
TIME BORROWING IN HIGH-SPEED FUNCTIONAL UNITS USING SKEW-TOLERANT
DOMINO CIRCUITS

Gunok Jung, Victoria Perepelitsa and Gerald E. Sobelman

Department of Electrical and Computer Engineering
University of Minnesota

Minneapolis, MN 55455, USA
TEL: (612)625-8041, FAX: (612)625-4583

e-mail: sobelman@ece.umn.edu

ABSTRACT

We present results on time borrowing in skew-tolerant domino
logic circuits for a 32-bit adder, a 64-bit adder and a 32-bit
pipelined multiplier. The adders are built using enhanced
multiple output domino logic and the multiplier uses modi-
fied Booth encoding and a Wallace tree. We illustrate how
the resulting soft clock edges allow advantageous time bor-
rowing to occur in these functional units. In this way, limita-
tions due to delay imbalances between stages are removed,
allowing the circuits to operate at a higher speed.

1. INTRODUCTION

Skew-tolerant domino CMOS circuit design has been re-
cently introduced as a means for overcoming the limitations
of imperfect clock distribution in high-speed digital chips
[1], [2]. The basic idea is to make use of overlapping clock
phases in such a way that the circuit becomes insensitive to
skew.

On the other hand, in systems where skew is carefully
controlled through precise engineering of the clock distri-
bution network, the same mechanism can be applied to en-
hance performance through the use of time borrowing be-
tween adjacent clock phases. Time borrowing has been tra-
ditionally used in latched-based designs using static CMOS
combinational logic. Discussion of time borrowing in con-
junction with domino CMOS has not appeared in the open
literature until recently [1], [2], [3], [4].

In this paper, we present design examples of this tech-
nique for three important functional units, namely a 32-bit
adder, a 64-bit adder and a 32-bit multiplier. Our clock-
ing scheme uses four overlapping phases, where each clock
phase has a 50% duty cycle. In the case of the adder circuits,
we make use of the recently introduced EMODL (enhanced
multiple output domino logic) circuit technique with a carry
look-ahead architecture to achieve a high-speed single-cycle
design [5], [6]. For the multiplier, we consider a highly

pipelined design using modified Booth encoding and a Wal-
lace tree [7]. This multiplier could be used in feed-forward
data paths requiring high-throughput, such as in digital sig-
nal processing applications involving FIR filters or orthog-
onal transforms.

In these three design examples, we show how the logic
can be partitioned into blocks that are nominally associated
with each of the four clock phases. Moreover, we point out
specific instances where time borrowing occurs, resulting
in an increase in operational speed. The overlapping phases
give rise to softer clock edges that allow blocks to continue
evaluating beyond their nominal phase time. In this way, we
avoid wasteful delays associated with the inevitable imbal-
ances in the propagation delay associated with each stage of
a pipeline.

This paper is organized as follows: In Section 2, the key
ideas of skew-tolerant domino CMOS circuits and time bor-
rowing are briefly reviewed. Then, in Section 3, we present
our design and simulation results for time borrowing in the
EMODL adders. Section 4 contains our design and simula-
tion results for the 32-bit multiplier. Finally, in Section 5,
we present our conclusions.

2. TIME BORROWING IN SKEW-TOLERANT
DOMINO

Conventional or “textbook” domino circuit design uses two
phase clocking in which the precharge and evaluation of ad-
jacent blocks of logic occurs on alternate phases and where
the intermediate results are stored in transparent latches. As
explained in References [1] and [2], this results in a sig-
nificant clocking overhead due to skew, latch propagation
delay and imbalances in the delays in different blocks. In
essence, the problem can be traced to the existence of hard
clock edges that require intermediate computations to be
completed well within their allotted phases.

