 13.02 12.7 16.0

n300 31.84 23.43 20.80 15.37 13.2 13.5

Compare 1.00 0.76 1.00 0.80 1.0 1.0

The results are listed in Table 5.4, and they show that to achieve the same requirements of

uniformity in the effective STI density, the amount of dummy fills inserted can be reduced by

24%, on average, when using the floorplan solutions obtained by pRTA instead of those obtained

by Parquet. Therefore, we can see that our floorplanning algorithm has two benefits in improving

the RTA variations: first, it provides a floorplan solution with reduced RTA variations directly,

which is useful when dummy polysilicon filling is not suitable; second, when inserting dummy

polysilicon, fewer dummy fills are inserted, which can reduce the coupling effects induced by

dummy fills. Specifically, take the largest circuit n300 in the benchmarks as an example. By

using our two-step approach, the global variation in Rs is reduced from 0.30 to 0.01, while the

maximum gradient of Rs is reduced from 0.050 to 0.002, with 24% fewer dummy fills inserted.

114

The runtime of the dummy filling method is quite short, and is no more than 16 seconds for all

the benchmarks.

(a) (b)

Figure 5.5: Topographies of Rs in the layouts obtained by Parquet and pRTA for circuit n300

after dummy polysilicon filling: (a) without RTA optimization (Parquet), and (b) with RTA

optimization (pRTA). Our dummy filling algorithm can produce even profiles for both layouts,

but as shown in Table 5.4, the overhead of (a) is significantly larger than that of (b).

The topographies of Rs for circuit n300 after dummy filling are shown in Fig. 5.5 to

demonstrate the effectiveness of the dummy filling algorithm. The x, y and z axes have the same

meanings and units as those in Fig. 5.4. The figures show that after dummy filling, both the

global and the local variations are negligible.

5.7 Conclusion

RTA-induced variations are an emerging challenge to integrated circuit designs, at 65 nm

technology and below. This chapter has addressed this challenge using a two-step approach.

First, the STI density distribution in the circuit layout is smoothed by floorplanning. Next,

dummy polysilicon fills are inserted into layout to further reduce the RTA variations. These

methods can be easily integrated into the design flow to reduce the RTA-induced variations and

then improve the yield and performance of a circuit.

Chapter 6

Conclusion

With continuous technology scaling, new challenges have emerged in the field of physical design.

This thesis has proposed techniques to address some important problems in physical design

including routability evaluation, buffer area reduction and optimization of the variations induced

by CMP and RTA processes.

In Chapter 2, we have addressed two important aspects of routability evaluation: the accuracy

of congestion estimation and the metric to evaluate the routability of a design. We have explored

the problems in the existing mainstream congestion analysis tools: lack of local congestion

modeling, existence of noise hot spots and ineffective congestion metrics. Motivated by these,

we have proposed models for local routing resources, a smoothing technique to reduce noise hot

spots and a new ACE metric. We have conducted extensive experiments to validate our techniques

using industrial circuits. Experimental results have shown that the proposed local resource model

can improve the accuracy and fidelity of congestion analysis, and better predict detailed routing

issues such as opens and shorts. The good scalability of our model enables designers to use

large g-cells to accelerate the process of congestion analysis, thereby speeding design closure.

Furthermore, we have shown that the proposed smoothing technique can help to obtain accurate

routability evaluation. In addition, we have demonstrated that the ACE metric can represent a

congestion plot with higher fidelity, and predict the routability more accurately, compared with

conventional metrics. Finally, we have showed that with ACE metric, a routability-driven placer

can perform better and can improve the routability of a design significantly.

To overcome the buffer explosion trend with technology scaling, we have proposed an

algorithm to improve the layer directive planning in Chapter 3. We have first revealed the

115

116

problems in existing physical design tools that have not fully utilize the timing benefits of the

thick metal layers, and then extended an industrial physical synthesis flow by adding an early

layer directive planning stage, where the core algorithm, CATALYST, assigns as many nets as

possible to thick metal layers to maximize the timing benefits including reducing the buffer area.

An important feature of our algorithm is that it exploits the embedded routing engine along with

heuristics to well control the congestion. Experiments have demonstrated that our flow with

proposed algorithm can significantly reduce the buffer area.