On the other hand, skew-tolerant domino circuit design



uses overlapping clock phases resulting in softer clock edges.
One of the benefits of this is to enable time borrowing be-
tween adjacent phases. If two clock phases are used, then
the only way to obtain overlapping phases is to use asym-
metric clock waveforms having greater than a 50% duty cy-
cle. However, if more than two phases are used, overlaps
can be obtained between adjacent phases with 50% duty
cycle clocks. Systems with several clock phases are of-
ten criticized for having complex clock distribution prob-
lems, but the difficulties can be minimized through proper
design. In particular, only a single global clock signal is
distributed throughout the chip. The individual phases are
derived locally in the vicinity of each module or functional
unit. In this way, global clock routing congestion is lim-
ited and skews can be better managed. All of the designs in
this paper utilize a clocking scheme having four overlapping
clock phases, each of which has a 50% duty cycle.

The basic concept involved in time borrowing can be
seen from Figure 1. In the figure, two adjacent clock phases
are shown with an overlap between them. If clock skew
is present, then the rising edge of �i+1 corresponds to the
latest possible time for this edge while the falling edge of �i

corresponds to the earliest possible time for this edge. The
interval when both clocks are high is when time borrowing
can occur.

own borrow

φ

φ

i+1

i

Figure 1: Time periods owned and potentially borrowed by
a clock phase.

Consider two adjacent logic modules, A and B, in which
A evaluates when �i is high, B evaluates when �i+1 is high
and where the inputs to B come from the outputs of A. The
nominal evaluation time for A is the period labeled as “own”
in the figure. However, if necessary, the evaluation of A can
extend into the region labeled as “borrow” in the figure. If
the evaluation of A has not completed, its output(s) will be
low since A is a domino circuit. This, in turn, will tem-
porarily suspend the evaluation of B since all of the logical
inputs to B are low. As soon as the result from A becomes
available, then B will immediately start its own evaluation.
Thus, the boundary between when A finishes and B begins
is fuzzy, i.e. the clock edges have been effectively soft-
ened. This effect enables the circuit to automatically adjust
to the imbalances that inevitably exist between the propa-

gation delays of adjacent stages. Hence, the clock period
does not have to be degraded to accommodate the worst-
case stage delay, which improves the overall speed of the
circuit.

3. TIME BORROWING IN EMODL CARRY
LOOK-AHEAD ADDERS

In this section, we present our design and simulation results
for 32-bit and 64-bit single-cycle carry look-ahead adders
that are based on EMODL functional blocks [5], [6]. EMODL
is a modification to the original concept of multiple output
domino logic [8] that allows shared devices to be used to
implement common sub-expressions that are not necessar-
ily function outputs.

The partitioning of the 32-bit EMODL adder is shown
in the block diagram of Figure 2. In this design, only the
first three phases are nominally allocated to the addition op-
eration itself, with the fourth phase just latching the result.
Specifically, the generate, propagate, group generate and
group propagate functions are formed by circuits clocked
on �1. These values are then fed into the carry chain, which
is clocked on �2. Finally, the sum values are created in cir-
cuits that are clocked on �3.

stage stage stage
1 3 4

phi3 phi4phi2phi1

 gnerate,
prop.)

(group

stage
2

(carry
  chain)

(multiple
 sum

(allowing
 time

 & latch)
 borrowing

sum(0:31)

couta(0:31)

 generate)

b(0:31)

Figure 2: Partitioning the 32-bit EMODL adder into 4
phases.

However, as shown in the simulation results of Figure
3, the actual operation is enhanced through the use time
borrowing. Due to delay imbalances within the circuit, the
nominal�1 computations borrow 0.039 ns from�2, the nom-
inal �2 computations borrow 0.187 ns from �3 and the nom-
inal �3 computations borrow 0.11 ns from �4. However,
stage 4 still completes by the end of �4.