Chapter 4 has discussed the routing techniques for oxide CMP variation optimization. We

have pointed out that the ultimate goal to deal with oxide CMP variation is minimization of

the amount of dummy fills required for CMP instead of minimization of the variation in IPD

or EPD after routing, which was commonly used in previous works. Then by theoretical and

experimental analyses, we have determined that a good surrogate of minimizing dummy fill is

minimizing the maximal EPD. Based on these findings, we have elaborated cost functions to

minimize the maximal EPD in routing process. Moreover, we have also added a postprocessing

stage to further reduce the maximal EPD. Finally, we have run experiments on a set of standard

benchmarks to verify our theoretical analyses and to demonstrate the effectiveness of our new

routing algorithm for dummy fill optimization.

Finally, in Chapter 5, we have presented the first known attempt to address RTA-induced

variations using physical design techniques. In this work, we have proposed a two-step approach

to reduce the impact of RTA-induced variations. We have defined a concept of effective STI

density similar to the concept of EPD in CMP and have proposed an efficient incremental method

to compute the effective STI density for the whole circuit. Furthermore, we have adapted a

conventional floorplanner to handle the new objective of minimizing the variations in effective

STI density, and proposed a two-stage simulated annealing heuristic to improve its quality. As

the second step of our efforts, we have formulated the dummy polysilicon filling problem for

minimizing the RTA-induced variations as a linear programming problem, inspired by a dummy

filling formulation for oxide CMP. Experimental results have demonstrated that our floorplanner

can reduce the global and local RTA variations significantly, and requires much fewer dummy

fills to achieve the same RTA variations than a traditional floorplanner. Moreover, the proposed

dummy filling algorithm has been shown to be very effective and can further reduce the RTA

variations to negligible amounts.

References

[1] I. Ahsan, N. Zamdmer, O. G. O, R. Logan, E. Nowak, H. Kimura, J. Zimmerman, G. Berg,

J. Herman, E. Maciejewski, A. Chan, A. Azuma, S. Deshpande, B. Dirahoui, G. Freeman,

A. Gabor, M. Gribelyuk, S. Huang, M. Kumar, K. Miyamoto, D. Mocuta, A. Mahorowala,

E. Leobandung, H. Utomo, and B. Walsh. RTA-driven intra-die variations in stage delay,

and parametric sensitivities for 65nm technology. In Proceedings of the IEEE Symposium

on VLSI Technology, pages 170–171, 2006.

[2] C. Alpert and G. Tellez. The importance of routing congestion analysis. DAC Knowledge

Center Online Article, 2010. http://www.dac.com/back_end+topics.aspx?a

rticle=47&topic=2. Accessed: 02/07/2013.

[3] A. B. Kahng and K. Samadi. CMP fill synthesis: A survey of recent studies. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, 27(1):3–19,

2008.

[4] Y. Li, A. Farshidi, L. Behjat, and W. Swartz. High performance post-placement length esti-

mation techniques. International Journal of Information and Computer Science, 1(6):144–

152, September 2012.

[5] D. O. Ouma, D. S. Boning, J. E. Chung, W. G. Easter, V. Saxena, S. Misra, and A. Crevasse.

Characterization and modeling of oxide chemical-mechanical polishing using planarization

length and pattern density concepts. IEEE Transactions on Semiconductor Manufacturing,

15(2):232–244, 2002.

[6] The history of the integrated circuit. http://www.nobelprize.org/education

al/physics/integrated_circuit/history/. Accessed: 01/14/2013.

117

http://www.dac.com/back_end+topics.aspx?article=47&topic=2
http://www.dac.com/back_end+topics.aspx?article=47&topic=2
http://www.nobelprize.org/educational/physics/integrated_circuit/history/
http://www.nobelprize.org/educational/physics/integrated_circuit/history/

118

[7] K. Kuhn, C. Kenyon, A. Kornfeld, M. Liu, A. Maheshwari, W. Shih, S. Sivakumar,

G. Taylor, P. VanDerVoorn, and K. Zawadzki. Managing process variation in Intel’s 45nm

CMOS technology. Intel Technology Journal, 12(2):93–109, 2008.

[8] D. Hathaway, L. Stok, D. Chinnery, and K. Keutzer. Design flows. In L. Scheffer,

L. Lavagno, and G. Martin, editors, EDA for IC Implementation, Circuit Design, and

Process Technology, pages 1-1–1-15. CRC Press, Boca Raton, FL, 2011.

[9] C. J. Alpert, D. P. Mehta, and S. S. Sapatnekar. Handbook of Algorithms for Physical

Design Automation. Auerbach Publications, Boca Raton, FL, 2008.

[10] Y. Xu, Y. Zhang, and C. Chu. FastRoute 4.0: Global router with efficient via minimization.

In Proceedings of the Asia-South Pacific Design Automation Conference, pages 576–581,

2009.

[11] Y.-J. Chang, Y.-T. Lee, and T.-C. Wang. NTHU-Route 2.0: a fast and stable global router.

In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design,

pages 338–343, 2008.

[12] M. Cho, K. Lu, K. Yuan, and D. Z. Pan. BoxRouter 2.0: Architecture and implementation

of a hybrid and robust global router. In Proceedings of the IEEE/ACM International

Conference on Computer-Aided Design, pages 503–508, 2007.

[13] H.-Y. Chen, C.-H. Hsu, and Y.-W. Chang. High-performance global routing with fast over-

flow reduction. In Proceedings of the Asia-South Pacific Design Automation Conference,

pages 582–587, 2009.

[14] T.-H. Wu, A. Davoodi, and J. T. Linderoth. A parallel integer programming approach to

global routing. In Proceedings of the ACM/IEEE Design Automation Conference, pages

194–199, 2010.

[15] M. Pan and C. Chu. IPR: An integrated placement and routing algorithm. In Proceedings

of the ACM/IEEE Design Automation Conference, pages 59–62, 2007.

[16] J. A. Roy, N. Viswanathan, G.-J. Nam, C. J. Alpert, and I. L. Markov. CRISP: Congestion

reduction by iterated spreading during placement. In Proceedings of the IEEE/ACM

International Conference on Computer-Aided Design, pages 357–362, 2009.

119

[17] H. Shojaei, A. Davoodi, and J. T. Linderoth. Congestion analysis for global routing via

integer programming. In Proceedings of the IEEE/ACM International Conference on

Computer-Aided Design, pages 256–262, 2011.

[18] Z. Li, C. J. Alpert, S. Hu, T. Muhmud, S. T. Quay, and P. G. Villarrubia. Fast interconnect

synthesis with layer assignment. In Proceedings of the ACM International Symposium on

Physical Design, pages 71–77, 2008.

[19] K. A. Bowman, S. G. Duvall, and J. D. Meindl. Impact of die-to-die and within-die param-

eter fluctuations on the maximum clock frequency distribution for gigascale integration.

IEEE Journal of Solid-State Circuits, 37(2):183–190, 2002.

[20] S. S. Sapatnekar. Variability and statistical design. IPSJ Transactions on System LSI Design

Methodology, 1:18–32, 2008.

[21] S. A. Campbell. The Science and Engineering of Microelectronic Fabrication. Oxford

University Press, USA, New York, NY, 2nd edition, 2001.

[22] P. J. Timans, W. Lerch, J. Niess, S. Paul, N. Acharya, and Z. Nenyei. Challenges for

ulta-shallow junction formation technologies beyond the 90nm node. In Proceedings of

the International Conference on Advanced Thermal Processing of Semiconductors, pages

17–33, 2003.

[23] A. Colin, P. Morin, F. Cacho, H. Bono, R. Beneyton, M. Bidaud, D. Mathiot, and

E. Fogarassy. Simulation of the sub-melt laser anneal process in 45 CMOS technology—

Application to the thermal pattern effects. Materials Science and Engineering: B, 154–

155:31–34, 2008.

[24] J. Lou, S. Thakur, S. Krishnamoorthy, and H. S. Sheng. Estimating routing congestion

using probabilistic analysis. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 21(1):32–41, 2002.

[25] J. Westra, C. Bartels, and P. Groeneveld. Probabilistic congestion prediction. In Proceedings

of the ACM International Symposium on Physical Design, pages 204–209, 2004.