The 64-bit EMODL adder has a more complex logical
structure, and the partitioning has been done differently, as
shown in Figure 4. Here, all four phases are required to
compute the results, since two phases are allocated to the
operation of the carry chain. Figure 5 shows the time bor-
rowing that occurs in this design.



phi1

phi2

phi3

phi4

phase1 time phase4 timephase3 timephase2 time
(nominal)

delay time 
actual step1 

reserved

Tc (0.76ns)

(0.19ns) (0.19ns) (0.19ns) (0.19ns)

0.039ns

 time(0.01ns)

step4
time

actual step3 
delay time 

actual step2 
delay time 

0.187ns 0.11ns

amount of
time borrowing

(0.229ns) (0.338ns) (0.113ns) (0.07ns)

Figure 3: Time borrowing in the 32-bit EMODL adder.

phi4phi2phi1

cout

phi3

phi2

a(0:63)

b(0:63) sum(0:63)

 gnerate

propagate

carry
chain
block

  chain

group

block

block

carry

group

propagate
block

 generate
block

 sum
multiple

generate

Figure 4: Partitioning the 64-bit EMODL adder into 4
phases.

phi1

phi2

phi3

phi4

phase1 time phase4 timephase3 timephase2 time
(nominal)

reserved

time 
step2 actual step1 

delay time 

Tc (0.8ns)

(0.2ns) (0.2ns) (0.2ns) (0.2ns)

0.071ns 0.09ns

(0.271ns) (0.042)

 time(0.02ns)

(0.09)
time
step4actual step3 

delay time 
(0.29ns)

time borrowing
amount of

Figure 5: Time borrowing in the 64-bit EMODL adder.

4. TIME BORROWING IN A PIPELINED
MULTIPLIER

As a final example, we consider the design of a deeply pipelined
32-bit by 32-bit parallel multiplier. We use a conventional
architecture based on modified Booth encoding to generate
a reduced number of partial products and a Wallace tree to
sum the partial products [7]. Each modified Booth encoder
cell examines three contiguous bits of the multipier operand,
X, to determine whether to add 0, +1, -1, +2 or -2 times the
multiplicand, Y. This is accomplished in several steps: Dur-
ing �2 of the first cycle, a set of three control signals are
generated: n to invert the multiplicand, m1 to multiply the
multiplicand by 1 and m2 to multiply the multiplicand by 2.
The equations for the above three functions are:

m1 = x2i � x2i�1 (1)

m2 = x2i+1x
0

2ix
0

2i�1 + x02i+1x2ix2i�1 (2)

n = x2i+1(x2ix2i�1)
0 (3)

These three signals are used to control the operation of
select cells that send the correct partial product bit into the
Wallace tree. The governing equation is:

ppi = (m1yi +m2yi�1)� n (4)

The selection process is mapped into the last two clock
phases of the first cycle. During �3, the intermediate quan-
tities pi = m1yi +m2yi�1 are computed. Then, during �4,
the partial product bits ppi = pi � n are created.

The Wallace tree implements a series of 3-to-2 com-
pressions on the set of partial products. This occurs over
6 phases (i.e., 1.5 cycles), and spans the entire second cycle
plus the first half of the third cycle.

The final two vectors produced by the Wallace tree are
summed in a fast 64-bit adder that uses a carry-select ar-
chitecture [9]. The adder is divided into 16-bit carry look-
ahead (CLA) sections. A single 16-bit CLA section is used
to sum the least significant 16 bits. However, each of the
other three 16-bit sections use two CLAs, one that assumes
a carry-in of 0 and another that assumes a carry-in of 1.
In each case, the outputs from the appropriate CLA are se-
lected once the carry-in values become known. This final
set of selections, together with latching of the 64 product
bits, is accomplished in the final MUX/latch block at the
bottom of the block diagram. The CLAs and MUX/latch
blocks operate during the final 2.5 clock cycles.