120

[26] N. Viswanathan, C. Alpert, C. Sze, Z. Li, and Y. Wei. The DAC 2012 routability-driven

placement contest and benchmark suite. In Proceedings of the ACM/EDAC/IEEE Design

Automation Conference, pages 774–782, 2012.

[27] M. Pan and C. Chu. FastRoute: a step to integrate global routing into placement. In

Proceedings of the IEEE/ACM International Conference on Computer-Aided Design, pages

464–471, 2006.

[28] T. Taghavi, C. Alpert, A. Huber, Z. Li, G.-J. Nam, and S. Ramji. New placement prediction

and mitigation techniques for local routing congestion. In Proceedings of the IEEE/ACM

International Conference on Computer-Aided Design, pages 621–624, 2010.

[29] U. Brenner and A. Rohe. An effective congestion driven placement framework. In

Proceedings of the ACM International Symposium on Physical Design, pages 6–11, 2002.

[30] M. Hsu, S. Chou, T. Lin, and Y. Chang. Routability-driven analytical placement for

mixed-size circuit designs. In Proceedings of the IEEE/ACM International Conference on

Computer-Aided Design, pages 80–84, 2011.

[31] M. Cho, D. Pan, H. Xiang, and R. Puri. Wire density driven global routing for CMP

variation and timing. In Proceedings of the IEEE/ACM International Conference on

Computer-Aided Design, pages 487–492, 2006.

[32] H.-Y. Chen, S.-J. Chou, S.-L. Wang, and Y.-W. Chang. Novel wire density driven full-

chip routing for CMP variation control. In Proceedings of the IEEE/ACM International

Conference on Computer-Aided Design, pages 831–838, 2007.

[33] Y. Zhang and C. Chu. GDRouter: interleaved global routing and detailed routing for ultimate

routability. In Proceedings of the ACM/EDAC/IEEE Design Automation Conference, pages

597–602, 2012.

[34] Y. Zhang and C. Chu. RegularRoute: an efficient detailed router with regular routing

patterns. In Proceedings of the ACM International Symposium on Physical Design, pages

45–52, 2011.

121

[35] M. Gester, D. Müller, T. Nieberg, C. Panten, C. Schulte, and J. Vygen. Algorithms and

data structures for fast and good VLSI routing. In Proceedings of the ACM/EDAC/IEEE

Design Automation Conference, pages 459–464, 2012.

[36] M. Gester, D. Müller, T. Nieberg, C. Panten, C. Schulte, and J. Vygen. BonnRoute:

Algorithms and data structures for fast and good VLSI routing. Accepted for publication in

the ACM Transactions on Design Automation of Electronic Systems, 2013.

[37] C. Chu and Y.-C. Wong. FLUTE: Fast lookup table based rectilinear Steiner minimal tree

algorithm for VLSI design. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 27(1):70–83, 2008.

[38] W. C. Naylor, R. Donelly, and L. Sha. Non-linear optimization system and method for wire

length and delay optimization for an automatic electric circuit placer, 2003. U.S. Patent

6671859 B1.

[39] A. B. Kahng and Q. Wang. Implementation and extensibility of an analytic placer. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, 24(5):734–747,

2005.

[40] T. Chen, Z. Jiang, T. Hsu, H. Chen, and Y. Chang. NTUplace3: an analytical placer for large-

scale mixed-size designs with preplaced blocks and density constraints. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, 27(7):1228–1240, July

2008.

[41] T. Chen, A. Chakraborty, and D. Z. Pan. An integrated nonlinear placement framework

with congestion and porosity aware buffer planning. In Proceedings of the ACM/IEEE

Design Automation Conference, pages 702–707, 2008.

[42] Z. Jiang, B. Su, and Y. Chang. Routability-driven analytical placement by net overlapping

removal for large-scale mixed-size designs. In Proceedings of the ACM/IEEE Design

Automation Conference, pages 167–172, 2008.

[43] T. Chan, J. Cong, and K. Sze. Multilevel generalized force-directed method for circuit

placement. In Proceedings of the ACM International Symposium on Physical Design, pages

185–192, 2005.

122

[44] R. Tian, D. F. Wong, and R. Boone. Model-based dummy feature placement for oxide

chemical-mechanical polishing manufacturability. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 20(7):902–910, 2001.

[45] Y. Wei and S. S. Sapatnekar. Dummy fill optimization for enhanced manufacturability.

In Proceedings of the ACM International Symposium on Physical Design, pages 97–104,

2010.

[46] H. Chen, S. Chou, and Y. Chang. Density gradient minimization with coupling-constrained

dummy fill for CMP control. In Proceedings of the ACM International Symposium on

Physical Design, pages 105–111, 2010.

[47] C. J. Alpert, Z. Li, M. D. Moffitt, G. J. Nam, J. A. Roy, and G. Tellez. What makes a design

difficult to route. In Proceedings of the ACM International Symposium on Physical Design,

pages 7–12, 2010.

[48] M. D. Moffitt. MaizeRouter: Engineering an effective global router. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 27(11):2017–2026, 2008.

[49] J. A. Roy and I. L. Markov. High-performance routing at the nanometer scale. In Pro-

ceedings of the IEEE/ACM International Conference on Computer-Aided Design, pages

496–502, 2007.

[50] P. Saxena and C. L. Liu. Optimization of the maximum delay of global interconnects during

layer assignment. IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, 20(4):503–515, 2001.

[51] Y. Jia, Y. Cai, and X. Hong. Timing driven layer assignment considering via resistance and

coupling capacitance. In Proceedings of the International Conference on Communications,

Circuits and Systems, pages 1172–1176, 2007.

[52] S. Hu, Z. Li, and C. J. Alpert. A polynomial time approximation scheme for timing

constrained minimum cost layer assignment. In Proceedings of the IEEE/ACM International

Conference on Computer-Aided Design, pages 112–115, 2008.

123

[53] S. Hu, Z. Li, and C. J. Alpert. A fully polynomial-time approximation scheme for timing-

constrained minimum cost layer assignment. IEEE Transactions on Circuits and Systems

II, 56(7):580–584, 2009.

[54] Y. Chang, T. Lee, and T. Wang. GLADE: a modern global router considering layer

directives. In Proceedings of the IEEE/ACM International Conference on Computer-Aided

Design, pages 319–323, 2010.

[55] T. Lee, Y. Chang, and T. Wang. An enhanced global router with consideration of general

layer directives. In Proceedings of the ACM International Symposium on Physical Design,

pages 53–60, 2011.

[56] M. D. Moffitt and C. N. Sze. Wire synthesizable global routing for timing closure. In

Proceedings of the Asia-South Pacific Design Automation Conference, pages 545–550,

2011.

[57] L. Trevillyan, D. Kung, R. Puri, L. N. Reddy, and M. A. Kazda. An integrated environment

for technology closure of deep-submicron IC designs. IEEE Design & Test of Computers,

21(1):14–22, 2004.

[58] C. J. Alpert, S. K. Karandikar, Z. Li, G. Nam, S. T. Quay, H. Ren, C. N. Sze, P. G.

Villarrubia, and M. C. Yildiz. Techniques for fast physical synthesis. Proceedings of the

IEEE, 95(3):573–599, 2007.

[59] C. L. Ratzlaff and L. T. Pillage. RICE: rapid interconnect circuit evaluation using

AWE. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-

tems, 13(6):763–776, 1994.

[60] J. Cong and D. Z. Pan. Interconnect delay estimation models for synthesis and design

planning. In Proceedings of the Asia-South Pacific Design Automation Conference, pages

97–100. 1999.

[61] C. J. Alpert, J. Hu, S. S. Sapatnekar, and C. N. Sze. Accurate estimation of global buffer

delay within a floorplan. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 25(6):1140–1145, 2006.

124

[62] D. Papa, T. Luo, M. Moffitt, C. Sze, Z. Li, G. Nam, C. Alpert, and I. Markov. RUMBLE: an

incremental timing-driven physical-synthesis optimization algorithm. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, 27(12):2156–2168, 2008.

[63] S. S. Sapatnekar. Timing. Kluwer Academic Publishers, Boston, MA, 2004.

[64] T. H. Lee and T. C. Wang. Congestion-constrained layer assignment for via minimization

in global routing. IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, 27(9):1643–1656, 2008.