Some of the time borrowing effects are illustrated by the
simulation waveforms for the first clock cycle, as shown in
Figure 7. During this period of time, the input operands are
latched, the modified Booth encoder outputs are generated
and the partial products are formed. Note that the full clock



phi3
phi2
phi1

phi4
phi1
phi2

16  select  cellsphi4

phi2

latches latchesphi1

X(0:31) Y(0:31)

m1,m2,n

buffer

CLA
16-bit 16-bit 16-bit 16-bit 16-bit 16-bit

CLA CLA CLA CLA CLACLA

16-bit

Multiplxer  and  latches

phi3
phi4
phi1
phi2
phi3

phi4
phi1
phi2
phi3
phi4

S(0:15)

phi3

pp(i) 32x16 partial

S(49:63)a
S(49:63)b

S(32:48)a
S(32:48)b

S(16:31)a
S(16:31)b

Products(0:63)

products

Wallace tree stage
andcarry bits(0:63) sum bits(0:63)

Booth encoder

Figure 6: Partitioning the 32-bit multiplier into 5 cycles.

cycle time, Tc, is 0.68 ns, so that each nominal phase time
is 0.17 ns. We can see that the modified Booth encoding,
which is allocated to �2, borrows 0.135 ns from the nominal
�3 time. There are also two other minor instances of time
borrowing during the cycle, as shown in the figure. (Step 5,
which occurs during the next �1, is the initial stage of the
Wallace tree computation.)

phi1

phi2

phi3

phi4

phase1 time phase3 timephase2 time
(nominal)

reserved

phase4 time phase1 time

Tc (0.68ns)

(0.17ns) (0.17ns) (0.17ns) (0.17ns) (0.17ns)

actual step1 
delay time 
(0.177ns)

step5
timedelay time

actual step4 step3 
 time 

actual step2 
delay time 
(0.298ns) (0.072ns) (0.143ns)

0.135ns0.007ns

amount of
time borrowing

0.01ns

 time(0.03ns)

(0.18)

Figure 7: Time borrowing in the first cycle for the 32-bit
multiplier.

5. CONCLUSIONS

We have demonstrated the issues and benefits arising from
time borrowing in skew-tolerant domino circuits for three
important functional units. The 32-bit and 64-bit EMODL
adders were mapped into single-cycle designs using four
50% duty cycle clock phases. We also considered a pipelined
multiplier which used a total of five cycles of the same over-
lapping clocking scheme. For these three designs, we showed
how and where time borrowing occurs. The time borrowing
phenomenon effectively creates softer clock edges which re-
laxes the need to carefully balance the delays in a pipeline,
thereby leading to faster circuits.

6. REFERENCES

[1] D. Harris and M. A. Horowitz, “Skew-Tolerant
Domino Circuits,” IEEE Journal of Solid-State Cir-
cuits, Vol. 32, No. 11, pp. 1702-1711, November,
1997.

[2] D. Harris, “Skew-Tolerant Circuit Design,” Ph.D. The-
sis, Stanford University, November, 1998.

[3] D. Harris et al, “Opportunistic Time-Borrowing
Domino Logic,” U.S. Patent No. 5,517,136, May 14,
1996.

[4] Kerry Bernstein et al, High Speed CMOS Design
Styles, Chapter 8, Kluwer Academic Publishers, 1998.

[5] J. Wang et al, “Area-Time Analysis of Carry
Lookahead Adders Using Enhanced Multiple Out-
put Domino Logic,” Proceedings, IEEE International
Symposium on Circuits and Systems, Vol. 4, pp. 59-62,
1994.

[6] Z. Wang et al, “Fast Adders using Enhanced Multiple-
Output Domino Logic,” IEEE Journal of Solid-State
Circuits, Vol. 32, No. 2, pp. 206-214, February, 1997.

[7] S. Waser and M. J. Flynn, Introduction to Arithmetic
for Digital System Design, Chapter 3, CBS Publish-
ing, 1982.

[8] I. S. Hwang and A. L. Fisher, “Ultra Fast Compact 32-
bit CMOS Adder in Multiple-Output Domino Logic,”
IEEE Journal of Solid-State Circuits, Vol. 24, pp. 358-
369, 1989.

[9] O. J. Bedrij, “Carry-Select Adder,” IRE Trans. on
Electronic Computers, Vol. EC-11, pp. 340-346, 1962.