[65] A. Kahng, G. Robins, A. Singh, H. Wang, and A. Zelikovsky. Filling and slotting: analysis

and algorithms. In Proceedings of the ACM International Symposium on Physical Design,

pages 95–102, 1998.

[66] K. Li, C. Lee, Y. Chang, C. Su, and J. Chen. Multilevel full-chip routing with testability

and yield enhancement. In Proceedings of the International Workshop on System Level

Interconnect Prediction, pages 29–36, 2005.

[67] H. Chen, S. Chou, S. Wang, and Y. Chang. A novel wire-density-driven full-chip routing

system for CMP variation control. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 28(2):193–206, 2009.

[68] H. Yao, Y. Cai, and X. Hong. CMP-aware maze routing algorithm for yield enhancement.

In Proceedings of the IEEE Computer Society Annual Symposium on VLSI, pages 239–244,

2007.

[69] Y. Jia, Y. Cai, and X. Hong. Full-chip routing system for reducing Cu CMP & ECP

variation. In Proceedings of the Annual Symposium on Integrated Circuits and System

Design, pages 10–15, 2008.

[70] C. Chu and Y. C. Wong. Fast and accurate rectilinear steiner minimal tree algorithm for

VLSI design. In Proceedings of the ACM International Symposium on Physical Design,

pages 28–35, 2005.

[71] ISPD 2007 Global Routing Contest. http://www.sigda.org/ispd2007/rconte

st/. Accessed: 07/27/2008.

http://www.sigda.org/ispd2007/rcontest/
http://www.sigda.org/ispd2007/rcontest/

125

[72] G. Nam, C. Sze, and M. Yildiz. The ISPD global routing benchmark suite. In Proceedings

of the ACM International Symposium on Physical Design, pages 156–159, 2008.

[73] ISPD 2008 Global Routing Contest. http://www.ispd.cc/slides/ispd2008-f

iles/S7-3.pdf. Accessed: 02/07/2013.

[74] ILOG CPLEX 11.210. http://www.ilog.com/products/cplex/. Accessed:

05/03/2009.

[75] Y. Ye, F. Liu, M. Chen, and Y. Cao. Variability analysis under layout pattern-dependent

rapid-thermal annealing process. In Proceedings of the ACM/IEEE Design Automation

Conference, pages 551–556, 2009.

[76] J. C. Scott, O. Gluschenkov, B. Goplen, H. Landis, E. Nowak, F. Clougherty, A. Mocuta,

T. Hook, N. Zamdmer, C. Lai, M. Eller, D. Chidambarrao, J. Yu, P. Chang, J. Ferris,

S. Deshpande, Y. Li, H. Shang, G. Hefferon, R. Divakaruni, E. Crabbe, and X. Chen.

Reduction of RTA-driven intra-die variation via model-based layout optimization. In

Proceedings of the IEEE Symposium on VLSI Technology, pages 152–153, 2009.

[77] J. M. Rabaey, A. Chandrakasan, and B. Nikolic. Digital Integrated Circuits: A Design

Perspective. Prentice Hall, Upper Saddle River, NJ, 2nd edition, 2003.

[78] S. K. Springer, S. Lee, N. Lu, E. J. Nowak, J.-O. Plouchart, J. S. Watts, R. Q. Williams, and

N. Zamdmer. Modeling of variation in submicrometer CMOS ULSI technologies. IEEE

Transactions on Electron Devices, 53(9):2168–2178, 2006.

[79] S. N. Adya and I. L. Markov. Fixed-outline floorplanning through better local search. In

Proceedings of the IEEE International Conference on Computer Design, pages 328–334,

2001.

[80] S. Adya, H. H. Chan, and I. L. Markov. http://vlsicad.eecs.umich.edu/BK/pa

rquet/. Accessed: 12/22/2008.

[81] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani. Rectangle-packing based module

placement. In Proceedings of the IEEE/ACM International Conference on Computer-Aided

Design, pages 472–479, 1995.

http://www.ispd.cc/slides/ispd2008-files/S7-3.pdf
http://www.ispd.cc/slides/ispd2008-files/S7-3.pdf
http://www.ilog.com/products/cplex/
http://vlsicad.eecs.umich.edu/BK/parquet/
http://vlsicad.eecs.umich.edu/BK/parquet/

126

[82] X. Tang and D. F. Wong. FAST-SP: A fast algorithm for block placement based on sequence

pair. In Proceedings of the Asia and South Pacific Design Automation Conference, pages

521–526, 2001.

	Acknowledgements
	Dedication
	Abstract
	Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Achieving effective routability evaluation
	1.2 Reducing buffer usage
	1.3 Process variation optimization
	1.3.1 Optimizing dummy fill for CMP-induced variations
	1.3.2 Minimizing RTA-induced variations

	2 Techniques for Scalable and Effective Routability Evaluation
	2.1 Introduction
	2.1.1 Congestion analysis techniques
	2.1.2 Metrics to score or represent congestion

	2.2 Preliminaries
	2.3 Local congestion modeling
	2.3.1 Limitations of existing global-routing-based methods
	2.3.2 Review of previous works for local congestion modeling
	2.3.3 Method 1: Estimation of local resources based on Steiner tree wirelength
	2.3.4 Method 2: Estimation of local resources based on pin density
	2.3.5 Method 3: An enhanced method with better scalability
	2.3.5.1 Limitations in Method 1 and Method 2
	2.3.5.2 The enhanced method to model local resources: Method 3

	2.4 Filtering out the noise in routability evaluation
	2.5 Metrics for design congestion
	2.5.1 Limitations of current metrics
	2.5.2 New metric (ACE metric) for design congestion

	2.6 Validation and analysis
	2.6.1 Impact of local resource modeling on routability evaluation
	2.6.1.1 Improving congestion analysis accuracy
	2.6.1.2 Scalability of the proposed methods on increasing g-cell size
	2.6.1.3 Runtime and acceleration by using a larger g-cell
	2.6.1.4 Better prediction of detailed routing issues

	2.6.2 Impact of the smoothing technique on routability evaluation
	2.6.3 Impact of ACE metric on routability evaluation
	2.6.3.1 Comparison of routability metrics
	2.6.3.2 Further comparison between overflow metrics and ACE metrics
	2.6.3.3 Guiding routability optimization

	2.7 Conclusion

	3 CATALYST: Planning Layer Directives for Effective Design Closure
	3.1 Introduction
	3.2 Preliminaries
	3.2.1 Layer directives and notations
	3.2.2 Global routing with layer directives
	3.2.3 Timing metrics and model
	3.2.4 Layer directive assignment

	3.3 Overview of CATALYST
	3.4 Timing-driven directive assignment
	3.5 Congestion- and timing-aware directive assignment
	3.5.1 Overall algorithm for Subproblem 2
	3.5.2 General layer assignment
	3.5.3 Directive assignment adjustment (DAA)

	3.6 Experimental results
	3.6.1 The immediate impact of CATALYST
	3.6.2 The impact of CATALYST in the flow

	3.7 Conclusion

	4 Dummy Fill Optimization for Enhanced Manufacturability
	4.1 Introduction
	4.2 Preliminaries
	4.3 Previous work
	4.4 The flow of the CMP-aware routing algorithm
	4.5 Cost function
	4.5.1 Finding a surrogate for the dummy fill cost
	4.5.2 Dummy fill cost function
	4.5.3 Cost function in different stages
	4.5.4 Why optimizing minimal EPD is not important

	4.6 Experimental results
	4.7 Conclusion

	5 Physical Design Techniques for Optimizing RTA-induced Variations
	5.1 Introduction
	5.2 Background
	5.2.1 Rapid thermal annealing
	5.2.2 Dummy polysilicon filling for RTA

	5.3 The effective STI density
	5.3.1 A formulation for the effective STI density
	5.3.2 Efficient computation techniques
	5.3.3 Finding the discretized local STI density

	5.4 RTA-driven floorplanning
	5.4.1 Cost function
	5.4.2 Heuristics

	5.5 Inserting dummy polysilicon fills
	5.6 Experimental results
	5.6.1 RTA-aware floorplanning
	5.6.2 Dummy polysilicon filling

	5.7 Conclusion

	6 Conclusion
	References

